U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

The PMC website is updating on October 15, 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List

Logo of brainsci

Does Video Gaming Have Impacts on the Brain: Evidence from a Systematic Review

Denilson brilliant t..

1 Department of Biomedicine, Indonesia International Institute for Life Sciences (i3L), East Jakarta 13210, Indonesia

2 Smart Ageing Research Center (SARC), Tohoku University, Sendai 980-8575, Japan; pj.ca.ukohot@iur (R.N.); pj.ca.ukohot@atuyr (R.K.)

3 Department of Cognitive Health Science, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai 980-8575, Japan

Ryuta Kawashima

4 Department of Functional Brain Imaging, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai 980-8575, Japan

Video gaming, the experience of playing electronic games, has shown several benefits for human health. Recently, numerous video gaming studies showed beneficial effects on cognition and the brain. A systematic review of video gaming has been published. However, the previous systematic review has several differences to this systematic review. This systematic review evaluates the beneficial effects of video gaming on neuroplasticity specifically on intervention studies. Literature research was conducted from randomized controlled trials in PubMed and Google Scholar published after 2000. A systematic review was written instead of a meta-analytic review because of variations among participants, video games, and outcomes. Nine scientific articles were eligible for the review. Overall, the eligible articles showed fair quality according to Delphi Criteria. Video gaming affects the brain structure and function depending on how the game is played. The game genres examined were 3D adventure, first-person shooting (FPS), puzzle, rhythm dance, and strategy. The total training durations were 16–90 h. Results of this systematic review demonstrated that video gaming can be beneficial to the brain. However, the beneficial effects vary among video game types.

1. Introduction

Video gaming refers to the experience of playing electronic games, which vary from action to passive games, presenting a player with physical and mental challenges. The motivation to play video games might derive from the experience of autonomy or competing with others, which can explain why video gaming is pleasurable and addictive [ 1 ].

Video games can act as “teachers” depending on the game purpose [ 2 ]. Video gaming has varying effects depending on the game genre. For instance, an active video game can improve physical fitness [ 3 , 4 , 5 , 6 ], whereas social video games can improve social behavior [ 7 , 8 , 9 ]. The most interesting results show that playing video games can change cognition and the brain [ 10 , 11 , 12 , 13 ].

Earlier studies have demonstrated that playing video games can benefit cognition. Cross-sectional and longitudinal studies have demonstrated that the experience of video gaming is associated with better cognitive function, specifically in terms of visual attention and short-term memory [ 14 ], reaction time [ 15 ], and working memory [ 16 ]. Additionally, some randomized controlled studies show positive effects of video gaming interventions on cognition [ 17 , 18 ]. Recent meta-analytical studies have also supported the positive effects of video gaming on cognition [ 10 , 11 , 12 , 13 ]. These studies demonstrate that playing video games does provide cognitive benefits.

The effects of video gaming intervention are ever more widely discussed among scientists [ 13 ]. A review of the results and methodological quality of recently published intervention studies must be done. One systematic review of video gaming and neural correlates has been reported [ 19 ]. However, the technique of neuroimaging of the reviewed studies was not specific. This systematic review reviewed only magnetic resonance imaging (MRI) studies in contrast to the previous systematic review to focus on neuroplasticity effect. Neuroplasticity is capability of the brain that accommodates adaptation for learning, memorizing, and recovery purposes [ 19 ]. In normal adaptation, the brain is adapting to learn, remember, forget, and repair itself. Recent studies using MRI for brain imaging techniques have demonstrated neuroplasticity effects after an intervention, which include cognitive, exercise, and music training on the grey matter [ 20 , 21 , 22 , 23 , 24 ] and white matter [ 25 , 26 , 27 , 28 , 29 ]. However, the molecular mechanisms of the grey and white matter change remain inconclusive. The proposed mechanisms for the grey matter change are neurogenesis, gliogenesis, synaptogenesis, and angiogenesis, whereas those for white matter change are myelin modeling and formation, fiber organization, and angiogenesis [ 30 ]. Recent studies using MRI technique for brain imaging have demonstrated video gaming effects on neuroplasticity. Earlier imaging studies using cross-sectional and longitudinal methods have shown that playing video games affects the brain structure by changing the grey matter [ 31 , 32 , 33 ], white matter [ 34 , 35 ], and functional connectivity [ 36 , 37 , 38 , 39 ]. Additionally, a few intervention studies have demonstrated that playing video games changed brain structure and functions [ 40 , 41 , 42 , 43 ].

The earlier review also found a link between neural correlates of video gaming and cognitive function [ 19 ]. However, that review used both experimental and correlational studies and included non-healthy participants, which contrasts to this review. The differences between this and the previous review are presented in Table 1 . This review assesses only experimental studies conducted of healthy participants. Additionally, the cross-sectional and longitudinal studies merely showed an association between video gaming experiences and the brain, showing direct effects of playing video games in the brain is difficult. Therefore, this systematic review specifically examined intervention studies. This review is more specific as it reviews intervention and MRI studies on healthy participants. The purposes of this systematic review are therefore to evaluate the beneficial effects of video gaming and to assess the methodological quality of recent video gaming intervention studies.

Differences between previous review and current review.

DifferencePrevious ReviewCurrent Review
Type of reviewed studiesExperimental and correlational studiesExperimental studies only
Neuroimaging technique of reviewed studiesCT, fMRI, MEG, MRI, PET, SPECT, tDCS, EEG, and NIRSfMRI and MRI only
Participants of reviewed studiesHealthy and addicted participantHealthy participants Only

CT, computed tomography; fMRI, functional magnetic resonance imaging; MEG, magnetoencephalography MRI, magnetic resonance imaging; PET, positron emission tomography; SPECT, single photon emission computed tomography; tDCS, transcranial direct current stimulation; EEG, electroencephalography; NIRS, near-infrared spectroscopy.

2. Materials and Methods

2.1. search strategy.

This systematic review was designed in accordance with the PRISMA checklist [ 44 ] shown in Appendix Table A1 . A literature search was conducted using PubMed and Google Scholar to identify relevant studies. The keywords used for the literature search were combinations of “video game”, “video gaming”, “game”, “action video game”, “video game training”, “training”, “play”, “playing”, “MRI”, “cognitive”, “cognition”, “executive function”, and “randomized control trial”.

2.2. Inclusion and Exclusion Criteria

The primary inclusion criteria were randomized controlled trial study, video game interaction, and MRI/fMRI analysis. Studies that qualified with only one or two primary inclusions were not included. Review papers and experimental protocols were also not included. The secondary inclusion criteria were publishing after 2000 and published in English. Excluded were duration of less than 4 weeks or unspecified length intervention or combination intervention. Also excluded were studies of cognition-based games, and studies of participants with psychiatric, cognitive, neurological, and medical disorders.

2.3. Quality Assessment

Each of the quality studies was assessed using Delphi criteria [ 45 ] with several additional elements [ 46 ]: details of allocation methods, adequate descriptions of control and training groups, statistical comparisons between control and training groups, and dropout reports. The respective total scores (max = 12) are shown in Table 3. The quality assessment also includes assessment for risk of bias, which is shown in criteria numbers 1, 2, 5, 6, 7, 9, and 12.

2.4. Statistical Analysis

Instead of a meta-analysis study, a systematic review of the video game training/video gaming and the effects was conducted because of the variation in ranges of participant age, video game genre, control type, MRI and statistical analysis, and training outcomes. Therefore, the quality, inclusion and exclusion, control, treatment, game title, participants, training period, and MRI analysis and specification of the studies were recorded for the respective games.

The literature search made of the databases yielded 140 scientific articles. All scientific articles were screened based on inclusion and exclusion criteria. Of those 140 scientific articles, nine were eligible for the review [ 40 , 41 , 42 , 43 , 47 , 48 , 49 , 50 , 51 ]. Video gaming effects are listed in Table 2 .

Summary of beneficial effect of video gaming.

AuthorYearParticipant AgeGame GenreControlDurationBeneficial Effect
Gleich et al. [ ]201718–363D adventurepassive8 weeksIncreased activity in hippocampus
Decreased activity in DLPFC
Haier et al. [ ]200912–15puzzlepassive3 monthsIncreased GM in several visual–spatial processing area
Decreased activity in frontal area
Kuhn et al. [ ]201419–293D adventurepassive8 weeksIncreased GM in hippocampal, DLPFC and cerebellum
Lee et al. [ ]201218–30strategyactive8–10 weeksDecreased activity in DLPFC
8–11 weeksNon-significant activity difference
Lorenz et al. [ ]201519–273D adventurepassive8 weeksPreserved activity in ventral striatum
Martinez et al. [ ]201316–21puzzlepassive4 weeksFunctional connectivity change in multimodal integration system
Functional connectivity change in higher-order executive processing
Roush [ ]201350–65rhythm danceactive24 weeksIncreased activity in visuospatial working memory area
Increased activity in emotional and attention area
passiveSimilar compared to active control-
West et al. [ ]201755–753D adventureactive24 weeksNon-significant GM difference
passiveIncreased cognitive performance and short-term memory
Increased GM in hippocampus and cerebellum
West et al. [ ]201818–29FPSactive8 weeksIncreased GM in hippocampus (spatial learner *)
Increased GM in amygdala (response learner *)
Decreased GM in hippocampus (response learner)

Duration was converted into weeks (1 month = 4 weeks); DLPFC, dorsolateral prefrontal cortex; GM, grey matter; FPS, first person shooting. * Participants were categorized based on how they played during the video gaming intervention.

