Home Blog Design Understanding Data Presentations (Guide + Examples)

Understanding Data Presentations (Guide + Examples)

Cover for guide on data presentation by SlideModel

In this age of overwhelming information, the skill to effectively convey data has become extremely valuable. Initiating a discussion on data presentation types involves thoughtful consideration of the nature of your data and the message you aim to convey. Different types of visualizations serve distinct purposes. Whether you’re dealing with how to develop a report or simply trying to communicate complex information, how you present data influences how well your audience understands and engages with it. This extensive guide leads you through the different ways of data presentation.

Table of Contents

What is a Data Presentation?

What should a data presentation include, line graphs, treemap chart, scatter plot, how to choose a data presentation type, recommended data presentation templates, common mistakes done in data presentation.

A data presentation is a slide deck that aims to disclose quantitative information to an audience through the use of visual formats and narrative techniques derived from data analysis, making complex data understandable and actionable. This process requires a series of tools, such as charts, graphs, tables, infographics, dashboards, and so on, supported by concise textual explanations to improve understanding and boost retention rate.

Data presentations require us to cull data in a format that allows the presenter to highlight trends, patterns, and insights so that the audience can act upon the shared information. In a few words, the goal of data presentations is to enable viewers to grasp complicated concepts or trends quickly, facilitating informed decision-making or deeper analysis.

Data presentations go beyond the mere usage of graphical elements. Seasoned presenters encompass visuals with the art of data storytelling , so the speech skillfully connects the points through a narrative that resonates with the audience. Depending on the purpose – inspire, persuade, inform, support decision-making processes, etc. – is the data presentation format that is better suited to help us in this journey.

To nail your upcoming data presentation, ensure to count with the following elements:

  • Clear Objectives: Understand the intent of your presentation before selecting the graphical layout and metaphors to make content easier to grasp.
  • Engaging introduction: Use a powerful hook from the get-go. For instance, you can ask a big question or present a problem that your data will answer. Take a look at our guide on how to start a presentation for tips & insights.
  • Structured Narrative: Your data presentation must tell a coherent story. This means a beginning where you present the context, a middle section in which you present the data, and an ending that uses a call-to-action. Check our guide on presentation structure for further information.
  • Visual Elements: These are the charts, graphs, and other elements of visual communication we ought to use to present data. This article will cover one by one the different types of data representation methods we can use, and provide further guidance on choosing between them.
  • Insights and Analysis: This is not just showcasing a graph and letting people get an idea about it. A proper data presentation includes the interpretation of that data, the reason why it’s included, and why it matters to your research.
  • Conclusion & CTA: Ending your presentation with a call to action is necessary. Whether you intend to wow your audience into acquiring your services, inspire them to change the world, or whatever the purpose of your presentation, there must be a stage in which you convey all that you shared and show the path to staying in touch. Plan ahead whether you want to use a thank-you slide, a video presentation, or which method is apt and tailored to the kind of presentation you deliver.
  • Q&A Session: After your speech is concluded, allocate 3-5 minutes for the audience to raise any questions about the information you disclosed. This is an extra chance to establish your authority on the topic. Check our guide on questions and answer sessions in presentations here.

Bar charts are a graphical representation of data using rectangular bars to show quantities or frequencies in an established category. They make it easy for readers to spot patterns or trends. Bar charts can be horizontal or vertical, although the vertical format is commonly known as a column chart. They display categorical, discrete, or continuous variables grouped in class intervals [1] . They include an axis and a set of labeled bars horizontally or vertically. These bars represent the frequencies of variable values or the values themselves. Numbers on the y-axis of a vertical bar chart or the x-axis of a horizontal bar chart are called the scale.

Presentation of the data through bar charts

Real-Life Application of Bar Charts

Let’s say a sales manager is presenting sales to their audience. Using a bar chart, he follows these steps.

Step 1: Selecting Data

The first step is to identify the specific data you will present to your audience.

The sales manager has highlighted these products for the presentation.

  • Product A: Men’s Shoes
  • Product B: Women’s Apparel
  • Product C: Electronics
  • Product D: Home Decor

Step 2: Choosing Orientation

Opt for a vertical layout for simplicity. Vertical bar charts help compare different categories in case there are not too many categories [1] . They can also help show different trends. A vertical bar chart is used where each bar represents one of the four chosen products. After plotting the data, it is seen that the height of each bar directly represents the sales performance of the respective product.

It is visible that the tallest bar (Electronics – Product C) is showing the highest sales. However, the shorter bars (Women’s Apparel – Product B and Home Decor – Product D) need attention. It indicates areas that require further analysis or strategies for improvement.

Step 3: Colorful Insights

Different colors are used to differentiate each product. It is essential to show a color-coded chart where the audience can distinguish between products.

  • Men’s Shoes (Product A): Yellow
  • Women’s Apparel (Product B): Orange
  • Electronics (Product C): Violet
  • Home Decor (Product D): Blue

Accurate bar chart representation of data with a color coded legend

Bar charts are straightforward and easily understandable for presenting data. They are versatile when comparing products or any categorical data [2] . Bar charts adapt seamlessly to retail scenarios. Despite that, bar charts have a few shortcomings. They cannot illustrate data trends over time. Besides, overloading the chart with numerous products can lead to visual clutter, diminishing its effectiveness.

For more information, check our collection of bar chart templates for PowerPoint .

Line graphs help illustrate data trends, progressions, or fluctuations by connecting a series of data points called ‘markers’ with straight line segments. This provides a straightforward representation of how values change [5] . Their versatility makes them invaluable for scenarios requiring a visual understanding of continuous data. In addition, line graphs are also useful for comparing multiple datasets over the same timeline. Using multiple line graphs allows us to compare more than one data set. They simplify complex information so the audience can quickly grasp the ups and downs of values. From tracking stock prices to analyzing experimental results, you can use line graphs to show how data changes over a continuous timeline. They show trends with simplicity and clarity.

Real-life Application of Line Graphs

To understand line graphs thoroughly, we will use a real case. Imagine you’re a financial analyst presenting a tech company’s monthly sales for a licensed product over the past year. Investors want insights into sales behavior by month, how market trends may have influenced sales performance and reception to the new pricing strategy. To present data via a line graph, you will complete these steps.

First, you need to gather the data. In this case, your data will be the sales numbers. For example:

  • January: $45,000
  • February: $55,000
  • March: $45,000
  • April: $60,000
  • May: $ 70,000
  • June: $65,000
  • July: $62,000
  • August: $68,000
  • September: $81,000
  • October: $76,000
  • November: $87,000
  • December: $91,000

After choosing the data, the next step is to select the orientation. Like bar charts, you can use vertical or horizontal line graphs. However, we want to keep this simple, so we will keep the timeline (x-axis) horizontal while the sales numbers (y-axis) vertical.

Step 3: Connecting Trends

After adding the data to your preferred software, you will plot a line graph. In the graph, each month’s sales are represented by data points connected by a line.

Line graph in data presentation

Step 4: Adding Clarity with Color

If there are multiple lines, you can also add colors to highlight each one, making it easier to follow.

Line graphs excel at visually presenting trends over time. These presentation aids identify patterns, like upward or downward trends. However, too many data points can clutter the graph, making it harder to interpret. Line graphs work best with continuous data but are not suitable for categories.

For more information, check our collection of line chart templates for PowerPoint and our article about how to make a presentation graph .

A data dashboard is a visual tool for analyzing information. Different graphs, charts, and tables are consolidated in a layout to showcase the information required to achieve one or more objectives. Dashboards help quickly see Key Performance Indicators (KPIs). You don’t make new visuals in the dashboard; instead, you use it to display visuals you’ve already made in worksheets [3] .

Keeping the number of visuals on a dashboard to three or four is recommended. Adding too many can make it hard to see the main points [4]. Dashboards can be used for business analytics to analyze sales, revenue, and marketing metrics at a time. They are also used in the manufacturing industry, as they allow users to grasp the entire production scenario at the moment while tracking the core KPIs for each line.

Real-Life Application of a Dashboard

Consider a project manager presenting a software development project’s progress to a tech company’s leadership team. He follows the following steps.

Step 1: Defining Key Metrics

To effectively communicate the project’s status, identify key metrics such as completion status, budget, and bug resolution rates. Then, choose measurable metrics aligned with project objectives.

