19+ Experimental Design Examples (Methods + Types)

practical psychology logo

Ever wondered how scientists discover new medicines, psychologists learn about behavior, or even how marketers figure out what kind of ads you like? Well, they all have something in common: they use a special plan or recipe called an "experimental design."

Imagine you're baking cookies. You can't just throw random amounts of flour, sugar, and chocolate chips into a bowl and hope for the best. You follow a recipe, right? Scientists and researchers do something similar. They follow a "recipe" called an experimental design to make sure their experiments are set up in a way that the answers they find are meaningful and reliable.

Experimental design is the roadmap researchers use to answer questions. It's a set of rules and steps that researchers follow to collect information, or "data," in a way that is fair, accurate, and makes sense.

experimental design test tubes

Long ago, people didn't have detailed game plans for experiments. They often just tried things out and saw what happened. But over time, people got smarter about this. They started creating structured plans—what we now call experimental designs—to get clearer, more trustworthy answers to their questions.

In this article, we'll take you on a journey through the world of experimental designs. We'll talk about the different types, or "flavors," of experimental designs, where they're used, and even give you a peek into how they came to be.

What Is Experimental Design?

Alright, before we dive into the different types of experimental designs, let's get crystal clear on what experimental design actually is.

Imagine you're a detective trying to solve a mystery. You need clues, right? Well, in the world of research, experimental design is like the roadmap that helps you find those clues. It's like the game plan in sports or the blueprint when you're building a house. Just like you wouldn't start building without a good blueprint, researchers won't start their studies without a strong experimental design.

So, why do we need experimental design? Think about baking a cake. If you toss ingredients into a bowl without measuring, you'll end up with a mess instead of a tasty dessert.

Similarly, in research, if you don't have a solid plan, you might get confusing or incorrect results. A good experimental design helps you ask the right questions ( think critically ), decide what to measure ( come up with an idea ), and figure out how to measure it (test it). It also helps you consider things that might mess up your results, like outside influences you hadn't thought of.

For example, let's say you want to find out if listening to music helps people focus better. Your experimental design would help you decide things like: Who are you going to test? What kind of music will you use? How will you measure focus? And, importantly, how will you make sure that it's really the music affecting focus and not something else, like the time of day or whether someone had a good breakfast?

In short, experimental design is the master plan that guides researchers through the process of collecting data, so they can answer questions in the most reliable way possible. It's like the GPS for the journey of discovery!

History of Experimental Design

Around 350 BCE, people like Aristotle were trying to figure out how the world works, but they mostly just thought really hard about things. They didn't test their ideas much. So while they were super smart, their methods weren't always the best for finding out the truth.

Fast forward to the Renaissance (14th to 17th centuries), a time of big changes and lots of curiosity. People like Galileo started to experiment by actually doing tests, like rolling balls down inclined planes to study motion. Galileo's work was cool because he combined thinking with doing. He'd have an idea, test it, look at the results, and then think some more. This approach was a lot more reliable than just sitting around and thinking.

Now, let's zoom ahead to the 18th and 19th centuries. This is when people like Francis Galton, an English polymath, started to get really systematic about experimentation. Galton was obsessed with measuring things. Seriously, he even tried to measure how good-looking people were ! His work helped create the foundations for a more organized approach to experiments.

Next stop: the early 20th century. Enter Ronald A. Fisher , a brilliant British statistician. Fisher was a game-changer. He came up with ideas that are like the bread and butter of modern experimental design.

Fisher invented the concept of the " control group "—that's a group of people or things that don't get the treatment you're testing, so you can compare them to those who do. He also stressed the importance of " randomization ," which means assigning people or things to different groups by chance, like drawing names out of a hat. This makes sure the experiment is fair and the results are trustworthy.

Around the same time, American psychologists like John B. Watson and B.F. Skinner were developing " behaviorism ." They focused on studying things that they could directly observe and measure, like actions and reactions.

Skinner even built boxes—called Skinner Boxes —to test how animals like pigeons and rats learn. Their work helped shape how psychologists design experiments today. Watson performed a very controversial experiment called The Little Albert experiment that helped describe behaviour through conditioning—in other words, how people learn to behave the way they do.

In the later part of the 20th century and into our time, computers have totally shaken things up. Researchers now use super powerful software to help design their experiments and crunch the numbers.

With computers, they can simulate complex experiments before they even start, which helps them predict what might happen. This is especially helpful in fields like medicine, where getting things right can be a matter of life and death.

Also, did you know that experimental designs aren't just for scientists in labs? They're used by people in all sorts of jobs, like marketing, education, and even video game design! Yes, someone probably ran an experiment to figure out what makes a game super fun to play.

So there you have it—a quick tour through the history of experimental design, from Aristotle's deep thoughts to Fisher's groundbreaking ideas, and all the way to today's computer-powered research. These designs are the recipes that help people from all walks of life find answers to their big questions.

Key Terms in Experimental Design

Before we dig into the different types of experimental designs, let's get comfy with some key terms. Understanding these terms will make it easier for us to explore the various types of experimental designs that researchers use to answer their big questions.

Independent Variable : This is what you change or control in your experiment to see what effect it has. Think of it as the "cause" in a cause-and-effect relationship. For example, if you're studying whether different types of music help people focus, the kind of music is the independent variable.

Dependent Variable : This is what you're measuring to see the effect of your independent variable. In our music and focus experiment, how well people focus is the dependent variable—it's what "depends" on the kind of music played.

Control Group : This is a group of people who don't get the special treatment or change you're testing. They help you see what happens when the independent variable is not applied. If you're testing whether a new medicine works, the control group would take a fake pill, called a placebo , instead of the real medicine.

Experimental Group : This is the group that gets the special treatment or change you're interested in. Going back to our medicine example, this group would get the actual medicine to see if it has any effect.

Randomization : This is like shaking things up in a fair way. You randomly put people into the control or experimental group so that each group is a good mix of different kinds of people. This helps make the results more reliable.

Sample : This is the group of people you're studying. They're a "sample" of a larger group that you're interested in. For instance, if you want to know how teenagers feel about a new video game, you might study a sample of 100 teenagers.

Bias : This is anything that might tilt your experiment one way or another without you realizing it. Like if you're testing a new kind of dog food and you only test it on poodles, that could create a bias because maybe poodles just really like that food and other breeds don't.

Data : This is the information you collect during the experiment. It's like the treasure you find on your journey of discovery!

Replication : This means doing the experiment more than once to make sure your findings hold up. It's like double-checking your answers on a test.

Hypothesis : This is your educated guess about what will happen in the experiment. It's like predicting the end of a movie based on the first half.

Steps of Experimental Design

Alright, let's say you're all fired up and ready to run your own experiment. Cool! But where do you start? Well, designing an experiment is a bit like planning a road trip. There are some key steps you've got to take to make sure you reach your destination. Let's break it down:

  • Ask a Question : Before you hit the road, you've got to know where you're going. Same with experiments. You start with a question you want to answer, like "Does eating breakfast really make you do better in school?"
  • Do Some Homework : Before you pack your bags, you look up the best places to visit, right? In science, this means reading up on what other people have already discovered about your topic.
  • Form a Hypothesis : This is your educated guess about what you think will happen. It's like saying, "I bet this route will get us there faster."
  • Plan the Details : Now you decide what kind of car you're driving (your experimental design), who's coming with you (your sample), and what snacks to bring (your variables).
  • Randomization : Remember, this is like shuffling a deck of cards. You want to mix up who goes into your control and experimental groups to make sure it's a fair test.
  • Run the Experiment : Finally, the rubber hits the road! You carry out your plan, making sure to collect your data carefully.
  • Analyze the Data : Once the trip's over, you look at your photos and decide which ones are keepers. In science, this means looking at your data to see what it tells you.
  • Draw Conclusions : Based on your data, did you find an answer to your question? This is like saying, "Yep, that route was faster," or "Nope, we hit a ton of traffic."
  • Share Your Findings : After a great trip, you want to tell everyone about it, right? Scientists do the same by publishing their results so others can learn from them.
  • Do It Again? : Sometimes one road trip just isn't enough. In the same way, scientists often repeat their experiments to make sure their findings are solid.

So there you have it! Those are the basic steps you need to follow when you're designing an experiment. Each step helps make sure that you're setting up a fair and reliable way to find answers to your big questions.

Let's get into examples of experimental designs.

1) True Experimental Design

notepad

In the world of experiments, the True Experimental Design is like the superstar quarterback everyone talks about. Born out of the early 20th-century work of statisticians like Ronald A. Fisher, this design is all about control, precision, and reliability.

Researchers carefully pick an independent variable to manipulate (remember, that's the thing they're changing on purpose) and measure the dependent variable (the effect they're studying). Then comes the magic trick—randomization. By randomly putting participants into either the control or experimental group, scientists make sure their experiment is as fair as possible.

No sneaky biases here!

True Experimental Design Pros

The pros of True Experimental Design are like the perks of a VIP ticket at a concert: you get the best and most trustworthy results. Because everything is controlled and randomized, you can feel pretty confident that the results aren't just a fluke.

True Experimental Design Cons

However, there's a catch. Sometimes, it's really tough to set up these experiments in a real-world situation. Imagine trying to control every single detail of your day, from the food you eat to the air you breathe. Not so easy, right?

True Experimental Design Uses

The fields that get the most out of True Experimental Designs are those that need super reliable results, like medical research.

When scientists were developing COVID-19 vaccines, they used this design to run clinical trials. They had control groups that received a placebo (a harmless substance with no effect) and experimental groups that got the actual vaccine. Then they measured how many people in each group got sick. By comparing the two, they could say, "Yep, this vaccine works!"

So next time you read about a groundbreaking discovery in medicine or technology, chances are a True Experimental Design was the VIP behind the scenes, making sure everything was on point. It's been the go-to for rigorous scientific inquiry for nearly a century, and it's not stepping off the stage anytime soon.

2) Quasi-Experimental Design

So, let's talk about the Quasi-Experimental Design. Think of this one as the cool cousin of True Experimental Design. It wants to be just like its famous relative, but it's a bit more laid-back and flexible. You'll find quasi-experimental designs when it's tricky to set up a full-blown True Experimental Design with all the bells and whistles.

Quasi-experiments still play with an independent variable, just like their stricter cousins. The big difference? They don't use randomization. It's like wanting to divide a bag of jelly beans equally between your friends, but you can't quite do it perfectly.

In real life, it's often not possible or ethical to randomly assign people to different groups, especially when dealing with sensitive topics like education or social issues. And that's where quasi-experiments come in.

Quasi-Experimental Design Pros

Even though they lack full randomization, quasi-experimental designs are like the Swiss Army knives of research: versatile and practical. They're especially popular in fields like education, sociology, and public policy.

For instance, when researchers wanted to figure out if the Head Start program , aimed at giving young kids a "head start" in school, was effective, they used a quasi-experimental design. They couldn't randomly assign kids to go or not go to preschool, but they could compare kids who did with kids who didn't.

Quasi-Experimental Design Cons

Of course, quasi-experiments come with their own bag of pros and cons. On the plus side, they're easier to set up and often cheaper than true experiments. But the flip side is that they're not as rock-solid in their conclusions. Because the groups aren't randomly assigned, there's always that little voice saying, "Hey, are we missing something here?"

Quasi-Experimental Design Uses

Quasi-Experimental Design gained traction in the mid-20th century. Researchers were grappling with real-world problems that didn't fit neatly into a laboratory setting. Plus, as society became more aware of ethical considerations, the need for flexible designs increased. So, the quasi-experimental approach was like a breath of fresh air for scientists wanting to study complex issues without a laundry list of restrictions.

In short, if True Experimental Design is the superstar quarterback, Quasi-Experimental Design is the versatile player who can adapt and still make significant contributions to the game.

3) Pre-Experimental Design

Now, let's talk about the Pre-Experimental Design. Imagine it as the beginner's skateboard you get before you try out for all the cool tricks. It has wheels, it rolls, but it's not built for the professional skatepark.

Similarly, pre-experimental designs give researchers a starting point. They let you dip your toes in the water of scientific research without diving in head-first.

So, what's the deal with pre-experimental designs?

Pre-Experimental Designs are the basic, no-frills versions of experiments. Researchers still mess around with an independent variable and measure a dependent variable, but they skip over the whole randomization thing and often don't even have a control group.

It's like baking a cake but forgetting the frosting and sprinkles; you'll get some results, but they might not be as complete or reliable as you'd like.

Pre-Experimental Design Pros

Why use such a simple setup? Because sometimes, you just need to get the ball rolling. Pre-experimental designs are great for quick-and-dirty research when you're short on time or resources. They give you a rough idea of what's happening, which you can use to plan more detailed studies later.

A good example of this is early studies on the effects of screen time on kids. Researchers couldn't control every aspect of a child's life, but they could easily ask parents to track how much time their kids spent in front of screens and then look for trends in behavior or school performance.

Pre-Experimental Design Cons

But here's the catch: pre-experimental designs are like that first draft of an essay. It helps you get your ideas down, but you wouldn't want to turn it in for a grade. Because these designs lack the rigorous structure of true or quasi-experimental setups, they can't give you rock-solid conclusions. They're more like clues or signposts pointing you in a certain direction.

Pre-Experimental Design Uses

This type of design became popular in the early stages of various scientific fields. Researchers used them to scratch the surface of a topic, generate some initial data, and then decide if it's worth exploring further. In other words, pre-experimental designs were the stepping stones that led to more complex, thorough investigations.

So, while Pre-Experimental Design may not be the star player on the team, it's like the practice squad that helps everyone get better. It's the starting point that can lead to bigger and better things.

4) Factorial Design

Now, buckle up, because we're moving into the world of Factorial Design, the multi-tasker of the experimental universe.

Imagine juggling not just one, but multiple balls in the air—that's what researchers do in a factorial design.

In Factorial Design, researchers are not satisfied with just studying one independent variable. Nope, they want to study two or more at the same time to see how they interact.

It's like cooking with several spices to see how they blend together to create unique flavors.

Factorial Design became the talk of the town with the rise of computers. Why? Because this design produces a lot of data, and computers are the number crunchers that help make sense of it all. So, thanks to our silicon friends, researchers can study complicated questions like, "How do diet AND exercise together affect weight loss?" instead of looking at just one of those factors.

Factorial Design Pros

This design's main selling point is its ability to explore interactions between variables. For instance, maybe a new study drug works really well for young people but not so great for older adults. A factorial design could reveal that age is a crucial factor, something you might miss if you only studied the drug's effectiveness in general. It's like being a detective who looks for clues not just in one room but throughout the entire house.

Factorial Design Cons

However, factorial designs have their own bag of challenges. First off, they can be pretty complicated to set up and run. Imagine coordinating a four-way intersection with lots of cars coming from all directions—you've got to make sure everything runs smoothly, or you'll end up with a traffic jam. Similarly, researchers need to carefully plan how they'll measure and analyze all the different variables.

Factorial Design Uses

Factorial designs are widely used in psychology to untangle the web of factors that influence human behavior. They're also popular in fields like marketing, where companies want to understand how different aspects like price, packaging, and advertising influence a product's success.

And speaking of success, the factorial design has been a hit since statisticians like Ronald A. Fisher (yep, him again!) expanded on it in the early-to-mid 20th century. It offered a more nuanced way of understanding the world, proving that sometimes, to get the full picture, you've got to juggle more than one ball at a time.

So, if True Experimental Design is the quarterback and Quasi-Experimental Design is the versatile player, Factorial Design is the strategist who sees the entire game board and makes moves accordingly.

5) Longitudinal Design

pill bottle

Alright, let's take a step into the world of Longitudinal Design. Picture it as the grand storyteller, the kind who doesn't just tell you about a single event but spins an epic tale that stretches over years or even decades. This design isn't about quick snapshots; it's about capturing the whole movie of someone's life or a long-running process.

You know how you might take a photo every year on your birthday to see how you've changed? Longitudinal Design is kind of like that, but for scientific research.

With Longitudinal Design, instead of measuring something just once, researchers come back again and again, sometimes over many years, to see how things are going. This helps them understand not just what's happening, but why it's happening and how it changes over time.

This design really started to shine in the latter half of the 20th century, when researchers began to realize that some questions can't be answered in a hurry. Think about studies that look at how kids grow up, or research on how a certain medicine affects you over a long period. These aren't things you can rush.

The famous Framingham Heart Study , started in 1948, is a prime example. It's been studying heart health in a small town in Massachusetts for decades, and the findings have shaped what we know about heart disease.

Longitudinal Design Pros

So, what's to love about Longitudinal Design? First off, it's the go-to for studying change over time, whether that's how people age or how a forest recovers from a fire.

Longitudinal Design Cons

But it's not all sunshine and rainbows. Longitudinal studies take a lot of patience and resources. Plus, keeping track of participants over many years can be like herding cats—difficult and full of surprises.

Longitudinal Design Uses

Despite these challenges, longitudinal studies have been key in fields like psychology, sociology, and medicine. They provide the kind of deep, long-term insights that other designs just can't match.

So, if the True Experimental Design is the superstar quarterback, and the Quasi-Experimental Design is the flexible athlete, then the Factorial Design is the strategist, and the Longitudinal Design is the wise elder who has seen it all and has stories to tell.

6) Cross-Sectional Design

Now, let's flip the script and talk about Cross-Sectional Design, the polar opposite of the Longitudinal Design. If Longitudinal is the grand storyteller, think of Cross-Sectional as the snapshot photographer. It captures a single moment in time, like a selfie that you take to remember a fun day. Researchers using this design collect all their data at one point, providing a kind of "snapshot" of whatever they're studying.

In a Cross-Sectional Design, researchers look at multiple groups all at the same time to see how they're different or similar.

This design rose to popularity in the mid-20th century, mainly because it's so quick and efficient. Imagine wanting to know how people of different ages feel about a new video game. Instead of waiting for years to see how opinions change, you could just ask people of all ages what they think right now. That's Cross-Sectional Design for you—fast and straightforward.

You'll find this type of research everywhere from marketing studies to healthcare. For instance, you might have heard about surveys asking people what they think about a new product or political issue. Those are usually cross-sectional studies, aimed at getting a quick read on public opinion.

Cross-Sectional Design Pros

So, what's the big deal with Cross-Sectional Design? Well, it's the go-to when you need answers fast and don't have the time or resources for a more complicated setup.

Cross-Sectional Design Cons

Remember, speed comes with trade-offs. While you get your results quickly, those results are stuck in time. They can't tell you how things change or why they're changing, just what's happening right now.

Cross-Sectional Design Uses

Also, because they're so quick and simple, cross-sectional studies often serve as the first step in research. They give scientists an idea of what's going on so they can decide if it's worth digging deeper. In that way, they're a bit like a movie trailer, giving you a taste of the action to see if you're interested in seeing the whole film.

So, in our lineup of experimental designs, if True Experimental Design is the superstar quarterback and Longitudinal Design is the wise elder, then Cross-Sectional Design is like the speedy running back—fast, agile, but not designed for long, drawn-out plays.

7) Correlational Design

Next on our roster is the Correlational Design, the keen observer of the experimental world. Imagine this design as the person at a party who loves people-watching. They don't interfere or get involved; they just observe and take mental notes about what's going on.

In a correlational study, researchers don't change or control anything; they simply observe and measure how two variables relate to each other.

The correlational design has roots in the early days of psychology and sociology. Pioneers like Sir Francis Galton used it to study how qualities like intelligence or height could be related within families.

This design is all about asking, "Hey, when this thing happens, does that other thing usually happen too?" For example, researchers might study whether students who have more study time get better grades or whether people who exercise more have lower stress levels.

One of the most famous correlational studies you might have heard of is the link between smoking and lung cancer. Back in the mid-20th century, researchers started noticing that people who smoked a lot also seemed to get lung cancer more often. They couldn't say smoking caused cancer—that would require a true experiment—but the strong correlation was a red flag that led to more research and eventually, health warnings.

Correlational Design Pros

This design is great at proving that two (or more) things can be related. Correlational designs can help prove that more detailed research is needed on a topic. They can help us see patterns or possible causes for things that we otherwise might not have realized.

Correlational Design Cons

But here's where you need to be careful: correlational designs can be tricky. Just because two things are related doesn't mean one causes the other. That's like saying, "Every time I wear my lucky socks, my team wins." Well, it's a fun thought, but those socks aren't really controlling the game.

Correlational Design Uses

Despite this limitation, correlational designs are popular in psychology, economics, and epidemiology, to name a few fields. They're often the first step in exploring a possible relationship between variables. Once a strong correlation is found, researchers may decide to conduct more rigorous experimental studies to examine cause and effect.

So, if the True Experimental Design is the superstar quarterback and the Longitudinal Design is the wise elder, the Factorial Design is the strategist, and the Cross-Sectional Design is the speedster, then the Correlational Design is the clever scout, identifying interesting patterns but leaving the heavy lifting of proving cause and effect to the other types of designs.

8) Meta-Analysis

Last but not least, let's talk about Meta-Analysis, the librarian of experimental designs.

If other designs are all about creating new research, Meta-Analysis is about gathering up everyone else's research, sorting it, and figuring out what it all means when you put it together.

Imagine a jigsaw puzzle where each piece is a different study. Meta-Analysis is the process of fitting all those pieces together to see the big picture.

The concept of Meta-Analysis started to take shape in the late 20th century, when computers became powerful enough to handle massive amounts of data. It was like someone handed researchers a super-powered magnifying glass, letting them examine multiple studies at the same time to find common trends or results.

You might have heard of the Cochrane Reviews in healthcare . These are big collections of meta-analyses that help doctors and policymakers figure out what treatments work best based on all the research that's been done.

For example, if ten different studies show that a certain medicine helps lower blood pressure, a meta-analysis would pull all that information together to give a more accurate answer.

Meta-Analysis Pros

The beauty of Meta-Analysis is that it can provide really strong evidence. Instead of relying on one study, you're looking at the whole landscape of research on a topic.

Meta-Analysis Cons

However, it does have some downsides. For one, Meta-Analysis is only as good as the studies it includes. If those studies are flawed, the meta-analysis will be too. It's like baking a cake: if you use bad ingredients, it doesn't matter how good your recipe is—the cake won't turn out well.

