## Have a thesis expert improve your writing

Check your thesis for plagiarism in 10 minutes, generate your apa citations for free.

- Knowledge Base
- Null and Alternative Hypotheses | Definitions & Examples

## Null and Alternative Hypotheses | Definitions & Examples

Published on 5 October 2022 by Shaun Turney . Revised on 6 December 2022.

The null and alternative hypotheses are two competing claims that researchers weigh evidence for and against using a statistical test :

- Null hypothesis (H 0 ): There’s no effect in the population .
- Alternative hypothesis (H A ): There’s an effect in the population.

The effect is usually the effect of the independent variable on the dependent variable .

## Table of contents

Answering your research question with hypotheses, what is a null hypothesis, what is an alternative hypothesis, differences between null and alternative hypotheses, how to write null and alternative hypotheses, frequently asked questions about null and alternative hypotheses.

The null and alternative hypotheses offer competing answers to your research question . When the research question asks “Does the independent variable affect the dependent variable?”, the null hypothesis (H 0 ) answers “No, there’s no effect in the population.” On the other hand, the alternative hypothesis (H A ) answers “Yes, there is an effect in the population.”

The null and alternative are always claims about the population. That’s because the goal of hypothesis testing is to make inferences about a population based on a sample . Often, we infer whether there’s an effect in the population by looking at differences between groups or relationships between variables in the sample.

You can use a statistical test to decide whether the evidence favors the null or alternative hypothesis. Each type of statistical test comes with a specific way of phrasing the null and alternative hypothesis. However, the hypotheses can also be phrased in a general way that applies to any test.

The null hypothesis is the claim that there’s no effect in the population.

If the sample provides enough evidence against the claim that there’s no effect in the population ( p ≤ α), then we can reject the null hypothesis . Otherwise, we fail to reject the null hypothesis.

Although “fail to reject” may sound awkward, it’s the only wording that statisticians accept. Be careful not to say you “prove” or “accept” the null hypothesis.

Null hypotheses often include phrases such as “no effect”, “no difference”, or “no relationship”. When written in mathematical terms, they always include an equality (usually =, but sometimes ≥ or ≤).

## Examples of null hypotheses

The table below gives examples of research questions and null hypotheses. There’s always more than one way to answer a research question, but these null hypotheses can help you get started.

( ) | ||

Does tooth flossing affect the number of cavities? | Tooth flossing has on the number of cavities. | test: The mean number of cavities per person does not differ between the flossing group (µ ) and the non-flossing group (µ ) in the population; µ = µ . |

Does the amount of text highlighted in the textbook affect exam scores? | The amount of text highlighted in the textbook has on exam scores. | : There is no relationship between the amount of text highlighted and exam scores in the population; β = 0. |

Does daily meditation decrease the incidence of depression? | Daily meditation the incidence of depression.* | test: The proportion of people with depression in the daily-meditation group ( ) is greater than or equal to the no-meditation group ( ) in the population; ≥ . |

*Note that some researchers prefer to always write the null hypothesis in terms of “no effect” and “=”. It would be fine to say that daily meditation has no effect on the incidence of depression and p 1 = p 2 .

The alternative hypothesis (H A ) is the other answer to your research question . It claims that there’s an effect in the population.

Often, your alternative hypothesis is the same as your research hypothesis. In other words, it’s the claim that you expect or hope will be true.

The alternative hypothesis is the complement to the null hypothesis. Null and alternative hypotheses are exhaustive, meaning that together they cover every possible outcome. They are also mutually exclusive, meaning that only one can be true at a time.

Alternative hypotheses often include phrases such as “an effect”, “a difference”, or “a relationship”. When alternative hypotheses are written in mathematical terms, they always include an inequality (usually ≠, but sometimes > or <). As with null hypotheses, there are many acceptable ways to phrase an alternative hypothesis.

## Examples of alternative hypotheses

The table below gives examples of research questions and alternative hypotheses to help you get started with formulating your own.

Does tooth flossing affect the number of cavities? | Tooth flossing has an on the number of cavities. | test: The mean number of cavities per person differs between the flossing group (µ ) and the non-flossing group (µ ) in the population; µ ≠ µ . |

Does the amount of text highlighted in a textbook affect exam scores? | The amount of text highlighted in the textbook has an on exam scores. | : There is a relationship between the amount of text highlighted and exam scores in the population; β ≠ 0. |

Does daily meditation decrease the incidence of depression? | Daily meditation the incidence of depression. | test: The proportion of people with depression in the daily-meditation group ( ) is less than the no-meditation group ( ) in the population; < . |

Null and alternative hypotheses are similar in some ways:

- They’re both answers to the research question
- They both make claims about the population
- They’re both evaluated by statistical tests.

However, there are important differences between the two types of hypotheses, summarized in the following table.

A claim that there is in the population. | A claim that there is in the population. | |

| ||

Equality symbol (=, ≥, or ≤) | Inequality symbol (≠, <, or >) | |

Rejected | Supported | |

Failed to reject | Not supported |

To help you write your hypotheses, you can use the template sentences below. If you know which statistical test you’re going to use, you can use the test-specific template sentences. Otherwise, you can use the general template sentences.

The only thing you need to know to use these general template sentences are your dependent and independent variables. To write your research question, null hypothesis, and alternative hypothesis, fill in the following sentences with your variables:

Does independent variable affect dependent variable ?

- Null hypothesis (H 0 ): Independent variable does not affect dependent variable .
- Alternative hypothesis (H A ): Independent variable affects dependent variable .

## Test-specific

Once you know the statistical test you’ll be using, you can write your hypotheses in a more precise and mathematical way specific to the test you chose. The table below provides template sentences for common statistical tests.

( ) | ||

test
with two groups | The mean dependent variable does not differ between group 1 (µ ) and group 2 (µ ) in the population; µ = µ . | The mean dependent variable differs between group 1 (µ ) and group 2 (µ ) in the population; µ ≠ µ . |

with three groups | The mean dependent variable does not differ between group 1 (µ ), group 2 (µ ), and group 3 (µ ) in the population; µ = µ = µ . | The mean dependent variable of group 1 (µ ), group 2 (µ ), and group 3 (µ ) are not all equal in the population. |

There is no correlation between independent variable and dependent variable in the population; ρ = 0. | There is a correlation between independent variable and dependent variable in the population; ρ ≠ 0. | |

There is no relationship between independent variable and dependent variable in the population; β = 0. | There is a relationship between independent variable and dependent variable in the population; β ≠ 0. | |

Two-proportions test | The dependent variable expressed as a proportion does not differ between group 1 ( ) and group 2 ( ) in the population; = . | The dependent variable expressed as a proportion differs between group 1 ( ) and group 2 ( ) in the population; ≠ . |

Note: The template sentences above assume that you’re performing one-tailed tests . One-tailed tests are appropriate for most studies.

The null hypothesis is often abbreviated as H 0 . When the null hypothesis is written using mathematical symbols, it always includes an equality symbol (usually =, but sometimes ≥ or ≤).

The alternative hypothesis is often abbreviated as H a or H 1 . When the alternative hypothesis is written using mathematical symbols, it always includes an inequality symbol (usually ≠, but sometimes < or >).

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

## Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Turney, S. (2022, December 06). Null and Alternative Hypotheses | Definitions & Examples. Scribbr. Retrieved 11 June 2024, from https://www.scribbr.co.uk/stats/null-and-alternative-hypothesis/

## Is this article helpful?

## Shaun Turney

Other students also liked, levels of measurement: nominal, ordinal, interval, ratio, the standard normal distribution | calculator, examples & uses, types of variables in research | definitions & examples.

## Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

- Knowledge Base

## Hypothesis Testing | A Step-by-Step Guide with Easy Examples

Published on November 8, 2019 by Rebecca Bevans . Revised on June 22, 2023.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics . It is most often used by scientists to test specific predictions, called hypotheses, that arise from theories.

There are 5 main steps in hypothesis testing:

- State your research hypothesis as a null hypothesis and alternate hypothesis (H o ) and (H a or H 1 ).
- Collect data in a way designed to test the hypothesis.
- Perform an appropriate statistical test .
- Decide whether to reject or fail to reject your null hypothesis.
- Present the findings in your results and discussion section.

Though the specific details might vary, the procedure you will use when testing a hypothesis will always follow some version of these steps.

## Table of contents

Step 1: state your null and alternate hypothesis, step 2: collect data, step 3: perform a statistical test, step 4: decide whether to reject or fail to reject your null hypothesis, step 5: present your findings, other interesting articles, frequently asked questions about hypothesis testing.

After developing your initial research hypothesis (the prediction that you want to investigate), it is important to restate it as a null (H o ) and alternate (H a ) hypothesis so that you can test it mathematically.

The alternate hypothesis is usually your initial hypothesis that predicts a relationship between variables. The null hypothesis is a prediction of no relationship between the variables you are interested in.

- H 0 : Men are, on average, not taller than women. H a : Men are, on average, taller than women.

## Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

- Academic style
- Vague sentences
- Style consistency

See an example

For a statistical test to be valid , it is important to perform sampling and collect data in a way that is designed to test your hypothesis. If your data are not representative, then you cannot make statistical inferences about the population you are interested in.

There are a variety of statistical tests available, but they are all based on the comparison of within-group variance (how spread out the data is within a category) versus between-group variance (how different the categories are from one another).

If the between-group variance is large enough that there is little or no overlap between groups, then your statistical test will reflect that by showing a low p -value . This means it is unlikely that the differences between these groups came about by chance.

Alternatively, if there is high within-group variance and low between-group variance, then your statistical test will reflect that with a high p -value. This means it is likely that any difference you measure between groups is due to chance.

Your choice of statistical test will be based on the type of variables and the level of measurement of your collected data .

- an estimate of the difference in average height between the two groups.
- a p -value showing how likely you are to see this difference if the null hypothesis of no difference is true.

Based on the outcome of your statistical test, you will have to decide whether to reject or fail to reject your null hypothesis.

In most cases you will use the p -value generated by your statistical test to guide your decision. And in most cases, your predetermined level of significance for rejecting the null hypothesis will be 0.05 – that is, when there is a less than 5% chance that you would see these results if the null hypothesis were true.

In some cases, researchers choose a more conservative level of significance, such as 0.01 (1%). This minimizes the risk of incorrectly rejecting the null hypothesis ( Type I error ).

## Here's why students love Scribbr's proofreading services

Discover proofreading & editing

The results of hypothesis testing will be presented in the results and discussion sections of your research paper , dissertation or thesis .

In the results section you should give a brief summary of the data and a summary of the results of your statistical test (for example, the estimated difference between group means and associated p -value). In the discussion , you can discuss whether your initial hypothesis was supported by your results or not.

In the formal language of hypothesis testing, we talk about rejecting or failing to reject the null hypothesis. You will probably be asked to do this in your statistics assignments.

However, when presenting research results in academic papers we rarely talk this way. Instead, we go back to our alternate hypothesis (in this case, the hypothesis that men are on average taller than women) and state whether the result of our test did or did not support the alternate hypothesis.

If your null hypothesis was rejected, this result is interpreted as “supported the alternate hypothesis.”

These are superficial differences; you can see that they mean the same thing.

You might notice that we don’t say that we reject or fail to reject the alternate hypothesis . This is because hypothesis testing is not designed to prove or disprove anything. It is only designed to test whether a pattern we measure could have arisen spuriously, or by chance.

If we reject the null hypothesis based on our research (i.e., we find that it is unlikely that the pattern arose by chance), then we can say our test lends support to our hypothesis . But if the pattern does not pass our decision rule, meaning that it could have arisen by chance, then we say the test is inconsistent with our hypothesis .

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

- Normal distribution
- Descriptive statistics
- Measures of central tendency
- Correlation coefficient

Methodology

- Cluster sampling
- Stratified sampling
- Types of interviews
- Cohort study
- Thematic analysis

Research bias

- Implicit bias
- Cognitive bias
- Survivorship bias
- Availability heuristic
- Nonresponse bias
- Regression to the mean

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.

## Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bevans, R. (2023, June 22). Hypothesis Testing | A Step-by-Step Guide with Easy Examples. Scribbr. Retrieved June 12, 2024, from https://www.scribbr.com/statistics/hypothesis-testing/

## Is this article helpful?

## Rebecca Bevans

Other students also liked, choosing the right statistical test | types & examples, understanding p values | definition and examples, what is your plagiarism score.

## Hypothesis Testing (cont...)

Hypothesis testing, the null and alternative hypothesis.

In order to undertake hypothesis testing you need to express your research hypothesis as a null and alternative hypothesis. The null hypothesis and alternative hypothesis are statements regarding the differences or effects that occur in the population. You will use your sample to test which statement (i.e., the null hypothesis or alternative hypothesis) is most likely (although technically, you test the evidence against the null hypothesis). So, with respect to our teaching example, the null and alternative hypothesis will reflect statements about all statistics students on graduate management courses.