Step 2: Choosing Visualization Widgets

After finalizing the data, presentation aids that align with each metric are selected. For this project, the project manager chooses a progress bar for the completion status and uses bar charts for budget allocation. Likewise, he implements line charts for bug resolution rates.

Data analysis presentation example

Step 3: Dashboard Layout

Key metrics are prominently placed in the dashboard for easy visibility, and the manager ensures that it appears clean and organized.

Dashboards provide a comprehensive view of key project metrics. Users can interact with data, customize views, and drill down for detailed analysis. However, creating an effective dashboard requires careful planning to avoid clutter. Besides, dashboards rely on the availability and accuracy of underlying data sources.

For more information, check our article on how to design a dashboard presentation , and discover our collection of dashboard PowerPoint templates .

Treemap charts represent hierarchical data structured in a series of nested rectangles [6] . As each branch of the ‘tree’ is given a rectangle, smaller tiles can be seen representing sub-branches, meaning elements on a lower hierarchical level than the parent rectangle. Each one of those rectangular nodes is built by representing an area proportional to the specified data dimension.

Treemaps are useful for visualizing large datasets in compact space. It is easy to identify patterns, such as which categories are dominant. Common applications of the treemap chart are seen in the IT industry, such as resource allocation, disk space management, website analytics, etc. Also, they can be used in multiple industries like healthcare data analysis, market share across different product categories, or even in finance to visualize portfolios.

Real-Life Application of a Treemap Chart

Let’s consider a financial scenario where a financial team wants to represent the budget allocation of a company. There is a hierarchy in the process, so it is helpful to use a treemap chart. In the chart, the top-level rectangle could represent the total budget, and it would be subdivided into smaller rectangles, each denoting a specific department. Further subdivisions within these smaller rectangles might represent individual projects or cost categories.

Step 1: Define Your Data Hierarchy

While presenting data on the budget allocation, start by outlining the hierarchical structure. The sequence will be like the overall budget at the top, followed by departments, projects within each department, and finally, individual cost categories for each project.

  • Top-level rectangle: Total Budget
  • Second-level rectangles: Departments (Engineering, Marketing, Sales)
  • Third-level rectangles: Projects within each department
  • Fourth-level rectangles: Cost categories for each project (Personnel, Marketing Expenses, Equipment)

Step 2: Choose a Suitable Tool

It’s time to select a data visualization tool supporting Treemaps. Popular choices include Tableau, Microsoft Power BI, PowerPoint, or even coding with libraries like D3.js. It is vital to ensure that the chosen tool provides customization options for colors, labels, and hierarchical structures.

Here, the team uses PowerPoint for this guide because of its user-friendly interface and robust Treemap capabilities.

Step 3: Make a Treemap Chart with PowerPoint

After opening the PowerPoint presentation, they chose “SmartArt” to form the chart. The SmartArt Graphic window has a “Hierarchy” category on the left.  Here, you will see multiple options. You can choose any layout that resembles a Treemap. The “Table Hierarchy” or “Organization Chart” options can be adapted. The team selects the Table Hierarchy as it looks close to a Treemap.

Step 5: Input Your Data

After that, a new window will open with a basic structure. They add the data one by one by clicking on the text boxes. They start with the top-level rectangle, representing the total budget.  

Treemap used for presenting data

Step 6: Customize the Treemap

By clicking on each shape, they customize its color, size, and label. At the same time, they can adjust the font size, style, and color of labels by using the options in the “Format” tab in PowerPoint. Using different colors for each level enhances the visual difference.

Treemaps excel at illustrating hierarchical structures. These charts make it easy to understand relationships and dependencies. They efficiently use space, compactly displaying a large amount of data, reducing the need for excessive scrolling or navigation. Additionally, using colors enhances the understanding of data by representing different variables or categories.

In some cases, treemaps might become complex, especially with deep hierarchies.  It becomes challenging for some users to interpret the chart. At the same time, displaying detailed information within each rectangle might be constrained by space. It potentially limits the amount of data that can be shown clearly. Without proper labeling and color coding, there’s a risk of misinterpretation.

A heatmap is a data visualization tool that uses color coding to represent values across a two-dimensional surface. In these, colors replace numbers to indicate the magnitude of each cell. This color-shaded matrix display is valuable for summarizing and understanding data sets with a glance [7] . The intensity of the color corresponds to the value it represents, making it easy to identify patterns, trends, and variations in the data.

As a tool, heatmaps help businesses analyze website interactions, revealing user behavior patterns and preferences to enhance overall user experience. In addition, companies use heatmaps to assess content engagement, identifying popular sections and areas of improvement for more effective communication. They excel at highlighting patterns and trends in large datasets, making it easy to identify areas of interest.

We can implement heatmaps to express multiple data types, such as numerical values, percentages, or even categorical data. Heatmaps help us easily spot areas with lots of activity, making them helpful in figuring out clusters [8] . When making these maps, it is important to pick colors carefully. The colors need to show the differences between groups or levels of something. And it is good to use colors that people with colorblindness can easily see.

Check our detailed guide on how to create a heatmap here. Also discover our collection of heatmap PowerPoint templates .

Pie charts are circular statistical graphics divided into slices to illustrate numerical proportions. Each slice represents a proportionate part of the whole, making it easy to visualize the contribution of each component to the total.

The size of the pie charts is influenced by the value of data points within each pie. The total of all data points in a pie determines its size. The pie with the highest data points appears as the largest, whereas the others are proportionally smaller. However, you can present all pies of the same size if proportional representation is not required [9] . Sometimes, pie charts are difficult to read, or additional information is required. A variation of this tool can be used instead, known as the donut chart , which has the same structure but a blank center, creating a ring shape. Presenters can add extra information, and the ring shape helps to declutter the graph.

Pie charts are used in business to show percentage distribution, compare relative sizes of categories, or present straightforward data sets where visualizing ratios is essential.

Real-Life Application of Pie Charts

Consider a scenario where you want to represent the distribution of the data. Each slice of the pie chart would represent a different category, and the size of each slice would indicate the percentage of the total portion allocated to that category.

Step 1: Define Your Data Structure

Imagine you are presenting the distribution of a project budget among different expense categories.

  • Column A: Expense Categories (Personnel, Equipment, Marketing, Miscellaneous)
  • Column B: Budget Amounts ($40,000, $30,000, $20,000, $10,000) Column B represents the values of your categories in Column A.

Step 2: Insert a Pie Chart

Using any of the accessible tools, you can create a pie chart. The most convenient tools for forming a pie chart in a presentation are presentation tools such as PowerPoint or Google Slides.  You will notice that the pie chart assigns each expense category a percentage of the total budget by dividing it by the total budget.

For instance:

  • Personnel: $40,000 / ($40,000 + $30,000 + $20,000 + $10,000) = 40%
  • Equipment: $30,000 / ($40,000 + $30,000 + $20,000 + $10,000) = 30%
  • Marketing: $20,000 / ($40,000 + $30,000 + $20,000 + $10,000) = 20%
  • Miscellaneous: $10,000 / ($40,000 + $30,000 + $20,000 + $10,000) = 10%

You can make a chart out of this or just pull out the pie chart from the data.

Pie chart template in data presentation

3D pie charts and 3D donut charts are quite popular among the audience. They stand out as visual elements in any presentation slide, so let’s take a look at how our pie chart example would look in 3D pie chart format.

3D pie chart in data presentation

Step 03: Results Interpretation

The pie chart visually illustrates the distribution of the project budget among different expense categories. Personnel constitutes the largest portion at 40%, followed by equipment at 30%, marketing at 20%, and miscellaneous at 10%. This breakdown provides a clear overview of where the project funds are allocated, which helps in informed decision-making and resource management. It is evident that personnel are a significant investment, emphasizing their importance in the overall project budget.

Pie charts provide a straightforward way to represent proportions and percentages. They are easy to understand, even for individuals with limited data analysis experience. These charts work well for small datasets with a limited number of categories.

However, a pie chart can become cluttered and less effective in situations with many categories. Accurate interpretation may be challenging, especially when dealing with slight differences in slice sizes. In addition, these charts are static and do not effectively convey trends over time.

For more information, check our collection of pie chart templates for PowerPoint .

Histograms present the distribution of numerical variables. Unlike a bar chart that records each unique response separately, histograms organize numeric responses into bins and show the frequency of reactions within each bin [10] . The x-axis of a histogram shows the range of values for a numeric variable. At the same time, the y-axis indicates the relative frequencies (percentage of the total counts) for that range of values.