We excluded 121 articles: 46 were not MRI studies, 16 were not controlled studies, 38 were not intervention studies, 13 were review articles, and eight were miscellaneous, including study protocols, non-video gaming studies, and non-brain studies. Of 18 included scientific articles, nine were excluded. Of those nine excluded articles, two were cognitive-based game studies, three were shorter than 4 weeks in duration or were without a specified length intervention, two studies used a non-healthy participant treatment, and one was a combination intervention study. A screening flowchart is portrayed in Figure 1 .

An external file that holds a picture, illustration, etc.
Object name is brainsci-09-00251-g001.jpg

Flowchart of literature search.

3.1. Quality Assessment

The assessment methodology based on Delphi criteria [ 45 ] for the quality of eligible studies is presented in Table 3 . The quality scores assigned to the studies were 3–9 (mean = 6.10; S.D. = 1.69). Overall, the studies showed fair methodological quality according to the Delphi criteria. The highest quality score of the nine eligible articles was assigned to “Playing Super Mario 64 increases hippocampal grey matter in older adult” published by West et al. in 2017, which scored 9 of 12. The scores assigned for criteria 6 (blinded care provider) and 7 (blinded patient) were lowest because of unspecified information related to blinding for those criteria. Additionally, criteria 2 (concealed allocation) and 5 (blinding assessor) were low because only two articles specified that information. All articles met criteria 3 and 4 adequately.

Methodological quality of eligible studies.

AuthorYearQ1Q2Q3Q4Q5Q6Q7Q8Q9Q10Q11Q12Score
Gleich et al. [ ]20171011000001116
Haier et al. [ ]20091011000001105
Kuhn et al. [ ]20141011000001105
Lee et al. [ ]20120011000011116
Lorenz et al. [ ]20151011000101117
Martinez et al. [ ]20130011000000103
Roush [ ]20131111100011007
West et al. [ ]20171111000111119
West et al. [ ]20180011100111017
Score 629920034875

Q1, Random allocation; Q2, Concealed allocation; Q3, Similar baselines among groups; Q4, Eligibility specified; Q5, Blinded assessor outcome; Q6, Blinded care provider; Q7, Blinded patient; Q8, Intention-to-treat analysis; Q9, Detail of allocation method; Q10, Adequate description of each group; Q11, Statistical comparison between groups; Q12, Dropout report (1, specified; 0, unspecified).

3.2. Inclusion and Exclusion

Most studies included participants with little or no experience with gaming and excluded participants with psychiatric/mental, neurological, and medical illness. Four studies specified handedness of the participants and excluded participants with game training experience. The inclusion and exclusion criteria are presented in Table 4 .

Inclusion and exclusion criteria for eligible studies.

AuthorYearInclusionExclusion
i1i2i3e1e2e3e4e5
Gleich et al. [ ]201710011111
Haier et al. [ ]200910111100
Kuhn et al. [ ]201410011111
Lee et al. [ ]201211011010
Lorenz et al. [ ]201511010011
Martinez et al. [ ]201311111001
Roush [ ]201300100100
West et al. [ ]201711011110
West et al. [ ]201810011100
total 84387654

i1, Little/no experience in video gaming; i2, Right-handed; i3, Sex-specific; e1, Psychiatric/mental illness; e2, Neurological illness; e3, Medical illness; e4, MRI contraindication; e5, experience in game training.

3.3. Control Group

Nine eligible studies were categorized as three types based on the control type. Two studies used active control, five studies used passive control, and two studies used both active and passive control. A summary of the control group is presented in Table 5 .

Control group examined eligible studies.

ControlAuthorYear
Active controlLee et al. [ ]2012
West et al. [ ]2018
Passive controlGleich et al. [ ]2017
Haier et al. [ ]2009
Kuhn et al. [ ]2014
Lorenz et al. [ ]2015
Martinez et al. [ ]2013
Active–passive controlRoush [ ]2013
West et al. [ ]2017

3.4. Game Title and Genre

Of the nine eligible studies, four used the same 3D adventure game with different game platforms, which were “Super Mario 64” original and the DS version. One study used first-person shooting (FPS) shooting games with many different game titles: “Call of Duty” is one title. Two studies used puzzle games: “Tetris” and “Professor Layton and The Pandora’s Box.” One study used a rhythm dance game: Dance Revolution. One study used a strategy game: “Space Fortress.” Game genres are presented in Table 6 .

Genres and game titles of video gaming intervention.

GenreAuthorYearTitle
3D adventureGleich et al. [ ]2017Super Mario 64 DS
Kuhn et al. [ ]2014Super Mario 64
Lorenz et al. [ ]2015Super Mario 64 DS
West et al. [ ]2017Super Mario 64
FPSWest et al. * [ ]2018Call of Duty
PuzzleHaier et al. [ ]2009Tetris
Martinez et al. [ ]2013Professor Layton and The Pandora’s Box
Rhythm danceRoush [ ]2013Dance Revolution
StrategyLee et al. [ ]2012Space Fortress

* West et al. used multiple games; other games are Call of Duty 2, 3, Black Ops, and World at War, Killzone 2 and 3, Battlefield 2, 3, and 4, Resistance 2 and Fall of Man, and Medal of Honor.

3.5. Participants and Sample Size

Among the nine studies, one study examined teenage participants, six studies included young adult participants, and two studies assessed older adult participants. Participant information is shown in Table 7 . Numbers of participants were 20–75 participants (mean = 43.67; S.D. = 15.63). Three studies examined female-only participants, whereas six others used male and female participants. Six studies with female and male participants had more female than male participants.

Participant details of eligible studies.

CategoryAuthorYearAgeSample SizeRatio (%)Detail
LowestHighestRangeFemaleMale
TeenagerHaier et al. [ ]2009121534470.4529.54Training ( 24)
Control ( 20)
Young adultGleich et al. [ ]2017183618261000Training ( 15)
Control ( 11)
Kuhn et al. [ ]20141929104870.829.2Training ( 23)
Control ( 25)
Lee et al. [ ]20121830127561.438.6Training A ( 25)
Training B ( 25)
Control ( 25)
Lorenz et al. [ ]201519278507228Training ( 25
Control ( 25)
Martinez et al. [ ]201316215201000Training ( 10)
Control ( 10)
West et al. [ ]20181829114367.432.5Action game ( 21)
Non-action game ( 22)
Older adultRoush [ ]2013506515391000Training ( 19)
Active control ( 15)
Passive control ( 5)
West et al. [ ]20175575204866.733.3Training ( 19)
Active control ( 14)
Passive control ( 15)

3.6. Training Period and Intensity

The training period was 4–24 weeks (mean = 11.49; S.D. = 6.88). One study by Lee et al. had two length periods and total hours because the study examined video game training of two types. The total training hours were 16–90 h (mean = 40.63; S.D. = 26.22), whereas the training intensity was 1.5–10.68 h/week (mean = 4.96; S.D. = 3.00). One study did not specify total training hours. Two studies did not specify the training intensity. The training periods and intensities are in Table 8 .

Periods and intensities of video gaming intervention.

AuthorYearLength (Week)Total HoursAverage Intensity (h/Week)
Gleich et al. [ ]2017849.56.2
Haier et al. [ ]200912181.5
Kuhn et al. [ ]2014846.885.86
Lorenz et al. [ ]20128283.5
Lee et al. [ ]20158–11 *27n/a
Martinez et al. [ ]20134164
Roush [ ]201324nsn/a
West et al. [ ]201724723
West et al. [ ]20188.49010.68

The training length was converted into weeks (1 month = 4 weeks). ns, not specified; n/a, not available; * exact length is not available.

3.7. MRI Analysis and Specifications

Of nine eligible studies, one study used resting-state MRI analysis, three studies (excluding that by Haier et al. [ 40 ]) used structural MRI analysis, and five studies used task-based MRI analysis. A study by Haier et al. used MRI analyses of two types [ 40 ]. A summary of MRI analyses is presented in Table 9 . The related resting-state, structural, and task-based MRI specifications are presented in Table 10 , Table 11 and Table 12 respectively.

MRI analysis details of eligible studies.

MRI AnalysisAuthorYearContrastStatistical ToolStatistical Method Value
RestingMartinez et al. [ ]2013(post- > pre-training) > (post>pre-control)MATLAB; SPM8TFCE uncorrected<0.005
StructuralHaier et al. * [ ]2009(post>pre-training) > (post>pre-control)MATLAB 7; SurfStatFWE corrected<0.005
Kuhn et al. [ ]2014(post>pre-training) > (post>pre-control)VBM8; SPM8FWE corrected<0.001
West et al. [ ]2017(post>pre-training) > (post>pre-control)BpipeUncorrected<0.0001
West et al. [ ]2018(post>pre-training) > (post>pre-control)BpipeBonferroni corrected<0.001
TaskGleich et al. [ ]2017(post>pre-training) > (post>pre-control)SPM12Monte Carlo corrected<0.05
Haier et al. * [ ]2009(post>pre-training) > (post>pre-control)SPM7FDR corrected<0.05
Lee et al. [ ]2012(post>pre-training) > (post>pre-control)FSL; FEATuncorrected<0.01
Lorenz et al. [ ]2015(post>pre-training) > (post>pre-control)SPM8Monte Carlo corrected<0.05
Roush [ ]2013post>pre-trainingMATLAB 7; SPM8uncorrected=0.001

* Haier et al. conducted structural and task analyses. + Compared pre-training and post-training between groups without using contrast. TFCE, Threshold Free Cluster Enhancement; FEW, familywise error rate; FDR, false discovery rate.