Meta-Analysis Uses

Despite these challenges, meta-analyses are highly respected and widely used in many fields like medicine, psychology, and education. They help us make sense of a world that's bursting with information by showing us the big picture drawn from many smaller snapshots.

So, in our all-star lineup, if True Experimental Design is the quarterback and Longitudinal Design is the wise elder, the Factorial Design is the strategist, the Cross-Sectional Design is the speedster, and the Correlational Design is the scout, then the Meta-Analysis is like the coach, using insights from everyone else's plays to come up with the best game plan.

9) Non-Experimental Design

Now, let's talk about a player who's a bit of an outsider on this team of experimental designs—the Non-Experimental Design. Think of this design as the commentator or the journalist who covers the game but doesn't actually play.

In a Non-Experimental Design, researchers are like reporters gathering facts, but they don't interfere or change anything. They're simply there to describe and analyze.

Non-Experimental Design Pros

So, what's the deal with Non-Experimental Design? Its strength is in description and exploration. It's really good for studying things as they are in the real world, without changing any conditions.

Non-Experimental Design Cons

Because a non-experimental design doesn't manipulate variables, it can't prove cause and effect. It's like a weather reporter: they can tell you it's raining, but they can't tell you why it's raining.

The downside? Since researchers aren't controlling variables, it's hard to rule out other explanations for what they observe. It's like hearing one side of a story—you get an idea of what happened, but it might not be the complete picture.

Non-Experimental Design Uses

Non-Experimental Design has always been a part of research, especially in fields like anthropology, sociology, and some areas of psychology.

For instance, if you've ever heard of studies that describe how people behave in different cultures or what teens like to do in their free time, that's often Non-Experimental Design at work. These studies aim to capture the essence of a situation, like painting a portrait instead of taking a snapshot.

One well-known example you might have heard about is the Kinsey Reports from the 1940s and 1950s, which described sexual behavior in men and women. Researchers interviewed thousands of people but didn't manipulate any variables like you would in a true experiment. They simply collected data to create a comprehensive picture of the subject matter.

So, in our metaphorical team of research designs, if True Experimental Design is the quarterback and Longitudinal Design is the wise elder, Factorial Design is the strategist, Cross-Sectional Design is the speedster, Correlational Design is the scout, and Meta-Analysis is the coach, then Non-Experimental Design is the sports journalist—always present, capturing the game, but not part of the action itself.

10) Repeated Measures Design

white rat

Time to meet the Repeated Measures Design, the time traveler of our research team. If this design were a player in a sports game, it would be the one who keeps revisiting past plays to figure out how to improve the next one.

Repeated Measures Design is all about studying the same people or subjects multiple times to see how they change or react under different conditions.

The idea behind Repeated Measures Design isn't new; it's been around since the early days of psychology and medicine. You could say it's a cousin to the Longitudinal Design, but instead of looking at how things naturally change over time, it focuses on how the same group reacts to different things.

Imagine a study looking at how a new energy drink affects people's running speed. Instead of comparing one group that drank the energy drink to another group that didn't, a Repeated Measures Design would have the same group of people run multiple times—once with the energy drink, and once without. This way, you're really zeroing in on the effect of that energy drink, making the results more reliable.

Repeated Measures Design Pros

The strong point of Repeated Measures Design is that it's super focused. Because it uses the same subjects, you don't have to worry about differences between groups messing up your results.

Repeated Measures Design Cons

But the downside? Well, people can get tired or bored if they're tested too many times, which might affect how they respond.

Repeated Measures Design Uses

A famous example of this design is the "Little Albert" experiment, conducted by John B. Watson and Rosalie Rayner in 1920. In this study, a young boy was exposed to a white rat and other stimuli several times to see how his emotional responses changed. Though the ethical standards of this experiment are often criticized today, it was groundbreaking in understanding conditioned emotional responses.

In our metaphorical lineup of research designs, if True Experimental Design is the quarterback and Longitudinal Design is the wise elder, Factorial Design is the strategist, Cross-Sectional Design is the speedster, Correlational Design is the scout, Meta-Analysis is the coach, and Non-Experimental Design is the journalist, then Repeated Measures Design is the time traveler—always looping back to fine-tune the game plan.

11) Crossover Design

Next up is Crossover Design, the switch-hitter of the research world. If you're familiar with baseball, you'll know a switch-hitter is someone who can bat both right-handed and left-handed.

In a similar way, Crossover Design allows subjects to experience multiple conditions, flipping them around so that everyone gets a turn in each role.

This design is like the utility player on our team—versatile, flexible, and really good at adapting.

The Crossover Design has its roots in medical research and has been popular since the mid-20th century. It's often used in clinical trials to test the effectiveness of different treatments.

Crossover Design Pros

The neat thing about this design is that it allows each participant to serve as their own control group. Imagine you're testing two new kinds of headache medicine. Instead of giving one type to one group and another type to a different group, you'd give both kinds to the same people but at different times.

Crossover Design Cons

What's the big deal with Crossover Design? Its major strength is in reducing the "noise" that comes from individual differences. Since each person experiences all conditions, it's easier to see real effects. However, there's a catch. This design assumes that there's no lasting effect from the first condition when you switch to the second one. That might not always be true. If the first treatment has a long-lasting effect, it could mess up the results when you switch to the second treatment.

Crossover Design Uses

A well-known example of Crossover Design is in studies that look at the effects of different types of diets—like low-carb vs. low-fat diets. Researchers might have participants follow a low-carb diet for a few weeks, then switch them to a low-fat diet. By doing this, they can more accurately measure how each diet affects the same group of people.

In our team of experimental designs, if True Experimental Design is the quarterback and Longitudinal Design is the wise elder, Factorial Design is the strategist, Cross-Sectional Design is the speedster, Correlational Design is the scout, Meta-Analysis is the coach, Non-Experimental Design is the journalist, and Repeated Measures Design is the time traveler, then Crossover Design is the versatile utility player—always ready to adapt and play multiple roles to get the most accurate results.

12) Cluster Randomized Design

Meet the Cluster Randomized Design, the team captain of group-focused research. In our imaginary lineup of experimental designs, if other designs focus on individual players, then Cluster Randomized Design is looking at how the entire team functions.

This approach is especially common in educational and community-based research, and it's been gaining traction since the late 20th century.

Here's how Cluster Randomized Design works: Instead of assigning individual people to different conditions, researchers assign entire groups, or "clusters." These could be schools, neighborhoods, or even entire towns. This helps you see how the new method works in a real-world setting.

Imagine you want to see if a new anti-bullying program really works. Instead of selecting individual students, you'd introduce the program to a whole school or maybe even several schools, and then compare the results to schools without the program.

Cluster Randomized Design Pros

Why use Cluster Randomized Design? Well, sometimes it's just not practical to assign conditions at the individual level. For example, you can't really have half a school following a new reading program while the other half sticks with the old one; that would be way too confusing! Cluster Randomization helps get around this problem by treating each "cluster" as its own mini-experiment.

Cluster Randomized Design Cons

There's a downside, too. Because entire groups are assigned to each condition, there's a risk that the groups might be different in some important way that the researchers didn't account for. That's like having one sports team that's full of veterans playing against a team of rookies; the match wouldn't be fair.

Cluster Randomized Design Uses

A famous example is the research conducted to test the effectiveness of different public health interventions, like vaccination programs. Researchers might roll out a vaccination program in one community but not in another, then compare the rates of disease in both.

In our metaphorical research team, if True Experimental Design is the quarterback, Longitudinal Design is the wise elder, Factorial Design is the strategist, Cross-Sectional Design is the speedster, Correlational Design is the scout, Meta-Analysis is the coach, Non-Experimental Design is the journalist, Repeated Measures Design is the time traveler, and Crossover Design is the utility player, then Cluster Randomized Design is the team captain—always looking out for the group as a whole.

13) Mixed-Methods Design

Say hello to Mixed-Methods Design, the all-rounder or the "Renaissance player" of our research team.

Mixed-Methods Design uses a blend of both qualitative and quantitative methods to get a more complete picture, just like a Renaissance person who's good at lots of different things. It's like being good at both offense and defense in a sport; you've got all your bases covered!

Mixed-Methods Design is a fairly new kid on the block, becoming more popular in the late 20th and early 21st centuries as researchers began to see the value in using multiple approaches to tackle complex questions. It's the Swiss Army knife in our research toolkit, combining the best parts of other designs to be more versatile.

Here's how it could work: Imagine you're studying the effects of a new educational app on students' math skills. You might use quantitative methods like tests and grades to measure how much the students improve—that's the 'numbers part.'

But you also want to know how the students feel about math now, or why they think they got better or worse. For that, you could conduct interviews or have students fill out journals—that's the 'story part.'

Mixed-Methods Design Pros

So, what's the scoop on Mixed-Methods Design? The strength is its versatility and depth; you're not just getting numbers or stories, you're getting both, which gives a fuller picture.

Mixed-Methods Design Cons

But, it's also more challenging. Imagine trying to play two sports at the same time! You have to be skilled in different research methods and know how to combine them effectively.

Mixed-Methods Design Uses

A high-profile example of Mixed-Methods Design is research on climate change. Scientists use numbers and data to show temperature changes (quantitative), but they also interview people to understand how these changes are affecting communities (qualitative).

In our team of experimental designs, if True Experimental Design is the quarterback, Longitudinal Design is the wise elder, Factorial Design is the strategist, Cross-Sectional Design is the speedster, Correlational Design is the scout, Meta-Analysis is the coach, Non-Experimental Design is the journalist, Repeated Measures Design is the time traveler, Crossover Design is the utility player, and Cluster Randomized Design is the team captain, then Mixed-Methods Design is the Renaissance player—skilled in multiple areas and able to bring them all together for a winning strategy.

14) Multivariate Design

Now, let's turn our attention to Multivariate Design, the multitasker of the research world.

If our lineup of research designs were like players on a basketball court, Multivariate Design would be the player dribbling, passing, and shooting all at once. This design doesn't just look at one or two things; it looks at several variables simultaneously to see how they interact and affect each other.

Multivariate Design is like baking a cake with many ingredients. Instead of just looking at how flour affects the cake, you also consider sugar, eggs, and milk all at once. This way, you understand how everything works together to make the cake taste good or bad.

Multivariate Design has been a go-to method in psychology, economics, and social sciences since the latter half of the 20th century. With the advent of computers and advanced statistical software, analyzing multiple variables at once became a lot easier, and Multivariate Design soared in popularity.

Multivariate Design Pros

So, what's the benefit of using Multivariate Design? Its power lies in its complexity. By studying multiple variables at the same time, you can get a really rich, detailed understanding of what's going on.

Multivariate Design Cons

But that complexity can also be a drawback. With so many variables, it can be tough to tell which ones are really making a difference and which ones are just along for the ride.

Multivariate Design Uses

Imagine you're a coach trying to figure out the best strategy to win games. You wouldn't just look at how many points your star player scores; you'd also consider assists, rebounds, turnovers, and maybe even how loud the crowd is. A Multivariate Design would help you understand how all these factors work together to determine whether you win or lose.

A well-known example of Multivariate Design is in market research. Companies often use this approach to figure out how different factors—like price, packaging, and advertising—affect sales. By studying multiple variables at once, they can find the best combination to boost profits.

In our metaphorical research team, if True Experimental Design is the quarterback, Longitudinal Design is the wise elder, Factorial Design is the strategist, Cross-Sectional Design is the speedster, Correlational Design is the scout, Meta-Analysis is the coach, Non-Experimental Design is the journalist, Repeated Measures Design is the time traveler, Crossover Design is the utility player, Cluster Randomized Design is the team captain, and Mixed-Methods Design is the Renaissance player, then Multivariate Design is the multitasker—juggling many variables at once to get a fuller picture of what's happening.

15) Pretest-Posttest Design

Let's introduce Pretest-Posttest Design, the "Before and After" superstar of our research team. You've probably seen those before-and-after pictures in ads for weight loss programs or home renovations, right?

Well, this design is like that, but for science! Pretest-Posttest Design checks out what things are like before the experiment starts and then compares that to what things are like after the experiment ends.

This design is one of the classics, a staple in research for decades across various fields like psychology, education, and healthcare. It's so simple and straightforward that it has stayed popular for a long time.

In Pretest-Posttest Design, you measure your subject's behavior or condition before you introduce any changes—that's your "before" or "pretest." Then you do your experiment, and after it's done, you measure the same thing again—that's your "after" or "posttest."

Pretest-Posttest Design Pros

What makes Pretest-Posttest Design special? It's pretty easy to understand and doesn't require fancy statistics.

Pretest-Posttest Design Cons

But there are some pitfalls. For example, what if the kids in our math example get better at multiplication just because they're older or because they've taken the test before? That would make it hard to tell if the program is really effective or not.

Pretest-Posttest Design Uses

Let's say you're a teacher and you want to know if a new math program helps kids get better at multiplication. First, you'd give all the kids a multiplication test—that's your pretest. Then you'd teach them using the new math program. At the end, you'd give them the same test again—that's your posttest. If the kids do better on the second test, you might conclude that the program works.

One famous use of Pretest-Posttest Design is in evaluating the effectiveness of driver's education courses. Researchers will measure people's driving skills before and after the course to see if they've improved.

16) Solomon Four-Group Design

Next up is the Solomon Four-Group Design, the "chess master" of our research team. This design is all about strategy and careful planning. Named after Richard L. Solomon who introduced it in the 1940s, this method tries to correct some of the weaknesses in simpler designs, like the Pretest-Posttest Design.

Here's how it rolls: The Solomon Four-Group Design uses four different groups to test a hypothesis. Two groups get a pretest, then one of them receives the treatment or intervention, and both get a posttest. The other two groups skip the pretest, and only one of them receives the treatment before they both get a posttest.

Sound complicated? It's like playing 4D chess; you're thinking several moves ahead!

Solomon Four-Group Design Pros

What's the pro and con of the Solomon Four-Group Design? On the plus side, it provides really robust results because it accounts for so many variables.

Solomon Four-Group Design Cons

The downside? It's a lot of work and requires a lot of participants, making it more time-consuming and costly.

Solomon Four-Group Design Uses

Let's say you want to figure out if a new way of teaching history helps students remember facts better. Two classes take a history quiz (pretest), then one class uses the new teaching method while the other sticks with the old way. Both classes take another quiz afterward (posttest).

Meanwhile, two more classes skip the initial quiz, and then one uses the new method before both take the final quiz. Comparing all four groups will give you a much clearer picture of whether the new teaching method works and whether the pretest itself affects the outcome.

The Solomon Four-Group Design is less commonly used than simpler designs but is highly respected for its ability to control for more variables. It's a favorite in educational and psychological research where you really want to dig deep and figure out what's actually causing changes.

17) Adaptive Designs

Now, let's talk about Adaptive Designs, the chameleons of the experimental world.

Imagine you're a detective, and halfway through solving a case, you find a clue that changes everything. You wouldn't just stick to your old plan; you'd adapt and change your approach, right? That's exactly what Adaptive Designs allow researchers to do.

In an Adaptive Design, researchers can make changes to the study as it's happening, based on early results. In a traditional study, once you set your plan, you stick to it from start to finish.

Adaptive Design Pros

This method is particularly useful in fast-paced or high-stakes situations, like developing a new vaccine in the middle of a pandemic. The ability to adapt can save both time and resources, and more importantly, it can save lives by getting effective treatments out faster.

Adaptive Design Cons

But Adaptive Designs aren't without their drawbacks. They can be very complex to plan and carry out, and there's always a risk that the changes made during the study could introduce bias or errors.

Adaptive Design Uses

Adaptive Designs are most often seen in clinical trials, particularly in the medical and pharmaceutical fields.

For instance, if a new drug is showing really promising results, the study might be adjusted to give more participants the new treatment instead of a placebo. Or if one dose level is showing bad side effects, it might be dropped from the study.

The best part is, these changes are pre-planned. Researchers lay out in advance what changes might be made and under what conditions, which helps keep everything scientific and above board.

In terms of applications, besides their heavy usage in medical and pharmaceutical research, Adaptive Designs are also becoming increasingly popular in software testing and market research. In these fields, being able to quickly adjust to early results can give companies a significant advantage.

Adaptive Designs are like the agile startups of the research world—quick to pivot, keen to learn from ongoing results, and focused on rapid, efficient progress. However, they require a great deal of expertise and careful planning to ensure that the adaptability doesn't compromise the integrity of the research.

18) Bayesian Designs

Next, let's dive into Bayesian Designs, the data detectives of the research universe. Named after Thomas Bayes, an 18th-century statistician and minister, this design doesn't just look at what's happening now; it also takes into account what's happened before.

Imagine if you were a detective who not only looked at the evidence in front of you but also used your past cases to make better guesses about your current one. That's the essence of Bayesian Designs.

Bayesian Designs are like detective work in science. As you gather more clues (or data), you update your best guess on what's really happening. This way, your experiment gets smarter as it goes along.

In the world of research, Bayesian Designs are most notably used in areas where you have some prior knowledge that can inform your current study. For example, if earlier research shows that a certain type of medicine usually works well for a specific illness, a Bayesian Design would include that information when studying a new group of patients with the same illness.

Bayesian Design Pros

One of the major advantages of Bayesian Designs is their efficiency. Because they use existing data to inform the current experiment, often fewer resources are needed to reach a reliable conclusion.

Bayesian Design Cons

However, they can be quite complicated to set up and require a deep understanding of both statistics and the subject matter at hand.

Bayesian Design Uses

Bayesian Designs are highly valued in medical research, finance, environmental science, and even in Internet search algorithms. Their ability to continually update and refine hypotheses based on new evidence makes them particularly useful in fields where data is constantly evolving and where quick, informed decisions are crucial.

Here's a real-world example: In the development of personalized medicine, where treatments are tailored to individual patients, Bayesian Designs are invaluable. If a treatment has been effective for patients with similar genetics or symptoms in the past, a Bayesian approach can use that data to predict how well it might work for a new patient.

This type of design is also increasingly popular in machine learning and artificial intelligence. In these fields, Bayesian Designs help algorithms "learn" from past data to make better predictions or decisions in new situations. It's like teaching a computer to be a detective that gets better and better at solving puzzles the more puzzles it sees.

19) Covariate Adaptive Randomization

old person and young person

Now let's turn our attention to Covariate Adaptive Randomization, which you can think of as the "matchmaker" of experimental designs.

Picture a soccer coach trying to create the most balanced teams for a friendly match. They wouldn't just randomly assign players; they'd take into account each player's skills, experience, and other traits.

Covariate Adaptive Randomization is all about creating the most evenly matched groups possible for an experiment.

In traditional randomization, participants are allocated to different groups purely by chance. This is a pretty fair way to do things, but it can sometimes lead to unbalanced groups.

Imagine if all the professional-level players ended up on one soccer team and all the beginners on another; that wouldn't be a very informative match! Covariate Adaptive Randomization fixes this by using important traits or characteristics (called "covariates") to guide the randomization process.

Covariate Adaptive Randomization Pros

The benefits of this design are pretty clear: it aims for balance and fairness, making the final results more trustworthy.

Covariate Adaptive Randomization Cons

But it's not perfect. It can be complex to implement and requires a deep understanding of which characteristics are most important to balance.

Covariate Adaptive Randomization Uses

This design is particularly useful in medical trials. Let's say researchers are testing a new medication for high blood pressure. Participants might have different ages, weights, or pre-existing conditions that could affect the results.

Covariate Adaptive Randomization would make sure that each treatment group has a similar mix of these characteristics, making the results more reliable and easier to interpret.

In practical terms, this design is often seen in clinical trials for new drugs or therapies, but its principles are also applicable in fields like psychology, education, and social sciences.

For instance, in educational research, it might be used to ensure that classrooms being compared have similar distributions of students in terms of academic ability, socioeconomic status, and other factors.

Covariate Adaptive Randomization is like the wise elder of the group, ensuring that everyone has an equal opportunity to show their true capabilities, thereby making the collective results as reliable as possible.

20) Stepped Wedge Design

Let's now focus on the Stepped Wedge Design, a thoughtful and cautious member of the experimental design family.

Imagine you're trying out a new gardening technique, but you're not sure how well it will work. You decide to apply it to one section of your garden first, watch how it performs, and then gradually extend the technique to other sections. This way, you get to see its effects over time and across different conditions. That's basically how Stepped Wedge Design works.

In a Stepped Wedge Design, all participants or clusters start off in the control group, and then, at different times, they 'step' over to the intervention or treatment group. This creates a wedge-like pattern over time where more and more participants receive the treatment as the study progresses. It's like rolling out a new policy in phases, monitoring its impact at each stage before extending it to more people.

Stepped Wedge Design Pros

The Stepped Wedge Design offers several advantages. Firstly, it allows for the study of interventions that are expected to do more good than harm, which makes it ethically appealing.

Secondly, it's useful when resources are limited and it's not feasible to roll out a new treatment to everyone at once. Lastly, because everyone eventually receives the treatment, it can be easier to get buy-in from participants or organizations involved in the study.

Stepped Wedge Design Cons

However, this design can be complex to analyze because it has to account for both the time factor and the changing conditions in each 'step' of the wedge. And like any study where participants know they're receiving an intervention, there's the potential for the results to be influenced by the placebo effect or other biases.

Stepped Wedge Design Uses

This design is particularly useful in health and social care research. For instance, if a hospital wants to implement a new hygiene protocol, it might start in one department, assess its impact, and then roll it out to other departments over time. This allows the hospital to adjust and refine the new protocol based on real-world data before it's fully implemented.

In terms of applications, Stepped Wedge Designs are commonly used in public health initiatives, organizational changes in healthcare settings, and social policy trials. They are particularly useful in situations where an intervention is being rolled out gradually and it's important to understand its impacts at each stage.

21) Sequential Design

Next up is Sequential Design, the dynamic and flexible member of our experimental design family.

Imagine you're playing a video game where you can choose different paths. If you take one path and find a treasure chest, you might decide to continue in that direction. If you hit a dead end, you might backtrack and try a different route. Sequential Design operates in a similar fashion, allowing researchers to make decisions at different stages based on what they've learned so far.

In a Sequential Design, the experiment is broken down into smaller parts, or "sequences." After each sequence, researchers pause to look at the data they've collected. Based on those findings, they then decide whether to stop the experiment because they've got enough information, or to continue and perhaps even modify the next sequence.