Whenever you want to understand the distribution of your data, check which values are more common, or identify outliers, histograms are your go-to. Think of them as a spotlight on the story your data is telling. A histogram can provide a quick and insightful overview if you’re curious about exam scores, sales figures, or any numerical data distribution.

Real-Life Application of a Histogram

In the histogram data analysis presentation example, imagine an instructor analyzing a class’s grades to identify the most common score range. A histogram could effectively display the distribution. It will show whether most students scored in the average range or if there are significant outliers.

Step 1: Gather Data

He begins by gathering the data. The scores of each student in class are gathered to analyze exam scores.

NamesScore
Alice78
Bob85
Clara92
David65
Emma72
Frank88
Grace76
Henry95
Isabel81
Jack70
Kate60
Liam89
Mia75
Noah84
Olivia92

After arranging the scores in ascending order, bin ranges are set.

Step 2: Define Bins

Bins are like categories that group similar values. Think of them as buckets that organize your data. The presenter decides how wide each bin should be based on the range of the values. For instance, the instructor sets the bin ranges based on score intervals: 60-69, 70-79, 80-89, and 90-100.

Step 3: Count Frequency

Now, he counts how many data points fall into each bin. This step is crucial because it tells you how often specific ranges of values occur. The result is the frequency distribution, showing the occurrences of each group.

Here, the instructor counts the number of students in each category.

  • 60-69: 1 student (Kate)
  • 70-79: 4 students (David, Emma, Grace, Jack)
  • 80-89: 7 students (Alice, Bob, Frank, Isabel, Liam, Mia, Noah)
  • 90-100: 3 students (Clara, Henry, Olivia)

Step 4: Create the Histogram

It’s time to turn the data into a visual representation. Draw a bar for each bin on a graph. The width of the bar should correspond to the range of the bin, and the height should correspond to the frequency.  To make your histogram understandable, label the X and Y axes.

In this case, the X-axis should represent the bins (e.g., test score ranges), and the Y-axis represents the frequency.

Histogram in Data Presentation

The histogram of the class grades reveals insightful patterns in the distribution. Most students, with seven students, fall within the 80-89 score range. The histogram provides a clear visualization of the class’s performance. It showcases a concentration of grades in the upper-middle range with few outliers at both ends. This analysis helps in understanding the overall academic standing of the class. It also identifies the areas for potential improvement or recognition.

Thus, histograms provide a clear visual representation of data distribution. They are easy to interpret, even for those without a statistical background. They apply to various types of data, including continuous and discrete variables. One weak point is that histograms do not capture detailed patterns in students’ data, with seven compared to other visualization methods.

A scatter plot is a graphical representation of the relationship between two variables. It consists of individual data points on a two-dimensional plane. This plane plots one variable on the x-axis and the other on the y-axis. Each point represents a unique observation. It visualizes patterns, trends, or correlations between the two variables.

Scatter plots are also effective in revealing the strength and direction of relationships. They identify outliers and assess the overall distribution of data points. The points’ dispersion and clustering reflect the relationship’s nature, whether it is positive, negative, or lacks a discernible pattern. In business, scatter plots assess relationships between variables such as marketing cost and sales revenue. They help present data correlations and decision-making.

Real-Life Application of Scatter Plot

A group of scientists is conducting a study on the relationship between daily hours of screen time and sleep quality. After reviewing the data, they managed to create this table to help them build a scatter plot graph:

Participant IDDaily Hours of Screen TimeSleep Quality Rating
193
228
319
4010
519
637
747
856
956
1073
11101
1265
1373
1482
1592
1647
1756
1847
1992
2064
2137
22101
2328
2456
2537
2619
2782
2846
2973
3028
3174
3292
33101
34101
35101

In the provided example, the x-axis represents Daily Hours of Screen Time, and the y-axis represents the Sleep Quality Rating.

Scatter plot in data presentation

The scientists observe a negative correlation between the amount of screen time and the quality of sleep. This is consistent with their hypothesis that blue light, especially before bedtime, has a significant impact on sleep quality and metabolic processes.

There are a few things to remember when using a scatter plot. Even when a scatter diagram indicates a relationship, it doesn’t mean one variable affects the other. A third factor can influence both variables. The more the plot resembles a straight line, the stronger the relationship is perceived [11] . If it suggests no ties, the observed pattern might be due to random fluctuations in data. When the scatter diagram depicts no correlation, whether the data might be stratified is worth considering.

Choosing the appropriate data presentation type is crucial when making a presentation . Understanding the nature of your data and the message you intend to convey will guide this selection process. For instance, when showcasing quantitative relationships, scatter plots become instrumental in revealing correlations between variables. If the focus is on emphasizing parts of a whole, pie charts offer a concise display of proportions. Histograms, on the other hand, prove valuable for illustrating distributions and frequency patterns. 

Bar charts provide a clear visual comparison of different categories. Likewise, line charts excel in showcasing trends over time, while tables are ideal for detailed data examination. Starting a presentation on data presentation types involves evaluating the specific information you want to communicate and selecting the format that aligns with your message. This ensures clarity and resonance with your audience from the beginning of your presentation.

1. Fact Sheet Dashboard for Data Presentation

data presentation research

Convey all the data you need to present in this one-pager format, an ideal solution tailored for users looking for presentation aids. Global maps, donut chats, column graphs, and text neatly arranged in a clean layout presented in light and dark themes.

Use This Template

2. 3D Column Chart Infographic PPT Template

data presentation research

Represent column charts in a highly visual 3D format with this PPT template. A creative way to present data, this template is entirely editable, and we can craft either a one-page infographic or a series of slides explaining what we intend to disclose point by point.

3. Data Circles Infographic PowerPoint Template

data presentation research

An alternative to the pie chart and donut chart diagrams, this template features a series of curved shapes with bubble callouts as ways of presenting data. Expand the information for each arch in the text placeholder areas.

4. Colorful Metrics Dashboard for Data Presentation

data presentation research

This versatile dashboard template helps us in the presentation of the data by offering several graphs and methods to convert numbers into graphics. Implement it for e-commerce projects, financial projections, project development, and more.

5. Animated Data Presentation Tools for PowerPoint & Google Slides

Canvas Shape Tree Diagram Template

A slide deck filled with most of the tools mentioned in this article, from bar charts, column charts, treemap graphs, pie charts, histogram, etc. Animated effects make each slide look dynamic when sharing data with stakeholders.

6. Statistics Waffle Charts PPT Template for Data Presentations

data presentation research

This PPT template helps us how to present data beyond the typical pie chart representation. It is widely used for demographics, so it’s a great fit for marketing teams, data science professionals, HR personnel, and more.

7. Data Presentation Dashboard Template for Google Slides

data presentation research

A compendium of tools in dashboard format featuring line graphs, bar charts, column charts, and neatly arranged placeholder text areas. 

8. Weather Dashboard for Data Presentation

data presentation research

Share weather data for agricultural presentation topics, environmental studies, or any kind of presentation that requires a highly visual layout for weather forecasting on a single day. Two color themes are available.

9. Social Media Marketing Dashboard Data Presentation Template

data presentation research

Intended for marketing professionals, this dashboard template for data presentation is a tool for presenting data analytics from social media channels. Two slide layouts featuring line graphs and column charts.

10. Project Management Summary Dashboard Template

data presentation research

A tool crafted for project managers to deliver highly visual reports on a project’s completion, the profits it delivered for the company, and expenses/time required to execute it. 4 different color layouts are available.

11. Profit & Loss Dashboard for PowerPoint and Google Slides

data presentation research

A must-have for finance professionals. This typical profit & loss dashboard includes progress bars, donut charts, column charts, line graphs, and everything that’s required to deliver a comprehensive report about a company’s financial situation.

Overwhelming visuals

One of the mistakes related to using data-presenting methods is including too much data or using overly complex visualizations. They can confuse the audience and dilute the key message.

Inappropriate chart types

Choosing the wrong type of chart for the data at hand can lead to misinterpretation. For example, using a pie chart for data that doesn’t represent parts of a whole is not right.

Lack of context

Failing to provide context or sufficient labeling can make it challenging for the audience to understand the significance of the presented data.

Inconsistency in design

Using inconsistent design elements and color schemes across different visualizations can create confusion and visual disarray.

Failure to provide details

Simply presenting raw data without offering clear insights or takeaways can leave the audience without a meaningful conclusion.