Resting-State MRI specifications of eligible studies.

AuthorYearResting StateStructural
ImagingTR (s)TE (ms)SliceImagingTR (s)TE (ms)Slice
] 2013gradient-echo planar image328.136T1-weighted0.924.2158

Structural MRI specifications of eligible studies.

AuthorYearImagingTR (s)TE (ms)
Kuhn et al. [ ]20143D T1 weighted MPRAGE2.54.77
West et al. [ ]20173D gradient echo MPRAGE2.32.91
West et al. [ ]20183D gradient echo MPRAGE2.32.91

Task-Based MRI specifications of eligible studies.

AuthorYearTaskBOLDStructural
ImagingTR (s)TE (ms)SliceImagingTR (s)TE (ms)Slice
Gleich et al. [ ]2017win–loss paradigmT2 echo-planar image23036T1-weighted2.54.77176
Haier et al. [ ]2009TetrisFunctional echo planar 229ns5-echo MPRAGE2.531.64; 3.5; 5.36; 7.22; 9.08ns
Lee et al. [ ]2012game controlfast echo-planar image225nsT1-weighted MPRAGE1.83.87144
Lorenz et al. [ ]2015slot machine paradigmT2 echo-planar image23036T1-weighted MPRAGE2.54.77ns
Roush [ ]2013digit symbol substitutionfast echo-planar image22534diffusion weighted imagensnsns

All analyses used 3 Tesla magnetic force; TR = repetition time; TE = echo time, ns = not specified.

4. Discussion

This literature review evaluated the effect of noncognitive-based video game intervention on the cognitive function of healthy people. Comparison of studies is difficult because of the heterogeneities of participant ages, beneficial effects, and durations. Comparisons are limited to studies sharing factors.

4.1. Participant Age

Video gaming intervention affects all age categories except for the children category. The exception derives from a lack of intervention studies using children as participants. The underlying reason for this exception is that the brain is still developing until age 10–12 [ 52 , 53 ]. Among the eligible studies were a study investigating adolescents [ 40 ], six studies investigating young adults [ 41 , 42 , 43 , 47 , 49 , 51 ] and two studies investigating older adults [ 48 , 50 ].

Differences among study purposes underlie the differences in participant age categories. The study by Haier et al. was intended to study adolescents because the category shows the most potential brain changes. The human brain is more sensitive to synaptic reorganization during the adolescent period [ 54 ]. Generally, grey matter decreases whereas white matter increases during the adolescent period [ 55 , 56 ]. By contrast, the cortical surface of the brain increases despite reduction of grey matter [ 55 , 57 ]. Six studies were investigating young adults with the intention of studying brain changes after the brain reaches maturity. The human brain reaches maturity during the young adult period [ 58 ]. Two studies were investigating older adults with the intention of combating difficulties caused by aging. The human brain shrinks as age increases [ 56 , 59 ], which almost invariably leads to declining cognitive function [ 59 , 60 ].

4.2. Beneficial Effects

Three beneficial outcomes were observed using MRI method: grey matter change [ 40 , 42 , 50 ], brain activity change [ 40 , 43 , 47 , 48 , 49 ], and functional connectivity change [ 41 ]. The affected brain area corresponds to how the respective games were played.

Four studies of 3D video gaming showed effects on the structure of hippocampus, dorsolateral prefrontal cortex (DLPFC), cerebellum [ 42 , 43 , 50 ], and DLPFC [ 43 ] and ventral striatum activity [ 49 ]. In this case, the hippocampus is used for memory [ 61 ] and scene recognition [ 62 ], whereas the DLPFC and cerebellum are used for working memory function for information manipulation and problem-solving processes [ 63 ]. The grey matter of the corresponding brain region has been shown to increase during training [ 20 , 64 ]. The increased grey matter of the hippocampus, DLPFC, and cerebellum are associated with better performance in reference and working memory [ 64 , 65 ].

The reduced activity of DLPFC found in the study by Gleich et al. corresponds to studies that showed reduced brain activity associated with brain training [ 66 , 67 , 68 , 69 ]. Decreased activity of the DLPFC after training is associated with efficiency in divergent thinking [ 70 ]. 3D video gaming also preserved reward systems by protecting the activity of the ventral striatum [ 71 ].

Two studies of puzzle gaming showed effects on the structure of the visual–spatial processing area, activity of the frontal area, and functional connectivity change. The increased grey matter of the visual–spatial area and decreased activity of the frontal area are similar to training-associated grey matter increase [ 20 , 64 ] and activity decrease [ 66 , 67 , 68 , 69 ]. In this case, visual–spatial processing and frontal area are used constantly for spatial prediction and problem-solving of Tetris. Functional connectivity of the multimodal integration and the higher-order executive system in the puzzle solving-based gaming of Professor Layton game corresponds to studies which demonstrated training-associated functional connectivity change [ 72 , 73 ]. Good functional connectivity implies better performance [ 73 ].

Strategy gaming affects the DLPFC activity, whereas rhythm gaming affects the activity of visuospatial working memory, emotional, and attention area. FPS gaming affects the structure of the hippocampus and amygdala. Decreased DLPFC activity is similar to training-associated activity decrease [ 66 , 67 , 68 , 69 ]. A study by Roush demonstrated increased activity of visuospatial working memory, emotion, and attention area, which might occur because of exercise and gaming in the Dance Revolution game. Results suggest that positive activations indicate altered functional areas by complex exercise [ 48 ]. The increased grey matter of the hippocampus and amygdala are similar to the training-associated grey matter increase [ 20 , 64 ]. The hippocampus is used for 3D navigation purposes in the FPS world [ 61 ], whereas the amygdala is used to stay alert during gaming [ 74 ].

4.3. Duration

Change of the brain structure and function was observed after 16 h of video gaming. The total durations of video gaming were 16–90 h. However, the gaming intensity must be noted because the gaming intensity varied: 1.5–10.68 h per week. The different intensities might affect the change of cognitive function. Cognitive intervention studies demonstrated intensity effects on the cortical thickness of the brain [ 75 , 76 ]. A similar effect might be observed in video gaming studies. More studies must be conducted to resolve how the intensity can be expected to affect cognitive function.

4.4. Criteria

Almost all studies used inclusion criteria “little/no experience with video games.” The criterion was used to reduce the factor of gaming-related experience on the effects of video gaming. Some of the studies also used specific handedness and specific sex of participants to reduce the variation of brain effects. Expertise and sex are shown to affect brain activity and structure [ 77 , 78 , 79 , 80 ]. The exclusion criterion of “MRI contraindication” is used for participant safety for the MRI protocol, whereas exclusion criteria of “psychiatric/mental illness”, “neurological illness”, and “medical illness” are used to standardize the participants.

4.5. Limitations and Recommendations

Some concern might be raised about the quality of methodology, assessed using Delphi criteria [ 45 ]. The quality was 3–9 (mean = 6.10; S.D. = 1.69). Low quality in most papers resulted from unspecified information corresponding to the criteria. Quality improvements for the studies must be performed related to the low quality of methodology. Allocation concealment, assessor blinding, care provider blinding, participant blinding, intention-to-treat analysis, and allocation method details must be improved in future studies.

Another concern is blinding and control. This type of study differs from medical studies in which patients can be blinded easily. In studies of these types, the participants were tasked to do either training as an active control group or to do nothing as a passive control group. The participants can expect something from the task. The expectation might affect the outcomes of the studies [ 81 , 82 , 83 ]. Additionally, the waiting-list control group might overestimate the outcome of training [ 84 ].

Considering the sample size, which was 20–75 (mean = 43.67; S.D. = 15.63), the studies must be upscaled to emphasize video gaming effects. There are four phases of clinical trials that start from the early stage and small-scale phase 1 to late stage and large-scale phase 3 and end in post-marketing observation phase 4. These four phases are used for drug clinical trials, according to the food and drug administration (FDA) [ 85 ]. Phase 1 has the purpose of revealing the safety of treatment with around 20–100 participants. Phase 2 has the purpose of elucidating the efficacy of the treatment with up to several hundred participants. Phase 3 has the purpose of revealing both efficacy and safety among 300–3000 participants. The final phase 4 has the purpose of finding unprecedented adverse effects of treatment after marketing. However, because medical studies and video gaming intervention studies differ in terms of experimental methods, slight modifications can be done for adaptation to video gaming studies.