The null hypothesis is essentially the "devil's advocate" position. That is, it assumes that whatever you are trying to prove did not happen ( hint: it usually states that something equals zero). For example, the two different teaching methods did not result in different exam performances (i.e., zero difference). Another example might be that there is no relationship between anxiety and athletic performance (i.e., the slope is zero). The alternative hypothesis states the opposite and is usually the hypothesis you are trying to prove (e.g., the two different teaching methods did result in different exam performances). Initially, you can state these hypotheses in more general terms (e.g., using terms like "effect", "relationship", etc.), as shown below for the teaching methods example:

Null Hypotheses (H ): | Undertaking seminar classes has no effect on students' performance. |

Alternative Hypothesis (H ): | Undertaking seminar class has a positive effect on students' performance. |

Depending on how you want to "summarize" the exam performances will determine how you might want to write a more specific null and alternative hypothesis. For example, you could compare the mean exam performance of each group (i.e., the "seminar" group and the "lectures-only" group). This is what we will demonstrate here, but other options include comparing the distributions , medians , amongst other things. As such, we can state:

Null Hypotheses (H ): | The mean exam mark for the "seminar" and "lecture-only" teaching methods is the same in the population. |

Alternative Hypothesis (H ): | The mean exam mark for the "seminar" and "lecture-only" teaching methods is not the same in the population. |

Now that you have identified the null and alternative hypotheses, you need to find evidence and develop a strategy for declaring your "support" for either the null or alternative hypothesis. We can do this using some statistical theory and some arbitrary cut-off points. Both these issues are dealt with next.

## Significance levels

The level of statistical significance is often expressed as the so-called p -value . Depending on the statistical test you have chosen, you will calculate a probability (i.e., the p -value) of observing your sample results (or more extreme) given that the null hypothesis is true . Another way of phrasing this is to consider the probability that a difference in a mean score (or other statistic) could have arisen based on the assumption that there really is no difference. Let us consider this statement with respect to our example where we are interested in the difference in mean exam performance between two different teaching methods. If there really is no difference between the two teaching methods in the population (i.e., given that the null hypothesis is true), how likely would it be to see a difference in the mean exam performance between the two teaching methods as large as (or larger than) that which has been observed in your sample?

So, you might get a p -value such as 0.03 (i.e., p = .03). This means that there is a 3% chance of finding a difference as large as (or larger than) the one in your study given that the null hypothesis is true. However, you want to know whether this is "statistically significant". Typically, if there was a 5% or less chance (5 times in 100 or less) that the difference in the mean exam performance between the two teaching methods (or whatever statistic you are using) is as different as observed given the null hypothesis is true, you would reject the null hypothesis and accept the alternative hypothesis. Alternately, if the chance was greater than 5% (5 times in 100 or more), you would fail to reject the null hypothesis and would not accept the alternative hypothesis. As such, in this example where p = .03, we would reject the null hypothesis and accept the alternative hypothesis. We reject it because at a significance level of 0.03 (i.e., less than a 5% chance), the result we obtained could happen too frequently for us to be confident that it was the two teaching methods that had an effect on exam performance.

Whilst there is relatively little justification why a significance level of 0.05 is used rather than 0.01 or 0.10, for example, it is widely used in academic research. However, if you want to be particularly confident in your results, you can set a more stringent level of 0.01 (a 1% chance or less; 1 in 100 chance or less).

## One- and two-tailed predictions

When considering whether we reject the null hypothesis and accept the alternative hypothesis, we need to consider the direction of the alternative hypothesis statement. For example, the alternative hypothesis that was stated earlier is:

Alternative Hypothesis (H ): | Undertaking seminar classes has a positive effect on students' performance. |

The alternative hypothesis tells us two things. First, what predictions did we make about the effect of the independent variable(s) on the dependent variable(s)? Second, what was the predicted direction of this effect? Let's use our example to highlight these two points.

Sarah predicted that her teaching method (independent variable: teaching method), whereby she not only required her students to attend lectures, but also seminars, would have a positive effect (that is, increased) students' performance (dependent variable: exam marks). If an alternative hypothesis has a direction (and this is how you want to test it), the hypothesis is one-tailed. That is, it predicts direction of the effect. If the alternative hypothesis has stated that the effect was expected to be negative, this is also a one-tailed hypothesis.

Alternatively, a two-tailed prediction means that we do not make a choice over the direction that the effect of the experiment takes. Rather, it simply implies that the effect could be negative or positive. If Sarah had made a two-tailed prediction, the alternative hypothesis might have been:

Alternative Hypothesis (H ): | Undertaking seminar classes has an effect on students' performance. |

In other words, we simply take out the word "positive", which implies the direction of our effect. In our example, making a two-tailed prediction may seem strange. After all, it would be logical to expect that "extra" tuition (going to seminar classes as well as lectures) would either have a positive effect on students' performance or no effect at all, but certainly not a negative effect. However, this is just our opinion (and hope) and certainly does not mean that we will get the effect we expect. Generally speaking, making a one-tail prediction (i.e., and testing for it this way) is frowned upon as it usually reflects the hope of a researcher rather than any certainty that it will happen. Notable exceptions to this rule are when there is only one possible way in which a change could occur. This can happen, for example, when biological activity/presence in measured. That is, a protein might be "dormant" and the stimulus you are using can only possibly "wake it up" (i.e., it cannot possibly reduce the activity of a "dormant" protein). In addition, for some statistical tests, one-tailed tests are not possible.

## Rejecting or failing to reject the null hypothesis

Let's return finally to the question of whether we reject or fail to reject the null hypothesis.

If our statistical analysis shows that the significance level is below the cut-off value we have set (e.g., either 0.05 or 0.01), we reject the null hypothesis and accept the alternative hypothesis. Alternatively, if the significance level is above the cut-off value, we fail to reject the null hypothesis and cannot accept the alternative hypothesis. You should note that you cannot accept the null hypothesis, but only find evidence against it.

## Null Hypothesis Definition and Examples, How to State

What is the null hypothesis, how to state the null hypothesis, null hypothesis overview.

## Why is it Called the “Null”?

The word “null” in this context means that it’s a commonly accepted fact that researchers work to nullify . It doesn’t mean that the statement is null (i.e. amounts to nothing) itself! (Perhaps the term should be called the “nullifiable hypothesis” as that might cause less confusion).

## Why Do I need to Test it? Why not just prove an alternate one?

The short answer is, as a scientist, you are required to ; It’s part of the scientific process. Science uses a battery of processes to prove or disprove theories, making sure than any new hypothesis has no flaws. Including both a null and an alternate hypothesis is one safeguard to ensure your research isn’t flawed. Not including the null hypothesis in your research is considered very bad practice by the scientific community. If you set out to prove an alternate hypothesis without considering it, you are likely setting yourself up for failure. At a minimum, your experiment will likely not be taken seriously.

- Null hypothesis : H 0 : The world is flat.
- Alternate hypothesis: The world is round.

Several scientists, including Copernicus , set out to disprove the null hypothesis. This eventually led to the rejection of the null and the acceptance of the alternate. Most people accepted it — the ones that didn’t created the Flat Earth Society !. What would have happened if Copernicus had not disproved the it and merely proved the alternate? No one would have listened to him. In order to change people’s thinking, he first had to prove that their thinking was wrong .

## How to State the Null Hypothesis from a Word Problem

You’ll be asked to convert a word problem into a hypothesis statement in statistics that will include a null hypothesis and an alternate hypothesis . Breaking your problem into a few small steps makes these problems much easier to handle.

Step 2: Convert the hypothesis to math . Remember that the average is sometimes written as μ.

H 1 : μ > 8.2

Broken down into (somewhat) English, that’s H 1 (The hypothesis): μ (the average) > (is greater than) 8.2

Step 3: State what will happen if the hypothesis doesn’t come true. If the recovery time isn’t greater than 8.2 weeks, there are only two possibilities, that the recovery time is equal to 8.2 weeks or less than 8.2 weeks.

H 0 : μ ≤ 8.2

Broken down again into English, that’s H 0 (The null hypothesis): μ (the average) ≤ (is less than or equal to) 8.2

## How to State the Null Hypothesis: Part Two

But what if the researcher doesn’t have any idea what will happen.

Example Problem: A researcher is studying the effects of radical exercise program on knee surgery patients. There is a good chance the therapy will improve recovery time, but there’s also the possibility it will make it worse. Average recovery times for knee surgery patients is 8.2 weeks.

Step 1: State what will happen if the experiment doesn’t make any difference. That’s the null hypothesis–that nothing will happen. In this experiment, if nothing happens, then the recovery time will stay at 8.2 weeks.

H 0 : μ = 8.2

Broken down into English, that’s H 0 (The null hypothesis): μ (the average) = (is equal to) 8.2

Step 2: Figure out the alternate hypothesis . The alternate hypothesis is the opposite of the null hypothesis. In other words, what happens if our experiment makes a difference?

H 1 : μ ≠ 8.2

In English again, that’s H 1 (The alternate hypothesis): μ (the average) ≠ (is not equal to) 8.2

That’s How to State the Null Hypothesis!

Check out our Youtube channel for more stats tips!

Gonick, L. (1993). The Cartoon Guide to Statistics . HarperPerennial. Kotz, S.; et al., eds. (2006), Encyclopedia of Statistical Sciences , Wiley.

- school Campus Bookshelves
- menu_book Bookshelves
- perm_media Learning Objects
- login Login
- how_to_reg Request Instructor Account
- hub Instructor Commons

## Margin Size

- Download Page (PDF)
- Download Full Book (PDF)
- Periodic Table
- Physics Constants
- Scientific Calculator
- Reference & Cite
- Tools expand_more
- Readability

selected template will load here

This action is not available.

## 6.2: Null and Alternative Hypotheses

- Last updated
- Save as PDF
- Page ID 42729

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

The actual test begins by considering two hypotheses . They are called the null hypothesis and the alternative hypothesis . These hypotheses contain opposing viewpoints.

\(H_0\): The null hypothesis: It is a statement of no difference between the variables—they are not related. This can often be considered the status quo and as a result if you cannot accept the null it requires some action.

\(H_a\): The alternative hypothesis: It is a claim about the population that is contradictory to \(H_0\) and what we conclude when we reject \(H_0\). This is usually what the researcher is trying to prove.

Since the null and alternative hypotheses are contradictory, you must examine evidence to decide if you have enough evidence to reject the null hypothesis or not. The evidence is in the form of sample data.

After you have determined which hypothesis the sample supports, you make a decision. There are two options for a decision. They are "reject \(H_0\)" if the sample information favors the alternative hypothesis or "do not reject \(H_0\)" or "decline to reject \(H_0\)" if the sample information is insufficient to reject the null hypothesis.

equal (=) | not equal \((\neq)\) greater than (>) less than (<) |

greater than or equal to \((\geq)\) | less than (<) |

less than or equal to \((\geq)\) | more than (>) |

\(H_{0}\) always has a symbol with an equal in it. \(H_{a}\) never has a symbol with an equal in it. The choice of symbol depends on the wording of the hypothesis test. However, be aware that many researchers (including one of the co-authors in research work) use = in the null hypothesis, even with > or < as the symbol in the alternative hypothesis. This practice is acceptable because we only make the decision to reject or not reject the null hypothesis.

## Example \(\PageIndex{1}\)

- \(H_{0}\): No more than 30% of the registered voters in Santa Clara County voted in the primary election. \(p \leq 30\)
- \(H_{a}\): More than 30% of the registered voters in Santa Clara County voted in the primary election. \(p > 30\)

## Exercise \(\PageIndex{1}\)

A medical trial is conducted to test whether or not a new medicine reduces cholesterol by 25%. State the null and alternative hypotheses.

- \(H_{0}\): The drug reduces cholesterol by 25%. \(p = 0.25\)
- \(H_{a}\): The drug does not reduce cholesterol by 25%. \(p \neq 0.25\)

## Example \(\PageIndex{2}\)

We want to test whether the mean GPA of students in American colleges is different from 2.0 (out of 4.0). The null and alternative hypotheses are:

- \(H_{0}: \mu = 2.0\)
- \(H_{a}: \mu \neq 2.0\)

## Exercise \(\PageIndex{2}\)

We want to test whether the mean height of eighth graders is 66 inches. State the null and alternative hypotheses. Fill in the correct symbol \((=, \neq, \geq, <, \leq, >)\) for the null and alternative hypotheses.

- \(H_{0}: \mu \_ 66\)
- \(H_{a}: \mu \_ 66\)
- \(H_{0}: \mu = 66\)
- \(H_{a}: \mu \neq 66\)

## Example \(\PageIndex{3}\)

We want to test if college students take less than five years to graduate from college, on the average. The null and alternative hypotheses are:

- \(H_{0}: \mu \geq 5\)
- \(H_{a}: \mu < 5\)

## Exercise \(\PageIndex{3}\)

We want to test if it takes fewer than 45 minutes to teach a lesson plan. State the null and alternative hypotheses. Fill in the correct symbol ( =, ≠, ≥, <, ≤, >) for the null and alternative hypotheses.

- \(H_{0}: \mu \_ 45\)
- \(H_{a}: \mu \_ 45\)
- \(H_{0}: \mu \geq 45\)
- \(H_{a}: \mu < 45\)

## Example \(\PageIndex{4}\)

In an issue of U. S. News and World Report , an article on school standards stated that about half of all students in France, Germany, and Israel take advanced placement exams and a third pass. The same article stated that 6.6% of U.S. students take advanced placement exams and 4.4% pass. Test if the percentage of U.S. students who take advanced placement exams is more than 6.6%. State the null and alternative hypotheses.

- \(H_{0}: p \leq 0.066\)
- \(H_{a}: p > 0.066\)

## Exercise \(\PageIndex{4}\)

On a state driver’s test, about 40% pass the test on the first try. We want to test if more than 40% pass on the first try. Fill in the correct symbol (\(=, \neq, \geq, <, \leq, >\)) for the null and alternative hypotheses.

- \(H_{0}: p \_ 0.40\)
- \(H_{a}: p \_ 0.40\)
- \(H_{0}: p = 0.40\)
- \(H_{a}: p > 0.40\)

## COLLABORATIVE EXERCISE

Bring to class a newspaper, some news magazines, and some Internet articles . In groups, find articles from which your group can write null and alternative hypotheses. Discuss your hypotheses with the rest of the class.