Sequential Design Pros

This allows for a more efficient use of resources, as you're only continuing with the experiment if the data suggests it's worth doing so.

One of the great things about Sequential Design is its efficiency. Because you're making data-driven decisions along the way, you can often reach conclusions more quickly and with fewer resources.

Sequential Design Cons

However, it requires careful planning and expertise to ensure that these "stop or go" decisions are made correctly and without bias.

Sequential Design Uses

In terms of its applications, besides healthcare and medicine, Sequential Design is also popular in quality control in manufacturing, environmental monitoring, and financial modeling. In these areas, being able to make quick decisions based on incoming data can be a big advantage.

This design is often used in clinical trials involving new medications or treatments. For example, if early results show that a new drug has significant side effects, the trial can be stopped before more people are exposed to it.

On the flip side, if the drug is showing promising results, the trial might be expanded to include more participants or to extend the testing period.

Think of Sequential Design as the nimble athlete of experimental designs, capable of quick pivots and adjustments to reach the finish line in the most effective way possible. But just like an athlete needs a good coach, this design requires expert oversight to make sure it stays on the right track.

22) Field Experiments

Last but certainly not least, let's explore Field Experiments—the adventurers of the experimental design world.

Picture a scientist leaving the controlled environment of a lab to test a theory in the real world, like a biologist studying animals in their natural habitat or a social scientist observing people in a real community. These are Field Experiments, and they're all about getting out there and gathering data in real-world settings.

Field Experiments embrace the messiness of the real world, unlike laboratory experiments, where everything is controlled down to the smallest detail. This makes them both exciting and challenging.

Field Experiment Pros

On one hand, the results often give us a better understanding of how things work outside the lab.

While Field Experiments offer real-world relevance, they come with challenges like controlling for outside factors and the ethical considerations of intervening in people's lives without their knowledge.

Field Experiment Cons

On the other hand, the lack of control can make it harder to tell exactly what's causing what. Yet, despite these challenges, they remain a valuable tool for researchers who want to understand how theories play out in the real world.

Field Experiment Uses

Let's say a school wants to improve student performance. In a Field Experiment, they might change the school's daily schedule for one semester and keep track of how students perform compared to another school where the schedule remained the same.

Because the study is happening in a real school with real students, the results could be very useful for understanding how the change might work in other schools. But since it's the real world, lots of other factors—like changes in teachers or even the weather—could affect the results.

Field Experiments are widely used in economics, psychology, education, and public policy. For example, you might have heard of the famous "Broken Windows" experiment in the 1980s that looked at how small signs of disorder, like broken windows or graffiti, could encourage more serious crime in neighborhoods. This experiment had a big impact on how cities think about crime prevention.

From the foundational concepts of control groups and independent variables to the sophisticated layouts like Covariate Adaptive Randomization and Sequential Design, it's clear that the realm of experimental design is as varied as it is fascinating.

We've seen that each design has its own special talents, ideal for specific situations. Some designs, like the Classic Controlled Experiment, are like reliable old friends you can always count on.

Others, like Sequential Design, are flexible and adaptable, making quick changes based on what they learn. And let's not forget the adventurous Field Experiments, which take us out of the lab and into the real world to discover things we might not see otherwise.

Choosing the right experimental design is like picking the right tool for the job. The method you choose can make a big difference in how reliable your results are and how much people will trust what you've discovered. And as we've learned, there's a design to suit just about every question, every problem, and every curiosity.

So the next time you read about a new discovery in medicine, psychology, or any other field, you'll have a better understanding of the thought and planning that went into figuring things out. Experimental design is more than just a set of rules; it's a structured way to explore the unknown and answer questions that can change the world.

Related posts:

  • Experimental Psychologist Career (Salary + Duties + Interviews)
  • 40+ Famous Psychologists (Images + Biographies)
  • 11+ Psychology Experiment Ideas (Goals + Methods)
  • The Little Albert Experiment
  • 41+ White Collar Job Examples (Salary + Path)

Reference this article:

About The Author

Photo of author

Free Personality Test

Free Personality Quiz

Free Memory Test

Free Memory Test

Free IQ Test

Free IQ Test

PracticalPie.com is a participant in the Amazon Associates Program. As an Amazon Associate we earn from qualifying purchases.

Follow Us On:

Youtube Facebook Instagram X/Twitter

Psychology Resources

Developmental

Personality

Relationships

Psychologists

Serial Killers

Psychology Tests

Personality Quiz

Memory Test

Depression test

Type A/B Personality Test

© PracticalPsychology. All rights reserved

Privacy Policy | Terms of Use

Enago Academy

Experimental Research Design — 6 mistakes you should never make!

' src=

Since school days’ students perform scientific experiments that provide results that define and prove the laws and theorems in science. These experiments are laid on a strong foundation of experimental research designs.

An experimental research design helps researchers execute their research objectives with more clarity and transparency.

In this article, we will not only discuss the key aspects of experimental research designs but also the issues to avoid and problems to resolve while designing your research study.

Table of Contents

What Is Experimental Research Design?

Experimental research design is a framework of protocols and procedures created to conduct experimental research with a scientific approach using two sets of variables. Herein, the first set of variables acts as a constant, used to measure the differences of the second set. The best example of experimental research methods is quantitative research .

Experimental research helps a researcher gather the necessary data for making better research decisions and determining the facts of a research study.

When Can a Researcher Conduct Experimental Research?

A researcher can conduct experimental research in the following situations —

  • When time is an important factor in establishing a relationship between the cause and effect.
  • When there is an invariable or never-changing behavior between the cause and effect.
  • Finally, when the researcher wishes to understand the importance of the cause and effect.

Importance of Experimental Research Design

To publish significant results, choosing a quality research design forms the foundation to build the research study. Moreover, effective research design helps establish quality decision-making procedures, structures the research to lead to easier data analysis, and addresses the main research question. Therefore, it is essential to cater undivided attention and time to create an experimental research design before beginning the practical experiment.

By creating a research design, a researcher is also giving oneself time to organize the research, set up relevant boundaries for the study, and increase the reliability of the results. Through all these efforts, one could also avoid inconclusive results. If any part of the research design is flawed, it will reflect on the quality of the results derived.

Types of Experimental Research Designs

Based on the methods used to collect data in experimental studies, the experimental research designs are of three primary types:

1. Pre-experimental Research Design

A research study could conduct pre-experimental research design when a group or many groups are under observation after implementing factors of cause and effect of the research. The pre-experimental design will help researchers understand whether further investigation is necessary for the groups under observation.

Pre-experimental research is of three types —

  • One-shot Case Study Research Design
  • One-group Pretest-posttest Research Design
  • Static-group Comparison

2. True Experimental Research Design

A true experimental research design relies on statistical analysis to prove or disprove a researcher’s hypothesis. It is one of the most accurate forms of research because it provides specific scientific evidence. Furthermore, out of all the types of experimental designs, only a true experimental design can establish a cause-effect relationship within a group. However, in a true experiment, a researcher must satisfy these three factors —

  • There is a control group that is not subjected to changes and an experimental group that will experience the changed variables
  • A variable that can be manipulated by the researcher
  • Random distribution of the variables

This type of experimental research is commonly observed in the physical sciences.

3. Quasi-experimental Research Design

The word “Quasi” means similarity. A quasi-experimental design is similar to a true experimental design. However, the difference between the two is the assignment of the control group. In this research design, an independent variable is manipulated, but the participants of a group are not randomly assigned. This type of research design is used in field settings where random assignment is either irrelevant or not required.

The classification of the research subjects, conditions, or groups determines the type of research design to be used.

experimental research design

Advantages of Experimental Research

Experimental research allows you to test your idea in a controlled environment before taking the research to clinical trials. Moreover, it provides the best method to test your theory because of the following advantages:

  • Researchers have firm control over variables to obtain results.
  • The subject does not impact the effectiveness of experimental research. Anyone can implement it for research purposes.
  • The results are specific.
  • Post results analysis, research findings from the same dataset can be repurposed for similar research ideas.
  • Researchers can identify the cause and effect of the hypothesis and further analyze this relationship to determine in-depth ideas.
  • Experimental research makes an ideal starting point. The collected data could be used as a foundation to build new research ideas for further studies.

6 Mistakes to Avoid While Designing Your Research

There is no order to this list, and any one of these issues can seriously compromise the quality of your research. You could refer to the list as a checklist of what to avoid while designing your research.

1. Invalid Theoretical Framework

Usually, researchers miss out on checking if their hypothesis is logical to be tested. If your research design does not have basic assumptions or postulates, then it is fundamentally flawed and you need to rework on your research framework.

2. Inadequate Literature Study

Without a comprehensive research literature review , it is difficult to identify and fill the knowledge and information gaps. Furthermore, you need to clearly state how your research will contribute to the research field, either by adding value to the pertinent literature or challenging previous findings and assumptions.

3. Insufficient or Incorrect Statistical Analysis

Statistical results are one of the most trusted scientific evidence. The ultimate goal of a research experiment is to gain valid and sustainable evidence. Therefore, incorrect statistical analysis could affect the quality of any quantitative research.

4. Undefined Research Problem

This is one of the most basic aspects of research design. The research problem statement must be clear and to do that, you must set the framework for the development of research questions that address the core problems.

5. Research Limitations

Every study has some type of limitations . You should anticipate and incorporate those limitations into your conclusion, as well as the basic research design. Include a statement in your manuscript about any perceived limitations, and how you considered them while designing your experiment and drawing the conclusion.

6. Ethical Implications

The most important yet less talked about topic is the ethical issue. Your research design must include ways to minimize any risk for your participants and also address the research problem or question at hand. If you cannot manage the ethical norms along with your research study, your research objectives and validity could be questioned.

Experimental Research Design Example

In an experimental design, a researcher gathers plant samples and then randomly assigns half the samples to photosynthesize in sunlight and the other half to be kept in a dark box without sunlight, while controlling all the other variables (nutrients, water, soil, etc.)

By comparing their outcomes in biochemical tests, the researcher can confirm that the changes in the plants were due to the sunlight and not the other variables.

Experimental research is often the final form of a study conducted in the research process which is considered to provide conclusive and specific results. But it is not meant for every research. It involves a lot of resources, time, and money and is not easy to conduct, unless a foundation of research is built. Yet it is widely used in research institutes and commercial industries, for its most conclusive results in the scientific approach.

Have you worked on research designs? How was your experience creating an experimental design? What difficulties did you face? Do write to us or comment below and share your insights on experimental research designs!

Frequently Asked Questions

Randomization is important in an experimental research because it ensures unbiased results of the experiment. It also measures the cause-effect relationship on a particular group of interest.

Experimental research design lay the foundation of a research and structures the research to establish quality decision making process.

There are 3 types of experimental research designs. These are pre-experimental research design, true experimental research design, and quasi experimental research design.

The difference between an experimental and a quasi-experimental design are: 1. The assignment of the control group in quasi experimental research is non-random, unlike true experimental design, which is randomly assigned. 2. Experimental research group always has a control group; on the other hand, it may not be always present in quasi experimental research.

Experimental research establishes a cause-effect relationship by testing a theory or hypothesis using experimental groups or control variables. In contrast, descriptive research describes a study or a topic by defining the variables under it and answering the questions related to the same.

' src=

good and valuable

Very very good

Good presentation.

Rate this article Cancel Reply

Your email address will not be published.

quantitative experimental design examples

Enago Academy's Most Popular Articles

Graphical Abstracts vs. Infographics: Best Practices for Visuals - Enago

  • Promoting Research

Graphical Abstracts Vs. Infographics: Best practices for using visual illustrations for increased research impact

Dr. Sarah Chen stared at her computer screen, her eyes staring at her recently published…

10 Tips to Prevent Research Papers From Being Retracted

  • Publishing Research

10 Tips to Prevent Research Papers From Being Retracted

Research paper retractions represent a critical event in the scientific community. When a published article…

2024 Scholar Metrics: Unveiling research impact (2019-2023)

  • Industry News

Google Releases 2024 Scholar Metrics, Evaluates Impact of Scholarly Articles

Google has released its 2024 Scholar Metrics, assessing scholarly articles from 2019 to 2023. This…

What is Academic Integrity and How to Uphold it [FREE CHECKLIST]

Ensuring Academic Integrity and Transparency in Academic Research: A comprehensive checklist for researchers

Academic integrity is the foundation upon which the credibility and value of scientific findings are…

7 Step Guide for Optimizing Impactful Research Process

  • Reporting Research

How to Optimize Your Research Process: A step-by-step guide

For researchers across disciplines, the path to uncovering novel findings and insights is often filled…

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for…

Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right…

quantitative experimental design examples

Sign-up to read more

Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:

  • 2000+ blog articles
  • 50+ Webinars
  • 10+ Expert podcasts
  • 50+ Infographics
  • 10+ Checklists
  • Research Guides

We hate spam too. We promise to protect your privacy and never spam you.

  • AI in Academia
  • Career Corner
  • Diversity and Inclusion
  • Infographics
  • Expert Video Library
  • Other Resources
  • Enago Learn
  • Upcoming & On-Demand Webinars
  • Peer Review Week 2024
  • Open Access Week 2023
  • Conference Videos
  • Enago Report
  • Journal Finder
  • Enago Plagiarism & AI Grammar Check
  • Editing Services
  • Publication Support Services
  • Research Impact
  • Translation Services
  • Publication solutions
  • AI-Based Solutions
  • Thought Leadership
  • Call for Articles
  • Call for Speakers
  • Author Training
  • Edit Profile

I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:

quantitative experimental design examples

In your opinion, what is the most effective way to improve integrity in the peer review process?

  • Experimental Research Designs: Types, Examples & Methods

busayo.longe

Experimental research is the most familiar type of research design for individuals in the physical sciences and a host of other fields. This is mainly because experimental research is a classical scientific experiment, similar to those performed in high school science classes.

Imagine taking 2 samples of the same plant and exposing one of them to sunlight, while the other is kept away from sunlight. Let the plant exposed to sunlight be called sample A, while the latter is called sample B.

If after the duration of the research, we find out that sample A grows and sample B dies, even though they are both regularly wetted and given the same treatment. Therefore, we can conclude that sunlight will aid growth in all similar plants.

What is Experimental Research?

Experimental research is a scientific approach to research, where one or more independent variables are manipulated and applied to one or more dependent variables to measure their effect on the latter. The effect of the independent variables on the dependent variables is usually observed and recorded over some time, to aid researchers in drawing a reasonable conclusion regarding the relationship between these 2 variable types.

The experimental research method is widely used in physical and social sciences, psychology, and education. It is based on the comparison between two or more groups with a straightforward logic, which may, however, be difficult to execute.

Mostly related to a laboratory test procedure, experimental research designs involve collecting quantitative data and performing statistical analysis on them during research. Therefore, making it an example of quantitative research method .

What are The Types of Experimental Research Design?

The types of experimental research design are determined by the way the researcher assigns subjects to different conditions and groups. They are of 3 types, namely; pre-experimental, quasi-experimental, and true experimental research.

Pre-experimental Research Design

In pre-experimental research design, either a group or various dependent groups are observed for the effect of the application of an independent variable which is presumed to cause change. It is the simplest form of experimental research design and is treated with no control group.

Although very practical, experimental research is lacking in several areas of the true-experimental criteria. The pre-experimental research design is further divided into three types

  • One-shot Case Study Research Design

In this type of experimental study, only one dependent group or variable is considered. The study is carried out after some treatment which was presumed to cause change, making it a posttest study.

  • One-group Pretest-posttest Research Design: 

This research design combines both posttest and pretest study by carrying out a test on a single group before the treatment is administered and after the treatment is administered. With the former being administered at the beginning of treatment and later at the end.

  • Static-group Comparison: 

In a static-group comparison study, 2 or more groups are placed under observation, where only one of the groups is subjected to some treatment while the other groups are held static. All the groups are post-tested, and the observed differences between the groups are assumed to be a result of the treatment.

Quasi-experimental Research Design

  The word “quasi” means partial, half, or pseudo. Therefore, the quasi-experimental research bearing a resemblance to the true experimental research, but not the same.  In quasi-experiments, the participants are not randomly assigned, and as such, they are used in settings where randomization is difficult or impossible.

 This is very common in educational research, where administrators are unwilling to allow the random selection of students for experimental samples.

Some examples of quasi-experimental research design include; the time series, no equivalent control group design, and the counterbalanced design.

True Experimental Research Design

The true experimental research design relies on statistical analysis to approve or disprove a hypothesis. It is the most accurate type of experimental design and may be carried out with or without a pretest on at least 2 randomly assigned dependent subjects.

The true experimental research design must contain a control group, a variable that can be manipulated by the researcher, and the distribution must be random. The classification of true experimental design include:

  • The posttest-only Control Group Design: In this design, subjects are randomly selected and assigned to the 2 groups (control and experimental), and only the experimental group is treated. After close observation, both groups are post-tested, and a conclusion is drawn from the difference between these groups.
  • The pretest-posttest Control Group Design: For this control group design, subjects are randomly assigned to the 2 groups, both are presented, but only the experimental group is treated. After close observation, both groups are post-tested to measure the degree of change in each group.
  • Solomon four-group Design: This is the combination of the pretest-only and the pretest-posttest control groups. In this case, the randomly selected subjects are placed into 4 groups.

The first two of these groups are tested using the posttest-only method, while the other two are tested using the pretest-posttest method.

Examples of Experimental Research

Experimental research examples are different, depending on the type of experimental research design that is being considered. The most basic example of experimental research is laboratory experiments, which may differ in nature depending on the subject of research.

Administering Exams After The End of Semester

During the semester, students in a class are lectured on particular courses and an exam is administered at the end of the semester. In this case, the students are the subjects or dependent variables while the lectures are the independent variables treated on the subjects.

Only one group of carefully selected subjects are considered in this research, making it a pre-experimental research design example. We will also notice that tests are only carried out at the end of the semester, and not at the beginning.

Further making it easy for us to conclude that it is a one-shot case study research. 

Employee Skill Evaluation

Before employing a job seeker, organizations conduct tests that are used to screen out less qualified candidates from the pool of qualified applicants. This way, organizations can determine an employee’s skill set at the point of employment.

In the course of employment, organizations also carry out employee training to improve employee productivity and generally grow the organization. Further evaluation is carried out at the end of each training to test the impact of the training on employee skills, and test for improvement.

Here, the subject is the employee, while the treatment is the training conducted. This is a pretest-posttest control group experimental research example.

Evaluation of Teaching Method

Let us consider an academic institution that wants to evaluate the teaching method of 2 teachers to determine which is best. Imagine a case whereby the students assigned to each teacher is carefully selected probably due to personal request by parents or due to stubbornness and smartness.

This is a no equivalent group design example because the samples are not equal. By evaluating the effectiveness of each teacher’s teaching method this way, we may conclude after a post-test has been carried out.

However, this may be influenced by factors like the natural sweetness of a student. For example, a very smart student will grab more easily than his or her peers irrespective of the method of teaching.

What are the Characteristics of Experimental Research?  

Experimental research contains dependent, independent and extraneous variables. The dependent variables are the variables being treated or manipulated and are sometimes called the subject of the research.

The independent variables are the experimental treatment being exerted on the dependent variables. Extraneous variables, on the other hand, are other factors affecting the experiment that may also contribute to the change.

The setting is where the experiment is carried out. Many experiments are carried out in the laboratory, where control can be exerted on the extraneous variables, thereby eliminating them.

Other experiments are carried out in a less controllable setting. The choice of setting used in research depends on the nature of the experiment being carried out.

  • Multivariable

Experimental research may include multiple independent variables, e.g. time, skills, test scores, etc.

Why Use Experimental Research Design?  

Experimental research design can be majorly used in physical sciences, social sciences, education, and psychology. It is used to make predictions and draw conclusions on a subject matter. 

Some uses of experimental research design are highlighted below.

  • Medicine: Experimental research is used to provide the proper treatment for diseases. In most cases, rather than directly using patients as the research subject, researchers take a sample of the bacteria from the patient’s body and are treated with the developed antibacterial

The changes observed during this period are recorded and evaluated to determine its effectiveness. This process can be carried out using different experimental research methods.

  • Education: Asides from science subjects like Chemistry and Physics which involves teaching students how to perform experimental research, it can also be used in improving the standard of an academic institution. This includes testing students’ knowledge on different topics, coming up with better teaching methods, and the implementation of other programs that will aid student learning.
  • Human Behavior: Social scientists are the ones who mostly use experimental research to test human behaviour. For example, consider 2 people randomly chosen to be the subject of the social interaction research where one person is placed in a room without human interaction for 1 year.

The other person is placed in a room with a few other people, enjoying human interaction. There will be a difference in their behaviour at the end of the experiment.

  • UI/UX: During the product development phase, one of the major aims of the product team is to create a great user experience with the product. Therefore, before launching the final product design, potential are brought in to interact with the product.

For example, when finding it difficult to choose how to position a button or feature on the app interface, a random sample of product testers are allowed to test the 2 samples and how the button positioning influences the user interaction is recorded.

What are the Disadvantages of Experimental Research?  

  • It is highly prone to human error due to its dependency on variable control which may not be properly implemented. These errors could eliminate the validity of the experiment and the research being conducted.
  • Exerting control of extraneous variables may create unrealistic situations. Eliminating real-life variables will result in inaccurate conclusions. This may also result in researchers controlling the variables to suit his or her personal preferences.
  • It is a time-consuming process. So much time is spent on testing dependent variables and waiting for the effect of the manipulation of dependent variables to manifest.
  • It is expensive.
  • It is very risky and may have ethical complications that cannot be ignored. This is common in medical research, where failed trials may lead to a patient’s death or a deteriorating health condition.
  • Experimental research results are not descriptive.
  • Response bias can also be supplied by the subject of the conversation.
  • Human responses in experimental research can be difficult to measure.

What are the Data Collection Methods in Experimental Research?  

Data collection methods in experimental research are the different ways in which data can be collected for experimental research. They are used in different cases, depending on the type of research being carried out.

1. Observational Study

This type of study is carried out over a long period. It measures and observes the variables of interest without changing existing conditions.

When researching the effect of social interaction on human behavior, the subjects who are placed in 2 different environments are observed throughout the research. No matter the kind of absurd behavior that is exhibited by the subject during this period, its condition will not be changed.

This may be a very risky thing to do in medical cases because it may lead to death or worse medical conditions.