Several unresolved issues persist in relation to video gaming intervention. First, no studies assessed chronic/long-term video gaming. The participants might lose their motivation to play the same game over a long time, which might affect the study outcomes [ 86 ]. Second, meta-analyses could not be done because the game genres are heterogeneous. To ensure homogeneity of the study, stricter criteria must be set. However, this step would engender a third limitation. Third, randomized controlled trial video gaming studies that use MRI analysis are few. More studies must be conducted to assess the effects of video gaming. Fourth, the eligible studies lacked cognitive tests to validate the cognitive change effects for training. Studies of video gaming intervention should also include a cognitive test to ascertain the relation between cognitive function and brain change.

5. Conclusions

The systematic review has several conclusions related to beneficial effects of noncognitive-based video games. First, noncognitive-based video gaming can be used in all age categories as a means to improve the brain. However, effects on children remain unclear. Second, noncognitive-based video gaming affects both structural and functional aspects of the brain. Third, video gaming effects were observed after a minimum of 16 h of training. Fourth, some methodology criteria must be improved for better methodological quality. In conclusion, acute video gaming of a minimum of 16 h is beneficial for brain function and structure. However, video gaming effects on the brain area vary depending on the video game type.

Acknowledgments

We would like to thank all our other colleagues in IDAC, Tohoku University for their support.

PRISMA Checklist of the literature review.

Section/Topic #Checklist Item Reported on Page #
Title 1Identify the report as a systematic review, meta-analysis, or both. 1
Structured summary 2Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number. 1
Rationale 3Describe the rationale for the review in the context of what is already known. 1, 2
Objectives 4Provide an explicit statement of questions being addressed related to participants, interventions, comparisons, outcomes, and study design (PICOS). 2
Protocol and registration 5Indicate if a review protocol exists, if and where it is accessible (e.g., Web address), and if available, provide registration information including registration number. 2
Eligibility criteria 6Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale. 2
Information sources 7Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched. 2
Search 8Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated. 2
Study selection 9State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and if applicable, included in the meta-analysis). 3
Data collection process 10Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators. 3
Data items 11List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made. 3
Risk of bias in individual studies 12Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis. 2
Summary measures 13State the principal summary measures (e.g., risk ratio, difference in means). -
Synthesis of results 14Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ) for each meta-analysis. -
Risk of bias across studies 15Specify any assessment of risk of bias that might affect the cumulative evidence (e.g., publication bias, selective reporting within studies). -
Additional analyses 16Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified. -
Study selection 17Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram. 3,5
Study characteristics 18For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations. 5-11
Risk of bias within studies 19Present data on risk of bias of each study, and if available, any outcome level assessment (see item 12). 5,6
Results of individual studies 20For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot. 4
Synthesis of results 21Present results of each meta-analysis done, including confidence intervals and measures of consistency. -
Risk of bias across studies 22Present results of any assessment of risk of bias across studies (see Item 15). -
Additional analysis 23Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]). -
Summary of evidence 24Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers). 12,13
Limitations 25Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias). 13
Conclusions 26Provide a general interpretation of the results in the context of other evidence, and implications for future research. 14
Funding 27Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review. 14

For more information, visit: www.prisma-statement.org .

Author Contributions

D.B.T., R.N., and R.K. designed the systematic review. D.B.T. and R.N. searched and selected the papers. D.B.T. and R.N. wrote the manuscript with R.K. All authors read and approved the final manuscript. D.B.T. and R.N. contributed equally to this work.

Study is supported by JSPS KAKENHI Grant Number 17H06046 (Grant-in-Aid for Scientific Research on Innovative Areas) and 16KT0002 (Grant-in-Aid for Scientific Research (B)).

Conflicts of Interest

None of the other authors has any conflict of interest to declare. Funding sources are not involved in the study design, collection, analysis, interpretation of data, or writing of the study report.

The Cognition-Impairing Effect of Video Games in Adolescents

  • Science Insights 44(3):1283-1289
  • CC BY-NC 4.0
  • This person is not on ResearchGate, or hasn't claimed this research yet.

Discover the world's research

  • 25+ million members
  • 160+ million publication pages
  • 2.3+ billion citations
  • Mathura Shanmugasundaram
  • Arunkumar Tamilarasu
  • Guo-Fang Sun

Jian-Hong Ye

  • Francesco Bocci

Ambra Ferrari

  • CURR PSYCHOL
  • Young-Jae Kim
  • Chan Sol Lee
  • Seung-Woo Kang
  • Shabina Mohammad

Raghad Jan

  • Saba L Alsaedi

Léa Martinez

  • Marcia Ines Silvani
  • Robert Werder

Claudio Perret

  • Int J Environ Res Publ Health
  • Armita Khorsandi

Aaron Sujar

  • Nader Alrahili
  • Mohammad Alreefi
  • Issa M Alkhonain

Nuran Baabbad

  • Recruit researchers
  • Join for free
  • Login Email Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google Welcome back! Please log in. Email · Hint Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google No account? Sign up

Information

  • Author Services

Initiatives

You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.

All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess .

Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.

Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Original Submission Date Received: .

  • Active Journals
  • Find a Journal
  • Journal Proposal
  • Proceedings Series
  • For Authors
  • For Reviewers
  • For Editors
  • For Librarians
  • For Publishers
  • For Societies
  • For Conference Organizers
  • Open Access Policy
  • Institutional Open Access Program
  • Special Issues Guidelines
  • Editorial Process
  • Research and Publication Ethics
  • Article Processing Charges
  • Testimonials
  • Preprints.org
  • SciProfiles
  • Encyclopedia

pediatrrep-logo

Article Menu

effect of computer game on students intelligence essay

  • Subscribe SciFeed
  • Recommended Articles
  • PubMed/Medline
  • Google Scholar
  • on Google Scholar
  • Table of Contents

Find support for a specific problem in the support section of our website.

Please let us know what you think of our products and services.

Visit our dedicated information section to learn more about MDPI.

JSmol Viewer

The playing brain. the impact of video games on cognition and behavior in pediatric age at the time of lockdown: a systematic review.

effect of computer game on students intelligence essay

1. Introduction

3.1. effect of video games on cognitive functions, 3.2. video games effect on attention and addictive behaviors, 3.3. video games effect and prosocial and aggressive behaviors, 4. discussion, 5. conclusions, author contributions, institutional review board statement, informed consent statement, data availability statement, conflicts of interest.