In a hypothesis test , sample data is evaluated in order to arrive at a decision about some type of claim. If certain conditions about the sample are satisfied, then the claim can be evaluated for a population. In a hypothesis test, we:

- Evaluate the null hypothesis , typically denoted with \(H_{0}\). The null is not rejected unless the hypothesis test shows otherwise. The null statement must always contain some form of equality \((=, \leq \text{or} \geq)\)
- Always write the alternative hypothesis , typically denoted with \(H_{a}\) or \(H_{1}\), using less than, greater than, or not equals symbols, i.e., \((\neq, >, \text{or} <)\).
- If we reject the null hypothesis, then we can assume there is enough evidence to support the alternative hypothesis.
- Never state that a claim is proven true or false. Keep in mind the underlying fact that hypothesis testing is based on probability laws; therefore, we can talk only in terms of non-absolute certainties.

## Formula Review

\(H_{0}\) and \(H_{a}\) are contradictory.

equal \((=)\) | greater than or equal to \((\geq)\) | less than or equal to \((\leq)\) | |

has: | not equal \((\neq)\) greater than \((>)\) less than \((<)\) | less than \((<)\) | greater than \((>)\) |

- If \(\alpha \leq p\)-value, then do not reject \(H_{0}\).
- If\(\alpha > p\)-value, then reject \(H_{0}\).

\(\alpha\) is preconceived. Its value is set before the hypothesis test starts. The \(p\)-value is calculated from the data.References

Data from the National Institute of Mental Health. Available online at http://www.nimh.nih.gov/publicat/depression.cfm .

## 13.1 Understanding Null Hypothesis Testing

Learning objectives.

- Explain the purpose of null hypothesis testing, including the role of sampling error.
- Describe the basic logic of null hypothesis testing.
- Describe the role of relationship strength and sample size in determining statistical significance and make reasonable judgments about statistical significance based on these two factors.

## The Purpose of Null Hypothesis Testing

As we have seen, psychological research typically involves measuring one or more variables in a sample and computing descriptive statistics for that sample. In general, however, the researcher’s goal is not to draw conclusions about that sample but to draw conclusions about the population that the sample was selected from. Thus researchers must use sample statistics to draw conclusions about the corresponding values in the population. These corresponding values in the population are called parameters . Imagine, for example, that a researcher measures the number of depressive symptoms exhibited by each of 50 adults with clinical depression and computes the mean number of symptoms. The researcher probably wants to use this sample statistic (the mean number of symptoms for the sample) to draw conclusions about the corresponding population parameter (the mean number of symptoms for adults with clinical depression).

Unfortunately, sample statistics are not perfect estimates of their corresponding population parameters. This is because there is a certain amount of random variability in any statistic from sample to sample. The mean number of depressive symptoms might be 8.73 in one sample of adults with clinical depression, 6.45 in a second sample, and 9.44 in a third—even though these samples are selected randomly from the same population. Similarly, the correlation (Pearson’s r ) between two variables might be +.24 in one sample, −.04 in a second sample, and +.15 in a third—again, even though these samples are selected randomly from the same population. This random variability in a statistic from sample to sample is called sampling error . (Note that the term error here refers to random variability and does not imply that anyone has made a mistake. No one “commits a sampling error.”)

One implication of this is that when there is a statistical relationship in a sample, it is not always clear that there is a statistical relationship in the population. A small difference between two group means in a sample might indicate that there is a small difference between the two group means in the population. But it could also be that there is no difference between the means in the population and that the difference in the sample is just a matter of sampling error. Similarly, a Pearson’s r value of −.29 in a sample might mean that there is a negative relationship in the population. But it could also be that there is no relationship in the population and that the relationship in the sample is just a matter of sampling error.

In fact, any statistical relationship in a sample can be interpreted in two ways:

- There is a relationship in the population, and the relationship in the sample reflects this.
- There is no relationship in the population, and the relationship in the sample reflects only sampling error.

The purpose of null hypothesis testing is simply to help researchers decide between these two interpretations.

## The Logic of Null Hypothesis Testing

Null hypothesis testing is a formal approach to deciding between two interpretations of a statistical relationship in a sample. One interpretation is called the null hypothesis (often symbolized H 0 and read as “H-naught”). This is the idea that there is no relationship in the population and that the relationship in the sample reflects only sampling error. Informally, the null hypothesis is that the sample relationship “occurred by chance.” The other interpretation is called the alternative hypothesis (often symbolized as H 1 ). This is the idea that there is a relationship in the population and that the relationship in the sample reflects this relationship in the population.

Again, every statistical relationship in a sample can be interpreted in either of these two ways: It might have occurred by chance, or it might reflect a relationship in the population. So researchers need a way to decide between them. Although there are many specific null hypothesis testing techniques, they are all based on the same general logic. The steps are as follows:

- Assume for the moment that the null hypothesis is true. There is no relationship between the variables in the population.
- Determine how likely the sample relationship would be if the null hypothesis were true.
- If the sample relationship would be extremely unlikely, then reject the null hypothesis in favor of the alternative hypothesis. If it would not be extremely unlikely, then retain the null hypothesis .

Following this logic, we can begin to understand why Mehl and his colleagues concluded that there is no difference in talkativeness between women and men in the population. In essence, they asked the following question: “If there were no difference in the population, how likely is it that we would find a small difference of d = 0.06 in our sample?” Their answer to this question was that this sample relationship would be fairly likely if the null hypothesis were true. Therefore, they retained the null hypothesis—concluding that there is no evidence of a sex difference in the population. We can also see why Kanner and his colleagues concluded that there is a correlation between hassles and symptoms in the population. They asked, “If the null hypothesis were true, how likely is it that we would find a strong correlation of +.60 in our sample?” Their answer to this question was that this sample relationship would be fairly unlikely if the null hypothesis were true. Therefore, they rejected the null hypothesis in favor of the alternative hypothesis—concluding that there is a positive correlation between these variables in the population.

A crucial step in null hypothesis testing is finding the likelihood of the sample result if the null hypothesis were true. This probability is called the p value . A low p value means that the sample result would be unlikely if the null hypothesis were true and leads to the rejection of the null hypothesis. A p value that is not low means that the sample result would be likely if the null hypothesis were true and leads to the retention of the null hypothesis. But how low must the p value be before the sample result is considered unlikely enough to reject the null hypothesis? In null hypothesis testing, this criterion is called α (alpha) and is almost always set to .05. If there is a 5% chance or less of a result as extreme as the sample result if the null hypothesis were true, then the null hypothesis is rejected. When this happens, the result is said to be statistically significant . If there is greater than a 5% chance of a result as extreme as the sample result when the null hypothesis is true, then the null hypothesis is retained. This does not necessarily mean that the researcher accepts the null hypothesis as true—only that there is not currently enough evidence to reject it. Researchers often use the expression “fail to reject the null hypothesis” rather than “retain the null hypothesis,” but they never use the expression “accept the null hypothesis.”

## The Misunderstood p Value

The p value is one of the most misunderstood quantities in psychological research (Cohen, 1994) [1] . Even professional researchers misinterpret it, and it is not unusual for such misinterpretations to appear in statistics textbooks!

The most common misinterpretation is that the p value is the probability that the null hypothesis is true—that the sample result occurred by chance. For example, a misguided researcher might say that because the p value is .02, there is only a 2% chance that the result is due to chance and a 98% chance that it reflects a real relationship in the population. But this is incorrect . The p value is really the probability of a result at least as extreme as the sample result if the null hypothesis were true. So a p value of .02 means that if the null hypothesis were true, a sample result this extreme would occur only 2% of the time.

You can avoid this misunderstanding by remembering that the p value is not the probability that any particular hypothesis is true or false. Instead, it is the probability of obtaining the sample result if the null hypothesis were true.

“Null Hypothesis” retrieved from http://imgs.xkcd.com/comics/null_hypothesis.png (CC-BY-NC 2.5)

## Role of Sample Size and Relationship Strength

Recall that null hypothesis testing involves answering the question, “If the null hypothesis were true, what is the probability of a sample result as extreme as this one?” In other words, “What is the p value?” It can be helpful to see that the answer to this question depends on just two considerations: the strength of the relationship and the size of the sample. Specifically, the stronger the sample relationship and the larger the sample, the less likely the result would be if the null hypothesis were true. That is, the lower the p value. This should make sense. Imagine a study in which a sample of 500 women is compared with a sample of 500 men in terms of some psychological characteristic, and Cohen’s d is a strong 0.50. If there were really no sex difference in the population, then a result this strong based on such a large sample should seem highly unlikely. Now imagine a similar study in which a sample of three women is compared with a sample of three men, and Cohen’s d is a weak 0.10. If there were no sex difference in the population, then a relationship this weak based on such a small sample should seem likely. And this is precisely why the null hypothesis would be rejected in the first example and retained in the second.

Of course, sometimes the result can be weak and the sample large, or the result can be strong and the sample small. In these cases, the two considerations trade off against each other so that a weak result can be statistically significant if the sample is large enough and a strong relationship can be statistically significant even if the sample is small. Table 13.1 shows roughly how relationship strength and sample size combine to determine whether a sample result is statistically significant. The columns of the table represent the three levels of relationship strength: weak, medium, and strong. The rows represent four sample sizes that can be considered small, medium, large, and extra large in the context of psychological research. Thus each cell in the table represents a combination of relationship strength and sample size. If a cell contains the word Yes , then this combination would be statistically significant for both Cohen’s d and Pearson’s r . If it contains the word No , then it would not be statistically significant for either. There is one cell where the decision for d and r would be different and another where it might be different depending on some additional considerations, which are discussed in Section 13.2 “Some Basic Null Hypothesis Tests”

Sample Size | Weak | Medium | Strong |

Small ( = 20) | No | No | = Maybe = Yes |

Medium ( = 50) | No | Yes | Yes |

Large ( = 100) | = Yes = No | Yes | Yes |

Extra large ( = 500) | Yes | Yes | Yes |

Although Table 13.1 provides only a rough guideline, it shows very clearly that weak relationships based on medium or small samples are never statistically significant and that strong relationships based on medium or larger samples are always statistically significant. If you keep this lesson in mind, you will often know whether a result is statistically significant based on the descriptive statistics alone. It is extremely useful to be able to develop this kind of intuitive judgment. One reason is that it allows you to develop expectations about how your formal null hypothesis tests are going to come out, which in turn allows you to detect problems in your analyses. For example, if your sample relationship is strong and your sample is medium, then you would expect to reject the null hypothesis. If for some reason your formal null hypothesis test indicates otherwise, then you need to double-check your computations and interpretations. A second reason is that the ability to make this kind of intuitive judgment is an indication that you understand the basic logic of this approach in addition to being able to do the computations.

## Statistical Significance Versus Practical Significance

Table 13.1 illustrates another extremely important point. A statistically significant result is not necessarily a strong one. Even a very weak result can be statistically significant if it is based on a large enough sample. This is closely related to Janet Shibley Hyde’s argument about sex differences (Hyde, 2007) [2] . The differences between women and men in mathematical problem solving and leadership ability are statistically significant. But the word significant can cause people to interpret these differences as strong and important—perhaps even important enough to influence the college courses they take or even who they vote for. As we have seen, however, these statistically significant differences are actually quite weak—perhaps even “trivial.”

This is why it is important to distinguish between the statistical significance of a result and the practical significance of that result. Practical significance refers to the importance or usefulness of the result in some real-world context. Many sex differences are statistically significant—and may even be interesting for purely scientific reasons—but they are not practically significant. In clinical practice, this same concept is often referred to as “clinical significance.” For example, a study on a new treatment for social phobia might show that it produces a statistically significant positive effect. Yet this effect still might not be strong enough to justify the time, effort, and other costs of putting it into practice—especially if easier and cheaper treatments that work almost as well already exist. Although statistically significant, this result would be said to lack practical or clinical significance.

“Conditional Risk” retrieved from http://imgs.xkcd.com/comics/conditional_risk.png (CC-BY-NC 2.5)

## Key Takeaways

- Null hypothesis testing is a formal approach to deciding whether a statistical relationship in a sample reflects a real relationship in the population or is just due to chance.
- The logic of null hypothesis testing involves assuming that the null hypothesis is true, finding how likely the sample result would be if this assumption were correct, and then making a decision. If the sample result would be unlikely if the null hypothesis were true, then it is rejected in favor of the alternative hypothesis. If it would not be unlikely, then the null hypothesis is retained.
- The probability of obtaining the sample result if the null hypothesis were true (the p value) is based on two considerations: relationship strength and sample size. Reasonable judgments about whether a sample relationship is statistically significant can often be made by quickly considering these two factors.
- Statistical significance is not the same as relationship strength or importance. Even weak relationships can be statistically significant if the sample size is large enough. It is important to consider relationship strength and the practical significance of a result in addition to its statistical significance.
- Discussion: Imagine a study showing that people who eat more broccoli tend to be happier. Explain for someone who knows nothing about statistics why the researchers would conduct a null hypothesis test.
- The correlation between two variables is r = −.78 based on a sample size of 137.
- The mean score on a psychological characteristic for women is 25 ( SD = 5) and the mean score for men is 24 ( SD = 5). There were 12 women and 10 men in this study.
- In a memory experiment, the mean number of items recalled by the 40 participants in Condition A was 0.50 standard deviations greater than the mean number recalled by the 40 participants in Condition B.
- In another memory experiment, the mean scores for participants in Condition A and Condition B came out exactly the same!
- A student finds a correlation of r = .04 between the number of units the students in his research methods class are taking and the students’ level of stress.
- Cohen, J. (1994). The world is round: p < .05. American Psychologist, 49 , 997–1003. ↵
- Hyde, J. S. (2007). New directions in the study of gender similarities and differences. Current Directions in Psychological Science, 16 , 259–263. ↵

## Share This Book

- Increase Font Size

## Null Hypothesis Examples

ThoughtCo / Hilary Allison

- Scientific Method
- Chemical Laws
- Periodic Table
- Projects & Experiments
- Biochemistry
- Physical Chemistry
- Medical Chemistry
- Chemistry In Everyday Life
- Famous Chemists
- Activities for Kids
- Abbreviations & Acronyms
- Weather & Climate
- Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
- B.A., Physics and Mathematics, Hastings College

In statistical analysis, the null hypothesis assumes there is no meaningful relationship between two variables. Testing the null hypothesis can tell you whether your results are due to the effect of manipulating a dependent variable or due to chance. It's often used in conjunction with an alternative hypothesis, which assumes there is, in fact, a relationship between two variables.