2. Simulations

This procedure uses mathematical, physical, or computer models to replicate a real-life process or situation. It is frequently used when the actual situation is too expensive, dangerous, or impractical to replicate in real life.

This method is commonly used in engineering and operational research for learning purposes and sometimes as a tool to estimate possible outcomes of real research. Some common situation software are Simulink, MATLAB, and Simul8.

Not all kinds of experimental research can be carried out using simulation as a data collection tool . It is very impractical for a lot of laboratory-based research that involves chemical processes.

A survey is a tool used to gather relevant data about the characteristics of a population and is one of the most common data collection tools. A survey consists of a group of questions prepared by the researcher, to be answered by the research subject.

Surveys can be shared with the respondents both physically and electronically. When collecting data through surveys, the kind of data collected depends on the respondent, and researchers have limited control over it.

Formplus is the best tool for collecting experimental data using survey s. It has relevant features that will aid the data collection process and can also be used in other aspects of experimental research.

Differences between Experimental and Non-Experimental Research 

1. In experimental research, the researcher can control and manipulate the environment of the research, including the predictor variable which can be changed. On the other hand, non-experimental research cannot be controlled or manipulated by the researcher at will.

This is because it takes place in a real-life setting, where extraneous variables cannot be eliminated. Therefore, it is more difficult to conclude non-experimental studies, even though they are much more flexible and allow for a greater range of study fields.

2. The relationship between cause and effect cannot be established in non-experimental research, while it can be established in experimental research. This may be because many extraneous variables also influence the changes in the research subject, making it difficult to point at a particular variable as the cause of a particular change

3. Independent variables are not introduced, withdrawn, or manipulated in non-experimental designs, but the same may not be said about experimental research.

Experimental Research vs. Alternatives and When to Use Them

1. experimental research vs causal comparative.

Experimental research enables you to control variables and identify how the independent variable affects the dependent variable. Causal-comparative find out the cause-and-effect relationship between the variables by comparing already existing groups that are affected differently by the independent variable.

For example, in an experiment to see how K-12 education affects children and teenager development. An experimental research would split the children into groups, some would get formal K-12 education, while others won’t. This is not ethically right because every child has the right to education. So, what we do instead would be to compare already existing groups of children who are getting formal education with those who due to some circumstances can not.

Pros and Cons of Experimental vs Causal-Comparative Research

  • Causal-Comparative:   Strengths:  More realistic than experiments, can be conducted in real-world settings.  Weaknesses:  Establishing causality can be weaker due to the lack of manipulation.

2. Experimental Research vs Correlational Research

When experimenting, you are trying to establish a cause-and-effect relationship between different variables. For example, you are trying to establish the effect of heat on water, the temperature keeps changing (independent variable) and you see how it affects the water (dependent variable).

For correlational research, you are not necessarily interested in the why or the cause-and-effect relationship between the variables, you are focusing on the relationship. Using the same water and temperature example, you are only interested in the fact that they change, you are not investigating which of the variables or other variables causes them to change.

Pros and Cons of Experimental vs Correlational Research

3. experimental research vs descriptive research.

With experimental research, you alter the independent variable to see how it affects the dependent variable, but with descriptive research you are simply studying the characteristics of the variable you are studying.

So, in an experiment to see how blown glass reacts to temperature, experimental research would keep altering the temperature to varying levels of high and low to see how it affects the dependent variable (glass). But descriptive research would investigate the glass properties.

Pros and Cons of Experimental vs Descriptive Research

4. experimental research vs action research.

Experimental research tests for causal relationships by focusing on one independent variable vs the dependent variable and keeps other variables constant. So, you are testing hypotheses and using the information from the research to contribute to knowledge.

However, with action research, you are using a real-world setting which means you are not controlling variables. You are also performing the research to solve actual problems and improve already established practices.

For example, if you are testing for how long commutes affect workers’ productivity. With experimental research, you would vary the length of commute to see how the time affects work. But with action research, you would account for other factors such as weather, commute route, nutrition, etc. Also, experimental research helps know the relationship between commute time and productivity, while action research helps you look for ways to improve productivity

Pros and Cons of Experimental vs Action Research

Conclusion  .

Experimental research designs are often considered to be the standard in research designs. This is partly due to the common misconception that research is equivalent to scientific experiments—a component of experimental research design.

In this research design, one or more subjects or dependent variables are randomly assigned to different treatments (i.e. independent variables manipulated by the researcher) and the results are observed to conclude. One of the uniqueness of experimental research is in its ability to control the effect of extraneous variables.

Experimental research is suitable for research whose goal is to examine cause-effect relationships, e.g. explanatory research. It can be conducted in the laboratory or field settings, depending on the aim of the research that is being carried out. 

Logo

Connect to Formplus, Get Started Now - It's Free!

  • examples of experimental research
  • experimental research methods
  • types of experimental research
  • busayo.longe

Formplus

You may also like:

Simpson’s Paradox & How to Avoid it in Experimental Research

In this article, we are going to look at Simpson’s Paradox from its historical point and later, we’ll consider its effect in...

quantitative experimental design examples

Response vs Explanatory Variables: Definition & Examples

In this article, we’ll be comparing the two types of variables, what they both mean and see some of their real-life applications in research

What is Experimenter Bias? Definition, Types & Mitigation

In this article, we will look into the concept of experimental bias and how it can be identified in your research

Experimental Vs Non-Experimental Research: 15 Key Differences

Differences between experimental and non experimental research on definitions, types, examples, data collection tools, uses, advantages etc.

Formplus - For Seamless Data Collection

Collect data the right way with a versatile data collection tool. try formplus and transform your work productivity today..

helpful professor logo

15 Experimental Design Examples

15 Experimental Design Examples

Chris Drew (PhD)

Dr. Chris Drew is the founder of the Helpful Professor. He holds a PhD in education and has published over 20 articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education. [Image Descriptor: Photo of Chris]

Learn about our Editorial Process

experimental design types and definition, explained below

Experimental design involves testing an independent variable against a dependent variable. It is a central feature of the scientific method .

A simple example of an experimental design is a clinical trial, where research participants are placed into control and treatment groups in order to determine the degree to which an intervention in the treatment group is effective.

There are three categories of experimental design . They are:

  • Pre-Experimental Design: Testing the effects of the independent variable on a single participant or a small group of participants (e.g. a case study).
  • Quasi-Experimental Design: Testing the effects of the independent variable on a group of participants who aren’t randomly assigned to treatment and control groups (e.g. purposive sampling).
  • True Experimental Design: Testing the effects of the independent variable on a group of participants who are randomly assigned to treatment and control groups in order to infer causality (e.g. clinical trials).

A good research student can look at a design’s methodology and correctly categorize it. Below are some typical examples of experimental designs, with their type indicated.

Experimental Design Examples

The following are examples of experimental design (with their type indicated).

1. Action Research in the Classroom

Type: Pre-Experimental Design

A teacher wants to know if a small group activity will help students learn how to conduct a survey. So, they test the activity out on a few of their classes and make careful observations regarding the outcome.

The teacher might observe that the students respond well to the activity and seem to be learning the material quickly.

However, because there was no comparison group of students that learned how to do a survey with a different methodology, the teacher cannot be certain that the activity is actually the best method for teaching that subject.

2. Study on the Impact of an Advertisement

An advertising firm has assigned two of their best staff to develop a quirky ad about eating a brand’s new breakfast product.

The team puts together an unusual skit that involves characters enjoying the breakfast while engaged in silly gestures and zany background music. The ad agency doesn’t want to spend a great deal of money on the ad just yet, so the commercial is shot with a low budget. The firm then shows the ad to a small group of people just to see their reactions.

Afterwards they determine that the ad had a strong impact on viewers so they move forward with a much larger budget.

3. Case Study

A medical doctor has a hunch that an old treatment regimen might be effective in treating a rare illness.

The treatment has never been used in this manner before. So, the doctor applies the treatment to two of their patients with the illness. After several weeks, the results seem to indicate that the treatment is not causing any change in the illness. The doctor concludes that there is no need to continue the treatment or conduct a larger study with a control condition.

4. Fertilizer and Plant Growth Study

An agricultural farmer is exploring different combinations of nutrients on plant growth, so she does a small experiment.

Instead of spending a lot of time and money applying the different mixes to acres of land and waiting several months to see the results, she decides to apply the fertilizer to some small plants in the lab.

After several weeks, it appears that the plants are responding well. They are growing rapidly and producing dense branching. She shows the plants to her colleagues and they all agree that further testing is needed under better controlled conditions .

5. Mood States Study

A team of psychologists is interested in studying how mood affects altruistic behavior. They are undecided however, on how to put the research participants in a bad mood, so they try a few pilot studies out.

They try one suggestion and make a 3-minute video that shows sad scenes from famous heart-wrenching movies.

They then recruit a few people to watch the clips and measure their mood states afterwards.

The results indicate that people were put in a negative mood, but since there was no control group, the researchers cannot be 100% confident in the clip’s effectiveness.

6. Math Games and Learning Study

Type: Quasi-Experimental Design

Two teachers have developed a set of math games that they think will make learning math more enjoyable for their students. They decide to test out the games on their classes.

So, for two weeks, one teacher has all of her students play the math games. The other teacher uses the standard teaching techniques. At the end of the two weeks, all students take the same math test. The results indicate that students that played the math games did better on the test.

Although the teachers would like to say the games were the cause of the improved performance, they cannot be 100% sure because the study lacked random assignment . There are many other differences between the groups that played the games and those that did not.

Learn More: Random Assignment Examples

7. Economic Impact of Policy

An economic policy institute has decided to test the effectiveness of a new policy on the development of small business. The institute identifies two cities in a third-world country for testing.

The two cities are similar in terms of size, economic output, and other characteristics. The city in which the new policy was implemented showed a much higher growth of small businesses than the other city.

Although the two cities were similar in many ways, the researchers must be cautious in their conclusions. There may exist other differences between the two cities that effected small business growth other than the policy.

8. Parenting Styles and Academic Performance

Psychologists want to understand how parenting style affects children’s academic performance.

So, they identify a large group of parents that have one of four parenting styles: authoritarian, authoritative, permissive, or neglectful. The researchers then compare the grades of each group and discover that children raised with the authoritative parenting style had better grades than the other three groups. Although these results may seem convincing, it turns out that parents that use the authoritative parenting style also have higher SES class and can afford to provide their children with more intellectually enriching activities like summer STEAM camps.

9. Movies and Donations Study

Will the type of movie a person watches affect the likelihood that they donate to a charitable cause? To answer this question, a researcher decides to solicit donations at the exit point of a large theatre.

He chooses to study two types of movies: action-hero and murder mystery. After collecting donations for one month, he tallies the results. Patrons that watched the action-hero movie donated more than those that watched the murder mystery. Can you think of why these results could be due to something other than the movie?

10. Gender and Mindfulness Apps Study

Researchers decide to conduct a study on whether men or women benefit from mindfulness the most. So, they recruit office workers in large corporations at all levels of management.

Then, they divide the research sample up into males and females and ask the participants to use a mindfulness app once each day for at least 15 minutes.

At the end of three weeks, the researchers give all the participants a questionnaire that measures stress and also take swabs from their saliva to measure stress hormones.

The results indicate the women responded much better to the apps than males and showed lower stress levels on both measures.

Unfortunately, it is difficult to conclude that women respond to apps better than men because the researchers could not randomly assign participants to gender. This means that there may be extraneous variables that are causing the results.

11. Eyewitness Testimony Study

Type: True Experimental Design

To study the how leading questions on the memories of eyewitnesses leads to retroactive inference , Loftus and Palmer (1974) conducted a simple experiment consistent with true experimental design.

Research participants all watched the same short video of two cars having an accident. Each were randomly assigned to be asked either one of two versions of a question regarding the accident.

Half of the participants were asked the question “How fast were the two cars going when they smashed into each other?” and the other half were asked “How fast were the two cars going when they contacted each other?”

Participants’ estimates were affected by the wording of the question. Participants that responded to the question with the word “smashed” gave much higher estimates than participants that responded to the word “contacted.”

12. Sports Nutrition Bars Study

A company wants to test the effects of their sports nutrition bars. So, they recruited students on a college campus to participate in their study. The students were randomly assigned to either the treatment condition or control condition.

Participants in the treatment condition ate two nutrition bars. Participants in the control condition ate two similar looking bars that tasted nearly identical, but offered no nutritional value.

One hour after consuming the bars, participants ran on a treadmill at a moderate pace for 15 minutes. The researchers recorded their speed, breathing rates, and level of exhaustion.

The results indicated that participants that ate the nutrition bars ran faster, breathed more easily, and reported feeling less exhausted than participants that ate the non-nutritious bar.

13. Clinical Trials

Medical researchers often use true experiments to assess the effectiveness of various treatment regimens. For a simplified example: people from the population are randomly selected to participate in a study on the effects of a medication on heart disease.

Participants are randomly assigned to either receive the medication or nothing at all. Three months later, all participants are contacted and they are given a full battery of heart disease tests.

The results indicate that participants that received the medication had significantly lower levels of heart disease than participants that received no medication.

14. Leadership Training Study

A large corporation wants to improve the leadership skills of its mid-level managers. The HR department has developed two programs, one online and the other in-person in small classes.

HR randomly selects 120 employees to participate and then randomly assigned them to one of three conditions: one-third are assigned to the online program, one-third to the in-class version, and one-third are put on a waiting list.

The training lasts for 6 weeks and 4 months later, supervisors of the participants are asked to rate their staff in terms of leadership potential. The supervisors were not informed about which of their staff participated in the program.

The results indicated that the in-person participants received the highest ratings from their supervisors. The online class participants came in second, followed by those on the waiting list.

15. Reading Comprehension and Lighting Study

Different wavelengths of light may affect cognitive processing. To put this hypothesis to the test, a researcher randomly assigned students on a college campus to read a history chapter in one of three lighting conditions: natural sunlight, artificial yellow light, and standard fluorescent light.

At the end of the chapter all students took the same exam. The researcher then compared the scores on the exam for students in each condition. The results revealed that natural sunlight produced the best test scores, followed by yellow light and fluorescent light.

Therefore, the researcher concludes that natural sunlight improves reading comprehension.

See Also: Experimental Study vs Observational Study

Experimental design is a central feature of scientific research. When done using true experimental design, causality can be infered, which allows researchers to provide proof that an independent variable affects a dependent variable. This is necessary in just about every field of research, and especially in medical sciences.

Chris

  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 21 Montessori Homeschool Setups
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 101 Hidden Talents Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 15 Green Flags in a Relationship
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 15 Signs you're Burnt Out, Not Lazy

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

Quantitative Research Designs: Non-Experimental vs. Experimental

quantitative experimental design examples

While there are many types of quantitative research designs, they generally fall under one of three umbrellas: experimental research, quasi-experimental research, and non-experimental research.

Experimental research designs are what many people think of when they think of research; they typically involve the manipulation of variables and random assignment of participants to conditions. A traditional experiment may involve the comparison of a control group to an experimental group who receives a treatment (i.e., a variable is manipulated). When done correctly, experimental designs can provide evidence for cause and effect. Because of their ability to determine causation, experimental designs are the gold-standard for research in medicine, biology, and so on. However, such designs can also be used in the “soft sciences,” like social science. Experimental research has strict standards for control within the research design and for establishing validity. These designs may also be very resource and labor intensive. Additionally, it can be hard to justify the generalizability of the results in a very tightly controlled or artificial experimental setting. However, if done well, experimental research methods can lead to some very convincing and interesting results.

Need help with your research?

Schedule a time to speak with an expert using the calendar below.

Non-experimental research, on the other hand, can be just as interesting, but you cannot draw the same conclusions from it as you can with experimental research. Non-experimental research is usually descriptive or correlational, which means that you are either describing a situation or phenomenon simply as it stands, or you are describing a relationship between two or more variables, all without any interference from the researcher. This means that you do not manipulate any variables (e.g., change the conditions that an experimental group undergoes) or randomly assign participants to a control or treatment group. Without this level of control, you cannot determine any causal effects. While validity is still a concern in non-experimental research, the concerns are more about the validity of the measurements, rather than the validity of the effects.

Finally, a quasi-experimental design is a combination of the two designs described above. For quasi-experimental designs you still can manipulate a variable in the experimental group, but there is no random assignment into groups. Quasi-experimental designs are the most common when the researcher uses a convenience sample to recruit participants. For example, let’s say you were interested in studying the effect of stress on student test scores at the school that you work for. You teach two separate classes so you decide to just use each class as a different group. Class A becomes the experimental group who experiences the stressor manipulation and class B becomes the control group. Because you are sampling from two different pre-existing groups, without any random assignment, this would be known as a quasi-experimental design. These types of designs are very useful for when you want to find a causal relationship between variables but cannot randomly assign people to groups for practical or ethical reasons, such as working with a population of clinically depressed people or looking for gender differences (we can’t randomly assign people to be clinically depressed or to be a different gender). While these types of studies sometimes have higher external validity than a true experimental design, since they involve real world interventions and group rather than a laboratory setting, because of the lack of random assignment in these groups, the generalizability of the study is severely limited.

So, how do you choose between these designs? This will depend on your topic, your available resources, and desired goal. For example, do you want to see if a particular intervention relieves feelings of anxiety? The most convincing results for that would come from a true experimental design with random sampling and random assignment to groups. Ultimately, this is a decision that should be made in close collaboration with your advisor. Therefore, I recommend discussing the pros and cons of each type of research, what it might mean for your personal dissertation process, and what is required of each design before making a decision.

Take the Course: Experimental and Quasi-Experimental Research Design

Quantitative Research Design: Four Common Ways to Collect Your Data Efficiently

What is the quantitative research design? Why is the research design needed? What are the four main types of quantitative research designs used by researchers?

This article illustrates research design using an analogy, explains why a research design is needed, describes four main types of research designs, and gives examples of each research design’s application.

In doing your research on whatever goals you have in mind, you make a plan to reach those goals. You spell out the specific items that you want to pursue in your research objectives.

An Analogy of Research Design

You need to engage the architect’s help to draw what you have in mind (your concept), estimate the cost to build it, and list the steps to follow to bring that plan into reality. The architect comes up with a blueprint of the house, detailing the size and quantity of reinforced steel bars, the floor plan, dimensions of the house, and aesthetics.

If your house comprises not only one floor but two, or even three, and you want the house to be sturdy, that could last decades or generations; you will need to engage a structural engineer. He makes sure that the home maintains its integrity and can handle the loads and forces they encounter through time.

And, of course, the electrical connections require the expertise of an electrical engineer. He plans how the electrical circuits are arranged in the entire house to make it convenient for you to access electricity.

Why is a Research Design Needed?

As pointed out earlier, the main reasons for coming up with a research design relate to efficiency and effectiveness. If you have a good research design, you will save time, energy, and cost in doing your research. You have a plan to get the data that you want to answer the research objectives.

Thus, before conducting research, you already have in mind what to expect. And of course, you will know how much that would cost you. If you cannot afford it, then you revise your plan.

Defining the Research Objectives

Thus, you will need to define your research objectives based on your topic of interest. What do you want to achieve in your research? Will you be dealing with people, animals, plants, or things?

Will you manipulate some variables? Will you compare different groups? Would you want to know which  variable  causes an effect on other variables? Or will you describe what is there?

It all boils down to  what you want . Be very clear if you’re going to describe things, correlate them, find out if one causes the other, or put up an experiment to test if manipulating one variable can effect a change to another variable.

The Four Main Types of Quantitative Research Design

The four quantitative research designs are distinguished from each other in Figure 1. Please note that as you go from left to right; the approach becomes more manipulative. The descriptive research design studies the existing situation, whereas the researcher manipulates variables at the other end, using the experimental method.

Examples of the Application of the Different Research Design on the Same Subject

Descriptive research design, correlational research design.

The same study on air quality may be conducted as in Example 1, but this time, the respondent’s awareness about air quality is correlated with their attitude towards emission testing.

Causal-Comparative Research Design

Still, on the air quality study, you might want to know what causes the respondents to behave positively or negatively towards emission testing. Does attitude have something to do with a person’s educational background? Or perhaps, their capacity to pay for emission testing?

The following video explains this research design further with two examples.

Experimental Research Design

The two groups’ members were randomly assigned, and all other variables were kept constant, meaning the respondents have similar characteristics where only attendance at the seminar is the difference.

You are interested in finding the difference between a person’s attitude towards emission testing. And what discriminates them from the other is that one group attended a seminar on air pollution while the other group did not.

Final Notes

There are still other types of research designs out there. What is important here is that you are clear about what you want to investigate.

Related Posts

Technical writing tips: interpreting graphs with two variables, a research on in-service training activities, teaching efficacy, job satisfaction and attitude, faculty-directed fieldwork: eight important benefits, about the author, patrick regoniel.

Dr. Regoniel, a hobbyist writer, served as consultant to various environmental research and development projects covering issues and concerns on climate change, coral reef resources and management, economic valuation of environmental and natural resources, mining, and waste management and pollution. He has extensive experience on applied statistics, systems modelling and analysis, an avid practitioner of LaTeX, and a multidisciplinary web developer. He leverages pioneering AI-powered content creation tools to produce unique and comprehensive articles in this website.

SimplyEducate.Me Privacy Policy

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Quasi-Experimental Design | Definition, Types & Examples

Quasi-Experimental Design | Definition, Types & Examples

Published on July 31, 2020 by Lauren Thomas . Revised on January 22, 2024.

Like a true experiment , a quasi-experimental design aims to establish a cause-and-effect relationship between an independent and dependent variable .

However, unlike a true experiment, a quasi-experiment does not rely on random assignment . Instead, subjects are assigned to groups based on non-random criteria.

Quasi-experimental design is a useful tool in situations where true experiments cannot be used for ethical or practical reasons.

Quasi-experimental design vs. experimental design

Table of contents

Differences between quasi-experiments and true experiments, types of quasi-experimental designs, when to use quasi-experimental design, advantages and disadvantages, other interesting articles, frequently asked questions about quasi-experimental designs.

There are several common differences between true and quasi-experimental designs.

True experimental design Quasi-experimental design
Assignment to treatment The researcher subjects to control and treatment groups. Some other, method is used to assign subjects to groups.
Control over treatment The researcher usually . The researcher often , but instead studies pre-existing groups that received different treatments after the fact.
Use of Requires the use of . Control groups are not required (although they are commonly used).