  • Palaus, M.; Marron, E.M.; Viejo-Sobera, R.; Redolar-Ripoll, D. Neural basis of video gaming: A systematic review. Front. Hum. Neurosci. 2017 , 11 , 248. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Mayer, R.E. Incorporating motivation into multimedia learning. Learn. Instr. 2014 , 29 , 171–173. [ Google Scholar ] [ CrossRef ]
  • Green, C.S.; Bavelier, D. Learning, attentional control, and action video games. Curr. Biol. 2012 , 22 , 197–206. [ Google Scholar ] [ CrossRef ] [ PubMed ] [ Green Version ]
  • Smirni, P.; Lavanco, G.; Smirni, D. Anxiety in Older Adolescents at the Time of COVID-19. J. Clin. Med. 2020 , 9 , 3064. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Smirni, D. Noli Timere: The Role of Reassuring Adults in Dealing with COVID-19 Anxiety in Pediatric Age. Pediatr. Rep. 2021 , 13 , 15–30. [ Google Scholar ] [ CrossRef ]
  • Anderson, C.A.; Bushman, B.J. Effects of violent video games on aggressive behavior, aggressive cognition, aggressive affect, physiological arousal, and prosocial behavior: A meta-analytic review of the scientific literature. Psychol. Sci. 2001 , 12 , 353–359. [ Google Scholar ] [ CrossRef ]
  • Anderson, C.A. An update on the effects of playing violent video games. J. Adolesc. 2004 , 27 , 113–122. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Anderson, C.A.; Shibuya, A.; Ihori, N.; Swing, E.L.; Bushman, B.J.; Sakamoto, A.; Rothstein, H.R.; Saleem, M. Violent video game effects on aggression, empathy, and prosocial behavior in eastern and western countries: A meta-analytic review. Psychol. Bull. 2010 , 136 , 151–173. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Powers, K.L.; Brooks, P.J.; Aldrich, N.J.; Palladino, M.A.; Alfieri, L. Effects of video-game play on information processing: A meta-analytic investigation. Psychon. Bull. Rev. 2013 , 20 , 1055–1079. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Lampit, A.; Hallock, H.; Valenzuela, M. Computerized cognitive training in cognitively healthy older adults: A systematic review and meta-analysis of effect modifiers. PLoS Med. 2014 , 11 , e1001756. [ Google Scholar ] [ CrossRef ] [ PubMed ] [ Green Version ]
  • Toril, P.; Reales, J.M.; Ballesteros, S. Video game training enhances cognition of older adults: A meta-analytic study. Psychol. Aging 2014 , 29 , 706. [ Google Scholar ] [ CrossRef ] [ PubMed ] [ Green Version ]
  • Gentile, D.A.; Gentile, J.R. Violent video games as exemplary teachers: A conceptual analysis. J. Youth Adolesc. 2008 , 37 , 127–141. [ Google Scholar ] [ CrossRef ]
  • Greitemeyer, T.; Osswald, S. Effects of prosocial video games on prosocial behavior. J. Pers. Soc. Psychol. 2010 , 98 , 211. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Bavelier, D.; Green, C.S.; Han, D.H.; Renshaw, P.F.; Merzenich, M.M.; Gentile, D.A. Brains on video games. Nat. Rev. Neurosci. 2011 , 12 , 763–768. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Mondéjar, T.; Hervas, R.; Johnson, E.; Gutierrez, C.; Latorre, J.M. Correlation between videogame mechanics and executive functions through EEG analysis. J. Biomed. Inform. 2016 , 63 , 131–140. [ Google Scholar ] [ CrossRef ]
  • Mondéjar, T.; Hervás, R.; Johnson, E.; Gutiérrez-López-Franca, C.; Latorre, J.M. Analyzing EEG waves to support the design of serious games for cognitive training. J. Ambient Intell. Humaniz. Comput. 2019 , 10 , 2161–2174. [ Google Scholar ] [ CrossRef ]
  • Lee, D.; Park, J.; Namkoong, K.; Kim, I.Y.; Jung, Y.-C. Gray matter differences in the anterior cingulate and orbitofrontal cortex of young adults with Internet gaming disorder: Surface-based morphometry. J. Behav. Addict. 2018 . [ Google Scholar ] [ CrossRef ]
  • Zvyagintsev, M.; Klasen, M.; Weber, R.; Sarkheil, P.; Esposito, F.; Mathiak, K.A.; Schwenzer, M.; Mathiak, K. Violence-related content in video game may lead to functional connectivity changes in brain networks as revealed by fMRI-ICA in young men. Neuroscience 2016 . [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Kwak, K.H.; Hwang, H.C.; Kim, S.M.; Han, D.H. Comparison of Behavioral Changes and Brain Activity between Adolescents with Internet Gaming Disorder and Student Pro-Gamers. Int. J. Environ. Res. Public Health 2020 , 17 , 441. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Dye, M.W.G.; Bavelier, D. Differential development of visual attention skills in school-age children. Vision Res. 2010 , 50 , 452–459. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Dye, M.W.G.; Green, C.S.; Bavelier, D. The development of attention skills in action video game players. Neuropsychologia 2009 , 47 , 1780–1789. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Trick, L.M.; Jaspers-Fayer, F.; Sethi, N. Multiple-object tracking in children: The “Catch the Spies” task. Cogn. Dev. 2005 , 20 , 373–387. [ Google Scholar ] [ CrossRef ]
  • Sessa, M.; Di Mauro, G.; Mascolo, A.; Rafaniello, C.; Sportiello, L.; Scavone, C.; Capuano, A. Pillars and pitfalls of the new pharmacovigilance legislation: Consequences for the identification of adverse drug reactions deriving from abuse, misuse, overdose, occupational exposure, and medication errors. Front. Pharmacol. 2018 , 9 , 611. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J. Clin. Epidemiol. 2009 , 62 , e1–e34. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Operto, F.F.; Pastorino, G.M.G.; Marciano, J.; de Simone, V.; Volini, A.P.; Olivieri, M.; Buonaiuto, R.; Vetri, L.; Viggiano, A.; Coppola, G. Digital Devices Use and Language Skills in Children between 8 and 36 Month. Brain Sci. 2020 , 10 , 656. [ Google Scholar ] [ CrossRef ]
  • Green, C.S.; Bavelier, D. Action video game modifies visual selective attention. Nature 2003 , 423 , 534. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Feng, J.; Spence, I.; Pratt, J. Playing an action video game reduces gender differences in spatial cognition. Psychol. Sci. 2007 . [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Castel, A.D.; Pratt, J.; Drummond, E. The effects of action video game experience on the time course of inhibition of return and the efficiency of visual search. Acta Psychol. 2005 , 119 , 217–230. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Andrews, G.; Murphy, K. Does Video Game Playing Improve Executive Functioning? In Frontiers in: Cognitive Psychology ; Vanchevsky, M.A., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2006; pp. 145–161. [ Google Scholar ]
  • Colzato, L.S.; Van Leeuwen, P.J.A.; Van Den Wildenberg, W.; Hommel, B. DOOM’d to switch: Superior cognitive flexibility in players of first person shooter games. Front. Psychol. 2010 , 1 , 8. [ Google Scholar ] [ CrossRef ] [ PubMed ] [ Green Version ]
  • Colzato, L.S.; van den Wildenberg, W.P.M.; Zmigrod, S.; Hommel, B. Action video gaming and cognitive control: Playing first person shooter games is associated with improvement in working memory but not action inhibition. Psychol. Res. 2013 , 77 , 234–239. [ Google Scholar ] [ CrossRef ]
  • Powers, K.L.; Brooks, P.J. Evaluating the Specificity of Effects of Video Game Training. In Learning by Playing: Video Gaming in Education ; Blumberg, F.C., Ed.; Oxford University Press: New York, NY, USA, 2014; pp. 302–345. [ Google Scholar ]
  • Spence, I.; Feng, J. Video games and spatial cognition. Rev. Gen. Psychol. 2010 , 14 , 92–104. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Stern, Y.; Blumen, H.M.; Rich, L.W.; Richards, A.; Herzberg, G.; Gopher, D. Space Fortress game training and executive control in older adults: A pilot intervention. Aging Neuropsychol. Cogn. 2011 , 18 , 653–677. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Maillot, P.; Perrot, A.; Hartley, A. Effects of interactive physical-activity video-game training on physical and cognitive function in older adults. Psychol. Aging 2012 , 27 , 589. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • McDermott, A.F.; Bavelier, D.; Green, C.S. Memory abilities in action video game players. Comput. Hum. Behav. 2014 . [ Google Scholar ] [ CrossRef ]
  • Basak, C.; Boot, W.R.; Voss, M.W.; Kramer, A.F. Can training in a real-time strategy video game attenuate cognitive decline in older adults? Psychol. Aging 2008 , 23 , 765. [ Google Scholar ] [ CrossRef ] [ PubMed ] [ Green Version ]
  • Benoit, J.J.; Roudaia, E.; Johnson, T.; Love, T.; Faubert, J. The neuropsychological profile of professional action video game players. PeerJ 2020 , 8 , e10211. [ Google Scholar ] [ CrossRef ]
  • Smirni, D. The Raven’s Coloured Progressive Matrices in Healthy Children: A Qualitative Approach. Brain Sci. 2020 , 10 , 877. [ Google Scholar ] [ CrossRef ]
  • Bediou, B.; Adams, D.M.; Mayer, R.E.; Tipton, E.; Green, C.S.; Bavelier, D. Meta-analysis of action video game impact on perceptual, attentional, and cognitive skills. Psychol. Bull. 2018 , 144 , 77–110. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Homer, B.D.; Plass, J.L.; Raffaele, C.; Ober, T.M.; Ali, A. Improving high school students’ executive functions through digital game play. Comput. Educ. 2018 , 117 , 50–58. [ Google Scholar ] [ CrossRef ]
  • Smirni, D.; Precenzano, F.; Magliulo, R.M.; Romano, P.; Bonifacio, A.; Gison, G.; Bitetti, I.; Terracciano, M.; Ruberto, M.; Sorrentino, M.; et al. Inhibition, set-shifting and working memory in Global Developmental Delay preschool children. Life Span Disabil. 2018 , 21 , 191–206. [ Google Scholar ]
  • Carotenuto, M.; Ruberto, M.; Fontana, M.L.; Catania, A.; Misuraca, E.; Precenzano, F.; Lanzara, V.; Messina, G.; Roccella, M.; Smirni, D. Executive functioning in autism spectrum disorders: A case-control study in preschool children. Curr. Pediatr. Res. 2019 , 23 , 112–116. [ Google Scholar ]
  • Oei, A.C.; Patterson, M.D. Playing a puzzle video game with changing requirements improves executive functions. Comput. Hum. Behav. 2014 , 37 , 216–228. [ Google Scholar ] [ CrossRef ]
  • Oei, A.C.; Patterson, M.D. Enhancing cognition with video games: A multiple game training study. PLoS ONE 2013 , 8 , e58546. [ Google Scholar ] [ CrossRef ]