Lack of focus

Not having a clear focus on the key message or main takeaway can result in a presentation that lacks a central theme.

Visual accessibility issues

Overlooking the visual accessibility of charts and graphs can exclude certain audience members who may have difficulty interpreting visual information.

In order to avoid these mistakes in data presentation, presenters can benefit from using presentation templates . These templates provide a structured framework. They ensure consistency, clarity, and an aesthetically pleasing design, enhancing data communication’s overall impact.

Understanding and choosing data presentation types are pivotal in effective communication. Each method serves a unique purpose, so selecting the appropriate one depends on the nature of the data and the message to be conveyed. The diverse array of presentation types offers versatility in visually representing information, from bar charts showing values to pie charts illustrating proportions. 

Using the proper method enhances clarity, engages the audience, and ensures that data sets are not just presented but comprehensively understood. By appreciating the strengths and limitations of different presentation types, communicators can tailor their approach to convey information accurately, developing a deeper connection between data and audience understanding.

[1] Government of Canada, S.C. (2021) 5 Data Visualization 5.2 Bar Chart , 5.2 Bar chart .  https://www150.statcan.gc.ca/n1/edu/power-pouvoir/ch9/bargraph-diagrammeabarres/5214818-eng.htm

[2] Kosslyn, S.M., 1989. Understanding charts and graphs. Applied cognitive psychology, 3(3), pp.185-225. https://apps.dtic.mil/sti/pdfs/ADA183409.pdf

[3] Creating a Dashboard . https://it.tufts.edu/book/export/html/1870

[4] https://www.goldenwestcollege.edu/research/data-and-more/data-dashboards/index.html

[5] https://www.mit.edu/course/21/21.guide/grf-line.htm

[6] Jadeja, M. and Shah, K., 2015, January. Tree-Map: A Visualization Tool for Large Data. In GSB@ SIGIR (pp. 9-13). https://ceur-ws.org/Vol-1393/gsb15proceedings.pdf#page=15

[7] Heat Maps and Quilt Plots. https://www.publichealth.columbia.edu/research/population-health-methods/heat-maps-and-quilt-plots

[8] EIU QGIS WORKSHOP. https://www.eiu.edu/qgisworkshop/heatmaps.php

[9] About Pie Charts.  https://www.mit.edu/~mbarker/formula1/f1help/11-ch-c8.htm

[10] Histograms. https://sites.utexas.edu/sos/guided/descriptive/numericaldd/descriptiven2/histogram/ [11] https://asq.org/quality-resources/scatter-diagram

Like this article? Please share

Data Analysis, Data Science, Data Visualization Filed under Design

Related Articles

How To Make a Graph on Google Slides

Filed under Google Slides Tutorials • June 3rd, 2024

How To Make a Graph on Google Slides

Creating quality graphics is an essential aspect of designing data presentations. Learn how to make a graph in Google Slides with this guide.

How to Make a Presentation Graph

Filed under Design • March 27th, 2024

How to Make a Presentation Graph

Detailed step-by-step instructions to master the art of how to make a presentation graph in PowerPoint and Google Slides. Check it out!

Turning Your Data into Eye-opening Stories

Filed under Presentation Ideas • February 12th, 2024

Turning Your Data into Eye-opening Stories

What is Data Storytelling is a question that people are constantly asking now. If you seek to understand how to create a data storytelling ppt that will complete the information for your audience, you should read this blog post.

Leave a Reply

data presentation research

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

Present Your Data Like a Pro

  • Joel Schwartzberg

data presentation research

Demystify the numbers. Your audience will thank you.

While a good presentation has data, data alone doesn’t guarantee a good presentation. It’s all about how that data is presented. The quickest way to confuse your audience is by sharing too many details at once. The only data points you should share are those that significantly support your point — and ideally, one point per chart. To avoid the debacle of sheepishly translating hard-to-see numbers and labels, rehearse your presentation with colleagues sitting as far away as the actual audience would. While you’ve been working with the same chart for weeks or months, your audience will be exposed to it for mere seconds. Give them the best chance of comprehending your data by using simple, clear, and complete language to identify X and Y axes, pie pieces, bars, and other diagrammatic elements. Try to avoid abbreviations that aren’t obvious, and don’t assume labeled components on one slide will be remembered on subsequent slides. Every valuable chart or pie graph has an “Aha!” zone — a number or range of data that reveals something crucial to your point. Make sure you visually highlight the “Aha!” zone, reinforcing the moment by explaining it to your audience.

With so many ways to spin and distort information these days, a presentation needs to do more than simply share great ideas — it needs to support those ideas with credible data. That’s true whether you’re an executive pitching new business clients, a vendor selling her services, or a CEO making a case for change.

data presentation research

  • JS Joel Schwartzberg oversees executive communications for a major national nonprofit, is a professional presentation coach, and is the author of Get to the Point! Sharpen Your Message and Make Your Words Matter and The Language of Leadership: How to Engage and Inspire Your Team . You can find him on LinkedIn and X. TheJoelTruth

Partner Center

Call Us Today! +91 99907 48956 | [email protected]

data presentation research

It is the simplest form of data Presentation often used in schools or universities to provide a clearer picture to students, who are better able to capture the concepts effectively through a pictorial Presentation of simple data.

2. Column chart

data presentation research

It is a simplified version of the pictorial Presentation which involves the management of a larger amount of data being shared during the presentations and providing suitable clarity to the insights of the data.

3. Pie Charts

pie-chart

Pie charts provide a very descriptive & a 2D depiction of the data pertaining to comparisons or resemblance of data in two separate fields.

4. Bar charts

Bar-Charts

A bar chart that shows the accumulation of data with cuboid bars with different dimensions & lengths which are directly proportionate to the values they represent. The bars can be placed either vertically or horizontally depending on the data being represented.

5. Histograms

data presentation research

It is a perfect Presentation of the spread of numerical data. The main differentiation that separates data graphs and histograms are the gaps in the data graphs.

6. Box plots

box-plot

Box plot or Box-plot is a way of representing groups of numerical data through quartiles. Data Presentation is easier with this style of graph dealing with the extraction of data to the minutes of difference.

data presentation research

Map Data graphs help you with data Presentation over an area to display the areas of concern. Map graphs are useful to make an exact depiction of data over a vast case scenario.

All these visual presentations share a common goal of creating meaningful insights and a platform to understand and manage the data in relation to the growth and expansion of one’s in-depth understanding of data & details to plan or execute future decisions or actions.

Importance of Data Presentation

Data Presentation could be both can be a deal maker or deal breaker based on the delivery of the content in the context of visual depiction.

Data Presentation tools are powerful communication tools that can simplify the data by making it easily understandable & readable at the same time while attracting & keeping the interest of its readers and effectively showcase large amounts of complex data in a simplified manner.

If the user can create an insightful presentation of the data in hand with the same sets of facts and figures, then the results promise to be impressive.

There have been situations where the user has had a great amount of data and vision for expansion but the presentation drowned his/her vision.

To impress the higher management and top brass of a firm, effective presentation of data is needed.

Data Presentation helps the clients or the audience to not spend time grasping the concept and the future alternatives of the business and to convince them to invest in the company & turn it profitable both for the investors & the company.

Although data presentation has a lot to offer, the following are some of the major reason behind the essence of an effective presentation:-

  • Many consumers or higher authorities are interested in the interpretation of data, not the raw data itself. Therefore, after the analysis of the data, users should represent the data with a visual aspect for better understanding and knowledge.
  • The user should not overwhelm the audience with a number of slides of the presentation and inject an ample amount of texts as pictures that will speak for themselves.
  • Data presentation often happens in a nutshell with each department showcasing their achievements towards company growth through a graph or a histogram.
  • Providing a brief description would help the user to attain attention in a small amount of time while informing the audience about the context of the presentation
  • The inclusion of pictures, charts, graphs and tables in the presentation help for better understanding the potential outcomes.
  • An effective presentation would allow the organization to determine the difference with the fellow organization and acknowledge its flaws. Comparison of data would assist them in decision making.

Recommended Courses

Data-Visualization-Using-PowerBI-Tableau

Data Visualization

Using powerbi &tableau.

tableau-course

Tableau for Data Analysis

mysql-course

MySQL Certification Program

powerbi-course

The PowerBI Masterclass

Need help call our support team 7:00 am to 10:00 pm (ist) at (+91 999-074-8956 | 9650-308-956), keep in touch, email: [email protected].