Example of a true experiment vs a quasi-experiment

However, for ethical reasons, the directors of the mental health clinic may not give you permission to randomly assign their patients to treatments. In this case, you cannot run a true experiment.

Instead, you can use a quasi-experimental design.

You can use these pre-existing groups to study the symptom progression of the patients treated with the new therapy versus those receiving the standard course of treatment.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

Many types of quasi-experimental designs exist. Here we explain three of the most common types: nonequivalent groups design, regression discontinuity, and natural experiments.

Nonequivalent groups design

In nonequivalent group design, the researcher chooses existing groups that appear similar, but where only one of the groups experiences the treatment.

In a true experiment with random assignment , the control and treatment groups are considered equivalent in every way other than the treatment. But in a quasi-experiment where the groups are not random, they may differ in other ways—they are nonequivalent groups .

When using this kind of design, researchers try to account for any confounding variables by controlling for them in their analysis or by choosing groups that are as similar as possible.

This is the most common type of quasi-experimental design.

Regression discontinuity

Many potential treatments that researchers wish to study are designed around an essentially arbitrary cutoff, where those above the threshold receive the treatment and those below it do not.

Near this threshold, the differences between the two groups are often so minimal as to be nearly nonexistent. Therefore, researchers can use individuals just below the threshold as a control group and those just above as a treatment group.

However, since the exact cutoff score is arbitrary, the students near the threshold—those who just barely pass the exam and those who fail by a very small margin—tend to be very similar, with the small differences in their scores mostly due to random chance. You can therefore conclude that any outcome differences must come from the school they attended.

Natural experiments

In both laboratory and field experiments, researchers normally control which group the subjects are assigned to. In a natural experiment, an external event or situation (“nature”) results in the random or random-like assignment of subjects to the treatment group.

Even though some use random assignments, natural experiments are not considered to be true experiments because they are observational in nature.

Although the researchers have no control over the independent variable , they can exploit this event after the fact to study the effect of the treatment.

However, as they could not afford to cover everyone who they deemed eligible for the program, they instead allocated spots in the program based on a random lottery.

Although true experiments have higher internal validity , you might choose to use a quasi-experimental design for ethical or practical reasons.

Sometimes it would be unethical to provide or withhold a treatment on a random basis, so a true experiment is not feasible. In this case, a quasi-experiment can allow you to study the same causal relationship without the ethical issues.

The Oregon Health Study is a good example. It would be unethical to randomly provide some people with health insurance but purposely prevent others from receiving it solely for the purposes of research.

However, since the Oregon government faced financial constraints and decided to provide health insurance via lottery, studying this event after the fact is a much more ethical approach to studying the same problem.

True experimental design may be infeasible to implement or simply too expensive, particularly for researchers without access to large funding streams.

At other times, too much work is involved in recruiting and properly designing an experimental intervention for an adequate number of subjects to justify a true experiment.

In either case, quasi-experimental designs allow you to study the question by taking advantage of data that has previously been paid for or collected by others (often the government).

Quasi-experimental designs have various pros and cons compared to other types of studies.

  • Higher external validity than most true experiments, because they often involve real-world interventions instead of artificial laboratory settings.
  • Higher internal validity than other non-experimental types of research, because they allow you to better control for confounding variables than other types of studies do.
  • Lower internal validity than true experiments—without randomization, it can be difficult to verify that all confounding variables have been accounted for.
  • The use of retrospective data that has already been collected for other purposes can be inaccurate, incomplete or difficult to access.

Prevent plagiarism. Run a free check.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Degrees of freedom
  • Null hypothesis
  • Discourse analysis
  • Control groups
  • Mixed methods research
  • Non-probability sampling
  • Quantitative research
  • Ecological validity

Research bias

  • Rosenthal effect
  • Implicit bias
  • Cognitive bias
  • Selection bias
  • Negativity bias
  • Status quo bias

A quasi-experiment is a type of research design that attempts to establish a cause-and-effect relationship. The main difference with a true experiment is that the groups are not randomly assigned.

In experimental research, random assignment is a way of placing participants from your sample into different groups using randomization. With this method, every member of the sample has a known or equal chance of being placed in a control group or an experimental group.

Quasi-experimental design is most useful in situations where it would be unethical or impractical to run a true experiment .

Quasi-experiments have lower internal validity than true experiments, but they often have higher external validity  as they can use real-world interventions instead of artificial laboratory settings.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Thomas, L. (2024, January 22). Quasi-Experimental Design | Definition, Types & Examples. Scribbr. Retrieved August 29, 2024, from https://www.scribbr.com/methodology/quasi-experimental-design/

Is this article helpful?

Lauren Thomas

Lauren Thomas

Other students also liked, guide to experimental design | overview, steps, & examples, random assignment in experiments | introduction & examples, control variables | what are they & why do they matter, what is your plagiarism score.

Dissertation By Design

  • Dissertation Coaching
  • Qualitative Data Analysis
  • Statistical Consulting
  • Dissertation Editing
  • On-Demand Courses

Quantitative Research Designs | Dissertation by Design

A Guide to the Four Quantitative Research Designs

So, you’ve elected to undertake a quantitative study for your doctoral dissertation, what’s next? An important element of your research project is to select your research design. Your choice of research design should be guided by your research questions. Selecting the appropriate research design is essential to ensure that the data you collect can be used in a meaningful way. Your choice of research design will have bearing on every aspect of your research plan including your study sample, statistical analyses, and the presentation of your results. Let’s look at an overview of the four main quantitative research designs:

Descriptive

A descriptive design is aimed at giving an accurate representation of circumstances, elements, or occurrences. It can inform the researcher as to the where, what, and when but the results cannot extend beyond the study sample.  A descriptive design does not seek to determine whether relationships are present between variables, but rather to describe the distribution of variables within your study sample. This method of research is purely based on observing, recording, and quantifying the variables of interest.

Examples of questions that can be answered using a descriptive research design:

  • What is the overall level of job satisfaction and remuneration of employees at Company X?.
  • How many negative online reviews has Restaurant X received since 2015? How many table bookings have been lost since 2015?.
  • How many celebrity endorsements did Product X receive over the last two years? How many sales of Product X have there been over the last two years?

Correlational 

A correlational design compares two or more variables and/or investigates how they relate to each other. The researcher does not influence, control or manipulate the variables of interest, and therefore cannot assign cause and effect. Remember the golden rule: Correlation does not imply causation. For an interesting, short read on the topic, I recommend “Correlation and Causation: A Comment” by Stephen Stigler (Stigler, 2005).

Examples of questions that can be answered using a correlational research design:

  • Is there a relationship between an employee’s job satisfaction and their remuneration package?
  • Is there a relationship between a restaurant’s negative online reviews and the number of table bookings they receive?
  • Is there a relationship between the celebrity endorsements of skincare products and the number of product sales?

Quasi-Experimental

Similar to a true experimental design, a quasi-experimental design type seeks to establish a causal relationship between an independent and dependent variable. A quasi-experimental design can rely on either random or non-random assignment, however, unlike a true experiment, there are often confounding variables that cannot be accounted for within the research design. This type of design is a convenient substitute in  situations where ethical or practical circumstances prevent a true experiment.

Examples of questions that can be answered using a quasi-experimental research design:

  • Does a specific wellness intervention have a significant impact on employee  job satisfaction?
  • Does the implementation of online review platforms have an impact on the number of table bookings a restaurant receives?

True Experimental 

An experimental design is characterized by a completely controlled environment. The researcher has control over all study variables which are manipulated to systematically test a specific theory or theories. The aim of an experimental research design is to establish a cause-and-effect relationship. To successfully run an experimental quantitative study, you need to have an in-depth understanding of the topic in question, a testable theory, and planned experimental manipulations of your independent variable.

Examples of questions that can be answered using a true experimental research design:

  • What is the effect of acid levels in soil on tomato fruit production (assessed within a laboratory).
  • What is the effect of increasing the ratio of aluminum to corrosion within Metal Product X?

Final thoughts

If you are looking for guidance on which design type is most appropriate to address your research questions, contact us to book your complimentary consultation and let us see how we can assist you on your road to a successful dissertation.

Stigler, S.M. (2005). Correlation and Causation: A Comment. Perspectives in Biology and Medicine 48(1), 88-S94. doi:10.1353/pbm.2005.0045.

' data-src=

Author:  Jessica Parker, EdD

Related posts.

quantitative experimental design examples

Download our free guide on how to overcome the top 10 challenges common to doctoral candidates and graduate sooner.

Thank You 🙌

quantitative experimental design examples

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Korean Med Sci
  • v.37(16); 2022 Apr 25

Logo of jkms

A Practical Guide to Writing Quantitative and Qualitative Research Questions and Hypotheses in Scholarly Articles

Edward barroga.

1 Department of General Education, Graduate School of Nursing Science, St. Luke’s International University, Tokyo, Japan.

Glafera Janet Matanguihan

2 Department of Biological Sciences, Messiah University, Mechanicsburg, PA, USA.

The development of research questions and the subsequent hypotheses are prerequisites to defining the main research purpose and specific objectives of a study. Consequently, these objectives determine the study design and research outcome. The development of research questions is a process based on knowledge of current trends, cutting-edge studies, and technological advances in the research field. Excellent research questions are focused and require a comprehensive literature search and in-depth understanding of the problem being investigated. Initially, research questions may be written as descriptive questions which could be developed into inferential questions. These questions must be specific and concise to provide a clear foundation for developing hypotheses. Hypotheses are more formal predictions about the research outcomes. These specify the possible results that may or may not be expected regarding the relationship between groups. Thus, research questions and hypotheses clarify the main purpose and specific objectives of the study, which in turn dictate the design of the study, its direction, and outcome. Studies developed from good research questions and hypotheses will have trustworthy outcomes with wide-ranging social and health implications.

INTRODUCTION

Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses. 1 , 2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results. 3 , 4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the inception of novel studies and the ethical testing of ideas. 5 , 6

It is crucial to have knowledge of both quantitative and qualitative research 2 as both types of research involve writing research questions and hypotheses. 7 However, these crucial elements of research are sometimes overlooked; if not overlooked, then framed without the forethought and meticulous attention it needs. Planning and careful consideration are needed when developing quantitative or qualitative research, particularly when conceptualizing research questions and hypotheses. 4

There is a continuing need to support researchers in the creation of innovative research questions and hypotheses, as well as for journal articles that carefully review these elements. 1 When research questions and hypotheses are not carefully thought of, unethical studies and poor outcomes usually ensue. Carefully formulated research questions and hypotheses define well-founded objectives, which in turn determine the appropriate design, course, and outcome of the study. This article then aims to discuss in detail the various aspects of crafting research questions and hypotheses, with the goal of guiding researchers as they develop their own. Examples from the authors and peer-reviewed scientific articles in the healthcare field are provided to illustrate key points.

DEFINITIONS AND RELATIONSHIP OF RESEARCH QUESTIONS AND HYPOTHESES

A research question is what a study aims to answer after data analysis and interpretation. The answer is written in length in the discussion section of the paper. Thus, the research question gives a preview of the different parts and variables of the study meant to address the problem posed in the research question. 1 An excellent research question clarifies the research writing while facilitating understanding of the research topic, objective, scope, and limitations of the study. 5

On the other hand, a research hypothesis is an educated statement of an expected outcome. This statement is based on background research and current knowledge. 8 , 9 The research hypothesis makes a specific prediction about a new phenomenon 10 or a formal statement on the expected relationship between an independent variable and a dependent variable. 3 , 11 It provides a tentative answer to the research question to be tested or explored. 4

Hypotheses employ reasoning to predict a theory-based outcome. 10 These can also be developed from theories by focusing on components of theories that have not yet been observed. 10 The validity of hypotheses is often based on the testability of the prediction made in a reproducible experiment. 8

Conversely, hypotheses can also be rephrased as research questions. Several hypotheses based on existing theories and knowledge may be needed to answer a research question. Developing ethical research questions and hypotheses creates a research design that has logical relationships among variables. These relationships serve as a solid foundation for the conduct of the study. 4 , 11 Haphazardly constructed research questions can result in poorly formulated hypotheses and improper study designs, leading to unreliable results. Thus, the formulations of relevant research questions and verifiable hypotheses are crucial when beginning research. 12

CHARACTERISTICS OF GOOD RESEARCH QUESTIONS AND HYPOTHESES

Excellent research questions are specific and focused. These integrate collective data and observations to confirm or refute the subsequent hypotheses. Well-constructed hypotheses are based on previous reports and verify the research context. These are realistic, in-depth, sufficiently complex, and reproducible. More importantly, these hypotheses can be addressed and tested. 13

There are several characteristics of well-developed hypotheses. Good hypotheses are 1) empirically testable 7 , 10 , 11 , 13 ; 2) backed by preliminary evidence 9 ; 3) testable by ethical research 7 , 9 ; 4) based on original ideas 9 ; 5) have evidenced-based logical reasoning 10 ; and 6) can be predicted. 11 Good hypotheses can infer ethical and positive implications, indicating the presence of a relationship or effect relevant to the research theme. 7 , 11 These are initially developed from a general theory and branch into specific hypotheses by deductive reasoning. In the absence of a theory to base the hypotheses, inductive reasoning based on specific observations or findings form more general hypotheses. 10

TYPES OF RESEARCH QUESTIONS AND HYPOTHESES

Research questions and hypotheses are developed according to the type of research, which can be broadly classified into quantitative and qualitative research. We provide a summary of the types of research questions and hypotheses under quantitative and qualitative research categories in Table 1 .

Quantitative research questionsQuantitative research hypotheses
Descriptive research questionsSimple hypothesis
Comparative research questionsComplex hypothesis
Relationship research questionsDirectional hypothesis
Non-directional hypothesis
Associative hypothesis
Causal hypothesis
Null hypothesis
Alternative hypothesis
Working hypothesis
Statistical hypothesis
Logical hypothesis
Hypothesis-testing
Qualitative research questionsQualitative research hypotheses
Contextual research questionsHypothesis-generating
Descriptive research questions
Evaluation research questions
Explanatory research questions
Exploratory research questions
Generative research questions
Ideological research questions
Ethnographic research questions
Phenomenological research questions
Grounded theory questions
Qualitative case study questions

Research questions in quantitative research

In quantitative research, research questions inquire about the relationships among variables being investigated and are usually framed at the start of the study. These are precise and typically linked to the subject population, dependent and independent variables, and research design. 1 Research questions may also attempt to describe the behavior of a population in relation to one or more variables, or describe the characteristics of variables to be measured ( descriptive research questions ). 1 , 5 , 14 These questions may also aim to discover differences between groups within the context of an outcome variable ( comparative research questions ), 1 , 5 , 14 or elucidate trends and interactions among variables ( relationship research questions ). 1 , 5 We provide examples of descriptive, comparative, and relationship research questions in quantitative research in Table 2 .

Quantitative research questions
Descriptive research question
- Measures responses of subjects to variables
- Presents variables to measure, analyze, or assess
What is the proportion of resident doctors in the hospital who have mastered ultrasonography (response of subjects to a variable) as a diagnostic technique in their clinical training?
Comparative research question
- Clarifies difference between one group with outcome variable and another group without outcome variable
Is there a difference in the reduction of lung metastasis in osteosarcoma patients who received the vitamin D adjunctive therapy (group with outcome variable) compared with osteosarcoma patients who did not receive the vitamin D adjunctive therapy (group without outcome variable)?
- Compares the effects of variables
How does the vitamin D analogue 22-Oxacalcitriol (variable 1) mimic the antiproliferative activity of 1,25-Dihydroxyvitamin D (variable 2) in osteosarcoma cells?
Relationship research question
- Defines trends, association, relationships, or interactions between dependent variable and independent variable
Is there a relationship between the number of medical student suicide (dependent variable) and the level of medical student stress (independent variable) in Japan during the first wave of the COVID-19 pandemic?

Hypotheses in quantitative research

In quantitative research, hypotheses predict the expected relationships among variables. 15 Relationships among variables that can be predicted include 1) between a single dependent variable and a single independent variable ( simple hypothesis ) or 2) between two or more independent and dependent variables ( complex hypothesis ). 4 , 11 Hypotheses may also specify the expected direction to be followed and imply an intellectual commitment to a particular outcome ( directional hypothesis ) 4 . On the other hand, hypotheses may not predict the exact direction and are used in the absence of a theory, or when findings contradict previous studies ( non-directional hypothesis ). 4 In addition, hypotheses can 1) define interdependency between variables ( associative hypothesis ), 4 2) propose an effect on the dependent variable from manipulation of the independent variable ( causal hypothesis ), 4 3) state a negative relationship between two variables ( null hypothesis ), 4 , 11 , 15 4) replace the working hypothesis if rejected ( alternative hypothesis ), 15 explain the relationship of phenomena to possibly generate a theory ( working hypothesis ), 11 5) involve quantifiable variables that can be tested statistically ( statistical hypothesis ), 11 6) or express a relationship whose interlinks can be verified logically ( logical hypothesis ). 11 We provide examples of simple, complex, directional, non-directional, associative, causal, null, alternative, working, statistical, and logical hypotheses in quantitative research, as well as the definition of quantitative hypothesis-testing research in Table 3 .

Quantitative research hypotheses
Simple hypothesis
- Predicts relationship between single dependent variable and single independent variable
If the dose of the new medication (single independent variable) is high, blood pressure (single dependent variable) is lowered.
Complex hypothesis
- Foretells relationship between two or more independent and dependent variables
The higher the use of anticancer drugs, radiation therapy, and adjunctive agents (3 independent variables), the higher would be the survival rate (1 dependent variable).
Directional hypothesis
- Identifies study direction based on theory towards particular outcome to clarify relationship between variables
Privately funded research projects will have a larger international scope (study direction) than publicly funded research projects.
Non-directional hypothesis
- Nature of relationship between two variables or exact study direction is not identified
- Does not involve a theory
Women and men are different in terms of helpfulness. (Exact study direction is not identified)
Associative hypothesis
- Describes variable interdependency
- Change in one variable causes change in another variable
A larger number of people vaccinated against COVID-19 in the region (change in independent variable) will reduce the region’s incidence of COVID-19 infection (change in dependent variable).
Causal hypothesis
- An effect on dependent variable is predicted from manipulation of independent variable
A change into a high-fiber diet (independent variable) will reduce the blood sugar level (dependent variable) of the patient.
Null hypothesis
- A negative statement indicating no relationship or difference between 2 variables
There is no significant difference in the severity of pulmonary metastases between the new drug (variable 1) and the current drug (variable 2).
Alternative hypothesis
- Following a null hypothesis, an alternative hypothesis predicts a relationship between 2 study variables
The new drug (variable 1) is better on average in reducing the level of pain from pulmonary metastasis than the current drug (variable 2).
Working hypothesis
- A hypothesis that is initially accepted for further research to produce a feasible theory
Dairy cows fed with concentrates of different formulations will produce different amounts of milk.
Statistical hypothesis
- Assumption about the value of population parameter or relationship among several population characteristics
- Validity tested by a statistical experiment or analysis
The mean recovery rate from COVID-19 infection (value of population parameter) is not significantly different between population 1 and population 2.
There is a positive correlation between the level of stress at the workplace and the number of suicides (population characteristics) among working people in Japan.
Logical hypothesis
- Offers or proposes an explanation with limited or no extensive evidence
If healthcare workers provide more educational programs about contraception methods, the number of adolescent pregnancies will be less.
Hypothesis-testing (Quantitative hypothesis-testing research)
- Quantitative research uses deductive reasoning.
- This involves the formation of a hypothesis, collection of data in the investigation of the problem, analysis and use of the data from the investigation, and drawing of conclusions to validate or nullify the hypotheses.

Research questions in qualitative research

Unlike research questions in quantitative research, research questions in qualitative research are usually continuously reviewed and reformulated. The central question and associated subquestions are stated more than the hypotheses. 15 The central question broadly explores a complex set of factors surrounding the central phenomenon, aiming to present the varied perspectives of participants. 15

There are varied goals for which qualitative research questions are developed. These questions can function in several ways, such as to 1) identify and describe existing conditions ( contextual research question s); 2) describe a phenomenon ( descriptive research questions ); 3) assess the effectiveness of existing methods, protocols, theories, or procedures ( evaluation research questions ); 4) examine a phenomenon or analyze the reasons or relationships between subjects or phenomena ( explanatory research questions ); or 5) focus on unknown aspects of a particular topic ( exploratory research questions ). 5 In addition, some qualitative research questions provide new ideas for the development of theories and actions ( generative research questions ) or advance specific ideologies of a position ( ideological research questions ). 1 Other qualitative research questions may build on a body of existing literature and become working guidelines ( ethnographic research questions ). Research questions may also be broadly stated without specific reference to the existing literature or a typology of questions ( phenomenological research questions ), may be directed towards generating a theory of some process ( grounded theory questions ), or may address a description of the case and the emerging themes ( qualitative case study questions ). 15 We provide examples of contextual, descriptive, evaluation, explanatory, exploratory, generative, ideological, ethnographic, phenomenological, grounded theory, and qualitative case study research questions in qualitative research in Table 4 , and the definition of qualitative hypothesis-generating research in Table 5 .