  • Franceschini, S.; Gori, S.; Ruffino, M.; Viola, S.; Molteni, M.; Facoetti, A. Action video games make dyslexic children read better. Curr. Biol. 2013 , 23 , 462–466. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Franceschini, S.; Tancioni, L.; Lorenzoni, M.; Mattei, F.; Scardi, M. An ecologically constrained procedure for sensitivity analysis of Artificial Neural Networks and other empirical models. PLoS ONE 2019 , 14 , e0211445. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Smirni, D.; Oliveri, M.; Turriziani, P.; Di Martino, G.; Smirni, P. Benton visual form discrimination test in healthy children: Normative data and qualitative analysis. Neurol. Sci. 2018 , 39 , 885–892. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Wang, X.; Goh, D.H.-L. Video game acceptance: A meta-analysis of the extended technology acceptance model. Cyberpsychology Behav. Soc. Netw. 2017 , 20 , 662–671. [ Google Scholar ] [ CrossRef ]
  • Ferguson, C.J. Blazing Angels or Resident Evil? Can Violent Video Games be a Force for Good? Rev. Gen. Psychol. 2010 , 14 , 68–81. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Bioulac, S.; Arfi, L.; Bouvard, M.P. Attention deficit/hyperactivity disorder and video games: A comparative study of hyperactive and control children. Eur. Psychiatry 2008 , 23 , 134–141. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Chan, P.A.; Rabinowitz, T. A cross-sectional analysis of video games and attention deficit hyperactivity disorder symptoms in adolescents. Ann. Gen. Psychiatry 2006 , 5 , 1–10. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Swing, E.L.; Gentile, D.A.; Anderson, C.A.; Walsh, D.A. Television and video game exposure and the development of attention problems. Pediatrics 2010 , 126 , 214–221. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Christakis, D.A.; Zimmerman, F.J.; DiGiuseppe, D.L.; McCarty, C.A. Early television exposure and subsequent attentional problems in children. Pediatrics 2004 , 113 , 708–713. [ Google Scholar ] [ CrossRef ] [ PubMed ] [ Green Version ]
  • Landhuis, C.E.; Poulton, R.; Welch, D.; Hancox, R.J. Does childhood television viewing lead to attention problems in adolescence? Results from a prospective longitudinal study. Pediatrics 2007 , 120 , 532–537. [ Google Scholar ] [ CrossRef ]
  • Gentile, D.A.; Swing, E.L.; Lim, C.G.; Khoo, A. Video game playing, attention problems, and impulsiveness: Evidence of bidirectional causality. Psychol. Pop. Media Cult. 2012 , 1 , 62–70. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • King, D.L.; Delfabbro, P.H.; Griffiths, M.D.; Gradisar, M. Assessing clinical trials of Internet addiction treatment: A systematic review and CONSORT evaluation. Clin. Psychol. Rev. 2011 , 31 , 1110–1116. [ Google Scholar ] [ CrossRef ]
  • Bushman, B.J. “Boom, Headshot!”: Violent first-person shooter (FPS) video games that reward headshots train individuals to aim for the head when shooting a realistic firearm. Aggress. Behav. 2019 , 45 , 33–41. [ Google Scholar ] [ CrossRef ]
  • Di Blasi, M.; Giardina, A.; Giordano, C.; Lo Coco, G.; Tosto, C.; Billieux, J.; Schimmenti, A. Problematic video game use as an emotional coping strategy: Evidence from a sample of MMORPG gamers. J. Behav. Addict. 2019 , 8 , 25–34. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Gee, J.P. Good Video Games+ Good Learning: Collected Essays on Video Games, Learning, and Literacy ; Peter Lang: Bern, Switzerland, 2007. [ Google Scholar ]
  • Greenfield, P.M. Technology and Informal Education: What Is Taught, What Is Learned. Science 2009 , 323 , 69. [ Google Scholar ] [ CrossRef ]
  • Griffiths, M. Internet addiction-time to be taken seriously? Addict. Res. 2000 , 8 , 413–418. [ Google Scholar ] [ CrossRef ]
  • Griffiths, M. Internet and Video-Game Addiction. In Adolescent Addiction ; Elsevier: Amsterdam, The Netherlands, 2008; pp. 231–267. [ Google Scholar ]
  • Weinstein, A.; Lejoyeux, M. Internet addiction or excessive internet use. Am. J. Drug Alcohol Abuse 2010 , 36 , 277–283. [ Google Scholar ] [ CrossRef ] [ PubMed ] [ Green Version ]
  • Griffiths, M. Online therapy for addictive behaviors. CyberPsychology Behav. 2005 , 8 , 555–561. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Griffiths, M.D. Gambling addiction on the Internet. In Internet Addiction: A Handbook and Guide to Evaluation and Treatment ; John Wiley & Sons, Inc: Hoboken, NJ, USA, 2010; pp. 113–133. [ Google Scholar ]
  • Charlton, J.P.; Danforth, I.D.W. Distinguishing addiction and high engagement in the context of online game playing. Comput. Hum. Behav. 2007 , 23 , 1531–1548. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Charlton, J.P.; Danforth, I.D.W. Validating the distinction between computer addiction and engagement: Online game playing and personality. Behav. Inf. Technol. 2010 , 29 , 601–613. [ Google Scholar ] [ CrossRef ]
  • Kuss, D.J.; Griffiths, M.D.; Pontes, H.M. DSM-5 diagnosis of Internet Gaming Disorder: Some ways forward in overcoming issues and concerns in the gaming studies field: Response to the commentaries. J. Behav. Addict. 2017 , 6 , 133–141. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Kardefelt-Winther, D. Problematizing excessive online gaming and its psychological predictors. Comput. Hum. Behav. 2014 , 31 , 118–122. [ Google Scholar ] [ CrossRef ]
  • Przybylski, A.K.; Weinstein, N.; Murayama, K. Internet gaming disorder: Investigating the clinical relevance of a new phenomenon. Am. J. Psychiatry 2017 , 174 , 230–236. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Kuss, D.J.; Griffiths, M.D. Internet and gaming addiction: A systematic literature review of neuroimaging studies. Brain Sci. 2012 , 2 , 347–374. [ Google Scholar ] [ CrossRef ]
  • Thapa, R.; Nyamapfumba, S. Neuroimaging of Addiction. J. Addict. Nurs. 2013 , 24 , 63–68. [ Google Scholar ] [ CrossRef ]
  • Hummer, T.A. Media violence effects on brain development: What neuroimaging has revealed and what lies ahead. Am. Behav. Sci. 2015 , 59 , 1790–1806. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Durlach, P.J.; Kring, J.P.; Bowens, L.D. Effects of action video game experience on change detection. Mil. Psychol. 2009 . [ Google Scholar ] [ CrossRef ]
  • Gentile, D.A.; Choo, H.; Liau, A.; Sim, T.; Li, D.; Fung, D.; Khoo, A. Pathological video game use among youths: A two-year longitudinal study. Pediatrics 2011 , 127 , e319–e329. [ Google Scholar ] [ CrossRef ] [ PubMed ] [ Green Version ]
  • Ha, J.H.; Kim, S.Y.; Bae, S.C.; Bae, S.; Kim, H.; Sim, M.; Lyoo, I.K.; Cho, S.C. Depression and Internet addiction in adolescents. Psychopathology 2007 , 40 , 424–430. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Morrison, C.M.; Gore, H. The relationship between excessive Internet use and depression: A questionnaire-based study of 1,319 young people and adults. Psychopathology 2010 , 43 , 121–126. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Lam, L.T.; Peng, Z.-W. Effect of pathological use of the internet on adolescent mental health: A prospective study. Arch. Pediatr. Adolesc. Med. 2010 , 164 , 901–906. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Liau, A.K.; Choo, H.; Li, D.; Gentile, D.A.; Sim, T.; Khoo, A. Pathological video-gaming among youth: A prospective study examining dynamic protective factors. Addict. Res. Theory 2015 , 23 , 301–308. [ Google Scholar ] [ CrossRef ]
  • Greitemeyer, T.; Osswald, S. Playing Prosocial Video Games Increases the Accessibility of Prosocial Thoughts. J. Soc. Psychol. 2011 , 151 , 121–128. [ Google Scholar ] [ CrossRef ]
  • Saleem, M.; Anderson, C.A.; Gentile, D.A. Effects of Prosocial, Neutral, and Violent Video Games on Children’s Helpful and Hurtful Behaviors. Aggress. Behav. 2012 , 38 , 281–287. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Gentile, D.A.; Anderson, C.A.; Yukawa, S.; Ihori, N.; Saleem, M.; Ming, L.K.; Shibuya, A.; Liau, A.K.; Khoo, A.; Bushman, B.J. The effects of prosocial video games on prosocial behaviors: International evidence from correlational, longitudinal, and experimental studies. Personal. Soc. Psychol. Bull. 2009 , 35 , 752–763. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Greitemeyer, T.; Osswald, S. Prosocial video games reduce aggressive cognitions. J. Exp. Soc. Psychol. 2009 , 45 , 896–900. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Sestir, M.A.; Bartholow, B.D. Violent and nonviolent video games produce opposing effects on aggressive and prosocial outcomes. J. Exp. Soc. Psychol. 2010 , 46 , 934–942. [ Google Scholar ] [ CrossRef ]
  • Greitemeyer, T.; Traut-Mattausch, E.; Osswald, S. How to ameliorate negative effects of violent video games on cooperation: Play it cooperatively in a team. Comput. Hum. Behav. 2012 , 28 , 1465–1470. [ Google Scholar ] [ CrossRef ]
  • Greitemeyer, T.; Mügge, D.O. Video Games Do Affect Social Outcomes: A Meta-Analytic Review of the Effects of Violent and Prosocial Video Game Play. Personal. Soc. Psychol. Bull. 2014 , 40 , 578–589. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Greitemeyer, T.; Osswald, S.; Brauer, M. Playing prosocial video games increases empathy and decreases schadenfreude. Emotion 2010 , 10 , 796–802. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Prot, S.; Gentile, D.A.; Anderson, C.A.; Suzuki, K.; Swing, E.; Lim, K.M.; Horiuchi, Y.; Jelic, M.; Krahé, B.; Liuqing, W.; et al. Long-Term Relations Among Prosocial-Media Use, Empathy, and Prosocial Behavior. Psychol. Sci. 2014 , 25 , 358–368. [ Google Scholar ] [ CrossRef ]
  • Harrington, B.; O’Connell, M. Video games as virtual teachers: Prosocial video game use by children and adolescents from different socioeconomic groups is associated with increased empathy and prosocial behaviour. Comput. Hum. Behav. 2016 , 63 , 650–658. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Buckley, K.E.; Anderson, C.A. A Theoretical Model of the Effects and Consequences of Playing Video Games. In Playing Video Games—Motives, Responses, and Consequences ; Vorderer, P., Bryant, J., Eds.; LEA: Mahwah, NJ, USA, 2006; pp. 363–378. [ Google Scholar ]
  • Gentile, D.A.; Reimer, R.A.; Nathanson, A.I.; Walsh, D.A.; Eisenmann, J.C. Protective Effects of Parental Monitoring of Children’s Media Use: A Prospective Study. JAMA Pediatr. 2014 , 168 , 479–484. [ Google Scholar ] [ CrossRef ]
  • Bushman, B.J.; Huesmann, L.R. Short-term and Long-term Effects of Violent Media on Aggression in Children and Adults. Arch. Pediatr. Adolesc. Med. 2006 , 160 , 348–352. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Huesmann, L.R.; Kirwil, L. Why Observing Violence Increases the Risk of Violent Behavior by the Observer. In The Cambridge Handbook of Violent Behavior and Aggression ; Cambridge University Press: Cambridge, UK, 2007; pp. 545–570. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Maier, J.A.; Gentile, D.A. Learning Aggression through the Media: Comparing Psychological and Communication Approaches. In The psychology of Entertainment Media: Blurring the Lines between Entertainment and Persuasion ; Taylor & Francis: New York, NY, USA, 2012; pp. 267–299. [ Google Scholar ]