The null hypothesis is among the easiest hypothesis to test using statistical analysis, making it perhaps the most valuable hypothesis for the scientific method. By evaluating a null hypothesis in addition to another hypothesis, researchers can support their conclusions with a higher level of confidence. Below are examples of how you might formulate a null hypothesis to fit certain questions.

## What Is the Null Hypothesis?

The null hypothesis states there is no relationship between the measured phenomenon (the dependent variable ) and the independent variable , which is the variable an experimenter typically controls or changes. You do not need to believe that the null hypothesis is true to test it. On the contrary, you will likely suspect there is a relationship between a set of variables. One way to prove that this is the case is to reject the null hypothesis. Rejecting a hypothesis does not mean an experiment was "bad" or that it didn't produce results. In fact, it is often one of the first steps toward further inquiry.

To distinguish it from other hypotheses , the null hypothesis is written as H 0 (which is read as “H-nought,” "H-null," or "H-zero"). A significance test is used to determine the likelihood that the results supporting the null hypothesis are not due to chance. A confidence level of 95% or 99% is common. Keep in mind, even if the confidence level is high, there is still a small chance the null hypothesis is not true, perhaps because the experimenter did not account for a critical factor or because of chance. This is one reason why it's important to repeat experiments.

## Examples of the Null Hypothesis

To write a null hypothesis, first start by asking a question. Rephrase that question in a form that assumes no relationship between the variables. In other words, assume a treatment has no effect. Write your hypothesis in a way that reflects this.

Are teens better at math than adults? | Age has no effect on mathematical ability. |

Does taking aspirin every day reduce the chance of having a heart attack? | Taking aspirin daily does not affect heart attack risk. |

Do teens use cell phones to access the internet more than adults? | Age has no effect on how cell phones are used for internet access. |

Do cats care about the color of their food? | Cats express no food preference based on color. |

Does chewing willow bark relieve pain? | There is no difference in pain relief after chewing willow bark versus taking a placebo. |

## Other Types of Hypotheses

In addition to the null hypothesis, the alternative hypothesis is also a staple in traditional significance tests . It's essentially the opposite of the null hypothesis because it assumes the claim in question is true. For the first item in the table above, for example, an alternative hypothesis might be "Age does have an effect on mathematical ability."

## Key Takeaways

- In hypothesis testing, the null hypothesis assumes no relationship between two variables, providing a baseline for statistical analysis.
- Rejecting the null hypothesis suggests there is evidence of a relationship between variables.
- By formulating a null hypothesis, researchers can systematically test assumptions and draw more reliable conclusions from their experiments.
- Difference Between Independent and Dependent Variables
- Examples of Independent and Dependent Variables
- What Is a Hypothesis? (Science)
- What 'Fail to Reject' Means in a Hypothesis Test
- Definition of a Hypothesis
- Null Hypothesis Definition and Examples
- Scientific Method Vocabulary Terms
- Null Hypothesis and Alternative Hypothesis
- Hypothesis Test for the Difference of Two Population Proportions
- How to Conduct a Hypothesis Test
- What Is a P-Value?
- What Are the Elements of a Good Hypothesis?
- Hypothesis Test Example
- What Is the Difference Between Alpha and P-Values?
- Understanding Path Analysis
- An Example of a Hypothesis Test

- School Guide
- Mathematics
- Number System and Arithmetic
- Trigonometry
- Probability
- Mensuration
- Maths Formulas
- Integration Formulas
- Differentiation Formulas
- Trigonometry Formulas
- Algebra Formulas
- Mensuration Formula
- Statistics Formulas
- Trigonometric Table

## Null Hypothesis

- Hypothesis Testing Formula
- SQLite IS NULL
- MySQL NOT NULL Constraint
- Real-life Applications of Hypothesis Testing
- Null in JavaScript
- SQL NOT NULL Constraint
- Null Cipher
- Hypothesis in Machine Learning
- Understanding Hypothesis Testing
- Difference between Null and Alternate Hypothesis
- Hypothesis Testing in R Programming
- SQL | NULL functions
- Kotlin Null Safety
- PHP | is_null() Function
- MySQL | NULLIF( ) Function
- Null-Coalescing Operator in C#
- Nullity of a Matrix

Null Hypothesis , often denoted as H 0, is a foundational concept in statistical hypothesis testing. It represents an assumption that no significant difference, effect, or relationship exists between variables within a population. It serves as a baseline assumption, positing no observed change or effect occurring. The null is t he truth or falsity of an idea in analysis.

In this article, we will discuss the null hypothesis in detail, along with some solved examples and questions on the null hypothesis.

Table of Content

## What is Null Hypothesis?

Null hypothesis symbol, formula of null hypothesis, types of null hypothesis, null hypothesis examples, principle of null hypothesis, how do you find null hypothesis, null hypothesis in statistics, null hypothesis and alternative hypothesis, null hypothesis and alternative hypothesis examples, null hypothesis – practice problems.

Null Hypothesis in statistical analysis suggests the absence of statistical significance within a specific set of observed data. Hypothesis testing, using sample data, evaluates the validity of this hypothesis. Commonly denoted as H 0 or simply “null,” it plays an important role in quantitative analysis, examining theories related to markets, investment strategies, or economies to determine their validity.

## Null Hypothesis Meaning

Null Hypothesis represents a default position, often suggesting no effect or difference, against which researchers compare their experimental results. The Null Hypothesis, often denoted as H 0 asserts a default assumption in statistical analysis. It posits no significant difference or effect, serving as a baseline for comparison in hypothesis testing.

The null Hypothesis is represented as H 0 , the Null Hypothesis symbolizes the absence of a measurable effect or difference in the variables under examination.

Certainly, a simple example would be asserting that the mean score of a group is equal to a specified value like stating that the average IQ of a population is 100.

The Null Hypothesis is typically formulated as a statement of equality or absence of a specific parameter in the population being studied. It provides a clear and testable prediction for comparison with the alternative hypothesis. The formulation of the Null Hypothesis typically follows a concise structure, stating the equality or absence of a specific parameter in the population.

## Mean Comparison (Two-sample t-test)

H 0 : μ 1 = μ 2

This asserts that there is no significant difference between the means of two populations or groups.

## Proportion Comparison

H 0 : p 1 − p 2 = 0

This suggests no significant difference in proportions between two populations or conditions.

## Equality in Variance (F-test in ANOVA)

H 0 : σ 1 = σ 2

This states that there’s no significant difference in variances between groups or populations.

## Independence (Chi-square Test of Independence):

H 0 : Variables are independent

This asserts that there’s no association or relationship between categorical variables.

Null Hypotheses vary including simple and composite forms, each tailored to the complexity of the research question. Understanding these types is pivotal for effective hypothesis testing.

## Equality Null Hypothesis (Simple Null Hypothesis)

The Equality Null Hypothesis, also known as the Simple Null Hypothesis, is a fundamental concept in statistical hypothesis testing that assumes no difference, effect or relationship between groups, conditions or populations being compared.

## Non-Inferiority Null Hypothesis

In some studies, the focus might be on demonstrating that a new treatment or method is not significantly worse than the standard or existing one.

## Superiority Null Hypothesis

The concept of a superiority null hypothesis comes into play when a study aims to demonstrate that a new treatment, method, or intervention is significantly better than an existing or standard one.

## Independence Null Hypothesis

In certain statistical tests, such as chi-square tests for independence, the null hypothesis assumes no association or independence between categorical variables.

## Homogeneity Null Hypothesis

In tests like ANOVA (Analysis of Variance), the null hypothesis suggests that there’s no difference in population means across different groups.

- Medicine: Null Hypothesis: “No significant difference exists in blood pressure levels between patients given the experimental drug versus those given a placebo.”
- Education: Null Hypothesis: “There’s no significant variation in test scores between students using a new teaching method and those using traditional teaching.”
- Economics: Null Hypothesis: “There’s no significant change in consumer spending pre- and post-implementation of a new taxation policy.”
- Environmental Science: Null Hypothesis: “There’s no substantial difference in pollution levels before and after a water treatment plant’s establishment.”

The principle of the null hypothesis is a fundamental concept in statistical hypothesis testing. It involves making an assumption about the population parameter or the absence of an effect or relationship between variables.

In essence, the null hypothesis (H 0 ) proposes that there is no significant difference, effect, or relationship between variables. It serves as a starting point or a default assumption that there is no real change, no effect or no difference between groups or conditions.

The null hypothesis is usually formulated to be tested against an alternative hypothesis (H 1 or H [Tex]\alpha [/Tex] ) which suggests that there is an effect, difference or relationship present in the population.

## Null Hypothesis Rejection

Rejecting the Null Hypothesis occurs when statistical evidence suggests a significant departure from the assumed baseline. It implies that there is enough evidence to support the alternative hypothesis, indicating a meaningful effect or difference. Null Hypothesis rejection occurs when statistical evidence suggests a deviation from the assumed baseline, prompting a reconsideration of the initial hypothesis.

Identifying the Null Hypothesis involves defining the status quotient, asserting no effect and formulating a statement suitable for statistical analysis.

## When is Null Hypothesis Rejected?

The Null Hypothesis is rejected when statistical tests indicate a significant departure from the expected outcome, leading to the consideration of alternative hypotheses. It occurs when statistical evidence suggests a deviation from the assumed baseline, prompting a reconsideration of the initial hypothesis.

In statistical hypothesis testing, researchers begin by stating the null hypothesis, often based on theoretical considerations or previous research. The null hypothesis is then tested against an alternative hypothesis (Ha), which represents the researcher’s claim or the hypothesis they seek to support.

The process of hypothesis testing involves collecting sample data and using statistical methods to assess the likelihood of observing the data if the null hypothesis were true. This assessment is typically done by calculating a test statistic, which measures the difference between the observed data and what would be expected under the null hypothesis.

In the realm of hypothesis testing, the null hypothesis (H 0 ) and alternative hypothesis (H₁ or Ha) play critical roles. The null hypothesis generally assumes no difference, effect, or relationship between variables, suggesting that any observed change or effect is due to random chance. Its counterpart, the alternative hypothesis, asserts the presence of a significant difference, effect, or relationship between variables, challenging the null hypothesis. These hypotheses are formulated based on the research question and guide statistical analyses.

## Difference Between Null Hypothesis and Alternative Hypothesis

The null hypothesis (H 0 ) serves as the baseline assumption in statistical testing, suggesting no significant effect, relationship, or difference within the data. It often proposes that any observed change or correlation is merely due to chance or random variation. Conversely, the alternative hypothesis (H 1 or Ha) contradicts the null hypothesis, positing the existence of a genuine effect, relationship or difference in the data. It represents the researcher’s intended focus, seeking to provide evidence against the null hypothesis and support for a specific outcome or theory. These hypotheses form the crux of hypothesis testing, guiding the assessment of data to draw conclusions about the population being studied.

Criteria | Null Hypothesis | Alternative Hypothesis |
---|---|---|

Definition | Assumes no effect or difference | Asserts a specific effect or difference |

Symbol | H | H (or Ha) |

Formulation | States equality or absence of parameter | States a specific value or relationship |

Testing Outcome | Rejected if evidence of a significant effect | Accepted if evidence supports the hypothesis |

Let’s envision a scenario where a researcher aims to examine the impact of a new medication on reducing blood pressure among patients. In this context:

Null Hypothesis (H 0 ): “The new medication does not produce a significant effect in reducing blood pressure levels among patients.”

Alternative Hypothesis (H 1 or Ha): “The new medication yields a significant effect in reducing blood pressure levels among patients.”

The null hypothesis implies that any observed alterations in blood pressure subsequent to the medication’s administration are a result of random fluctuations rather than a consequence of the medication itself. Conversely, the alternative hypothesis contends that the medication does indeed generate a meaningful alteration in blood pressure levels, distinct from what might naturally occur or by random chance.

## People Also Read:

Mathematics Maths Formulas Probability and Statistics

Example 1: A researcher claims that the average time students spend on homework is 2 hours per night.

Null Hypothesis (H 0 ): The average time students spend on homework is equal to 2 hours per night. Data: A random sample of 30 students has an average homework time of 1.8 hours with a standard deviation of 0.5 hours. Test Statistic and Decision: Using a t-test, if the calculated t-statistic falls within the acceptance region, we fail to reject the null hypothesis. If it falls in the rejection region, we reject the null hypothesis. Conclusion: Based on the statistical analysis, we fail to reject the null hypothesis, suggesting that there is not enough evidence to dispute the claim of the average homework time being 2 hours per night.

Example 2: A company asserts that the error rate in its production process is less than 1%.