Qualitative research questions
Contextual research question
- Ask the nature of what already exists
- Individuals or groups function to further clarify and understand the natural context of real-world problems
What are the experiences of nurses working night shifts in healthcare during the COVID-19 pandemic? (natural context of real-world problems)
Descriptive research question
- Aims to describe a phenomenon
What are the different forms of disrespect and abuse (phenomenon) experienced by Tanzanian women when giving birth in healthcare facilities?
Evaluation research question
- Examines the effectiveness of existing practice or accepted frameworks
How effective are decision aids (effectiveness of existing practice) in helping decide whether to give birth at home or in a healthcare facility?
Explanatory research question
- Clarifies a previously studied phenomenon and explains why it occurs
Why is there an increase in teenage pregnancy (phenomenon) in Tanzania?
Exploratory research question
- Explores areas that have not been fully investigated to have a deeper understanding of the research problem
What factors affect the mental health of medical students (areas that have not yet been fully investigated) during the COVID-19 pandemic?
Generative research question
- Develops an in-depth understanding of people’s behavior by asking ‘how would’ or ‘what if’ to identify problems and find solutions
How would the extensive research experience of the behavior of new staff impact the success of the novel drug initiative?
Ideological research question
- Aims to advance specific ideas or ideologies of a position
Are Japanese nurses who volunteer in remote African hospitals able to promote humanized care of patients (specific ideas or ideologies) in the areas of safe patient environment, respect of patient privacy, and provision of accurate information related to health and care?
Ethnographic research question
- Clarifies peoples’ nature, activities, their interactions, and the outcomes of their actions in specific settings
What are the demographic characteristics, rehabilitative treatments, community interactions, and disease outcomes (nature, activities, their interactions, and the outcomes) of people in China who are suffering from pneumoconiosis?
Phenomenological research question
- Knows more about the phenomena that have impacted an individual
What are the lived experiences of parents who have been living with and caring for children with a diagnosis of autism? (phenomena that have impacted an individual)
Grounded theory question
- Focuses on social processes asking about what happens and how people interact, or uncovering social relationships and behaviors of groups
What are the problems that pregnant adolescents face in terms of social and cultural norms (social processes), and how can these be addressed?
Qualitative case study question
- Assesses a phenomenon using different sources of data to answer “why” and “how” questions
- Considers how the phenomenon is influenced by its contextual situation.
How does quitting work and assuming the role of a full-time mother (phenomenon assessed) change the lives of women in Japan?
Qualitative research hypotheses
Hypothesis-generating (Qualitative hypothesis-generating research)
- Qualitative research uses inductive reasoning.
- This involves data collection from study participants or the literature regarding a phenomenon of interest, using the collected data to develop a formal hypothesis, and using the formal hypothesis as a framework for testing the hypothesis.
- Qualitative exploratory studies explore areas deeper, clarifying subjective experience and allowing formulation of a formal hypothesis potentially testable in a future quantitative approach.

Qualitative studies usually pose at least one central research question and several subquestions starting with How or What . These research questions use exploratory verbs such as explore or describe . These also focus on one central phenomenon of interest, and may mention the participants and research site. 15

Hypotheses in qualitative research

Hypotheses in qualitative research are stated in the form of a clear statement concerning the problem to be investigated. Unlike in quantitative research where hypotheses are usually developed to be tested, qualitative research can lead to both hypothesis-testing and hypothesis-generating outcomes. 2 When studies require both quantitative and qualitative research questions, this suggests an integrative process between both research methods wherein a single mixed-methods research question can be developed. 1

FRAMEWORKS FOR DEVELOPING RESEARCH QUESTIONS AND HYPOTHESES

Research questions followed by hypotheses should be developed before the start of the study. 1 , 12 , 14 It is crucial to develop feasible research questions on a topic that is interesting to both the researcher and the scientific community. This can be achieved by a meticulous review of previous and current studies to establish a novel topic. Specific areas are subsequently focused on to generate ethical research questions. The relevance of the research questions is evaluated in terms of clarity of the resulting data, specificity of the methodology, objectivity of the outcome, depth of the research, and impact of the study. 1 , 5 These aspects constitute the FINER criteria (i.e., Feasible, Interesting, Novel, Ethical, and Relevant). 1 Clarity and effectiveness are achieved if research questions meet the FINER criteria. In addition to the FINER criteria, Ratan et al. described focus, complexity, novelty, feasibility, and measurability for evaluating the effectiveness of research questions. 14

The PICOT and PEO frameworks are also used when developing research questions. 1 The following elements are addressed in these frameworks, PICOT: P-population/patients/problem, I-intervention or indicator being studied, C-comparison group, O-outcome of interest, and T-timeframe of the study; PEO: P-population being studied, E-exposure to preexisting conditions, and O-outcome of interest. 1 Research questions are also considered good if these meet the “FINERMAPS” framework: Feasible, Interesting, Novel, Ethical, Relevant, Manageable, Appropriate, Potential value/publishable, and Systematic. 14

As we indicated earlier, research questions and hypotheses that are not carefully formulated result in unethical studies or poor outcomes. To illustrate this, we provide some examples of ambiguous research question and hypotheses that result in unclear and weak research objectives in quantitative research ( Table 6 ) 16 and qualitative research ( Table 7 ) 17 , and how to transform these ambiguous research question(s) and hypothesis(es) into clear and good statements.

VariablesUnclear and weak statement (Statement 1) Clear and good statement (Statement 2) Points to avoid
Research questionWhich is more effective between smoke moxibustion and smokeless moxibustion?“Moreover, regarding smoke moxibustion versus smokeless moxibustion, it remains unclear which is more effective, safe, and acceptable to pregnant women, and whether there is any difference in the amount of heat generated.” 1) Vague and unfocused questions
2) Closed questions simply answerable by yes or no
3) Questions requiring a simple choice
HypothesisThe smoke moxibustion group will have higher cephalic presentation.“Hypothesis 1. The smoke moxibustion stick group (SM group) and smokeless moxibustion stick group (-SLM group) will have higher rates of cephalic presentation after treatment than the control group.1) Unverifiable hypotheses
Hypothesis 2. The SM group and SLM group will have higher rates of cephalic presentation at birth than the control group.2) Incompletely stated groups of comparison
Hypothesis 3. There will be no significant differences in the well-being of the mother and child among the three groups in terms of the following outcomes: premature birth, premature rupture of membranes (PROM) at < 37 weeks, Apgar score < 7 at 5 min, umbilical cord blood pH < 7.1, admission to neonatal intensive care unit (NICU), and intrauterine fetal death.” 3) Insufficiently described variables or outcomes
Research objectiveTo determine which is more effective between smoke moxibustion and smokeless moxibustion.“The specific aims of this pilot study were (a) to compare the effects of smoke moxibustion and smokeless moxibustion treatments with the control group as a possible supplement to ECV for converting breech presentation to cephalic presentation and increasing adherence to the newly obtained cephalic position, and (b) to assess the effects of these treatments on the well-being of the mother and child.” 1) Poor understanding of the research question and hypotheses
2) Insufficient description of population, variables, or study outcomes

a These statements were composed for comparison and illustrative purposes only.

b These statements are direct quotes from Higashihara and Horiuchi. 16

VariablesUnclear and weak statement (Statement 1)Clear and good statement (Statement 2)Points to avoid
Research questionDoes disrespect and abuse (D&A) occur in childbirth in Tanzania?How does disrespect and abuse (D&A) occur and what are the types of physical and psychological abuses observed in midwives’ actual care during facility-based childbirth in urban Tanzania?1) Ambiguous or oversimplistic questions
2) Questions unverifiable by data collection and analysis
HypothesisDisrespect and abuse (D&A) occur in childbirth in Tanzania.Hypothesis 1: Several types of physical and psychological abuse by midwives in actual care occur during facility-based childbirth in urban Tanzania.1) Statements simply expressing facts
Hypothesis 2: Weak nursing and midwifery management contribute to the D&A of women during facility-based childbirth in urban Tanzania.2) Insufficiently described concepts or variables
Research objectiveTo describe disrespect and abuse (D&A) in childbirth in Tanzania.“This study aimed to describe from actual observations the respectful and disrespectful care received by women from midwives during their labor period in two hospitals in urban Tanzania.” 1) Statements unrelated to the research question and hypotheses
2) Unattainable or unexplorable objectives

a This statement is a direct quote from Shimoda et al. 17

The other statements were composed for comparison and illustrative purposes only.

CONSTRUCTING RESEARCH QUESTIONS AND HYPOTHESES

To construct effective research questions and hypotheses, it is very important to 1) clarify the background and 2) identify the research problem at the outset of the research, within a specific timeframe. 9 Then, 3) review or conduct preliminary research to collect all available knowledge about the possible research questions by studying theories and previous studies. 18 Afterwards, 4) construct research questions to investigate the research problem. Identify variables to be accessed from the research questions 4 and make operational definitions of constructs from the research problem and questions. Thereafter, 5) construct specific deductive or inductive predictions in the form of hypotheses. 4 Finally, 6) state the study aims . This general flow for constructing effective research questions and hypotheses prior to conducting research is shown in Fig. 1 .

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g001.jpg

Research questions are used more frequently in qualitative research than objectives or hypotheses. 3 These questions seek to discover, understand, explore or describe experiences by asking “What” or “How.” The questions are open-ended to elicit a description rather than to relate variables or compare groups. The questions are continually reviewed, reformulated, and changed during the qualitative study. 3 Research questions are also used more frequently in survey projects than hypotheses in experiments in quantitative research to compare variables and their relationships.

Hypotheses are constructed based on the variables identified and as an if-then statement, following the template, ‘If a specific action is taken, then a certain outcome is expected.’ At this stage, some ideas regarding expectations from the research to be conducted must be drawn. 18 Then, the variables to be manipulated (independent) and influenced (dependent) are defined. 4 Thereafter, the hypothesis is stated and refined, and reproducible data tailored to the hypothesis are identified, collected, and analyzed. 4 The hypotheses must be testable and specific, 18 and should describe the variables and their relationships, the specific group being studied, and the predicted research outcome. 18 Hypotheses construction involves a testable proposition to be deduced from theory, and independent and dependent variables to be separated and measured separately. 3 Therefore, good hypotheses must be based on good research questions constructed at the start of a study or trial. 12

In summary, research questions are constructed after establishing the background of the study. Hypotheses are then developed based on the research questions. Thus, it is crucial to have excellent research questions to generate superior hypotheses. In turn, these would determine the research objectives and the design of the study, and ultimately, the outcome of the research. 12 Algorithms for building research questions and hypotheses are shown in Fig. 2 for quantitative research and in Fig. 3 for qualitative research.

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g002.jpg

EXAMPLES OF RESEARCH QUESTIONS FROM PUBLISHED ARTICLES

  • EXAMPLE 1. Descriptive research question (quantitative research)
  • - Presents research variables to be assessed (distinct phenotypes and subphenotypes)
  • “BACKGROUND: Since COVID-19 was identified, its clinical and biological heterogeneity has been recognized. Identifying COVID-19 phenotypes might help guide basic, clinical, and translational research efforts.
  • RESEARCH QUESTION: Does the clinical spectrum of patients with COVID-19 contain distinct phenotypes and subphenotypes? ” 19
  • EXAMPLE 2. Relationship research question (quantitative research)
  • - Shows interactions between dependent variable (static postural control) and independent variable (peripheral visual field loss)
  • “Background: Integration of visual, vestibular, and proprioceptive sensations contributes to postural control. People with peripheral visual field loss have serious postural instability. However, the directional specificity of postural stability and sensory reweighting caused by gradual peripheral visual field loss remain unclear.
  • Research question: What are the effects of peripheral visual field loss on static postural control ?” 20
  • EXAMPLE 3. Comparative research question (quantitative research)
  • - Clarifies the difference among groups with an outcome variable (patients enrolled in COMPERA with moderate PH or severe PH in COPD) and another group without the outcome variable (patients with idiopathic pulmonary arterial hypertension (IPAH))
  • “BACKGROUND: Pulmonary hypertension (PH) in COPD is a poorly investigated clinical condition.
  • RESEARCH QUESTION: Which factors determine the outcome of PH in COPD?
  • STUDY DESIGN AND METHODS: We analyzed the characteristics and outcome of patients enrolled in the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA) with moderate or severe PH in COPD as defined during the 6th PH World Symposium who received medical therapy for PH and compared them with patients with idiopathic pulmonary arterial hypertension (IPAH) .” 21
  • EXAMPLE 4. Exploratory research question (qualitative research)
  • - Explores areas that have not been fully investigated (perspectives of families and children who receive care in clinic-based child obesity treatment) to have a deeper understanding of the research problem
  • “Problem: Interventions for children with obesity lead to only modest improvements in BMI and long-term outcomes, and data are limited on the perspectives of families of children with obesity in clinic-based treatment. This scoping review seeks to answer the question: What is known about the perspectives of families and children who receive care in clinic-based child obesity treatment? This review aims to explore the scope of perspectives reported by families of children with obesity who have received individualized outpatient clinic-based obesity treatment.” 22
  • EXAMPLE 5. Relationship research question (quantitative research)
  • - Defines interactions between dependent variable (use of ankle strategies) and independent variable (changes in muscle tone)
  • “Background: To maintain an upright standing posture against external disturbances, the human body mainly employs two types of postural control strategies: “ankle strategy” and “hip strategy.” While it has been reported that the magnitude of the disturbance alters the use of postural control strategies, it has not been elucidated how the level of muscle tone, one of the crucial parameters of bodily function, determines the use of each strategy. We have previously confirmed using forward dynamics simulations of human musculoskeletal models that an increased muscle tone promotes the use of ankle strategies. The objective of the present study was to experimentally evaluate a hypothesis: an increased muscle tone promotes the use of ankle strategies. Research question: Do changes in the muscle tone affect the use of ankle strategies ?” 23

EXAMPLES OF HYPOTHESES IN PUBLISHED ARTICLES

  • EXAMPLE 1. Working hypothesis (quantitative research)
  • - A hypothesis that is initially accepted for further research to produce a feasible theory
  • “As fever may have benefit in shortening the duration of viral illness, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response when taken during the early stages of COVID-19 illness .” 24
  • “In conclusion, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response . The difference in perceived safety of these agents in COVID-19 illness could be related to the more potent efficacy to reduce fever with ibuprofen compared to acetaminophen. Compelling data on the benefit of fever warrant further research and review to determine when to treat or withhold ibuprofen for early stage fever for COVID-19 and other related viral illnesses .” 24
  • EXAMPLE 2. Exploratory hypothesis (qualitative research)
  • - Explores particular areas deeper to clarify subjective experience and develop a formal hypothesis potentially testable in a future quantitative approach
  • “We hypothesized that when thinking about a past experience of help-seeking, a self distancing prompt would cause increased help-seeking intentions and more favorable help-seeking outcome expectations .” 25
  • “Conclusion
  • Although a priori hypotheses were not supported, further research is warranted as results indicate the potential for using self-distancing approaches to increasing help-seeking among some people with depressive symptomatology.” 25
  • EXAMPLE 3. Hypothesis-generating research to establish a framework for hypothesis testing (qualitative research)
  • “We hypothesize that compassionate care is beneficial for patients (better outcomes), healthcare systems and payers (lower costs), and healthcare providers (lower burnout). ” 26
  • Compassionomics is the branch of knowledge and scientific study of the effects of compassionate healthcare. Our main hypotheses are that compassionate healthcare is beneficial for (1) patients, by improving clinical outcomes, (2) healthcare systems and payers, by supporting financial sustainability, and (3) HCPs, by lowering burnout and promoting resilience and well-being. The purpose of this paper is to establish a scientific framework for testing the hypotheses above . If these hypotheses are confirmed through rigorous research, compassionomics will belong in the science of evidence-based medicine, with major implications for all healthcare domains.” 26
  • EXAMPLE 4. Statistical hypothesis (quantitative research)
  • - An assumption is made about the relationship among several population characteristics ( gender differences in sociodemographic and clinical characteristics of adults with ADHD ). Validity is tested by statistical experiment or analysis ( chi-square test, Students t-test, and logistic regression analysis)
  • “Our research investigated gender differences in sociodemographic and clinical characteristics of adults with ADHD in a Japanese clinical sample. Due to unique Japanese cultural ideals and expectations of women's behavior that are in opposition to ADHD symptoms, we hypothesized that women with ADHD experience more difficulties and present more dysfunctions than men . We tested the following hypotheses: first, women with ADHD have more comorbidities than men with ADHD; second, women with ADHD experience more social hardships than men, such as having less full-time employment and being more likely to be divorced.” 27
  • “Statistical Analysis
  • ( text omitted ) Between-gender comparisons were made using the chi-squared test for categorical variables and Students t-test for continuous variables…( text omitted ). A logistic regression analysis was performed for employment status, marital status, and comorbidity to evaluate the independent effects of gender on these dependent variables.” 27

EXAMPLES OF HYPOTHESIS AS WRITTEN IN PUBLISHED ARTICLES IN RELATION TO OTHER PARTS

  • EXAMPLE 1. Background, hypotheses, and aims are provided
  • “Pregnant women need skilled care during pregnancy and childbirth, but that skilled care is often delayed in some countries …( text omitted ). The focused antenatal care (FANC) model of WHO recommends that nurses provide information or counseling to all pregnant women …( text omitted ). Job aids are visual support materials that provide the right kind of information using graphics and words in a simple and yet effective manner. When nurses are not highly trained or have many work details to attend to, these job aids can serve as a content reminder for the nurses and can be used for educating their patients (Jennings, Yebadokpo, Affo, & Agbogbe, 2010) ( text omitted ). Importantly, additional evidence is needed to confirm how job aids can further improve the quality of ANC counseling by health workers in maternal care …( text omitted )” 28
  • “ This has led us to hypothesize that the quality of ANC counseling would be better if supported by job aids. Consequently, a better quality of ANC counseling is expected to produce higher levels of awareness concerning the danger signs of pregnancy and a more favorable impression of the caring behavior of nurses .” 28
  • “This study aimed to examine the differences in the responses of pregnant women to a job aid-supported intervention during ANC visit in terms of 1) their understanding of the danger signs of pregnancy and 2) their impression of the caring behaviors of nurses to pregnant women in rural Tanzania.” 28
  • EXAMPLE 2. Background, hypotheses, and aims are provided
  • “We conducted a two-arm randomized controlled trial (RCT) to evaluate and compare changes in salivary cortisol and oxytocin levels of first-time pregnant women between experimental and control groups. The women in the experimental group touched and held an infant for 30 min (experimental intervention protocol), whereas those in the control group watched a DVD movie of an infant (control intervention protocol). The primary outcome was salivary cortisol level and the secondary outcome was salivary oxytocin level.” 29
  • “ We hypothesize that at 30 min after touching and holding an infant, the salivary cortisol level will significantly decrease and the salivary oxytocin level will increase in the experimental group compared with the control group .” 29
  • EXAMPLE 3. Background, aim, and hypothesis are provided
  • “In countries where the maternal mortality ratio remains high, antenatal education to increase Birth Preparedness and Complication Readiness (BPCR) is considered one of the top priorities [1]. BPCR includes birth plans during the antenatal period, such as the birthplace, birth attendant, transportation, health facility for complications, expenses, and birth materials, as well as family coordination to achieve such birth plans. In Tanzania, although increasing, only about half of all pregnant women attend an antenatal clinic more than four times [4]. Moreover, the information provided during antenatal care (ANC) is insufficient. In the resource-poor settings, antenatal group education is a potential approach because of the limited time for individual counseling at antenatal clinics.” 30
  • “This study aimed to evaluate an antenatal group education program among pregnant women and their families with respect to birth-preparedness and maternal and infant outcomes in rural villages of Tanzania.” 30
  • “ The study hypothesis was if Tanzanian pregnant women and their families received a family-oriented antenatal group education, they would (1) have a higher level of BPCR, (2) attend antenatal clinic four or more times, (3) give birth in a health facility, (4) have less complications of women at birth, and (5) have less complications and deaths of infants than those who did not receive the education .” 30

Research questions and hypotheses are crucial components to any type of research, whether quantitative or qualitative. These questions should be developed at the very beginning of the study. Excellent research questions lead to superior hypotheses, which, like a compass, set the direction of research, and can often determine the successful conduct of the study. Many research studies have floundered because the development of research questions and subsequent hypotheses was not given the thought and meticulous attention needed. The development of research questions and hypotheses is an iterative process based on extensive knowledge of the literature and insightful grasp of the knowledge gap. Focused, concise, and specific research questions provide a strong foundation for constructing hypotheses which serve as formal predictions about the research outcomes. Research questions and hypotheses are crucial elements of research that should not be overlooked. They should be carefully thought of and constructed when planning research. This avoids unethical studies and poor outcomes by defining well-founded objectives that determine the design, course, and outcome of the study.

Disclosure: The authors have no potential conflicts of interest to disclose.

Author Contributions:

  • Conceptualization: Barroga E, Matanguihan GJ.
  • Methodology: Barroga E, Matanguihan GJ.
  • Writing - original draft: Barroga E, Matanguihan GJ.
  • Writing - review & editing: Barroga E, Matanguihan GJ.

quantitative experimental design examples

Understanding Nursing Research

  • Primary Research
  • Qualitative vs. Quantitative Research

Experimental Design

Randomization vs random selection, randomized control trials (rcts), how do i tell if my article is a randomized control trial, how to limit your research to randomized control trials.

  • Is it a Nursing journal?
  • Is it Written by a Nurse?
  • Systematic Reviews and Secondary Research
  • Quality Improvement Plans

Correlational , or non-experimental , research is research where subjects are not acted upon, but where research questions can be answered merely by observing subjects.

An example of a correlational research question could be, "What is relationship between parents who make their children wash their hands at home and hand washing at school?" This is a question that  I could answer without acting upon the students or their parents.

Quasi-Experimental Research is research where an independent variable is manipulated, but the subjects of a study are not randomly assigned to an action (or a lack of action).

An example of quasi-experimental research would be to ask "What is the effect of hand-washing posters in school bathrooms?" If researchers put posters in the same place in all of the bathrooms of a single high school and measured how often students washed their hands. The reason the study is quasi-experimental is because the students are not randomly selected to participate in the study, they just participate because their school is receiving the intervention (posters in the bathroom).

Experimental Research is research that randomly selects subjects to participate in a study that includes some kind of intervention, or action intended to have an effect on the participants.

An example of an experimental design would be randomly selecting all of the schools participating in the hand washing poster campaign. The schools would then randomly be assigned to either the poster-group or the control group, which would receive no posters in their bathroom. Having a control group allows researchers to compare the group of students who received an intervention to those who did not.

How to tell:

The only way to tell what kind of experimental design is in an article you're reading is to read the Methodologies section of the article. This section should describe if participants were selected, how they were selected, and how they were assigned to either a control or intervention group.

Random Selection means subjects are randomly selected to participate in a study that involves an intervention.

Random Assignment means subjects are randomly assigned to whether they will be in a control group or a group that receives an intervention.

Controlled Trials are trials or studies that include a "control" group. If you were researching whether hand-washing posters were effective in getting students to wash their hands, you would put the posters in all of the bathrooms of one high school and in none of the bathrooms in another high school with similar demographic make up. The high school without the posters would be the control group. The control group allows you to see just how effective or ineffective your intervention was when you compare data at the end of your study.