  • Corbett, A.T.; Koedinger, K.R.; Hadley, W.H. Cognitive Tutors: From the Research Classroom to All Classrooms. In Technology Enhanced Learning: Opportunities for Change ; Goodman, P.S., Ed.; Routledge: London, UK, 2001; pp. 253–263. [ Google Scholar ]
  • Kato, P.M.; Cole, S.W.; Bradlyn, A.S.; Pollock, B.H. A Video Game Improves Behavioral Outcomes in Adolescents and Young Adults With Cancer: A Randomized Trial. Pediatrics 2008 , 122 , e305–e317. [ Google Scholar ] [ CrossRef ] [ PubMed ] [ Green Version ]
  • Smirni, D.; Carotenuto, M.; Precenzano, F.; Smirni, P.; Operto, F.F.; Marotta, R.; Roccella, M. Memory performances and personality traits in mothers of children with obstructive sleep apnea syndrome. Psychol. Res. Behav. Manag. 2019 , 12 , 481–487. [ Google Scholar ] [ CrossRef ] [ PubMed ] [ Green Version ]
  • Lieberman, D.A. Management of Chronic Pediatric Diseases with Interactive Health Games: Theory and Research Findings. J. Ambul. Care Manage. 2001 , 24 , 26–38. [ Google Scholar ] [ CrossRef ]
  • Lieberman, D.A. What Can We Learn from Playing Interactive Games? In Playing Video Games: Motives, Responses, and Consequences ; Routledge: London, UK, 2006; pp. 379–397. [ Google Scholar ]
  • Jenkins, H. No The war between effects and meaning: Rethinking the video game violence debate. In Digital Generations: Children, Young People, and the New Media ; Lawrence Erlbaum Associates Inc.: Mahwah, NJ, USA, 2006; pp. 19–36. [ Google Scholar ]
  • Ferguson, C.J.; Kilburn, J. Much ado about nothing: The misestimation and overinterpretation of violent video game effects in Eastern and Western nations: Comment on Anderson et al. (2010). Psychol. Bull. 2010 , 136 , 174–178. [ Google Scholar ] [ CrossRef ]
  • Sherry, J.L. The Effects of Violent Video Games on Aggression: A Meta-Analysis. Hum. Commun. Res. 2001 , 27 , 409–431. [ Google Scholar ] [ CrossRef ]
  • Funk, J.B.; Baldacci, H.B.; Pasold, T.; Baumgardner, J. Violence exposure in real-life, video games, television, movies, and the internet: Is there desensitization? J. Adolesc. 2004 , 27 , 23–39. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Anderson, C.A.; Gentile, D.A.; Buckley, K.E. Violent Video Game Effects on Children and Adolescents: Theory, Research, and Public Policy. In Violent Video Game Effects on Children and Adolescents: Theory, Research, and Public Policy ; Anderson, C.A., Gentile, D.A., Buckley, K.E., Eds.; Oxford University Press: Oxford, UK, 2007. [ Google Scholar ]
  • Konijn, E.A.; Nije Bijvank, M.; Bushman, B.J. I wish I were a warrior: The role of wishful identification in the effects of violent video games on aggression in adolescent boys. Dev. Psychol. 2007 , 43 , 1038–1044. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Gentile, D.A.; Lynch, P.J.; Linder, J.R.; Walsh, D.A. The effects of violent video game habits on adolescent hostility, aggressive behaviors, and school performance. J. Adolesc. 2004 , 27 , 5–22. [ Google Scholar ] [ CrossRef ]
  • Anderson, C.A.; Dill, K.E. Video games and aggressive thoughts, feelings, and behavior in the laboratory and in life. J. Pers. Soc. Psychol. 2000 , 78 , 772–790. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Carnagey, N.L.; Anderson, C.A. The effects of reward and punishment in violent video games on aggressive affect, cognition, and behavior. Psychol. Sci. 2005 , 16 , 882–889. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Hopf, W.H.; Huber, G.L.; Weiß, R.H. Media Violence and Youth Violence. J. Media Psychol. 2008 , 20 , 79–96. [ Google Scholar ] [ CrossRef ]
  • Ferguson, C.J. The Good, The Bad and the Ugly: A Meta-analytic Review of Positive and Negative Effects of Violent Video Games. Psychiatr. Q. 2007 , 78 , 309–316. [ Google Scholar ] [ CrossRef ]
  • Bavelier, D.; Green, C.S.; Pouget, A.; Schrater, P. Brain plasticity through the life span: Learning to learn and action video games. Annu. Rev. Neurosci. 2012 , 35 , 391–416. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Green, C.S.; Bavelier, D. Exercising your brain: A review of human brain plasticity and training-induced learning. Psychol. Aging 2008 , 23 , 692. [ Google Scholar ] [ CrossRef ] [ PubMed ] [ Green Version ]
  • Gentile, D.A.; Bailey, K.; Bavelier, D.; Brockmyer, J.F.; Cash, H.; Coyne, S.M.; Doan, A.; Grant, D.S.; Green, C.S.; Griffiths, M. Internet gaming disorder in children and adolescents. Pediatrics 2017 , 140 , S81–S85. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Anderson, C.A.; Warburton, W.A. The Impact of Violent Video Games: An Overview. In Growing Up Fast and Furious: Reviewing the Impacts of Violent and Sexualised Media on Children ; The Federation Press: Annandale, Australia, 2012; pp. 56–84. [ Google Scholar ]
  • Gentile, D.A. The multiple dimensions of video game effects. Child Dev. Perspect. 2011 , 5 , 75–81. [ Google Scholar ] [ CrossRef ]
  • Gentile, D.A.; Stone, W. Violent video game effects on children and adolescents. A review of the literature. Minerva Pediatr. 2005 , 57 , 337–358. [ Google Scholar ] [ PubMed ]
  • Stone, W.; Gentile, D.A. The five dimensions of video game effects. In Proceedings of the Annual Convention of the American Psychological Association, Boston, MA, USA, 14–17 August 2008. [ Google Scholar ]
  • Khoo, A.; Gentile, D.A. Problem Based Learning in the World of Games. In Problem-Based Learning and e-Learning Breakthroughs ; Thomson Publishing: Singapore, 2007; pp. 97–129. [ Google Scholar ]
  • Anderson, C.A.; Gentile, D.A.; Dill, K.E. Prosocial, Antisocial, and Other Effects of Recreational Video Games. In Handbook of Children and the Media ; Singer, D.G., Singer, J.L., Eds.; Sage Publications, Inc.: Thousand Oaks, CA, USA, 2012; pp. 249–272. [ Google Scholar ]
  • Sharif, I.; Sargent, J.D. Association Between Television, Movie, and Video Game Exposure and School Performance. Pediatrics 2006 . [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Berkey, C.S.; Rockett, H.R.H.; Field, A.E.; Gillman, M.W.; Frazier, A.L.; Camargo, C.A.; Colditz, G.A. Activity, dietary intake, and weight changes in a longitudinal study of preadolescent and adolescent boys and girls. Pediatrics 2000 , 105 , e56. [ Google Scholar ] [ CrossRef ] [ PubMed ] [ Green Version ]
  • Laurson, K.R.; Eisenmann, J.C.; Welk, G.J.; Wickel, E.E.; Gentile, D.A.; Walsh, D.A. Combined influence of physical activity and screen time recommendations on childhood overweight. J. Pediatr. 2008 , 153 , 209–214. [ Google Scholar ] [ CrossRef ]
  • Vandewater, E.A.; Shim, M.; Caplovitz, A.G. Linking obesity and activity level with children’s television and video game use. J. Adolesc. 2004 , 27 , 71–85. [ Google Scholar ] [ CrossRef ]
  • King, D.L.; Delfabbro, P.H.; Griffiths, M.D. The role of structural characteristics in problem video game playing: A review. Cyberpsychology 2010 , 4 . Available online: http://irep.ntu.ac.uk/id/eprint/25730 (accessed on 12 December 2020).
  • Ferguson, C.J.; Beaver, K.M. Natural born killers: The genetic origins of extreme violence. Aggress. Violent Behav. 2009 , 14 , 286–294. [ Google Scholar ] [ CrossRef ]
  • Ferguson, C.J.; Rueda, S.M.; Cruz, A.M.; Ferguson, D.E.; Fritz, S.; Smith, S.M. Violent video games and aggression: Causal relationship or byproduct of family violence and intrinsic violence motivation? Crim. Justice Behav. 2008 , 35 , 311–332. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Anderson, C.A.; Bushman, B.J. The effects of media violence on society. Science 2002 , 295 , 2377–2379. [ Google Scholar ] [ CrossRef ] [ PubMed ] [ Green Version ]
  • Carnagey, N.L.; Anderson, C.A. No Theory in the Study of Media Violence: The General Aggression Model. In Media Violence and Children: A Complete Guide for Parents and Professionals ; Praeger Publishers/Greenwood Publishing Group: Westport, CT, USA, 2003; pp. 87–106. [ Google Scholar ]
  • Gentile, D.A.; Groves, C.L.; Gentile, J.R. The General Learning Model: Unveiling the Teaching Potential of Video Games. In Learning by Playing: Video Gaming in Education ; Oxford University Press: New York, NY, USA, 2014; pp. 121–142. [ Google Scholar ]
  • Hastings, E.C.; Karas, T.L.; Winsler, A.; Way, E.; Madigan, A.; Tyler, S. Young Children’s Video/Computer Game Use: Relations with School Performance and Behavior. Issues Ment. Health Nurs. 2009 , 30 , 638–649. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Pontes, H.M.; Schivinski, B.; Sindermann, C.; Li, M.; Becker, B.; Zhou, M.; Montag, C. Measurement and conceptualization of Gaming Disorder according to the World Health Organization framework: The development of the Gaming Disorder Test. Int. J. Ment. Health Addict. 2019 , 1–21. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Association, A.P. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®) ; American Psychiatric Pub.: Washington, DC, USA, 2013; ISBN 0890425574. [ Google Scholar ]
  • King, D.L.; Delfabbro, P.H. Video-gaming disorder and the DSM-5: Some further thoughts. Aust. N. Z. J. Psychiatry 2013 , 47 , 875–876. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Pontes, H.M.; Griffiths, M.D. Internet addiction disorder and internet gaming disorder are not the same. J. Addict. Res. Ther. 2014 , 5 . [ Google Scholar ] [ CrossRef ]
  • Kuss, D.J.; Griffiths, M.D.; Pontes, H.M. Chaos and confusion in DSM-5 diagnosis of Internet Gaming Disorder: Issues, concerns, and recommendations for clarity in the field. J. Behav. Addict. 2017 , 6 , 103–109. [ Google Scholar ] [ CrossRef ] [ PubMed ] [ Green Version ]
  • Starcevic, V.; Aboujaoude, E. Internet addiction: Reappraisal of an increasingly inadequate concept. CNS Spectr. 2017 , 22 , 7–13. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Starcevic, V. Is Internet addiction a useful concept? Aust. N. Z. J. Psychiatry 2013 , 47 , 16–19. [ Google Scholar ] [ CrossRef ]
  • Király, O.; Griffiths, M.D.; Urbán, R.; Farkas, J.; Kökönyei, G.; Elekes, Z.; Tamás, D.; Demetrovics, Z. Problematic Internet use and problematic online gaming are not the same: Findings from a large nationally representative adolescent sample. Cyberpsychology Behav. Soc. Netw. 2014 , 17 , 749–754. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Griffiths, M. Does Internet and computer “addiction” exist? Some case study evidence. CyberPsychology Behav. 2000 , 3 , 211–218. [ Google Scholar ] [ CrossRef ]