Null Hypothesis (H 0 ): The error rate in the production process is 1% or higher. Data: A sample of 500 products shows an error rate of 0.8%. Test Statistic and Decision: Using a z-test, if the calculated z-statistic falls within the acceptance region, we fail to reject the null hypothesis. If it falls in the rejection region, we reject the null hypothesis. Conclusion: The statistical analysis supports rejecting the null hypothesis, indicating that there is enough evidence to dispute the company’s claim of an error rate of 1% or higher.

Q1. A researcher claims that the average time spent by students on homework is less than 2 hours per day. Formulate the null hypothesis for this claim?

Q2. A manufacturing company states that their new machine produces widgets with a defect rate of less than 5%. Write the null hypothesis to test this claim?

Q3. An educational institute believes that their online course completion rate is at least 60%. Develop the null hypothesis to validate this assertion?

Q4. A restaurant claims that the waiting time for customers during peak hours is not more than 15 minutes. Formulate the null hypothesis for this claim?

Q5. A study suggests that the mean weight loss after following a specific diet plan for a month is more than 8 pounds. Construct the null hypothesis to evaluate this statement?

## Summary – Null Hypothesis and Alternative Hypothesis

The null hypothesis (H 0 ) and alternative hypothesis (H a ) are fundamental concepts in statistical hypothesis testing. The null hypothesis represents the default assumption, stating that there is no significant effect, difference, or relationship between variables. It serves as the baseline against which the alternative hypothesis is tested. In contrast, the alternative hypothesis represents the researcher’s hypothesis or the claim to be tested, suggesting that there is a significant effect, difference, or relationship between variables. The relationship between the null and alternative hypotheses is such that they are complementary, and statistical tests are conducted to determine whether the evidence from the data is strong enough to reject the null hypothesis in favor of the alternative hypothesis. This decision is based on the strength of the evidence and the chosen level of significance. Ultimately, the choice between the null and alternative hypotheses depends on the specific research question and the direction of the effect being investigated.

## FAQs on Null Hypothesis

What does null hypothesis stands for.

The null hypothesis, denoted as H 0 , is a fundamental concept in statistics used for hypothesis testing. It represents the statement that there is no effect or no difference, and it is the hypothesis that the researcher typically aims to provide evidence against.

## How to Form a Null Hypothesis?

A null hypothesis is formed based on the assumption that there is no significant difference or effect between the groups being compared or no association between variables being tested. It often involves stating that there is no relationship, no change, or no effect in the population being studied.

## When Do we reject the Null Hypothesis?

In statistical hypothesis testing, if the p-value (the probability of obtaining the observed results) is lower than the chosen significance level (commonly 0.05), we reject the null hypothesis. This suggests that the data provides enough evidence to refute the assumption made in the null hypothesis.

## What is a Null Hypothesis in Research?

In research, the null hypothesis represents the default assumption or position that there is no significant difference or effect. Researchers often try to test this hypothesis by collecting data and performing statistical analyses to see if the observed results contradict the assumption.

## What Are Alternative and Null Hypotheses?

The null hypothesis (H0) is the default assumption that there is no significant difference or effect. The alternative hypothesis (H1 or Ha) is the opposite, suggesting there is a significant difference, effect or relationship.

## What Does it Mean to Reject the Null Hypothesis?

Rejecting the null hypothesis implies that there is enough evidence in the data to support the alternative hypothesis. In simpler terms, it suggests that there might be a significant difference, effect or relationship between the groups or variables being studied.

## How to Find Null Hypothesis?

Formulating a null hypothesis often involves considering the research question and assuming that no difference or effect exists. It should be a statement that can be tested through data collection and statistical analysis, typically stating no relationship or no change between variables or groups.

## How is Null Hypothesis denoted?

The null hypothesis is commonly symbolized as H 0 in statistical notation.

## What is the Purpose of the Null hypothesis in Statistical Analysis?

The null hypothesis serves as a starting point for hypothesis testing, enabling researchers to assess if there’s enough evidence to reject it in favor of an alternative hypothesis.

## What happens if we Reject the Null hypothesis?

Rejecting the null hypothesis implies that there is sufficient evidence to support an alternative hypothesis, suggesting a significant effect or relationship between variables.

## What are Test for Null Hypothesis?

Various statistical tests, such as t-tests or chi-square tests, are employed to evaluate the validity of the Null Hypothesis in different scenarios.

## Please Login to comment...

Similar reads.

- Geeks Premier League 2023
- Math-Concepts
- Geeks Premier League
- School Learning

## Improve your Coding Skills with Practice

## What kind of Experience do you want to share?

## Stack Exchange Network

Stack Exchange network consists of 183 Q&A communities including Stack Overflow , the largest, most trusted online community for developers to learn, share their knowledge, and build their careers.

Q&A for work

Connect and share knowledge within a single location that is structured and easy to search.

## "Accept null hypothesis" or "fail to reject the null hypothesis"? [duplicate]

I'm trying to conduct a Student's t-test for a table of values while trying to follow the explanation and details found on this website . I understand that if the p-value is

- <.01 then it's really significant
- >.05 it's not significant
- in between then we need more data

But on that page they seem to accept their null hypothesis no matter what the p-value is. So I'm really not understanding now when to accept or reject the null hypothesis.

- When you do you accept or reject the null-hypothesis?
- Is it true that you are never supposed to accept your null hypothesis, but rather reject or fail to reject the null?
- hypothesis-testing

- 7 $\begingroup$ You are right: If the $p$-value is >.05, we often say that we fail to reject the null hypothesis or that we don't have evidence to suggest that the means are different. This does not mean that the null hypothesis is true. But they explain it on the website: "In science, when we accept a hypothesis, this does NOT mean we have decided that the hypothesis is correct or that it is probably correct." I doubt if "accept" is the best term in this case as it can lead to confusion. $\endgroup$ – COOLSerdash Commented Jun 2, 2013 at 16:57
- 2 $\begingroup$ This article here also advocates that the term "accept" should not be used by scientists. $\endgroup$ – COOLSerdash Commented Jun 2, 2013 at 17:19
- 3 $\begingroup$ The explanation on that website is very poorly worded. $\endgroup$ – Peter Flom Commented Jun 2, 2013 at 21:08
- 2 $\begingroup$ "fail to reject the null hypothesis" (or something similar) is the way I generally put it on the rare occasions when I formally test a hypothesis and don't reject the null. I almost never think the null has a chance to be actually true so it's more a lack of evidence against the null than in any sense an acceptance that the null is the case. $\endgroup$ – Glen_b Commented Jun 3, 2013 at 1:53
- 6 $\begingroup$ All this begs the questions of why we need formal hypotheses vs. estimating a quantity of interest and reporting confidence intervals. There is no bifurcation implied by estimation. $\endgroup$ – Frank Harrell Commented Jul 15, 2013 at 12:09

I would suggest that it is much better to say that we "fail to reject the null hypothesis", as there are at least two reasons we might not achieve a significant result: Firstly it may be because H0 is actually true, but it might also be the case that H0 is false, but we have not collected enough data to provide sufficient evidence against it. Consider the case where we are trying to determine whether a coin is biased (H0 being that the coin is fair). If we only observe 4 coin flips, the p-value can never be less than 0.05, even if the coin is so biased it has a head on both sides, so we will always "fail to reject the null hypothesis". Clearly in that case we wouldn't want to accept the null hypothesis as it isn't true. Ideally we should perform a power analysis to find out if we can reasonably expect to be able to reject the null hypothesis when it is false, however this isn't usually nearly as straightforward as performing the test itself, which is why it is usually neglected.

Update: The null hypothesis is quite often known to be false before observing the data. For instance a coin (being asymmetric) is almost certainly biased; the magnitude of this bias us undoubtedly negligible, but not precisely zero, which is what the H0 for the usual test of the bias of a coin asserts. If we observe a sufficiently large number of flips, we will eventually be able to detect this miniscule deviation from exact unbiasedness. It would be odd then to accept the "null hypothesis" in this case as we know before performing the test that it is certainly false. The test is certainly still useful though as we are generally interested in whether the coin is practically biased.

- 1 $\begingroup$ And what if the Power (from simulations) for that test is really high. Could I say "accept the Null"? $\endgroup$ – An old man in the sea. Commented Feb 19, 2015 at 13:30
- 1 $\begingroup$ That would be better, but there are still a lot that is left implicit, for instance H1 may not be the only alternative to H0 and the relative prior probabilities of H0 and H1 (which only really enter into the test indirectly via $\alpha$ and $\beta$) may be strongly against H0. The real problem is that we really want to know the probability that H0 is true, which a frequentist test can't give us, so it is a good idea to avoid terminology that could be interpreted that way, I like "fail to reject the null hypothesis" as it implies that its meaning is subtle (which it is!). $\endgroup$ – Dikran Marsupial Commented Feb 19, 2015 at 14:13
- 4 $\begingroup$ There is also the point that sometimes you know a-priori that the null hypothesis is certainly false (e.g. that a coin is exactly unbiased), and it would be odd to accept something that you know isn't true even before performing the test. $\endgroup$ – Dikran Marsupial Commented Feb 19, 2015 at 14:16
- $\begingroup$ @dikran-marsupial how can you make an a priori statement about the coin without using some kind of prior though? It seems to me that you want to say that the P(p=0.5) = 0 and P(p!=0.5) = 1 which is true is we treat p as a having a continuous pdf since 0.5 has measure zero. But I don't think we can do this in the frequentist setting since we can't really assign probabilities to H0 and H1 a priori. $\endgroup$ – Alexandru Papiu Commented Jul 27, 2022 at 18:31
- $\begingroup$ @AlexandruPapiu frequentists do make use of prior knowledge, but they try to hide it. For instance the choice of significance level in NHSTs is an application of prior knowledge (this is the error made by the frequentist in the well known XKCD cartoon stats.stackexchange.com/questions/43339/… ). It is physics that tells us we can be sure the coin isn't exactly fair, rather than a matter of probability/statistics, if we have enough data, we will always identify a statistically significant bias. $\endgroup$ – Dikran Marsupial Commented Jul 27, 2022 at 19:29

## Not the answer you're looking for? Browse other questions tagged hypothesis-testing t-test mean p-value or ask your own question .

- Featured on Meta
- Upcoming sign-up experiments related to tags

## Hot Network Questions

- Is it possible to avoid ending Time Stop by making attacks from inside an Antimagic Field?
- Aligning surveyed point layers in QGIS
- If the supernatural were real, would we be able to study it scientifically?
- Lilypond scaling a score with many parts to avoid over-full pages
- Can a 15-year-old travel alone with an expired Jamaican passport and a valid green card?
- What is the goal of the message “astronaut use only” written on one Hubble's module?
- Bringing a game console into Saudi Arabia
- How can photons interact with nuclei?
- Composition of vectorvalued functions
- Can I remove an appimage file?
- Syntax highlighting with lua
- Is “stuff” used correctly in “ There are all kinds of animals: lions, elephants and stuff.”
- why std::is_same<int, *(int*)>::value is false?
- Curve Tangent direction always changing depending on extrude
- *Friendly* coloring of a digraph
- Are these labels or stickers?
- How does gravity overpower a vacuum?
- Maximum Power Transfer Theorem Question
- Question about the sum of odd powers equation
- Schengen visa issued by Germany - Is a layover in Vienna okay before heading to Berlin?
- How do I open the locked door in Fungal Wastes?
- Unpaired socks in my lap
- Do abandoned buildings count as broken rooms for the purposes of downtime rules?
- Can You Put a Cardboard Pizza Box in the Oven?

Root out friction in every digital experience, super-charge conversion rates, and optimise digital self-service

Uncover insights from any interaction, deliver AI-powered agent coaching, and reduce cost to serve

Increase revenue and loyalty with real-time insights and recommendations delivered straight to teams on the ground

Know how your people feel and empower managers to improve employee engagement, productivity, and retention

Take action in the moments that matter most along the employee journey and drive bottom line growth

Whatever they’re are saying, wherever they’re saying it, know exactly what’s going on with your people

Get faster, richer insights with qual and quant tools that make powerful market research available to everyone

Run concept tests, pricing studies, prototyping + more with fast, powerful studies designed by UX research experts

Track your brand performance 24/7 and act quickly to respond to opportunities and challenges in your market

Meet the operating system for experience management

- Free Account
- Product Demos
- For Digital
- For Customer Care
- For Human Resources
- For Researchers
- Financial Services
- All Industries

Popular Use Cases

- Customer Experience
- Employee Experience
- Employee Exit Interviews
- Net Promoter Score
- Voice of Customer
- Customer Success Hub
- Product Documentation
- Training & Certification
- XM Institute
- Popular Resources
- Customer Stories
- Artificial Intelligence
- Market Research
- Partnerships
- Marketplace

The annual gathering of the experience leaders at the world’s iconic brands building breakthrough business results.

- English/AU & NZ
- Español/Europa
- Español/América Latina
- Português Brasileiro
- REQUEST DEMO
- Experience Management
- Survey Analysis
- Popular Statistical Analysis Methods

## Try Qualtrics for free

How to use statistical analysis methods and tests for surveys.

16 min read Get more from your survey results with tried and trusted statistical tests and analysis methods. The kind of data analysis you choose depends on your survey data, so it makes sense to understand as many statistical analysis options as possible. Here’s a one-stop guide.

## Why use survey statistical analysis methods?

Using statistical analysis for survey data is a best practice for businesses and market researchers. But why?

Statistical tests can help you improve your knowledge of the market, create better experiences for your customers, give employees more of what they need to do their jobs, and sell more of your products and services to the people that want them. As data becomes more available and easier to manage using digital tools, businesses are increasingly using it to make decisions, rather than relying on gut instinct or opinion.