Randomized Controlled Trials (RCTs) are also sometimes called Randomized Clinical Trials. These are studies where the participants are not necessarily randomly selected, but they are sorted into either an intervention group or a control group randomly. So in the example above, the researchers might select had twenty high schools in South Texas that were relatively similar (demographic make up, household incomes, size, etc.) and randomly decide which schools received hand washing posters and which did not.

To tell if an article you're looking at is a Randomized Control Trial (RCT) is relatively simple.

First, check the article's publication information. Sometimes even before you open an article, you can tell if it's a Randomized Control Trial. Like in this example:

quantitative experimental design examples

If you can't find the information in the article's publication information, the next step is to read the article's Abstract and Methodologies. In at least one of these sections, the researchers will state whether or not they used a control group in their study and whether or not the control and the intervention groups were assigned randomly.

The Methodologies section in particular should clearly explain how the participants were sorted into group. If the author states that participants were randomly assigned to groups, then that study is a Randomized Control Trial (RCT). If nothing about randomization is mentioned, it is safe to assume the article is not an RCT.

Below is an example of what to look for in an article's Methodologies section:

quantitative experimental design examples

If you know when you begin your research that you're interested in just Randomized Control Trials (RCTs), you can tell the database to just show you results that include Randomized Control Trials (RCTs).

In CINAHL, you can do that by scrolling down on the homepage and checking the box next to "Randomized Control Trials"

quantitative experimental design examples

If you keep scrolling, you'll get to a box that says "Publication Type." You can also scroll through those options and select "Randomized Control Trials." 

quantitative experimental design examples

If you're in PubMed, then enter your search terms and hit "Search." Then, when you're on the results page, click "Randomized Controlled Trial" under "Article types."

If you don't see a "Randomized Controlled Trial" option, click "Customize...," check the box next to "Randomized Controlled Trial," click the blue "show" button, and then click on "Randomized Controlled Trial" to make sure you've selected it.

quantitative experimental design examples

This is a really helpful way to limit your search results to just the kinds of articles you're interested in, but you should always double check that an article is in fact about a Randomized Control Trial (RCT) by reading the article's Methodologies section thoroughly.

  • << Previous: Qualitative vs. Quantitative Research
  • Next: Is it a Nursing journal? >>
  • Last Updated: Aug 21, 2024 10:40 AM
  • URL: https://guides.library.tamucc.edu/nursingresearch
  • Skip to secondary menu
  • Skip to main content
  • Skip to primary sidebar

Statistics By Jim

Making statistics intuitive

Quasi Experimental Design Overview & Examples

By Jim Frost Leave a Comment

What is a Quasi Experimental Design?

A quasi experimental design is a method for identifying causal relationships that does not randomly assign participants to the experimental groups. Instead, researchers use a non-random process. For example, they might use an eligibility cutoff score or preexisting groups to determine who receives the treatment.

Image illustrating a quasi experimental design.

Quasi-experimental research is a design that closely resembles experimental research but is different. The term “quasi” means “resembling,” so you can think of it as a cousin to actual experiments. In these studies, researchers can manipulate an independent variable — that is, they change one factor to see what effect it has. However, unlike true experimental research, participants are not randomly assigned to different groups.

Learn more about Experimental Designs: Definition & Types .

When to Use Quasi-Experimental Design

Researchers typically use a quasi-experimental design because they can’t randomize due to practical or ethical concerns. For example:

  • Practical Constraints : A school interested in testing a new teaching method can only implement it in preexisting classes and cannot randomly assign students.
  • Ethical Concerns : A medical study might not be able to randomly assign participants to a treatment group for an experimental medication when they are already taking a proven drug.

Quasi-experimental designs also come in handy when researchers want to study the effects of naturally occurring events, like policy changes or environmental shifts, where they can’t control who is exposed to the treatment.

Quasi-experimental designs occupy a unique position in the spectrum of research methodologies, sitting between observational studies and true experiments. This middle ground offers a blend of both worlds, addressing some limitations of purely observational studies while navigating the constraints often accompanying true experiments.

A significant advantage of quasi-experimental research over purely observational studies and correlational research is that it addresses the issue of directionality, determining which variable is the cause and which is the effect. In quasi-experiments, an intervention typically occurs during the investigation, and the researchers record outcomes before and after it, increasing the confidence that it causes the observed changes.

However, it’s crucial to recognize its limitations as well. Controlling confounding variables is a larger concern for a quasi-experimental design than a true experiment because it lacks random assignment.

In sum, quasi-experimental designs offer a valuable research approach when random assignment is not feasible, providing a more structured and controlled framework than observational studies while acknowledging and attempting to address potential confounders.

Types of Quasi-Experimental Designs and Examples

Quasi-experimental studies use various methods, depending on the scenario.

Natural Experiments

This design uses naturally occurring events or changes to create the treatment and control groups. Researchers compare outcomes between those whom the event affected and those it did not affect. Analysts use statistical controls to account for confounders that the researchers must also measure.

Natural experiments are related to observational studies, but they allow for a clearer causality inference because the external event or policy change provides both a form of quasi-random group assignment and a definite start date for the intervention.

For example, in a natural experiment utilizing a quasi-experimental design, researchers study the impact of a significant economic policy change on small business growth. The policy is implemented in one state but not in neighboring states. This scenario creates an unplanned experimental setup, where the state with the new policy serves as the treatment group, and the neighboring states act as the control group.

Researchers are primarily interested in small business growth rates but need to record various confounders that can impact growth rates. Hence, they record state economic indicators, investment levels, and employment figures. By recording these metrics across the states, they can include them in the model as covariates and control them statistically. This method allows researchers to estimate differences in small business growth due to the policy itself, separate from the various confounders.

Nonequivalent Groups Design

This method involves matching existing groups that are similar but not identical. Researchers attempt to find groups that are as equivalent as possible, particularly for factors likely to affect the outcome.

For instance, researchers use a nonequivalent groups quasi-experimental design to evaluate the effectiveness of a new teaching method in improving students’ mathematics performance. A school district considering the teaching method is planning the study. Students are already divided into schools, preventing random assignment.

The researchers matched two schools with similar demographics, baseline academic performance, and resources. The school using the traditional methodology is the control, while the other uses the new approach. Researchers are evaluating differences in educational outcomes between the two methods.

They perform a pretest to identify differences between the schools that might affect the outcome and include them as covariates to control for confounding. They also record outcomes before and after the intervention to have a larger context for the changes they observe.

Regression Discontinuity

This process assigns subjects to a treatment or control group based on a predetermined cutoff point (e.g., a test score). The analysis primarily focuses on participants near the cutoff point, as they are likely similar except for the treatment received. By comparing participants just above and below the cutoff, the design controls for confounders that vary smoothly around the cutoff.

For example, in a regression discontinuity quasi-experimental design focusing on a new medical treatment for depression, researchers use depression scores as the cutoff point. Individuals with depression scores just above a certain threshold are assigned to receive the latest treatment, while those just below the threshold do not receive it. This method creates two closely matched groups: one that barely qualifies for treatment and one that barely misses out.

By comparing the mental health outcomes of these two groups over time, researchers can assess the effectiveness of the new treatment. The assumption is that the only significant difference between the groups is whether they received the treatment, thereby isolating its impact on depression outcomes.

Controlling Confounders in a Quasi-Experimental Design

Accounting for confounding variables is a challenging but essential task for a quasi-experimental design.

In a true experiment, the random assignment process equalizes confounders across the groups to nullify their overall effect. It’s the gold standard because it works on all confounders, known and unknown.

Unfortunately, the lack of random assignment can allow differences between the groups to exist before the intervention. These confounding factors might ultimately explain the results rather than the intervention.

Consequently, researchers must use other methods to equalize the groups roughly using matching and cutoff values or statistically adjust for preexisting differences they measure to reduce the impact of confounders.

A key strength of quasi-experiments is their frequent use of “pre-post testing.” This approach involves conducting initial tests before collecting data to check for preexisting differences between groups that could impact the study’s outcome. By identifying these variables early on and including them as covariates, researchers can more effectively control potential confounders in their statistical analysis.

Additionally, researchers frequently track outcomes before and after the intervention to better understand the context for changes they observe.

Statisticians consider these methods to be less effective than randomization. Hence, quasi-experiments fall somewhere in the middle when it comes to internal validity , or how well the study can identify causal relationships versus mere correlation . They’re more conclusive than correlational studies but not as solid as true experiments.

In conclusion, quasi-experimental designs offer researchers a versatile and practical approach when random assignment is not feasible. This methodology bridges the gap between controlled experiments and observational studies, providing a valuable tool for investigating cause-and-effect relationships in real-world settings. Researchers can address ethical and logistical constraints by understanding and leveraging the different types of quasi-experimental designs while still obtaining insightful and meaningful results.

Cook, T. D., & Campbell, D. T. (1979).  Quasi-experimentation: Design & analysis issues in field settings . Boston, MA: Houghton Mifflin

Share this:

quantitative experimental design examples

Reader Interactions

Comments and questions cancel reply.

Understand Quasi-Experimental Design Through an Example

Suppose you developed a mobile application whose aim is to help diabetic patients control their blood glucose by providing them information and practical tips on how to behave in different situations.

So you decided to design a study to figure out if this app does in fact help these patients control their blood glucose.

Here’s a simple graphical representation of the study objective:

quantitative experimental design examples

First we will start by choosing the most appropriate design for your study. Then we will discuss the challenges you would face with each decision you make along the way.

Let’s get started!

Choosing the study design

In this section we will discuss:

  • Experimental design
  • Quasi-experimental design
  • Which one is better for your study

1. Experimental design

In an experimental design (a.k.a. a randomized controlled trial), participants will be divided into 2 groups:

  • The treatment group : The group of participants who will receive the intervention (i.e. those who will use the mobile app)
  • The control group : The group of people who will not receive the intervention, but are also followed-up over time just to provide some sort of comparison/reference for the treatment group

For this design, the decision of who will be in the treatment or control group is made at random.

Because we are using randomness to decide who gets the intervention and who doesn’t and because we have a control group to compare with, the experimental design will provide the highest level of evidence of any study design.

Therefore it will always be better, when possible, to use an experimental design.

2. Quasi-experimental design

A quasi-experiment is a non-randomized study used to evaluate the effect of an intervention. So in a quasi-experiment, the decision of who gets to use the app and who doesn’t is not made at random. Instead, participants will be assigned according to their choosing or that of the researcher. Sometimes a control group will be used.

Because participants will not be assigned at random and the control group is optional, a quasi-experimental design may suffer from:

  • Confounding: As the initial characteristics of the participants may provide an alternative explanation of the outcome.
  • Bias: These are alternative explanations of the outcome such as: natural progression, outside events, differential selection of participants, etc.

So a quasi-experiment provides a lower level of evidence compared to a true experiment, however, it is a more practical approach when a randomized controlled trial is not feasible because of:

  • Ethical considerations: If being in one group is believed to be harmful for the participant, either because the intervention is harmful (e.g. randomizing people to smoking) or has questionable efficacy or on the contrary it is believed to be so beneficial that it would be malevolent to put people in the control group (e.g. randomizing people to receiving an operation).
  • Difficulty to adequately randomize subjects and locations: In some cases where interventions act on a group of people in a given location, it becomes infeasible to adequately randomize subjects (e.g. an intervention that reduces pollution in a given area).
  • A small sample size: Randomized controlled trials require a large sample size to account for heterogeneity among subjects (i.e. to evenly distribute confounding variables between the treatment and control groups).

In these situations, a quasi-experimental design makes more sense than an experimental one.

3. Which design is better for your study?

A randomized controlled trial will certainly provide a higher level of evidence.

However, in your case (the mobile app study discussed above), a quasi-experiment may be a more practical approach because:

  • since you can work with a smaller sample.
  • as it does not require a control group
  • You can get results faster than with a randomized controlled trial because with a quasi-experiment you may need fewer measurements and a shorter follow-up period.

So let’s suppose you decided on a quasi-experimental design without a control group.

Now you need to choose the type of quasi-experiment.

Choosing the type of quasi-experiment

Below we will discuss several types of quasi-experimental study designs without a control group (for the sake of simplicity). Note that for all of these types it would be better to add one as it would increase the level of evidence of your study.

We will start with the most simple designs that has the lowest level of evidence, moving towards more complex designs and higher levels of evidence.

1. One-group posttest-only design

In the one-group posttest-only design only 1 observation is taken after implementing the intervention. This is the weakest of the quasi-experimental designs. It is especially used when the intervention must be quickly introduced and you do not have enough time to take pre-intervention measurements.

(For more information I have a separate article on the one-group posttest-only design )

One-group posttest-only design

Since taking measurements before the intervention is a possibility in your study, you can use a slightly more complex design with a better level of evidence than a one-group posttest only design.

2. One-group pretest-posttest design

The one-group pretest-posttest design is one step better than the posttest-only design. Adding a measurement before the intervention provides us with a reference value to compare our posttest results to. However, estimating the trend of the outcome with 1 pretest observation only is very weak because the outcome can be easily influenced by natural changes which cannot be taken into account in this study design.

(For more information I have a separate article on the one-group pretest-posttest design )

One-group pretest-posttest design

This is a possibility, and certainly an improvement on the latter. But with 2 measurements only, it is still a weak design.

3. Removed-treatment design

In the removed treatment design, an observation is taken before the intervention, a second one after starting it, a third one before stopping the intervention and a final one after stopping it. The goal is to test if stopping the intervention has an opposite effect compared to starting it, which provides better evidence that the intervention causes a change in the outcome of interest.

Note that stopping an intervention is not always feasible especially when its effects can persist. For example if the intervention consists of providing a training on a certain subject, once learned, it would be impossible to take back information from the study participants.

quantitative experimental design examples

This design is not feasible if the mobile app is providing some sort of information that can be considered as irreversible training for diabetes patients.

4. Repeated-treatment design

You can take the previous design one step further by stopping and then restarting the treatment, which provides insight on how reproducible the effects of the intervention are.

quantitative experimental design examples

Same as the one before, this design is not an option since the mobile app is providing some sort of information that can be considered as irreversible training for diabetics.

5. Interrupted time series design

By taking multiple measurements before and after the intervention, the interrupted time series design allows you to study the trend of the outcome thus being less vulnerable to bias from natural progression (discussed above).

quantitative experimental design examples

This is certainly doable and it is the best of all the previous options.

Also if you are not limited in time and resources, you can also add a control group to get the highest level of evidence of all the quasi-experimental designs.

Confounding in a quasi-experiment

Does your study suffer from confounding? If so, how would you deal with it?

One possible source of confounding can be personality traits.

Because you did not randomly select participants to use the mobile app, it can be argued that people who would want to use a health-related mobile application may be of a certain type of personality. Also people with this personality type may be more concerned about their health than the average person, therefore more concerned about controlling their blood glucose.

Here’s a graphical representation of confounding:

Example of confounding in a quasi-experiment

To eliminate confounding you can control for personality type for example by adding it to your linear regression model:

For more information about confounding, I recommend these 3 articles:

  • 4 Simple Ways to Identify Confounding
  • 7 Different Ways to Control for Confounding
  • An Example of Identifying and Adjusting for Confounding

Anyway, your study may still suffer from confounding by other unknown variables, which is why, in a quasi-experiment, it cannot be guaranteed that any correlation you find between app usage and glycemic control will certainly be causal in nature.

  • Harris AD, McGregor JC, Perencevich EN, et al.  The use and interpretation of quasi-experimental studies in medical informatics . J Am Med Inform Assoc. 2006;13(1):16–23. doi:10.1197/jamia.M1749.

Further reading

  • Experimental vs Quasi-Experimental Design
  • One-Group Posttest-Only Design
  • Randomized Block Design
  • Matched Pairs Design
  • Cohort vs Randomized Controlled Trials
  • Privacy Policy

Research Method

Home » Quasi-Experimental Research Design – Types, Methods

Quasi-Experimental Research Design – Types, Methods

Table of Contents

Quasi-Experimental Design

Quasi-Experimental Design

Quasi-experimental design is a research method that seeks to evaluate the causal relationships between variables, but without the full control over the independent variable(s) that is available in a true experimental design.

In a quasi-experimental design, the researcher uses an existing group of participants that is not randomly assigned to the experimental and control groups. Instead, the groups are selected based on pre-existing characteristics or conditions, such as age, gender, or the presence of a certain medical condition.

Types of Quasi-Experimental Design

There are several types of quasi-experimental designs that researchers use to study causal relationships between variables. Here are some of the most common types:

Non-Equivalent Control Group Design

This design involves selecting two groups of participants that are similar in every way except for the independent variable(s) that the researcher is testing. One group receives the treatment or intervention being studied, while the other group does not. The two groups are then compared to see if there are any significant differences in the outcomes.

Interrupted Time-Series Design

This design involves collecting data on the dependent variable(s) over a period of time, both before and after an intervention or event. The researcher can then determine whether there was a significant change in the dependent variable(s) following the intervention or event.

Pretest-Posttest Design

This design involves measuring the dependent variable(s) before and after an intervention or event, but without a control group. This design can be useful for determining whether the intervention or event had an effect, but it does not allow for control over other factors that may have influenced the outcomes.

Regression Discontinuity Design

This design involves selecting participants based on a specific cutoff point on a continuous variable, such as a test score. Participants on either side of the cutoff point are then compared to determine whether the intervention or event had an effect.

Natural Experiments

This design involves studying the effects of an intervention or event that occurs naturally, without the researcher’s intervention. For example, a researcher might study the effects of a new law or policy that affects certain groups of people. This design is useful when true experiments are not feasible or ethical.

Data Analysis Methods

Here are some data analysis methods that are commonly used in quasi-experimental designs:

Descriptive Statistics

This method involves summarizing the data collected during a study using measures such as mean, median, mode, range, and standard deviation. Descriptive statistics can help researchers identify trends or patterns in the data, and can also be useful for identifying outliers or anomalies.

Inferential Statistics

This method involves using statistical tests to determine whether the results of a study are statistically significant. Inferential statistics can help researchers make generalizations about a population based on the sample data collected during the study. Common statistical tests used in quasi-experimental designs include t-tests, ANOVA, and regression analysis.

Propensity Score Matching

This method is used to reduce bias in quasi-experimental designs by matching participants in the intervention group with participants in the control group who have similar characteristics. This can help to reduce the impact of confounding variables that may affect the study’s results.

Difference-in-differences Analysis

This method is used to compare the difference in outcomes between two groups over time. Researchers can use this method to determine whether a particular intervention has had an impact on the target population over time.

Interrupted Time Series Analysis

This method is used to examine the impact of an intervention or treatment over time by comparing data collected before and after the intervention or treatment. This method can help researchers determine whether an intervention had a significant impact on the target population.

Regression Discontinuity Analysis

This method is used to compare the outcomes of participants who fall on either side of a predetermined cutoff point. This method can help researchers determine whether an intervention had a significant impact on the target population.

Steps in Quasi-Experimental Design

Here are the general steps involved in conducting a quasi-experimental design:

  • Identify the research question: Determine the research question and the variables that will be investigated.
  • Choose the design: Choose the appropriate quasi-experimental design to address the research question. Examples include the pretest-posttest design, non-equivalent control group design, regression discontinuity design, and interrupted time series design.
  • Select the participants: Select the participants who will be included in the study. Participants should be selected based on specific criteria relevant to the research question.
  • Measure the variables: Measure the variables that are relevant to the research question. This may involve using surveys, questionnaires, tests, or other measures.
  • Implement the intervention or treatment: Implement the intervention or treatment to the participants in the intervention group. This may involve training, education, counseling, or other interventions.
  • Collect data: Collect data on the dependent variable(s) before and after the intervention. Data collection may also include collecting data on other variables that may impact the dependent variable(s).
  • Analyze the data: Analyze the data collected to determine whether the intervention had a significant impact on the dependent variable(s).
  • Draw conclusions: Draw conclusions about the relationship between the independent and dependent variables. If the results suggest a causal relationship, then appropriate recommendations may be made based on the findings.

Quasi-Experimental Design Examples

Here are some examples of real-time quasi-experimental designs:

  • Evaluating the impact of a new teaching method: In this study, a group of students are taught using a new teaching method, while another group is taught using the traditional method. The test scores of both groups are compared before and after the intervention to determine whether the new teaching method had a significant impact on student performance.
  • Assessing the effectiveness of a public health campaign: In this study, a public health campaign is launched to promote healthy eating habits among a targeted population. The behavior of the population is compared before and after the campaign to determine whether the intervention had a significant impact on the target behavior.
  • Examining the impact of a new medication: In this study, a group of patients is given a new medication, while another group is given a placebo. The outcomes of both groups are compared to determine whether the new medication had a significant impact on the targeted health condition.
  • Evaluating the effectiveness of a job training program : In this study, a group of unemployed individuals is enrolled in a job training program, while another group is not enrolled in any program. The employment rates of both groups are compared before and after the intervention to determine whether the training program had a significant impact on the employment rates of the participants.
  • Assessing the impact of a new policy : In this study, a new policy is implemented in a particular area, while another area does not have the new policy. The outcomes of both areas are compared before and after the intervention to determine whether the new policy had a significant impact on the targeted behavior or outcome.

Applications of Quasi-Experimental Design

Here are some applications of quasi-experimental design:

  • Educational research: Quasi-experimental designs are used to evaluate the effectiveness of educational interventions, such as new teaching methods, technology-based learning, or educational policies.
  • Health research: Quasi-experimental designs are used to evaluate the effectiveness of health interventions, such as new medications, public health campaigns, or health policies.
  • Social science research: Quasi-experimental designs are used to investigate the impact of social interventions, such as job training programs, welfare policies, or criminal justice programs.
  • Business research: Quasi-experimental designs are used to evaluate the impact of business interventions, such as marketing campaigns, new products, or pricing strategies.
  • Environmental research: Quasi-experimental designs are used to evaluate the impact of environmental interventions, such as conservation programs, pollution control policies, or renewable energy initiatives.