WhatsApp us

Data presentation: A comprehensive guide

Learn how to create data presentation effectively and communicate your insights in a way that is clear, concise, and engaging.

Raja Bothra

Building presentations

team preparing data presentation

Hey there, fellow data enthusiast!

Welcome to our comprehensive guide on data presentation.

Whether you're an experienced presenter or just starting, this guide will help you present your data like a pro. We'll dive deep into what data presentation is, why it's crucial, and how to master it. So, let's embark on this data-driven journey together.

What is data presentation?

Data presentation is the art of transforming raw data into a visual format that's easy to understand and interpret. It's like turning numbers and statistics into a captivating story that your audience can quickly grasp. When done right, data presentation can be a game-changer, enabling you to convey complex information effectively.

Why are data presentations important?

Imagine drowning in a sea of numbers and figures. That's how your audience might feel without proper data presentation. Here's why it's essential:

  • Clarity : Data presentations make complex information clear and concise.
  • Engagement : Visuals, such as charts and graphs, grab your audience's attention.
  • Comprehension : Visual data is easier to understand than long, numerical reports.
  • Decision-making : Well-presented data aids informed decision-making.
  • Impact : It leaves a lasting impression on your audience.

Types of data presentation:

Now, let's delve into the diverse array of data presentation methods, each with its own unique strengths and applications. We have three primary types of data presentation, and within these categories, numerous specific visualization techniques can be employed to effectively convey your data.

1. Textual presentation

Textual presentation harnesses the power of words and sentences to elucidate and contextualize your data. This method is commonly used to provide a narrative framework for the data, offering explanations, insights, and the broader implications of your findings. It serves as a foundation for a deeper understanding of the data's significance.

2. Tabular presentation

Tabular presentation employs tables to arrange and structure your data systematically. These tables are invaluable for comparing various data groups or illustrating how data evolves over time. They present information in a neat and organized format, facilitating straightforward comparisons and reference points.

3. Graphical presentation

Graphical presentation harnesses the visual impact of charts and graphs to breathe life into your data. Charts and graphs are powerful tools for spotlighting trends, patterns, and relationships hidden within the data. Let's explore some common graphical presentation methods:

  • Bar charts: They are ideal for comparing different categories of data. In this method, each category is represented by a distinct bar, and the height of the bar corresponds to the value it represents. Bar charts provide a clear and intuitive way to discern differences between categories.
  • Pie charts: It excel at illustrating the relative proportions of different data categories. Each category is depicted as a slice of the pie, with the size of each slice corresponding to the percentage of the total value it represents. Pie charts are particularly effective for showcasing the distribution of data.
  • Line graphs: They are the go-to choice when showcasing how data evolves over time. Each point on the line represents a specific value at a particular time period. This method enables viewers to track trends and fluctuations effortlessly, making it perfect for visualizing data with temporal dimensions.
  • Scatter plots: They are the tool of choice when exploring the relationship between two variables. In this method, each point on the plot represents a pair of values for the two variables in question. Scatter plots help identify correlations, outliers, and patterns within data pairs.

The selection of the most suitable data presentation method hinges on the specific dataset and the presentation's objectives. For instance, when comparing sales figures of different products, a bar chart shines in its simplicity and clarity. On the other hand, if your aim is to display how a product's sales have changed over time, a line graph provides the ideal visual narrative.

Additionally, it's crucial to factor in your audience's level of familiarity with data presentations. For a technical audience, more intricate visualization methods may be appropriate. However, when presenting to a general audience, opting for straightforward and easily understandable visuals is often the wisest choice.

In the world of data presentation, choosing the right method is akin to selecting the perfect brush for a masterpiece. Each tool has its place, and understanding when and how to use them is key to crafting compelling and insightful presentations. So, consider your data carefully, align your purpose, and paint a vivid picture that resonates with your audience.

What to include in data presentation?

When creating your data presentation, remember these key components:

  • Data points : Clearly state the data points you're presenting.
  • Comparison : Highlight comparisons and trends in your data.
  • Graphical methods : Choose the right chart or graph for your data.
  • Infographics : Use visuals like infographics to make information more digestible.
  • Numerical values : Include numerical values to support your visuals.
  • Qualitative information : Explain the significance of the data.
  • Source citation : Always cite your data sources.

How to structure an effective data presentation?

Creating a well-structured data presentation is not just important; it's the backbone of a successful presentation. Here's a step-by-step guide to help you craft a compelling and organized presentation that captivates your audience:

1. Know your audience

Understanding your audience is paramount. Consider their needs, interests, and existing knowledge about your topic. Tailor your presentation to their level of understanding, ensuring that it resonates with them on a personal level. Relevance is the key.

2. Have a clear message

Every effective data presentation should convey a clear and concise message. Determine what you want your audience to learn or take away from your presentation, and make sure your message is the guiding light throughout your presentation. Ensure that all your data points align with and support this central message.

3. Tell a compelling story

Human beings are naturally wired to remember stories. Incorporate storytelling techniques into your presentation to make your data more relatable and memorable. Your data can be the backbone of a captivating narrative, whether it's about a trend, a problem, or a solution. Take your audience on a journey through your data.

4. Leverage visuals

Visuals are a powerful tool in data presentation. They make complex information accessible and engaging. Utilize charts, graphs, and images to illustrate your points and enhance the visual appeal of your presentation. Visuals should not just be an accessory; they should be an integral part of your storytelling.

5. Be clear and concise

Avoid jargon or technical language that your audience may not comprehend. Use plain language and explain your data points clearly. Remember, clarity is king. Each piece of information should be easy for your audience to digest.

6. Practice your delivery

Practice makes perfect. Rehearse your presentation multiple times before the actual delivery. This will help you deliver it smoothly and confidently, reducing the chances of stumbling over your words or losing track of your message.

A basic structure for an effective data presentation

Armed with a comprehensive comprehension of how to construct a compelling data presentation, you can now utilize this fundamental template for guidance:

In the introduction, initiate your presentation by introducing both yourself and the topic at hand. Clearly articulate your main message or the fundamental concept you intend to communicate.

Moving on to the body of your presentation, organize your data in a coherent and easily understandable sequence. Employ visuals generously to elucidate your points and weave a narrative that enhances the overall story. Ensure that the arrangement of your data aligns with and reinforces your central message.

As you approach the conclusion, succinctly recapitulate your key points and emphasize your core message once more. Conclude by leaving your audience with a distinct and memorable takeaway, ensuring that your presentation has a lasting impact.

Additional tips for enhancing your data presentation

To take your data presentation to the next level, consider these additional tips:

  • Consistent design : Maintain a uniform design throughout your presentation. This not only enhances visual appeal but also aids in seamless comprehension.
  • High-quality visuals : Ensure that your visuals are of high quality, easy to read, and directly relevant to your topic.
  • Concise text : Avoid overwhelming your slides with excessive text. Focus on the most critical points, using visuals to support and elaborate.
  • Anticipate questions : Think ahead about the questions your audience might pose. Be prepared with well-thought-out answers to foster productive discussions.

By following these guidelines, you can structure an effective data presentation that not only informs but also engages and inspires your audience. Remember, a well-structured presentation is the bridge that connects your data to your audience's understanding and appreciation.

Do’s and don'ts on a data presentation

  • Use visuals : Incorporate charts and graphs to enhance understanding.
  • Keep it simple : Avoid clutter and complexity.
  • Highlight key points : Emphasize crucial data.
  • Engage the audience : Encourage questions and discussions.
  • Practice : Rehearse your presentation.

Don'ts:

  • Overload with data : Less is often more; don't overwhelm your audience.
  • Fit Unrelated data : Stay on topic; don't include irrelevant information.
  • Neglect the audience : Ensure your presentation suits your audience's level of expertise.
  • Read word-for-word : Avoid reading directly from slides.
  • Lose focus : Stick to your presentation's purpose.

Summarizing key takeaways

  • Definition : Data presentation is the art of visualizing complex data for better understanding.
  • Importance : Data presentations enhance clarity, engage the audience, aid decision-making, and leave a lasting impact.
  • Types : Textual, Tabular, and Graphical presentations offer various ways to present data.
  • Choosing methods : Select the right method based on data, audience, and purpose.
  • Components : Include data points, comparisons, visuals, infographics, numerical values, and source citations.
  • Structure : Know your audience, have a clear message, tell a compelling story, use visuals, be concise, and practice.
  • Do's and don'ts : Do use visuals, keep it simple, highlight key points, engage the audience, and practice. Don't overload with data, include unrelated information, neglect the audience's expertise, read word-for-word, or lose focus.