Click here to enlarge figure

MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

Smirni, D.; Garufo, E.; Di Falco, L.; Lavanco, G. The Playing Brain. The Impact of Video Games on Cognition and Behavior in Pediatric Age at the Time of Lockdown: A Systematic Review. Pediatr. Rep. 2021 , 13 , 401-415. https://doi.org/10.3390/pediatric13030047

Smirni D, Garufo E, Di Falco L, Lavanco G. The Playing Brain. The Impact of Video Games on Cognition and Behavior in Pediatric Age at the Time of Lockdown: A Systematic Review. Pediatric Reports . 2021; 13(3):401-415. https://doi.org/10.3390/pediatric13030047

Smirni, Daniela, Elide Garufo, Luca Di Falco, and Gioacchino Lavanco. 2021. "The Playing Brain. The Impact of Video Games on Cognition and Behavior in Pediatric Age at the Time of Lockdown: A Systematic Review" Pediatric Reports 13, no. 3: 401-415. https://doi.org/10.3390/pediatric13030047

Article Metrics

Article access statistics, further information, mdpi initiatives, follow mdpi.

MDPI

Subscribe to receive issue release notifications and newsletters from MDPI journals

IMAGES

  1. The effects of computer games in Student Habits Free Essay Example

    effect of computer game on students intelligence essay

  2. The Dangers of Computer Games: A Free Essay Example

    effect of computer game on students intelligence essay

  3. Importance of Computer Essay

    effect of computer game on students intelligence essay

  4. The Impact Of Video Games On Students? Educational Outcomes

    effect of computer game on students intelligence essay

  5. The Effect of Computer Games Narrative Essay Example

    effect of computer game on students intelligence essay

  6. Essay on importance of computer games

    effect of computer game on students intelligence essay

VIDEO

  1. Speech on Artificial intelligence

  2. Living in the era of Artificial Intelligence (Creative Writing)

  3. How AI is Controlling Your Social Media Feed #shorts #short #artificialintelliegence #socialmedia

  4. essay on artificial intelligence in hindi

  5. Informative an essay on artificial intelligence in urdu

  6. Paragraph on Artificial Intelligence //essay on artificial intelligence or AI in english//essay

COMMENTS

  1. Effects of Game-Based Learning on Students’ Critical Thinking ...

    The results showed that game-based learning had a significant positive overall effect on students’ critical thinking (g = 0.863, k = 21) and showed significant heterogeneity among effect sizes. Among game types, role-playing games yielded the largest mean effect size ( g = 1.828, k = 5).

  2. Effects of computer gaming on cognition, brain structure, and ...

    Visuospatial cognition and attention seem to benefit the most, whereas for executive functions, memory, and general cognition, the results are contradictory. The particular characteristics of video games driving these effects remain poorly understood.

  3. Does Video Gaming Have Impacts on the Brain: Evidence from a ...

    This systematic review evaluates the beneficial effects of video gaming on neuroplasticity specifically on intervention studies. Literature research was conducted from randomized controlled trials in PubMed and Google Scholar published after 2000.

  4. Influence of Video Games on Cognitive Abilities and Intelligence

    intelligence tests and cognitive measurement factors that varied between 0.18 and 0.50. The mentioned research examines the relationship between video games and determined dimensions of individual differences in cognitive and perceptual functioning performed on 63 male students with more than 2 hours of experience playing Atari video

  5. IMPACT OF PLAYING VIDEO GAMES ON COGNITIVE FUNCTIONING AND ...

    The main purpose of this study was to assess the effect of video games on cognitive functions and learning style in young people. A cross-sectional research study was used to investigate...

  6. The Cognition-Impairing Effect of Video Games in Adolescents

    Understanding how video games affect various aspects of cognition, such as attention, memory, problem-solving skills, and academic performance, is crucial for educators, parents, and...

  7. The effectiveness of gamification in programming education ...

    We examined the effects of game types, gamification applications, pedagogical agents, programming types, and schooling levels on students' academic achievement, cognitive load, motivation, and thinking skills in programming education by cross-tabulation analysis.

  8. Full article: Effects of computer gaming on cognition, brain ...

    A major critical point in evaluating possible effects of video gaming on cognition lies in the definition of “video gaming” itself. Here, studies as well as meta-analyses and reviews do not draw on a consistent definition. “Video gaming” is only useful to broadly outline the scope of a question.

  9. The impact of video games on Students’ educational outcomes

    Abstract. The use of video games among both youths and elders has been recognised as a remarkable trend and a global success for the video game companies. Although some of these games might be useful in certain academic areas, the majority of students have been using them from a leisure perspective and consequently became addicted users.

  10. The Playing Brain. The Impact of Video Games on Cognition and ...

    Namely, it analyzes the most debated and educationally relevant problems on the relationship between video games, cognition and behavior: 1. video gameseffects on cognitive function; 2. video gameseffects on attention and addictive behaviors; 3. video games and prosocial or aggressive behavior.