When it comes to survey data , collection is only half the picture. What you do with your results can make the difference between uninspiring top-line findings and deep, revelatory insights. Using data processing tools and techniques like statistical tests can help you discover:

- whether the trends you see in your data are meaningful or just happened by chance
- what your results mean in the context of other information you have
- whether one factor affecting your business is more important than others
- what your next research question should be
- how to generate insights that lead to meaningful changes

There are several types of statistical analysis for surveys . The one you choose will depend on what you want to know, what type of data you have, the method of data collection, how much time and resources you have available, and the level of sophistication of your data analysis software.

Learn how Qualtrics iQ can help you with advanced statistical analysis

## Before you start

Whichever statistical techniques or methods you decide to use, there are a few things to consider before you begin.

## Nail your sampling approach

One of the most important aspects of survey research is getting your sampling technique right and choosing the right sample size . Sampling allows you to study a large population without having to survey every member of it. A sample, if it is chosen correctly, represents the larger population, so you can study your sample data and then use the results to confidently predict what would be found in the population at large.

There will always be some discrepancy between the sample data and the population, a phenomenon known as sampling error , but with a well-designed study, this error is usually so small that the results are still valuable.

There are several sampling methods, including probabilit y and non-probability sampling . Like statistical analysis, the method you choose will depend on what you want to know, the type of data you are collecting and practical constraints around what is possible.

## Define your null hypothesis and alternative hypothesis

A null hypothesis is a prediction you make at the start of your research process to help define what you want to find out. It’s called a null hypothesis because you predict that your expected outcome won’t happen – that it will be null and void. Put simply: you work to reject, nullify or disprove the null hypothesis.

Along with your null hypothesis, you’ll define the alternative hypothesis, which states that what you expect to happen will happen.

For example, your null hypothesis might be that you’ll find no relationship between two variables, and your alternative hypothesis might be that you’ll find a correlation between them. If you disprove the null hypothesis, either your alternative hypothesis is true or something else is happening. Either way, it points you towards your next research question.

## Use a benchmark

Benchmarking is a way of standardizing – leveling the playing field – so that you get a clearer picture of what your results are telling you. It involves taking outside factors into account so that you can adjust the parameters of your research and have a more precise understanding of what’s happening.

Benchmarking techniques use weighting to adjust for variables that may affect overall results. What does that mean? Well for example, imagine you’re interested in the growth of crops over a season. Your benchmarking will take into account variables that have an effect on crop growth, such as rainfall, hours of sunlight, any pests or diseases, type and frequency of fertilizer, so that you can adjust for anything unusual that might have happened, such as an unexpected plant disease outbreak on a single farm within your sample that would skew your results.

With benchmarks in place, you have a reference for what is “standard” in your area of interest, so that you can better identify and investigate variance from the norm.

The goal, as in so much of survey data analysis, is to make sure that your sample is representative of the whole population, and that any comparisons with other data are like-for-like.

## Inferential or descriptive?

Statistical methods can be divided into inferential statistics and descriptive statistics.

- Descriptive statistics shed light on how the data is distributed across the population of interest, giving you details like variance within a group and mean values for measurements.
- Inferential statistics help you to make judgments and predict what might happen in the future, or to extrapolate from the sample you are studying to the whole population. Inferential statistics are the types of analyses used to test a null hypothesis. We’ll mostly discuss inferential statistics in this guide.

## Types of statistical analysis

Regression analysis.

Regression is a statistical technique used for working out the relationship between two (or more) variables.

To understand regressions, we need a quick terminology check:

- Independent variables are “standalone” phenomena (in the context of the study) that influence dependent variables
- Dependent variables are things that change as a result of their relationship to independent variables

Let’s use an example: if we’re looking at crop growth during the month of August in Iowa, that’s our dependent variable. It’s affected by independent variables including sunshine, rainfall, pollution levels and the prevalence of certain bugs and pests.

A change in a dependent variable depends on, and is associated with, a change in one (or more) of the independent variables.

- Linear regression uses a single independent variable to predict an outcome of the dependent variable.
- Multiple regression uses at least two independent variables to predict the effect on the dependent variable. A multiple regression can be linear or non-linear.

The results from a linear regression analysis are shown as a graph with variables on the axes and a ‘regression curve’ that shows the relationships between them. Data is rarely directly proportional, so there’s usually some degree of curve rather than a straight line.

With this kind of statistical test, the null hypothesis is that there is no relationship between the dependent variable and the independent variable. The resulting graph would probably (though not always) look quite random rather than following a clear line.

Regression is a useful test statistic as you’re able to identify not only whether a relationship is statistically significant, but the precise impact of a change in your independent variable.

The T-test (aka Student’s T-test) is a tool for comparing two data groups which have different mean values. The T-test allows the user to interpret whether differences are statistically significant or merely coincidental.

For example, do women and men have different mean heights? We can tell from running a t-test that there is a meaningful difference between the average height of a man and the average height of a woman – i.e. the difference is statistically significant.

For this test statistic, the null hypothesis would be that there’s no statistically significant difference.

The results of a T-test are expressed in terms of probability (p-value). If the p-value is below a certain threshold, usually 0.05, then you can be very confident that your two groups really are different and it wasn’t just a chance variation between your sample data.

## Analysis of variance (ANOVA) test

Like the T-test, ANOVA (analysis of variance) is a way of testing the differences between groups to see if they’re statistically significant. However, ANOVA allows you to compare three or more groups rather than just two.

Also like the T-test, you’ll start off with the null hypothesis that there is no meaningful difference between your groups.

ANOVA is used with a regression study to find out what effect independent variables have on the dependent variable. It can compare multiple groups simultaneously to see if there is a relationship between them.

An example of ANOVA in action would be studying whether different types of advertisements get different consumer responses. The null hypothesis is that none of them have more effect on the audience than the others and they’re all basically as effective as one another. The audience reaction is the dependent variable here, and the different ads are the independent variables.

## Cluster analysis

Cluster analysis is a way of processing datasets by identifying how closely related the individual data points are. Using cluster analysis, you can identify whether there are defined groups (clusters) within a large pool of data, or if the data is continuously and evenly spread out.

Cluster analysis comes in a few different forms, depending on the type of data you have and what you’re looking to find out. It can be used in an exploratory way, such as discovering clusters in survey data around demographic trends or preferences, or to confirm and clarify an existing alternative or null hypothesis.

Cluster analysis is one of the more popular statistical techniques in market research , since it can be used to uncover market segments and customer groups.

## Factor analysis

Factor analysis is a way to reduce the complexity of your research findings by trading a large number of initial variables for a smaller number of deeper, underlying ones. In performing factor analysis, you uncover “hidden” factors that explain variance (difference from the average) in your findings.

Because it delves deep into the causality behind your data, factor analysis is also a form of research in its own right, as it gives you access to drivers of results that can’t be directly measured.

## Conjoint analysis

Market researchers love to understand and predict why people make the complex choices they do. Conjoint analysis comes closest to doing this: it asks people to make trade-offs when making decisions, just as they do in the real world, then analyses the results to give the most popular outcome.

For example, an investor wants to open a new restaurant in a town. They think one of the following options might be the most profitable:

$20 | $40 | $60 | |

5 miles | 2 miles | 10 miles | |

It’s OK | It’s OK | Loves it! | |

It’s cheap, fairly near home, partner is just OK with it | It’s a bit more expensive but very near home, partner is just OK with it | It’s expensive, quite far from home but partner loves it |

The investor commissions market research. The options are turned into a survey for the residents:

- Which type of restaurant do you prefer? (Gourmet burger/Spanish tapas/Thai)
- What would you be prepared to spend per head? (£20, $40, £60)
- How far would you be willing to travel? (5km, 2km, 10km)
- Would your partner…? (Love it, be OK with it)

There are lots of possible combinations of answers – 54 in this case: (3 restaurant types) x (3 price levels) x (3 distances) x (2 partner preferences). Once the survey data is in, conjoint analysis software processes it to figure out how important each option is in driving customer decisions, which levels for each option are preferred, and by how much.

So, from conjoint analysis, the restaurant investor may discover that there’s a statistically significant preference for an expensive Spanish tapas bar on the outskirts of town – something they may not have considered before.

Get more details: What is a conjoint analysis? Conjoint types and when to use them

## Crosstab analysis

Crosstab (cross-tabulation) is used in quantitative market research to analyze categorical data – that is, variables that are different and mutually exclusive, such as: ‘men’ and ‘women’, or ‘under 30’ and ‘over 30’.

Also known by names like contingency table and data tabulation, crosstab analysis allows you to compare the relationship between two variables by presenting them in easy-to-understand tables.

A statistical method called chi-squared can be used to test whether the variables in a crosstab analysis are independent or not by looking at whether the differences between them are statistically significant.

## Text analysis and sentiment analysis

Analyzing human language is a relatively new form of data processing, and one that offers huge benefits in experience management. As part of the Stats iQ package, TextiQ from Qualtrics uses machine learning and natural language processing to parse and categorize data from text feedback, assigning positive, negative or neutral sentiment to customer messages and reviews.

With this data from text analysis in place, you can then employ statistical tools to analyze trends, make predictions and identify drivers of positive change.

## The easy way to run statistical analysis

As you can see, using statistical methods is a powerful and versatile way to get more value from your research data, whether you’re running a simple linear regression to show a relationship between two variables, or performing natural language processing to evaluate the thoughts and feelings of a huge population.

Knowing whether what you notice in your results is statistically significant or not gives you the green light to confidently make decisions and present findings based on your results, since statistical methods provide a degree of certainty that most people recognize as valid. So having results that are statistically significant is a hugely important detail for businesses as well as academics and researchers.

Fortunately, using statistical methods, even the highly sophisticated kind, doesn’t have to involve years of study. With the right tools at your disposal, you can jump into exploratory data analysis almost straight away.

Our Stats iQ™ product can perform the most complicated statistical tests at the touch of a button using our online survey software , or data brought in from other sources. Turn your data into insights and actions with CoreXM and Stats iQ . Powerful statistical analysis. No stats degree required.

Learn how Qualtrics iQ can help you understand the experience like never before

## Related resources

Analysis & Reporting

## Margin of Error 11 min read

Text analysis 44 min read, sentiment analysis 21 min read, behavioural analytics 12 min read, descriptive statistics 15 min read, statistical significance calculator 18 min read, zero-party data 12 min read, request demo.

Ready to learn more about Qualtrics?

- Skip to secondary menu
- Skip to main content
- Skip to primary sidebar

Statistics By Jim

Making statistics intuitive

## Confidence Intervals: Interpreting, Finding & Formulas

By Jim Frost 10 Comments

## What is a Confidence Interval?

A confidence interval (CI) is a range of values that is likely to contain the value of an unknown population parameter . These intervals represent a plausible domain for the parameter given the characteristics of your sample data. Confidence intervals are derived from sample statistics and are calculated using a specified confidence level.

Population parameters are typically unknown because it is usually impossible to measure entire populations. By using a sample, you can estimate these parameters. However, the estimates rarely equal the parameter precisely thanks to random sampling error . Fortunately, inferential statistics procedures can evaluate a sample and incorporate the uncertainty inherent when using samples. Confidence intervals place a margin of error around the point estimate to help us understand how wrong the estimate might be.

You’ll frequently use confidence intervals to bound the sample mean and standard deviation parameters. But you can also create them for regression coefficients , proportions, rates of occurrence (Poisson), and the differences between populations.

Related post : Populations, Parameters, and Samples in Inferential Statistics

## What is the Confidence Level?

The confidence level is the long-run probability that a series of confidence intervals will contain the true value of the population parameter.

Different random samples drawn from the same population are likely to produce slightly different intervals. If you draw many random samples and calculate a confidence interval for each sample, a percentage of them will contain the parameter.

The confidence level is the percentage of the intervals that contain the parameter. For 95% confidence intervals, an average of 19 out of 20 include the population parameter, as shown below.

The image above shows a hypothetical series of 20 confidence intervals from a study that draws multiple random samples from the same population. The horizontal red dashed line is the population parameter, which is usually unknown. Each blue dot is a the sample’s point estimate for the population parameter. Green lines represent CIs that contain the parameter, while the red line is a CI that does not contain it. The graph illustrates how confidence intervals are not perfect but usually correct.

The CI procedure provides meaningful estimates because it produces ranges that usually contain the parameter. Hence, they present plausible values for the parameter.

Technically, you can create CIs using any confidence level between 0 and 100%. However, the most common confidence level is 95%. Analysts occasionally use 99% and 90%.

Related posts : Populations and Samples and Parameters vs. Statistics ,

## How to Interpret Confidence Intervals

A confidence interval indicates where the population parameter is likely to reside. For example, a 95% confidence interval of the mean [9 11] suggests you can be 95% confident that the population mean is between 9 and 11.

Confidence intervals also help you navigate the uncertainty of how well a sample estimates a value for an entire population.

These intervals start with the point estimate for the sample and add a margin of error around it. The point estimate is the best guess for the parameter value. The margin of error accounts for the uncertainty involved when using a sample to estimate an entire population.

The width of the confidence interval around the point estimate reveals the precision. If the range is narrow, the margin of error is small, and there is only a tiny range of plausible values. That’s a precise estimate. However, if the interval is wide, the margin of error is large, and the actual parameter value is likely to fall somewhere within that more extensive range . That’s an imprecise estimate.

Ideally, you’d like a narrow confidence interval because you’ll have a much better idea of the actual population value!

For example, imagine we have two different samples with a sample mean of 10. It appears both estimates are the same. Now let’s assess the 95% confidence intervals. One interval is [5 15] while the other is [9 11]. The latter range is narrower, suggesting a more precise estimate.