FAQ's on a data presentation

1. what is data presentation, and why is it important in 2024.

Data presentation is the process of visually representing data sets to convey information effectively to an audience. In an era where the amount of data generated is vast, visually presenting data using methods such as diagrams, graphs, and charts has become crucial. By simplifying complex data sets, presentation of the data may helps your audience quickly grasp much information without drowning in a sea of chart's, analytics, facts and figures.

2. What are some common methods of data presentation?

There are various methods of data presentation, including graphs and charts, histograms, and cumulative frequency polygons. Each method has its strengths and is often used depending on the type of data you're using and the message you want to convey. For instance, if you want to show data over time, try using a line graph. If you're presenting geographical data, consider to use a heat map.

3. How can I ensure that my data presentation is clear and readable?

To ensure that your data presentation is clear and readable, pay attention to the design and labeling of your charts. Don't forget to label the axes appropriately, as they are critical for understanding the values they represent. Don't fit all the information in one slide or in a single paragraph. Presentation software like Prezent and PowerPoint can help you simplify your vertical axis, charts and tables, making them much easier to understand.

4. What are some common mistakes presenters make when presenting data?

One common mistake is trying to fit too much data into a single chart, which can distort the information and confuse the audience. Another mistake is not considering the needs of the audience. Remember that your audience won't have the same level of familiarity with the data as you do, so it's essential to present the data effectively and respond to questions during a Q&A session.

5. How can I use data visualization to present important data effectively on platforms like LinkedIn?

When presenting data on platforms like LinkedIn, consider using eye-catching visuals like bar graphs or charts. Use concise captions and e.g., examples to highlight the single most important information in your data report. Visuals, such as graphs and tables, can help you stand out in the sea of textual content, making your data presentation more engaging and shareable among your LinkedIn connections.

Create your data presentation with prezent

Prezent can be a valuable tool for creating data presentations. Here's how Prezent can help you in this regard:

  • Time savings : Prezent saves up to 70% of presentation creation time, allowing you to focus on data analysis and insights.
  • On-brand consistency : Ensure 100% brand alignment with Prezent's brand-approved designs for professional-looking data presentations.
  • Effortless collaboration : Real-time sharing and collaboration features make it easy for teams to work together on data presentations.
  • Data storytelling : Choose from 50+ storylines to effectively communicate data insights and engage your audience.
  • Personalization : Create tailored data presentations that resonate with your audience's preferences, enhancing the impact of your data.

In summary, Prezent streamlines the process of creating data presentations by offering time-saving features, ensuring brand consistency, promoting collaboration, and providing tools for effective data storytelling. Whether you need to present data to clients, stakeholders, or within your organization, Prezent can significantly enhance your presentation-making process.

So, go ahead, present your data with confidence, and watch your audience be wowed by your expertise.

Thank you for joining us on this data-driven journey. Stay tuned for more insights, and remember, data presentation is your ticket to making numbers come alive! Sign up for our free trial or book a demo ! ‍

More zenpedia articles

data presentation research

What is a pitch deck: A guide for entrepreneurs with expert tips and template example

data presentation research

Managing public speaking anxiety in a high-stakes work environment

data presentation research

How to craft an effective pitch deck presentation?

Get the latest from Prezent community

Join thousands of subscribers who receive our best practices on communication, storytelling, presentation design, and more. New tips weekly. (No spam, we promise!)

websights

data presentation research

Princeton Correspondents on Undergraduate Research

How to Make a Successful Research Presentation

Turning a research paper into a visual presentation is difficult; there are pitfalls, and navigating the path to a brief, informative presentation takes time and practice. As a TA for  GEO/WRI 201: Methods in Data Analysis & Scientific Writing this past fall, I saw how this process works from an instructor’s standpoint. I’ve presented my own research before, but helping others present theirs taught me a bit more about the process. Here are some tips I learned that may help you with your next research presentation:

More is more

In general, your presentation will always benefit from more practice, more feedback, and more revision. By practicing in front of friends, you can get comfortable with presenting your work while receiving feedback. It is hard to know how to revise your presentation if you never practice. If you are presenting to a general audience, getting feedback from someone outside of your discipline is crucial. Terms and ideas that seem intuitive to you may be completely foreign to someone else, and your well-crafted presentation could fall flat.

Less is more

Limit the scope of your presentation, the number of slides, and the text on each slide. In my experience, text works well for organizing slides, orienting the audience to key terms, and annotating important figures–not for explaining complex ideas. Having fewer slides is usually better as well. In general, about one slide per minute of presentation is an appropriate budget. Too many slides is usually a sign that your topic is too broad.

data presentation research

Limit the scope of your presentation

Don’t present your paper. Presentations are usually around 10 min long. You will not have time to explain all of the research you did in a semester (or a year!) in such a short span of time. Instead, focus on the highlight(s). Identify a single compelling research question which your work addressed, and craft a succinct but complete narrative around it.

You will not have time to explain all of the research you did. Instead, focus on the highlights. Identify a single compelling research question which your work addressed, and craft a succinct but complete narrative around it.

Craft a compelling research narrative

After identifying the focused research question, walk your audience through your research as if it were a story. Presentations with strong narrative arcs are clear, captivating, and compelling.

  • Introduction (exposition — rising action)

Orient the audience and draw them in by demonstrating the relevance and importance of your research story with strong global motive. Provide them with the necessary vocabulary and background knowledge to understand the plot of your story. Introduce the key studies (characters) relevant in your story and build tension and conflict with scholarly and data motive. By the end of your introduction, your audience should clearly understand your research question and be dying to know how you resolve the tension built through motive.

data presentation research

  • Methods (rising action)

The methods section should transition smoothly and logically from the introduction. Beware of presenting your methods in a boring, arc-killing, ‘this is what I did.’ Focus on the details that set your story apart from the stories other people have already told. Keep the audience interested by clearly motivating your decisions based on your original research question or the tension built in your introduction.

  • Results (climax)

Less is usually more here. Only present results which are clearly related to the focused research question you are presenting. Make sure you explain the results clearly so that your audience understands what your research found. This is the peak of tension in your narrative arc, so don’t undercut it by quickly clicking through to your discussion.

  • Discussion (falling action)

By now your audience should be dying for a satisfying resolution. Here is where you contextualize your results and begin resolving the tension between past research. Be thorough. If you have too many conflicts left unresolved, or you don’t have enough time to present all of the resolutions, you probably need to further narrow the scope of your presentation.

  • Conclusion (denouement)

Return back to your initial research question and motive, resolving any final conflicts and tying up loose ends. Leave the audience with a clear resolution of your focus research question, and use unresolved tension to set up potential sequels (i.e. further research).

Use your medium to enhance the narrative

Visual presentations should be dominated by clear, intentional graphics. Subtle animation in key moments (usually during the results or discussion) can add drama to the narrative arc and make conflict resolutions more satisfying. You are narrating a story written in images, videos, cartoons, and graphs. While your paper is mostly text, with graphics to highlight crucial points, your slides should be the opposite. Adapting to the new medium may require you to create or acquire far more graphics than you included in your paper, but it is necessary to create an engaging presentation.

The most important thing you can do for your presentation is to practice and revise. Bother your friends, your roommates, TAs–anybody who will sit down and listen to your work. Beyond that, think about presentations you have found compelling and try to incorporate some of those elements into your own. Remember you want your work to be comprehensible; you aren’t creating experts in 10 minutes. Above all, try to stay passionate about what you did and why. You put the time in, so show your audience that it’s worth it.

For more insight into research presentations, check out these past PCUR posts written by Emma and Ellie .

— Alec Getraer, Natural Sciences Correspondent

Share this:

  • Share on Tumblr

data presentation research

Data Presentation

  • Reference work entry
  • First Online: 01 January 2024
  • pp 1589–1599
  • Cite this reference work entry

data presentation research

  • Filomena Maggino 2 &
  • Marco Trapani 3  

Many international institutions, like World Bank and UNESCO (Patel et al. 2003 ) and Eurostat ( 2000a , b ), have identified different attributes to be considered in evaluating quality of statistics, such as methodological soundness, integrity, serviceability, and accessibility.

At the same time, less attention is paid to presentation and communication of statistics, which represent important aspects of the statistical activities and should be considered an integral part of data production and dissemination.