When to use Quasi-Experimental Design

Here are some situations where quasi-experimental designs may be appropriate:

  • When the research question involves investigating the effectiveness of an intervention, policy, or program : In situations where it is not feasible or ethical to randomly assign participants to intervention and control groups, quasi-experimental designs can be used to evaluate the impact of the intervention on the targeted outcome.
  • When the sample size is small: In situations where the sample size is small, it may be difficult to randomly assign participants to intervention and control groups. Quasi-experimental designs can be used to investigate the impact of an intervention without requiring a large sample size.
  • When the research question involves investigating a naturally occurring event : In some situations, researchers may be interested in investigating the impact of a naturally occurring event, such as a natural disaster or a major policy change. Quasi-experimental designs can be used to evaluate the impact of the event on the targeted outcome.
  • When the research question involves investigating a long-term intervention: In situations where the intervention or program is long-term, it may be difficult to randomly assign participants to intervention and control groups for the entire duration of the intervention. Quasi-experimental designs can be used to evaluate the impact of the intervention over time.
  • When the research question involves investigating the impact of a variable that cannot be manipulated : In some situations, it may not be possible or ethical to manipulate a variable of interest. Quasi-experimental designs can be used to investigate the relationship between the variable and the targeted outcome.

Purpose of Quasi-Experimental Design

The purpose of quasi-experimental design is to investigate the causal relationship between two or more variables when it is not feasible or ethical to conduct a randomized controlled trial (RCT). Quasi-experimental designs attempt to emulate the randomized control trial by mimicking the control group and the intervention group as much as possible.

The key purpose of quasi-experimental design is to evaluate the impact of an intervention, policy, or program on a targeted outcome while controlling for potential confounding factors that may affect the outcome. Quasi-experimental designs aim to answer questions such as: Did the intervention cause the change in the outcome? Would the outcome have changed without the intervention? And was the intervention effective in achieving its intended goals?

Quasi-experimental designs are useful in situations where randomized controlled trials are not feasible or ethical. They provide researchers with an alternative method to evaluate the effectiveness of interventions, policies, and programs in real-life settings. Quasi-experimental designs can also help inform policy and practice by providing valuable insights into the causal relationships between variables.

Overall, the purpose of quasi-experimental design is to provide a rigorous method for evaluating the impact of interventions, policies, and programs while controlling for potential confounding factors that may affect the outcome.

Advantages of Quasi-Experimental Design

Quasi-experimental designs have several advantages over other research designs, such as:

  • Greater external validity : Quasi-experimental designs are more likely to have greater external validity than laboratory experiments because they are conducted in naturalistic settings. This means that the results are more likely to generalize to real-world situations.
  • Ethical considerations: Quasi-experimental designs often involve naturally occurring events, such as natural disasters or policy changes. This means that researchers do not need to manipulate variables, which can raise ethical concerns.
  • More practical: Quasi-experimental designs are often more practical than experimental designs because they are less expensive and easier to conduct. They can also be used to evaluate programs or policies that have already been implemented, which can save time and resources.
  • No random assignment: Quasi-experimental designs do not require random assignment, which can be difficult or impossible in some cases, such as when studying the effects of a natural disaster. This means that researchers can still make causal inferences, although they must use statistical techniques to control for potential confounding variables.
  • Greater generalizability : Quasi-experimental designs are often more generalizable than experimental designs because they include a wider range of participants and conditions. This can make the results more applicable to different populations and settings.

Limitations of Quasi-Experimental Design

There are several limitations associated with quasi-experimental designs, which include:

  • Lack of Randomization: Quasi-experimental designs do not involve randomization of participants into groups, which means that the groups being studied may differ in important ways that could affect the outcome of the study. This can lead to problems with internal validity and limit the ability to make causal inferences.
  • Selection Bias: Quasi-experimental designs may suffer from selection bias because participants are not randomly assigned to groups. Participants may self-select into groups or be assigned based on pre-existing characteristics, which may introduce bias into the study.
  • History and Maturation: Quasi-experimental designs are susceptible to history and maturation effects, where the passage of time or other events may influence the outcome of the study.
  • Lack of Control: Quasi-experimental designs may lack control over extraneous variables that could influence the outcome of the study. This can limit the ability to draw causal inferences from the study.
  • Limited Generalizability: Quasi-experimental designs may have limited generalizability because the results may only apply to the specific population and context being studied.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Quantitative Research

Quantitative Research – Methods, Types and...

Textual Analysis

Textual Analysis – Types, Examples and Guide

Basic Research

Basic Research – Types, Methods and Examples

Triangulation

Triangulation in Research – Types, Methods and...

Transformative Design

Transformative Design – Methods, Types, Guide

Descriptive Research Design

Descriptive Research Design – Types, Methods and...

A total Lagrange meshless method for modeling the concrete damage evolutions under blast loading

  • Published: 24 August 2024

Cite this article

quantitative experimental design examples

  • Shuyang Yu 1 &
  • Yuan Gao 1 , 2  

29 Accesses

Explore all metrics

Quantitative evaluations of blasting damage evolutions of concrete structures are the premise of improving the design codes of concrete blasting engineering. However, traditional numerical methods have some limitations in dealing with the large deformation and discontinuity problems during concrete blasting. In view of this, the improved SPH momentum equation considering blasting load is derived. The “birth and death coefficient” χ is defined, and the traditional SPH smoothing kernel function is then improved, thus realizing the simulations of dynamic blasting damage evolutions under the SPH framework. The methods of determining the concrete meso-structures as well as distinguishing different materials are proposed, which can realize the generations of SPH particles such as aggregates, interfacial transition zones and pores. Firstly, four typical numerical examples are simulated: (1) blasting damage evolution model with one blast hole and one 45° prefabricated fissure; (2) blasting damage evolution model with one blast hole and three parallel prefabricated fissures; (3) blasting damage evolution model with one blast hole, one vertical prefabricated fissure and one horizontal prefabricated fissure; and (4) blasting damage evolution model with two blast holes, two empty holes and two prefabricated fissures. The numerical results are compared with previous experimental results to verify the correctness of the improved method. Then, the concrete mesoscopic blasting damage models are established, and the blast damage evolution processes under different concrete mesoscopic structure properties as well as different dynamic blasting parameters are simulated, and results show that: (1) The blasting cracks are limited around the blast hole when the aggregate content is larger, while when the aggregate content is smaller, the blasting cracks expand to the model boundary by propagating around the aggregates. The increase in the pore content leads to a different crack propagation mode: combinations of crack propagating around the aggregates and connecting the pores. (2) The increase of peak stress wave value and blast stress loading rate leads to the increase in the damage degree around the blast hole, but decrease in the damage degree of the whole model. (3) The damage counts increase rapidly in the initial stage of blasting, but maintain a low level in the later stage when the aggregate content is larger, while it is the opposite when the aggregate content is smaller. The increase in the pore content leads to the decrease in the model damage degree. (4) The dynamic blasting parameters donate less effects on concrete damage counts, and the blasting damage counts decrease with the increase in the peak stress wave value and the loading rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

quantitative experimental design examples

Similar content being viewed by others

quantitative experimental design examples

Phase-Field Based Peridynamics Implementation to Model Blast-Induced Fracture in Brittle Solids

quantitative experimental design examples

Study on the Interaction Between Blasting Stress Waves with Different Incidence Angles and Crack

Mesh size effect on finite-element modeling of blast-loaded reinforced concrete slab.

Chai Y, Luo N, Zhang H (2023) Application of controlled blasting demolition technology in ultra-high coaxial thin-walled steel inner cylinder reinforced concrete chimney. Case Stud Constr Mater 18:e01936

Google Scholar  

Suman K, Murthy V (2022) Assessment of blasting impacts in underwater concrete berth demolition and development of a hybrid controlled blasting (HCB) technique—a case study. Structures 40:420–433

Article   Google Scholar  

Kazunori F, Peerasak A (2013) Damage of reinforced concrete columns under demolition blasting. Eng Struct 55:116–125

Yan Y, Hou X, Zheng W (2022) The damage response of RC columns with considering different longitudinal and shear reinforcement under demolition blasting. J Build Eng 62:105396

Koji U, Hiroshi T, Hiroshi Y (2010) PC-based simulations of blasting demolition of RC structures. Constr Build Mater 24(12):2401–2410

Fei H, Wang Y, Wei S (2023) Model test study on blasting effect of concrete column under different influencing factors. Explos Mater 52(02):56–64

Chu H, Ye H, Yang X (2016) Experimental study on accumulation law of blasting damage on high-strength concrete block. Blasting 33(01):1–60

He Q, Yi W (2017) Experimental study on collapse-resistan behavior of RC frame structures in explosion demolition. Blasting 34(01):20–26

Huang X, Xie X, Jia Y (2023) Experimental study on vertical in-situ blasting demolition of reinforced concrete water tower. Blasting 40(02):1–60

Wen C, Li J, Zhu W (2023) Blasting demolition technology of cofferdam at inlet of expansion project of wuqiangxi hydropower station. Blasting 40(02):117–122

Li W (2021) Demolition blasting of dangerous concrete bridge in complex environment. West-China Explor Eng 33(07):195–198

Li X, Dong Q, Liu T (2016) Model test on propagation of blasting stress wave in jointed rock mass under different in-situ stresses. Chin J Rock Mech Eng 35(11):2188–2196

Chen M, Lu W, Zhou C (2009) Influence of initial in-situ stress on blasting-induced cracking zone in tunnel excavation. Rock and Soil Mech 30(08):2254–2258

Dai J, Qian Q (2007) Break blasting parameters for driving a roadway in rock with high residual stress. Explos Shock Waves 3:272–277

Dai J (2004) The controlled contour blasting technique andits parameter determination for rock tunnel at depth. Explos Shock Waves 6:493–498

Qu Y, Li X, Kong X (2016) Numerical simulation on dynamic behavior of reinforced concrete beam with initial cracks subjected to air blast loading. Eng Struct 128:96–110

Tian S, Yan Q, Du X (2023) Experimental and numerical studies on the dynamic response of precast concrete slabs under blast load. J Build Eng 70:106425

Gouda A, ElSayed M, Salem H (2023) Applied element modelling of unreinforced and reinforced concrete masonry walls under blast loading. Structures 51:828–845

Sun F, Wang G, Zhang L (2021) Material point method for the propagation of multiple branched cracks based on classical fracture mechanics. Comput Methods Appl Mech Eng 386:114116

Article   MathSciNet   Google Scholar  

Wang Y, Zhou X, Shou Y (2017) The modeling of crack propagation and coalescence in rocks under uniaxial compression using the novel conjugated bond-based peridynamics. Int J Mech Sci 128:614–643

Wang Y, Zhou X, Yuan W (2018) A 3-D conjugated bond-pair-based peridynamic formulation for initiation and propagation of cracks in brittle solids. Int J Solids Struct 134:89–115

Zhou X, Du E, Wang Y (2022) Thermo-hydro-chemo-mechanical coupling peridynamic model of fractured rock mass and its application in geothermal extraction. Comput Geotech 148:104837

Eugenio O, Alejandro C, Francisco Z (2022) Combination of the finite element method and particle-based methods for predicting the failure of reinforced concrete structures under extreme water forces. Eng Struct 251:113510

Chen J, Feng D, Liu J (2023) Numerical modeling of the damage mechanism of concrete-soil multilayered medium subjected to underground explosion using the GPU-accelerated SPH. Eng Anal Boundary Elem 151:265–274

Gingold R, Monaghan J (1997) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181(3):375–389

Lucy L (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82(12):1013–1024

Dalrymple R, Rogers B (2006) Numerical modeling of water waves with the SPH method. Coast Eng 53(2/3):141–147

Potapov S, Maurel B, Combescure A (2009) Modeling accidental-type fluid–structure interaction problems with the SPH method. Comput Struct 87(11–12):721–734

He M, Khayyer A, Gao X (2021) Theoretical method for generating solitary waves using plunger-type wavemakers and its smoothed particle hydrodynamics validation. Appl Ocean Res 106:102414

He M, Gao X, Xu W (2019) Potential application of submerged horizontal plate as a wave energy breakwater: a 2D study using the WCSPH method. Ocean Eng 185:27–46

Zhou X, Zhao Y, Qian Q (2015) Smooth particle hydrodynamic numerical simulation of rock failure under uniaxial compression. Chin J Rock Mech Eng 34(S1):2647–2658

Zhao Y, Zhou X, Qian Q (2015) Progressive failure processes of reinforced slopes based on general particle dynamic method. J Central South Univ 22(10):4049–4055

Zhou X, Zhao Y, Qian Q (2015) A novel meshless numerical method for modeling progressive failure processes of slopes. Eng Geol 192:139–153

Bi J (2016) The fracture mechanisms of rock mass under stress seepage temperature and damage coupling condition and numerical simulations by using the general particle dynamics (GPD) algorithm. Chongqing University

Bi J, Zhou X (2017) A novel numerical algorithm for simulation of initiation, propagation and coalescence of flaws subject to internal fluid pressure and vertical stress in the framework of general particle dynamics. Rock Mech Rock Eng 50(7):1–17

Bi J, Zhou X, Qian Q (2016) The 3D numerical simulation for the propagation process of multiple pre-existing flaws in rock-like materials subjected to biaxial compressive loads. Rock Mech Rock Eng 49(5):1611–1627

Bi J, Zhou X (2015) Numerical simulation of zonal disintegration of the surrounding rock masses around a deep circular tunnel under dynamic unloading. Int J Comput Methods 12(3):1550020

Zhou X, Bi J, Qian Q (2015) Numerical simulation of crack growth and coalescence in rock-like materials containing multiple pre-existing flaws. Rock Mech Rock Eng 48(3):1097–1114

Zhou X, Bi J (2016) 3D numerical study on the growth and coalescence of pre-existing flaws in rocklike materials subjected to uniaxial compression. Int J Geomech 16(4):04015096

Libersky L, Peetschek A (1996) High strain lagrangian hydrodynamics: a three-dimensional SPH code for dynamic material response. J Comput Appl Mech Eng 139:375–408

Yang S, Ren X, Zhang J (2018) Study on hydraulic fracture of gravity dam using the numerical manifold method. Rock Soil Mech 39(08):3055–3070

Yang R, Wang Y, Ding C (2016) Laboratory study of wave propagation due to explosion in a jointed medium. Int J Rock Mech Min Sci 81:70–78

Su H, Gong Y, Yang R (2021) Influence of pre-splitting crack width on crack propagation under blast loading. J China Univ Min Technol 50(03):579–586

Yang R, Zuo J, Yue Z (2017) Experimental study on opposite cracks propagation behavior under blast loading. J China Coal Soc 42(05):1093–1098

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangsu Province, China (Nos. BK20230617, BK20230615) and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 23KJB570002). Meanwhile, the authors would thank to Professor Bi Jing for his supports in the programming of SPH.

Author information

Authors and affiliations.

School of Transportation and Civil Engineering, Nantong University, Nantong, 226019, China

Shuyang Yu & Yuan Gao

College of Civil Engineering, Tongji University, Shanghai, 200092, China

You can also search for this author in PubMed   Google Scholar

Contributions

The manuscript was written through the contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Shuyang Yu .

Ethics declarations

Conflict of interest.

The authors declare no conflict of interest.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Yu, S., Gao, Y. A total Lagrange meshless method for modeling the concrete damage evolutions under blast loading. Comp. Part. Mech. (2024). https://doi.org/10.1007/s40571-024-00817-9

Download citation

Received : 13 March 2024

Revised : 17 July 2024

Accepted : 14 August 2024

Published : 24 August 2024

DOI : https://doi.org/10.1007/s40571-024-00817-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Concrete meso-structures
  • Dynamic blasting load
  • Damage evolutions
  • Crack propagation
  • Find a journal
  • Publish with us
  • Track your research

IMAGES

  1. 15 Experimental Design Examples (2024)

    quantitative experimental design examples

  2. Quantitative Research Designps2

    quantitative experimental design examples

  3. Quantitative Research Design Types

    quantitative experimental design examples

  4. PPT

    quantitative experimental design examples

  5. PPT

    quantitative experimental design examples

  6. Quantitative Research Design Types

    quantitative experimental design examples

VIDEO

  1. Quantitative Experimental Studies

  2. Characteristics of Quantitative Research: Building Conceptual Quantitative Design

  3. QUANTITATIVE RESEARCH

  4. Quantitative Study Designs 2: Experimental Studies

  5. Quantitative Approach

  6. Qualitative Research and its types

COMMENTS

  1. 19+ Experimental Design Examples (Methods + Types)

    1) True Experimental Design. In the world of experiments, the True Experimental Design is like the superstar quarterback everyone talks about. Born out of the early 20th-century work of statisticians like Ronald A. Fisher, this design is all about control, precision, and reliability.

  2. Types of Quantitative Research Methods and Designs

    Quasi-Experimental Quantitative Research Design In a quasi-experimental quantitative research design, the researcher attempts to establish a cause-effect relationship from one variable to another. For example, a researcher may determine that high school students who study for an hour every day are more likely to earn high grades on their tests.

  3. Experiments and Quantitative Research

    Experimental design is one of several forms of scientific inquiry employed to identify the cause-and-effect relation between two or more variables and to assess the magnitude of the effect (s) produced. The independent variable is the experiment or treatment applied (e.g. a social policy measure, an educational reform, different incentive ...

  4. Experimental Research Designs: Types, Examples & Advantages

    There are 3 types of experimental research designs. These are pre-experimental research design, true experimental research design, and quasi experimental research design. 1. The assignment of the control group in quasi experimental research is non-random, unlike true experimental design, which is randomly assigned. 2.

  5. Quantitative Research with Nonexperimental Designs

    There are two main types of nonexperimental research designs: comparative design and correlational design. In comparative research, the researcher examines the differences between two or more groups on the phenomenon that is being studied. For example, studying gender difference in learning mathematics is a comparative research.

  6. Experimental Research Designs: Types, Examples & Methods

    Some examples of quasi-experimental research design include; the time series, no equivalent control group design, and the counterbalanced design. True Experimental Research Design. The true experimental research design relies on statistical analysis to approve or disprove a hypothesis. It is the most accurate type of experimental design and may ...

  7. 15 Experimental Design Examples (2024)

    15 Experimental Design Examples. Written by Chris Drew (PhD) | October 9, 2023. Experimental design involves testing an independent variable against a dependent variable. It is a central feature of the scientific method. A simple example of an experimental design is a clinical trial, where research participants are placed into control and ...

  8. Quantitative Research Designs: Non-Experimental vs. Experimental

    Without this level of control, you cannot determine any causal effects. While validity is still a concern in non-experimental research, the concerns are more about the validity of the measurements, rather than the validity of the effects. Finally, a quasi-experimental design is a combination of the two designs described above.

  9. Quantitative Research Design: 4 Common Ways to Gather Your Data Efficiently

    The Four Main Types of Quantitative Research Design. Experts classify quantitative research design into four types. These are descriptive, correlational, causal-comparative, and experimental research. The four quantitative research designs are distinguished from each other in Figure 1. Please note that as you go from left to right; the approach ...

  10. Quasi-Experimental Design

    Revised on January 22, 2024. Like a true experiment, a quasi-experimental design aims to establish a cause-and-effect relationship between an independent and dependent variable. However, unlike a true experiment, a quasi-experiment does not rely on random assignment. Instead, subjects are assigned to groups based on non-random criteria.

  11. Study/Experimental/Research Design: Much More Than Statistics

    Study, experimental, or research design is the backbone of good research. It directs the experiment by orchestrating data collection, defines the statistical analysis of the resultant data, and guides the interpretation of the results. When properly described in the written report of the experiment, it serves as a road map to readers, 1 helping ...

  12. QUANTITATIVE Research Design: Everything You Need To Know (With Examples)

    Learn how to get started with research design for quantitative studies, including dissertations, theses and research projects. We explain what research desig...

  13. A Guide to the Four Quantitative Research Designs

    To successfully run an experimental quantitative study, you need to have an in-depth understanding of the topic in question, a testable theory, and planned experimental manipulations of your independent variable. Examples of questions that can be answered using a true experimental research design:

  14. Quantitative Research

    Quasi-experimental Research Design. Quasi-experimental research design is used to investigate cause-and-effect relationships between variables. This research method is similar to experimental research design, but it lacks full control over the independent variable. ... Here are some examples of quantitative research in different fields:

  15. A Practical Guide to Writing Quantitative and Qualitative Research

    INTRODUCTION. Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses.1,2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results.3,4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the ...

  16. (PDF) Quantitative Research Designs

    In our church administrator example, the experimental group was the ... The study adopted a cross-sectional research design and quantitative research approach using a sample of 300 respondents ...

  17. Experimental Design

    Experimental Research is research that randomly selects subjects to participate in a study that includes some kind of intervention, or action intended to have an effect on the participants. An example of an experimental design would be randomly selecting all of the schools participating in the hand washing poster campaign.

  18. Quasi Experimental Design Overview & Examples

    Quasi-experimental research is a design that closely resembles experimental research but is different. The term "quasi" means "resembling," so you can think of it as a cousin to actual experiments. In these studies, researchers can manipulate an independent variable — that is, they change one factor to see what effect it has.

  19. Understand Quasi-Experimental Design Through an Example

    2. Quasi-experimental design. A quasi-experiment is a non-randomized study used to evaluate the effect of an intervention. So in a quasi-experiment, the decision of who gets to use the app and who doesn't is not made at random. Instead, participants will be assigned according to their choosing or that of the researcher.

  20. Quasi-Experimental Design: Types, Examples, Pros, and Cons

    See why leading organizations rely on MasterClass for learning & development. A quasi-experimental design can be a great option when ethical or practical concerns make true experiments impossible, but the research methodology does have its drawbacks. Learn all the ins and outs of a quasi-experimental design.

  21. Quasi-Experimental Research Design

    The purpose of quasi-experimental design is to investigate the causal relationship between two or more variables when it is not feasible or ethical to conduct a randomized controlled trial (RCT). Quasi-experimental designs attempt to emulate the randomized control trial by mimicking the control group and the intervention group as much as possible.

  22. Ex Post Facto Designs

    Ex post facto design is a quasi-experimental study examining how an independent variable, present prior to the study in the participants, affects a dependent variable.

  23. A total Lagrange meshless method for modeling the concrete ...

    Quantitative evaluations of blasting damage evolutions of concrete structures are the premise of improving the design codes of concrete blasting engineering. However, traditional numerical methods have some limitations in dealing with the large deformation and discontinuity problems during concrete blasting. In view of this, the improved SPH momentum equation considering blasting load is ...