That’s how CIs provide more information than the point estimate (e.g., sample mean) alone.

Related post : Precision vs. Accuracy

## Confidence Intervals for Effect Sizes

Confidence intervals are similarly helpful for understanding an effect size. For example, if you assess a treatment and control group, the mean difference between these groups is the estimated effect size. A 2-sample t-test can construct a confidence interval for the mean difference.

In this scenario, consider both the size and precision of the estimated effect. Ideally, an estimated effect is both large enough to be meaningful and sufficiently precise for you to trust. CIs allow you to assess both of these considerations! Learn more about this distinction in my post about Practical vs. Statistical Significance .

Learn more about how confidence intervals and hypothesis tests are similar .

Related post : Effect Sizes in Statistics

## Avoid a Common Misinterpretation of Confidence Intervals

A frequent misuse is applying confidence intervals to the distribution of sample values. Remember that these ranges apply only to population parameters, not the data values.

For example, a 95% confidence interval [10 15] indicates that we can be 95% confident that the parameter is within that range.

However, it does NOT indicate that 95% of the sample values occur in that range.

If you need to use your sample to find the proportion of data values likely to fall within a range, use a tolerance interval instead.

Related post : See how confidence intervals compare to prediction intervals and tolerance intervals .

## What Affects the Widths of Confidence Intervals?

Ok, so you want narrower CIs for their greater precision. What conditions produce tighter ranges?

Sample size, variability, and the confidence level affect the widths of confidence intervals. The first two are characteristics of your sample, which I’ll cover first.

## Sample Variability

Variability present in your data affects the precision of the estimate. Your confidence intervals will be broader when your sample standard deviation is high.

It makes sense when you think about it. When there is a lot of variability present in your sample, you’re going to be less sure about the estimates it produces. After all, a high standard deviation means your sample data are really bouncing around! That’s not conducive for finding precise estimates.

Unfortunately, you often don’t have much control over data variability. You can institute measurement and data collection procedures that reduce outside sources of variability, but after that, you’re at the mercy of the variability inherent in your subject area. But, if you can reduce external sources of variation, that’ll help you reduce the width of your confidence intervals.

## Sample Size

Increasing your sample size is the primary way to reduce the widths of confidence intervals because, in most cases, you can control it more than the variability. If you don’t change anything else and only increase the sample size, the ranges tend to narrow. Need even tighter CIs? Just increase the sample size some more!

Theoretically, there is no limit, and you can dramatically increase the sample size to produce remarkably narrow ranges. However, logistics, time, and cost issues will constrain your maximum sample size in the real world.

In summary, larger sample sizes and lower variability reduce the margin of error around the point estimate and create narrower confidence intervals. I’ll point out these factors again when we get to the formula later in this post.

Related post : Sample Statistics Are Always Wrong (to Some Extent)!

## Changing the Confidence Level

The confidence level also affects the confidence interval width. However, this factor is a methodology choice separate from your sample’s characteristics.

If you increase the confidence level (e.g., 95% to 99%) while holding the sample size and variability constant, the confidence interval widens. Conversely, decreasing the confidence level (e.g., 95% to 90%) narrows the range.

I’ve found that many students find the effect of changing the confidence level on the width of the range to be counterintuitive.

Imagine you take your knowledge of a subject area and indicate you’re 95% confident that the correct answer lies between 15 and 20. Then I ask you to give me your confidence for it falling between 17 and 18. The correct answer is less likely to fall within the narrower interval, so your confidence naturally decreases.

Conversely, I ask you about your confidence that it’s between 10 and 30. That’s a much wider range, and the correct value is more likely to be in it. Consequently, your confidence grows.

Confidence levels involve a tradeoff between confidence and the interval’s spread. To have more confidence that the parameter falls within the interval, you must widen the interval. Conversely, your confidence necessarily decreases if you use a narrower range.

## Confidence Interval Formula

Confidence intervals account for sampling uncertainty by using critical values, sampling distributions, and standard errors. The precise formula depends on the type of parameter you’re evaluating. The most common type is for the mean, so I’ll stick with that.

You’ll use critical Z-values or t-values to calculate your confidence interval of the mean. T-values produce more accurate confidence intervals when you do not know the population standard deviation. That’s particularly true for sample sizes smaller than 30. For larger samples, the two methods produce similar results. In practice, you’d usually use a t-value.

Below are the confidence interval formulas for both Z and t. However, you’d only use one of them.

- x̄ = the sample mean, which is the point estimate.
- Z = the critical z-value
- t = the critical t-value
- s = the sample standard deviation
- s / √n = the standard error of the mean

The only difference between the two formulas is the critical value. If you’re using the critical z-value, you’ll always use 1.96 for 95% confidence intervals. However, for the t-value, you’ll need to know the degrees of freedom and then look up the critical value in a t-table or online calculator.

To calculate a confidence interval, take the critical value (Z or t) and multiply it by the standard error of the mean (SEM). This value is known as the margin of error (MOE) . Then add and subtract the MOE from the sample mean (x̄) to produce the upper and lower limits of the range.

Related posts : Critical Values , Standard Error of the Mean , and Sampling Distributions

## Interval Widths Revisited

Think back to the discussion about the factors affecting the confidence interval widths. The formula helps you understand how that works. Recall that the critical value * SEM = MOE.

Smaller margins of error produce narrower confidence intervals. By looking at this equation, you can see that the following conditions create a smaller MOE:

- Smaller critical values, which you obtain by decreasing the confidence level.
- Smaller standard deviations, because they’re in the numerator of the SEM.
- Large samples sizes, because its square root is in the denominator of the SEM.

## How to Find a Confidence Interval

Let’s move on to using these formulas to find a confidence interval! For this example, I’ll use a fuel cost dataset that I’ve used in other posts: FuelCosts . The dataset contains a random sample of 25 fuel costs. We want to calculate the 95% confidence interval of the mean.

However, imagine we have only the following summary information instead of the dataset.

- Sample mean: 330.6
- Standard deviation: 154.2

Fortunately, that’s all we need to calculate our 95% confidence interval of the mean.

We need to decide on using the critical Z or t-value. I’ll use a critical t-value because the sample size (25) is less than 30. However, if the summary didn’t provide the sample size, we could use the Z-value method for an approximation.

My next step is to look up the critical t-value using my t-table. In the table, I’ll choose the alpha that equals 1 – the confidence level (1 – 0.95 = 0.05) for a two-sided test. Below is a truncated version of the t-table. Click for the full t-distribution table .

In the table, I see that for a two-sided interval with 25 – 1 = 24 degrees of freedom and an alpha of 0.05, the critical value is 2.064.

## Entering Values into the Confidence Interval Formula

Let’s enter all of this information into the formula.

First, I’ll calculate the margin of error:

Next, I’ll take the sample mean and add and subtract the margin of error from it:

- 330.6 + 63.6 = 394.2
- 330.6 – 63.6 = 267.0

The 95% confidence interval of the mean for fuel costs is 267.0 – 394.2. We can be 95% confident that the population mean falls within this range.

If you had used the critical z-value (1.96), you would enter that into the formula instead of the t-value (2.064) and obtain a slightly different confidence interval. However, t-values produce more accurate results, particularly for smaller samples like this one.

As an aside, the Z-value method always produces narrower confidence intervals than t-values when your sample size is less than infinity. So, basically always! However, that’s not good because Z-values underestimate the uncertainty when you’re using a sample estimate of the standard deviation rather than the actual population value. And you practically never know the population standard deviation.

Neyman, J. (1937). Outline of a Theory of Statistical Estimation Based on the Classical Theory of Probability . Philosophical Transactions of the Royal Society A . 236 (767): 333–380.

## Share this:

## Reader Interactions

April 23, 2024 at 8:37 am

February 24, 2024 at 8:29 am

Thank you so much

February 14, 2024 at 1:56 pm

If I take a sample and create a confidence interval for the mean, can I say that 95% of the mean of the other samples I will take can be found in this range?

February 23, 2024 at 8:40 pm

Unfortunately, that would be an invalid statement. The CI formula uses your sample to estimate the properties of the population to construct the CI. Your estimates are bound to be off by at least a little bit. If you knew the precise properties of the population, you could determine the range in which 95% of random samples from that population would fall. However, again, you don’t know the precise properties of the population. You just have estimates based on your sample.

September 29, 2023 at 6:55 pm

Hi Jim, My confusion is similar to one comment. What I cannot seem to understand is the concept of individual and many CIs and therefore statements such as X% of the CIs.

For a sampling distribution, which itself requires many samples to produce, we try to find a confidence interval. Then how come there are multiple CIs. More specifically “Different random samples drawn from the same population are likely to produce slightly different intervals. If you draw many random samples and calculate a confidence interval for each sample, a percentage of them will contain the parameter.” this is what confuses me. Is interval here represents the range of the samples drawn? If that is true, why is the term CI or interval used for sample range? If not, could you please explain what is mean by an individual CI or how are we calculating confidence interval for each sample? In the image depicting 19 out of 20 will have population parameter, is the green line the range of individual samples or the confidence interval?

Please try to sort this confusion out for me. I find your website really helpful for clearing my statistical concepts. Thank you in advance for helping out. Regards.

September 30, 2023 at 1:52 am

A key point to remember is that inferential statistics occur in the context of drawing many random samples from the same population. Of course, a single study typically draws a single sample. However, if that study were to draw another random sample, it would be somewhat different than the first sample. A third sample would be somewhat different as well. That produces the sampling distribution, which helps you calculate p-values and construct CIs. Inferential statistics procedures use the idea of many samples to incorporate random sampling error into the results.

For CIs, if you were to collect many random samples, a certain percentage of them will contain the population parameter. That percentage is the confidence interval. Again, a single study will only collect a single sample. However, picturing many CIs helps you understand the concept of the confidence level. In practice, a study generates one CI per parameter estimate. But the graph with multiple CIs is just to help you understand the concept of confidence level.

Alternatively, you can think of CIs as an object class. Suppose 100 disparate studies produce 95% CIs. You can assume that about 95 of those CIs actually contain the population parameter. Using statistical procedures, you can estimate the sampling distribution using the sample itself without collecting many samples.

I don’t know what you mean by “Interval here represents the range of samples drawn.” As I write in this article, the CI is an interval of values that likely contain the population parameter. Reread the section titled How to Interpret Confidence Intervals to understand what each one means.

Each CI is estimated from a single sample and a study generates one CI per parameter estimate. However, again, understanding the concept of the confidence level is easier when you picture multiple CIs. But if a single study were to collect multiple samples and produces multiple CIs, that graph is what you’d expect to see. Although, in the real world, you never know for sure whether a CI actually contains the parameter or not.

The green lines represent CIs that contain the population parameter. Red lines represent CIs that do not contain the population parameter. The graph illustrates how CIs are not perfect but they are usually correct. I’ve added text to the article to clarify that image.

I also show you how to calculate the CI for a mean in this article. I’m not sure what more you need to understand there? I’m happy to clarify any part of that.

I hope that helps!

July 6, 2023 at 10:14 am

Hi Jim, This was an excellent article, thank you! I have a question: when computing a CI in its single-sample t-test module, SPSS appears to use the difference between population and sample means as a starting point (so the formula would be (X-bar-mu) +/- tcv(SEM)). I’ve consulted multiple stats books, but none of them compute a CI that way for a single-sample t-test. Maybe I’m just missing something and this is a perfectly acceptable way of doing things (I mean, SPSS does it :-)), but it yields substantially different lower and upper bounds from a CI that uses the traditional X-bar as a starting point. Do you have any insights? Many thanks in advance! Stephen

July 7, 2023 at 2:56 am

Hi Stephen,

I’m not an SPSS user but that formula is confusing. They presented this formula as being for the CI of a sample mean?

I’m not sure why they’re subtracting Mu. For one thing, you almost never know what Mu is because you’d have to measure the entire population. And, if you knew Mu, you wouldn’t need to perform a t-test! Why would you use a sample mean (X-bar) if you knew the population mean? None of it makes sense to me. It must be an error of some kind even if just of documentation.

October 13, 2022 at 8:33 am

Are there strict distinctions between the terms “confident”, “likely”, and “probability”? I’ve seen a number of other sources exclaim that for a given calculated confidence interval, the frequentist interpretation of that is the parameter is either in or not in that interval. They say another frequent misinterpretation is that the parameter lies within a calculated interval with a 95% probability.

It’s very confusing to balance that notion with practical casual communication of data in non-research settings.

October 13, 2022 at 5:43 pm

It is a confusing issue.

In this strictest technical sense, the confidence level is probability that applies to the process but NOT an individual confidence interval. There are several reasons for that.

In the frequentist framework, the probability that an individual CI contains the parameter is either 100% or 0%. It’s either in it or out. The parameter is not a random variable. However, because you don’t know the parameter value, you don’t know which of those two conditions is correct. That’s the conceptual approach. And the mathematics behind the scenes are complementary to that. There’s just no way to calculate the probability that an individual CI contains the parameter.

On the other hand, the process behind creating the intervals will cause X% of the CIs at the Xth confidence level to include that parameter. So, for all 95% CIs, you’d expect 95% of them to contain the parameter value. The confidence level applies to the process, not the individual CIs. Statisticians intentionally used the term “confidence” to describe that as opposed to “probability” hoping to make that distinction.

So, the 95% confidence applies the process but not individual CIs.