The need to deal with this issue is significantly increasing especially in the perspective of the role the statistics have in ICT societies. Presentation and communication of quality of life data are not easy tasks to be carried on since they cannot be accomplished through improvising and approximating methods and instruments. They require a combined and joint knowledge and expertise of statistical methodology, cognitive science, and communication.

Description

Characteristics....

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Aristotele. (1996). Retorica (trad.it. a cura di Dorati M.). Milano: Oscar Mondadori.

Google Scholar  

Ellero, M. P. (1997). Introduzione alla retorica . Milano: Sansoni Editore.

Eurostat. (2000a, April 4–5). Definition of quality in Statistics Eurostat Working Group on Assessment of Quality in Statistics , Eurostat/A4/Quality/00/General/Definition, Luxembourg.

Eurostat. (2000b). Standard Quality Report, Eurostat Working Group on Assessment of Quality in Statistics , Eurostat/A4/Quality/00/General/Standard Report, Luxembourg, April 4–5.

Giovannini, E. (2008, May 26–27). The role of communication in transforming statistics into knowledge, OECD . Paper to be presented at conference innovative approaches to turning statistics into knowledge, Stockholm.

Kosslyn, S. M. (2006). Graph design for the eye and mind . New York: Oxford University Press.

Book   Google Scholar  

Kosslyn, S. M. (2007). Clear and to the point . Oxford: Oxford University Press.

Lakoff, G., & Johnson, M. (1980). Metaphors we live by . Chicago: University of Chicago Press.

Patel, S., Hiraga, M., Wang, L. (World Bank), Drew, D., & Lynd, D. (UNESCO). (2003). A framework for assessing the quality of education statistics . World Bank – Development Data Group and UNESCO – Institute for Statistics.

Perelman, C. (2005). Teoria e pratica dell’argomentazione (a cura di G. Fornari Luvarà) . Soveria Mannelli: Rubettino.

Statistics Canada. (2003). Statistics Canada quality guidelines (4th ed.). Statistics Canada, Ottawa, Catalogue No 12-539-XIE.

Vale, S. (2008, July 7–8). Accessibility and clarity: The most neglected dimensions of quality? Paper presented at Conference on Data Quality for International Organizations, Rome, Italy, nella Session 3: Dissemination platforms to make data more accessible and interpretable. UNECE.

Download references

Author information

Authors and affiliations.

Dipartimento di Statistica, Informatica, Applicazioni “G. Parenti” (DiSIA), Università degli Studi di Firenze, Florence, Italy

Filomena Maggino

University of Florence, Florence, Italy

Marco Trapani

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Filomena Maggino .

Editor information

Editors and affiliations.

Dipartimento di Scienze Statistiche, Sapienza Università di Roma, Roma, Roma, Italy

Section Editor information

Department of Political Science, University of Naples Federico II, Naples, Italy

Mara Tognetti

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Cite this entry.

Maggino, F., Trapani, M. (2023). Data Presentation. In: Maggino, F. (eds) Encyclopedia of Quality of Life and Well-Being Research. Springer, Cham. https://doi.org/10.1007/978-3-031-17299-1_666

Download citation

DOI : https://doi.org/10.1007/978-3-031-17299-1_666

Published : 11 February 2024

Publisher Name : Springer, Cham

Print ISBN : 978-3-031-17298-4

Online ISBN : 978-3-031-17299-1

eBook Packages : Social Sciences Reference Module Humanities and Social Sciences Reference Module Business, Economics and Social Sciences

Share this entry

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

10 Methods of Data Presentation That Really Work in 2024

Leah Nguyen • 20 August, 2024 • 13 min read

Have you ever presented a data report to your boss/coworkers/teachers thinking it was super dope like you’re some cyber hacker living in the Matrix, but all they saw was a pile of static numbers that seemed pointless and didn't make sense to them?

Understanding digits is rigid . Making people from non-analytical backgrounds understand those digits is even more challenging.

How can you clear up those confusing numbers and make your presentation as clear as the day? Let's check out these best ways to present data. 💎

How many type of charts are available to present data?7
How many charts are there in statistics?4, including bar, line, histogram and pie.
How many types of charts are available in Excel?8
Who invented charts?William Playfair
When were the charts invented?18th Century

More Tips with AhaSlides

  • Marketing Presentation
  • Survey Result Presentation
  • Types of Presentation

Alternative Text

Start in seconds.

Get any of the above examples as templates. Sign up for free and take what you want from the template library!

Data Presentation - What Is It?

The term ’data presentation’ relates to the way you present data in a way that makes even the most clueless person in the room understand. 

Some say it’s witchcraft (you’re manipulating the numbers in some ways), but we’ll just say it’s the power of turning dry, hard numbers or digits into a visual showcase that is easy for people to digest.

Presenting data correctly can help your audience understand complicated processes, identify trends, and instantly pinpoint whatever is going on without exhausting their brains.

Good data presentation helps…

  • Make informed decisions and arrive at positive outcomes . If you see the sales of your product steadily increase throughout the years, it’s best to keep milking it or start turning it into a bunch of spin-offs (shoutout to Star Wars👀).
  • Reduce the time spent processing data . Humans can digest information graphically 60,000 times faster than in the form of text. Grant them the power of skimming through a decade of data in minutes with some extra spicy graphs and charts.
  • Communicate the results clearly . Data does not lie. They’re based on factual evidence and therefore if anyone keeps whining that you might be wrong, slap them with some hard data to keep their mouths shut.
  • Add to or expand the current research . You can see what areas need improvement, as well as what details often go unnoticed while surfing through those little lines, dots or icons that appear on the data board.

Methods of Data Presentation and Examples

Imagine you have a delicious pepperoni, extra-cheese pizza. You can decide to cut it into the classic 8 triangle slices, the party style 12 square slices, or get creative and abstract on those slices. 

There are various ways to cut a pizza and you get the same variety with how you present your data. In this section, we will bring you the 10 ways to slice a pizza - we mean to present your data - that will make your company’s most important asset as clear as day. Let's dive into 10 ways to present data efficiently.

#1 - Tabular 

Among various types of data presentation, tabular is the most fundamental method, with data presented in rows and columns. Excel or Google Sheets would qualify for the job. Nothing fancy.

a table displaying the changes in revenue between the year 2017 and 2018 in the East, West, North, and South region

This is an example of a tabular presentation of data on Google Sheets. Each row and column has an attribute (year, region, revenue, etc.), and you can do a custom format to see the change in revenue throughout the year.

When presenting data as text, all you do is write your findings down in paragraphs and bullet points, and that’s it. A piece of cake to you, a tough nut to crack for whoever has to go through all of the reading to get to the point.

  • 65% of email users worldwide access their email via a mobile device.
  • Emails that are optimised for mobile generate 15% higher click-through rates.
  • 56% of brands using emojis in their email subject lines had a higher open rate.

(Source: CustomerThermometer )

All the above quotes present statistical information in textual form. Since not many people like going through a wall of texts, you’ll have to figure out another route when deciding to use this method, such as breaking the data down into short, clear statements, or even as catchy puns if you’ve got the time to think of them.

#3 - Pie chart

A pie chart (or a ‘donut chart’ if you stick a hole in the middle of it) is a circle divided into slices that show the relative sizes of data within a whole. If you’re using it to show percentages, make sure all the slices add up to 100%.

Methods of data presentation

The pie chart is a familiar face at every party and is usually recognised by most people. However, one setback of using this method is our eyes sometimes can’t identify the differences in slices of a circle, and it’s nearly impossible to compare similar slices from two different pie charts, making them the villains in the eyes of data analysts.

a half-eaten pie chart

#4 - Bar chart

The bar chart is a chart that presents a bunch of items from the same category, usually in the form of rectangular bars that are placed at an equal distance from each other. Their heights or lengths depict the values they represent.

They can be as simple as this:

a simple bar chart example

Or more complex and detailed like this example of data presentation. Contributing to an effective statistic presentation, this one is a grouped bar chart that not only allows you to compare categories but also the groups within them as well.

an example of a grouped bar chart

#5 - Histogram

Similar in appearance to the bar chart but the rectangular bars in histograms don’t often have the gap like their counterparts.

Instead of measuring categories like weather preferences or favourite films as a bar chart does, a histogram only measures things that can be put into numbers.

an example of a histogram chart showing the distribution of students' score for the IQ test

Teachers can use presentation graphs like a histogram to see which score group most of the students fall into, like in this example above.