However, if you’re thinking that if 95% of many CIs contain the parameter, then surely a single CI has a 95% probability. From a technical standpoint, that is NOT true. However, it sure sounds logical. Most statistics make intuitive sense to me, but I struggle with that one myself. I’ve asked other statisticians to get their take on it. The basic gist of their answers is that there might be other information available which can alter the actual probability. Not all CIs produced by the process have the same probability. For example, if an individual CI is a bit higher or lower than most other CIs for the same thing, the CIs with the unusual values will have lower probabilities for containing the parameters.

I think that makes sense. The only problem is that you often don’t know where your individual CI fits in. That means you don’t know the probability for it specifically. But you do know the overall probability for the process.

The answer for this question is never totally satisfying. Just remember that there is no mathematical way in the frequentist framework to calculate the probability that an individual CI contains the parameter. However, the overall process is designed such that all CIs using a particular confidence level will have the specified proportion containing the parameter. However, you can’t apply that overall proportion to your individual CI because on the technical side there’s no mathematical way to do that and conceptually, you don’t know where your individual CI fits in the entire distribution of CIs.

## Comments and Questions Cancel reply

14 Jun 2024

## Looks bit incorrect to me while choosing Null Hypothesis and Alternative hypothesis.

In the above lecture. To me it looks like, you have chosen the incorrect Null Hypothesis as it should be Ho states Email open rate >= 40% and alternative hypothesis should be Email open rate < 40% as Null Hypothesis is something that we are trying to reject. Can you please check and confirm.?

## Submit an answer

World-Class

Data Science

Learn with instructors from:

## related questions

## Module Five Assignment Guidelines and Rubric - MAT-240-16062-M01 Applied Statistics 2024 C-3 (May -

- Mathematics

Statistics Made Easy

## How to Calculate P-Values in Excel (3 Examples)

In statistics, we use hypothesis tests to determine whether some claim about a population parameter is true or not.

When we perform a hypothesis test, we often receive a t-score test statistic as a result.

Once we find this t-score test statistic, we can then find the p-value associated with it.

If this p-value is less than a certain value (e.g. 0.10, 0.05, 0.01), then we reject the null hypothesis of the test and conclude that our findings are statistically significant.

The following examples show how to calculate a p-value for a test statistic in Excel in three different scenarios.

## Example 1: Calculate P-Value for Two-Tailed Test

Suppose a botanist wants to know if the mean height of a certain species of plant is equal to 15 inches.

In a random sample of 12 plants, she finds that the sample mean height is 14.33 inches and the sample standard deviation is 1.37 inches.

She performs a hypothesis test using the following null and alternative hypotheses:

H 0 (Null Hypothesis): μ= 15 inches

H A (Alternative Hypothesis): μ ≠ 15 inches

The test statistic is calculated as:

- t = ( x – µ) / (s/√ n )
- t = (14.33-15) / (1.37/√ 12 )

The degrees of freedom associated with this test statistic is n-1 = 12-1 = 11 .

To find the p-value for this test statistic, we will use the following formula in Excel:

The following screenshot shows how to use this formula in practice.

The two-tailed p-value is 0.1184 .

Since this value is not less than .05, we fail to reject the null hypothesis. We do not have sufficient evidence to say that the mean height of plants is different from 15 inches.

## Example 2: Calculate P-Value for Left-Tailed Test

Suppose it’s assumed that the average weight of a certain widget produced at a factory is 20 grams. However, one inspector believes the true average weight is less than 20 grams.

To test this, he weighs a simple random sample of 20 widgets and obtains the following information:

- n = 20 widgets
- x = 19.8 grams
- s = 3.1 grams

He then performs a hypothesis test using the following null and alternative hypotheses:

H 0 (Null Hypothesis): μ ≥ 20 grams

H A (Alternative Hypothesis): μ < 20 grams

- t = (19.8-20) / (3.1/√ 20 )

The degrees of freedom associated with this test statistic is n-1 = 20-1 = 19 .

The left-tailed p-value is 0.388044 .

Since this value is not less than .05, the inspector fails to reject the null hypothesis. He does not have sufficient evidence to say that the true mean weight of widgets produced at this factory is less than 20 grams.

Note : We used the argument TRUE to specify that the cumulative distribution function should be used when calculating the p-value.

## Example 3: Calculate P-Value for Right-Tailed Test

Suppose it’s assumed that the average height of a certain species of plant is 10 inches tall. However, one botanist claims the true average height is greater than 10 inches.

To test this claim, she goes out and measures the height of a simple random sample of 15 plants and obtains the following information:

- n = 15 plants
- x = 11.4 inches
- s = 2.5 inches

She then performs a hypothesis test using the following null and alternative hypotheses:

H 0 (Null Hypothesis): μ ≤ 10 inches

H A (Alternative Hypothesis): μ > 10 inches

- t = (11.4-10) / (2.5/√ 15 )

The degrees of freedom associated with this test statistic is n-1 = 15-1 = 14 .

The right-tailed p-value is 0.023901 .

Since this value is less than .05, the botanist can reject the null hypothesis. She has sufficient evidence to say that the true mean height for this species of plant is greater than 10 inches.

## Additional Resources

The following tutorials explain how to perform other common tasks in Excel:

How to Find a P-Value from a Z-Score in Excel How to Find the P-Value of an F-Statistic in Excel How to Find the P-Value of a Chi-Square Statistic in Excel

## Featured Posts

Hey there. My name is Zach Bobbitt. I have a Masters of Science degree in Applied Statistics and I’ve worked on machine learning algorithms for professional businesses in both healthcare and retail. I’m passionate about statistics, machine learning, and data visualization and I created Statology to be a resource for both students and teachers alike. My goal with this site is to help you learn statistics through using simple terms, plenty of real-world examples, and helpful illustrations.

## Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

## Join the Statology Community

Sign up to receive Statology's exclusive study resource: 100 practice problems with step-by-step solutions. Plus, get our latest insights, tutorials, and data analysis tips straight to your inbox!

By subscribing you accept Statology's Privacy Policy.

## IMAGES

## VIDEO

## COMMENTS

A hypothesis test is a formal statistical test we use to reject or fail to reject a statistical hypothesis.. We always use the following steps to perform a hypothesis test: Step 1: State the null and alternative hypotheses. The null hypothesis, denoted as H 0, is the hypothesis that the sample data occurs purely from chance.. The alternative hypothesis, denoted as H A, is the hypothesis that ...

Rejecting the Null Hypothesis. Reject the null hypothesis when the p-value is less than or equal to your significance level. Your sample data favor the alternative hypothesis, which suggests that the effect exists in the population. For a mnemonic device, remember—when the p-value is low, the null must go!

Otherwise, we fail to reject the null hypothesis. Although "fail to reject" may sound awkward, it's the only wording that statisticians accept. Be careful not to say you "prove" or "accept" the null hypothesis. Example: Population on trial. Think of a statistical test as being like a legal trial. The population is accused of the ...

When writing the conclusion of a hypothesis test, we typically include: Whether we reject or fail to reject the null hypothesis. The significance level. A short explanation in the context of the hypothesis test. For example, we would write: We reject the null hypothesis at the 5% significance level.

Use the P-Value method to support or reject null hypothesis. Step 1: State the null hypothesis and the alternate hypothesis ("the claim"). H o :p ≤ 0.23; H 1 :p > 0.23 (claim) Step 2: Compute by dividing the number of positive respondents from the number in the random sample: 63 / 210 = 0.3. Step 3: Find 'p' by converting the stated ...

The null hypothesis is the claim that there's no effect in the population. If the sample provides enough evidence against the claim that there's no effect in the population (p ≤ α), then we can reject the null hypothesis. Otherwise, we fail to reject the null hypothesis. Although "fail to reject" may sound awkward, it's the only ...

State your research hypothesis as a null hypothesis and alternate hypothesis (H o) and (H a or H 1). Collect data in a way designed to test the hypothesis. Perform an appropriate statistical test. Decide whether to reject or fail to reject your null hypothesis. Present the findings in your results and discussion section.

Let's return finally to the question of whether we reject or fail to reject the null hypothesis. If our statistical analysis shows that the significance level is below the cut-off value we have set (e.g., either 0.05 or 0.01), we reject the null hypothesis and accept the alternative hypothesis. Alternatively, if the significance level is above ...

Step 1: Figure out the hypothesis from the problem. The hypothesis is usually hidden in a word problem, and is sometimes a statement of what you expect to happen in the experiment. The hypothesis in the above question is "I expect the average recovery period to be greater than 8.2 weeks.". Step 2: Convert the hypothesis to math.

The p-value (or the observed level of significance) is the smallest level of significance at which you can reject the null hypothesis, assuming the null hypothesis is true. You can also think about the p-value as the total area of the region of rejection. Remember that in a one-tailed test, the regi

The following examples show how to decide to reject or fail to reject the null hypothesis in both simple linear regression and multiple linear regression models. Example 1: Simple Linear Regression Suppose a professor would like to use the number of hours studied to predict the exam score that students will receive in his class.

Decide whether to reject the null hypothesis by comparing the p-value to α (i.e. reject the null hypothesis if p < α) Report your results, including effect sizes and confidence intervals Caution. Suppose you perform a statistical test of the null hypothesis with α = .05 and obtain a p-value of p = .04

Review. In a hypothesis test, sample data is evaluated in order to arrive at a decision about some type of claim.If certain conditions about the sample are satisfied, then the claim can be evaluated for a population. In a hypothesis test, we: Evaluate the null hypothesis, typically denoted with \(H_{0}\).The null is not rejected unless the hypothesis test shows otherwise.

A hypothesis test is a formal statistical test we use to reject or fail to reject a statistical hypothesis.. We always use the following steps to perform a hypothesis test: Step 1: State the null and alternative hypotheses. The null hypothesis, denoted as H 0, is the hypothesis that the sample data occurs purely from chance.. The alternative hypothesis, denoted as H A, is the hypothesis that ...

The steps involved in using the critical value approach to conduct a hypothesis test include: 1. Specify the null and alternative hypotheses. The first step in rejecting any null hypothesis involves stating the null and alternative hypotheses and separating them from each other.

You can reject the null hypothesis if you're following one principle of the scientific method, called falsifiability. This principle states that further research can prove false the results of a previous study. As a researcher, it can be easier to prove that a hypothesis is false, rather than claim that the statement is comprehensively true.

A crucial step in null hypothesis testing is finding the likelihood of the sample result if the null hypothesis were true. This probability is called the p value. A low p value means that the sample result would be unlikely if the null hypothesis were true and leads to the rejection of the null hypothesis. A p value that is not low means that ...

Examples of the Null Hypothesis. To write a null hypothesis, first start by asking a question. Rephrase that question in a form that assumes no relationship between the variables. In other words, assume a treatment has no effect. Write your hypothesis in a way that reflects this. Question.

The "we reject the null hypothesis" is basically a an incantation in a ritual. It doesn't literally mean that we are discarding the null hypothesis as we are confident that it is false. It is just a convention that we proceed with the alternative hypothesis if we can "reject" the null hypothesis.

Null Hypothesis Examples. Example 1: A researcher claims that the average time students spend on homework is 2 hours per night. Solution: Null Hypothesis ... Using a t-test, if the calculated t-statistic falls within the acceptance region, we fail to reject the null hypothesis. If it falls in the rejection region, we reject the null hypothesis.

For the above mentioned example null and alternative hypothesis will be as follows: null: On the average, the dosage sold is 50 mg. alternative: On the average, the dosage sold is not 50 mg. Upon conducting the experiment p-value is greater than say 0.05 for 95% significance level. The conclusion of this test would then be "fail to reject null ...

2. "fail to reject the null hypothesis" (or something similar) is the way I generally put it on the rare occasions when I formally test a hypothesis and don't reject the null. I almost never think the null has a chance to be actually true so it's more a lack of evidence against the null than in any sense an acceptance that the null is the case ...

To decide if we should reject or fail to reject each null hypothesis, we must refer to the p-values in the output of the two-way ANOVA table. The following examples show how to decide to reject or fail to reject the null hypothesis in both a one-way ANOVA and two-way ANOVA. Example 1: One-Way ANOVA

Define your null hypothesis and alternative hypothesis. A null hypothesis is a prediction you make at the start of your research process to help define what you want to find out. It's called a null hypothesis because you predict that your expected outcome won't happen - that it will be null and void. Put simply: you work to reject ...

2Rejecting Null. A low p-value leads to rejecting the null hypothesis, which implies that there is a statistically significant difference detected by the test. In BI, this could mean that a new ...

A confidence interval (CI) is a range of values that is likely to contain the value of an unknown population parameter. These intervals represent a plausible domain for the parameter given the characteristics of your sample data. Confidence intervals are derived from sample statistics and are calculated using a specified confidence level.

Whenever we perform a hypothesis test, we always write a null hypothesis and an alternative hypothesis, which take the following forms: H0 (Null Hypothesis): Population parameter =, ≤, ≥ some value. HA (Alternative Hypothesis): Population parameter <, >, ≠ some value. Note that the null hypothesis always contains the equal sign.

In the above lecture. To me it looks like, you have chosen the incorrect Null Hypothesis as it should be Ho states Email open rate >= 40% and alternative hypothesis should be Email open rate < 40% as Null Hypothesis is something that we are trying to reject. Can you please check and confirm.?

Decide to reject or fail to reject the null hypothesis. Conclusion: Discuss how your test relates to the hypothesis and discuss the statistical signi±cance. Explain in one paragraph how your test decision relates to your hypothesis and whether your conclusions are statistically signi±cant.

If this p-value is less than a certain value (e.g. 0.10, 0.05, 0.01), then we reject the null hypothesis of the test and conclude that our findings are statistically significant. The following examples show how to calculate a p-value for a test statistic in Excel in three different scenarios. Example 1: Calculate P-Value for Two-Tailed Test