#6 - Line graph

Recordings to ways of displaying data, we shouldn't overlook the effectiveness of line graphs. Line graphs are represented by a group of data points joined together by a straight line. There can be one or more lines to compare how several related things change over time. 

an example of the line graph showing the population of bears from 2017 to 2022

On a line chart’s horizontal axis, you usually have text labels, dates or years, while the vertical axis usually represents the quantity (e.g.: budget, temperature or percentage).

#7 - Pictogram graph

A pictogram graph uses pictures or icons relating to the main topic to visualise a small dataset. The fun combination of colours and illustrations makes it a frequent use at schools.

How to Create Pictographs and Icon Arrays in Visme-6 pictograph maker

Pictograms are a breath of fresh air if you want to stay away from the monotonous line chart or bar chart for a while. However, they can present a very limited amount of data and sometimes they are only there for displays and do not represent real statistics.

#8 - Radar chart

If presenting five or more variables in the form of a bar chart is too stuffy then you should try using a radar chart, which is one of the most creative ways to present data.

Radar charts show data in terms of how they compare to each other starting from the same point. Some also call them ‘spider charts’ because each aspect combined looks like a spider web.

a radar chart showing the text scores between two students

Radar charts can be a great use for parents who’d like to compare their child’s grades with their peers to lower their self-esteem. You can see that each angular represents a subject with a score value ranging from 0 to 100. Each student’s score across 5 subjects is highlighted in a different colour.

a radar chart showing the power distribution of a Pokemon

If you think that this method of data presentation somehow feels familiar, then you’ve probably encountered one while playing Pokémon .

#9 - Heat map

A heat map represents data density in colours. The bigger the number, the more colour intensity that data will be represented.

voting chart

Most US citizens would be familiar with this data presentation method in geography. For elections, many news outlets assign a specific colour code to a state, with blue representing one candidate and red representing the other. The shade of either blue or red in each state shows the strength of the overall vote in that state.

a heatmap showing which parts the visitors click on in a website

Another great thing you can use a heat map for is to map what visitors to your site click on. The more a particular section is clicked the ‘hotter’ the colour will turn, from blue to bright yellow to red.

#10 - Scatter plot

If you present your data in dots instead of chunky bars, you’ll have a scatter plot. 

A scatter plot is a grid with several inputs showing the relationship between two variables. It’s good at collecting seemingly random data and revealing some telling trends.

a scatter plot example showing the relationship between beach visitors each day and the average daily temperature

For example, in this graph, each dot shows the average daily temperature versus the number of beach visitors across several days. You can see that the dots get higher as the temperature increases, so it’s likely that hotter weather leads to more visitors.

5 Data Presentation Mistakes to Avoid

#1 - assume your audience understands what the numbers represent.

You may know all the behind-the-scenes of your data since you’ve worked with them for weeks, but your audience doesn’t.

sales data board

Showing without telling only invites more and more questions from your audience, as they have to constantly make sense of your data, wasting the time of both sides as a result.

While showing your data presentations, you should tell them what the data are about before hitting them with waves of numbers first. You can use interactive activities such as polls , word clouds , online quizzes and Q&A sections , combined with icebreaker games , to assess their understanding of the data and address any confusion beforehand.

#2 - Use the wrong type of chart

Charts such as pie charts must have a total of 100% so if your numbers accumulate to 193% like this example below, you’re definitely doing it wrong.

bad example of data presentation

Before making a chart, ask yourself: what do I want to accomplish with my data? Do you want to see the relationship between the data sets, show the up and down trends of your data, or see how segments of one thing make up a whole?

Remember, clarity always comes first. Some data visualisations may look cool, but if they don’t fit your data, steer clear of them. 

#3 - Make it 3D

3D is a fascinating graphical presentation example. The third dimension is cool, but full of risks.

data presentation research

Can you see what’s behind those red bars? Because we can’t either. You may think that 3D charts add more depth to the design, but they can create false perceptions as our eyes see 3D objects closer and bigger than they appear, not to mention they cannot be seen from multiple angles.

#4 - Use different types of charts to compare contents in the same category

data presentation research

This is like comparing a fish to a monkey. Your audience won’t be able to identify the differences and make an appropriate correlation between the two data sets. 

Next time, stick to one type of data presentation only. Avoid the temptation of trying various data visualisation methods in one go and make your data as accessible as possible.

#5 - Bombard the audience with too much information

The goal of data presentation is to make complex topics much easier to understand, and if you’re bringing too much information to the table, you’re missing the point.

a very complicated data presentation with too much information on the screen

The more information you give, the more time it will take for your audience to process it all. If you want to make your data understandable and give your audience a chance to remember it, keep the information within it to an absolute minimum. You should end your session with open-ended questions to see what your participants really think.

What are the Best Methods of Data Presentation?

Finally, which is the best way to present data?

The answer is…

There is none! Each type of presentation has its own strengths and weaknesses and the one you choose greatly depends on what you’re trying to do. 

For example:

  • Go for a scatter plot if you’re exploring the relationship between different data values, like seeing whether the sales of ice cream go up because of the temperature or because people are just getting more hungry and greedy each day?
  • Go for a line graph if you want to mark a trend over time. 
  • Go for a heat map if you like some fancy visualisation of the changes in a geographical location, or to see your visitors' behaviour on your website.
  • Go for a pie chart (especially in 3D) if you want to be shunned by others because it was never a good idea👇

example of how a bad pie chart represents the data in a complicated way

Frequently Asked Questions

What is a chart presentation.

A chart presentation is a way of presenting data or information using visual aids such as charts, graphs, and diagrams. The purpose of a chart presentation is to make complex information more accessible and understandable for the audience.

When can I use charts for the presentation?

Charts can be used to compare data, show trends over time, highlight patterns, and simplify complex information.

Why should you use charts for presentation?

You should use charts to ensure your contents and visuals look clean, as they are the visual representative, provide clarity, simplicity, comparison, contrast and super time-saving!

What are the 4 graphical methods of presenting data?

Histogram, Smoothed frequency graph, Pie diagram or Pie chart, Cumulative or ogive frequency graph, and Frequency Polygon.

Leah Nguyen

Leah Nguyen

Words that convert, stories that stick. I turn complex ideas into engaging narratives - helping audiences learn, remember, and take action.

Tips to Engage with Polls & Trivia

newsletter star

More from AhaSlides

Business Analyst Skills 101: A Roadmap To Success In The Data-Driven Era

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Korean J Anesthesiol
  • v.70(3); 2017 Jun

Statistical data presentation

1 Department of Anesthesiology and Pain Medicine, Dongguk University Ilsan Hospital, Goyang, Korea.

Sangseok Lee

2 Department of Anesthesiology and Pain Medicine, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea.

Data are usually collected in a raw format and thus the inherent information is difficult to understand. Therefore, raw data need to be summarized, processed, and analyzed. However, no matter how well manipulated, the information derived from the raw data should be presented in an effective format, otherwise, it would be a great loss for both authors and readers. In this article, the techniques of data and information presentation in textual, tabular, and graphical forms are introduced. Text is the principal method for explaining findings, outlining trends, and providing contextual information. A table is best suited for representing individual information and represents both quantitative and qualitative information. A graph is a very effective visual tool as it displays data at a glance, facilitates comparison, and can reveal trends and relationships within the data such as changes over time, frequency distribution, and correlation or relative share of a whole. Text, tables, and graphs for data and information presentation are very powerful communication tools. They can make an article easy to understand, attract and sustain the interest of readers, and efficiently present large amounts of complex information. Moreover, as journal editors and reviewers glance at these presentations before reading the whole article, their importance cannot be ignored.

Introduction

Data are a set of facts, and provide a partial picture of reality. Whether data are being collected with a certain purpose or collected data are being utilized, questions regarding what information the data are conveying, how the data can be used, and what must be done to include more useful information must constantly be kept in mind.

Since most data are available to researchers in a raw format, they must be summarized, organized, and analyzed to usefully derive information from them. Furthermore, each data set needs to be presented in a certain way depending on what it is used for. Planning how the data will be presented is essential before appropriately processing raw data.

First, a question for which an answer is desired must be clearly defined. The more detailed the question is, the more detailed and clearer the results are. A broad question results in vague answers and results that are hard to interpret. In other words, a well-defined question is crucial for the data to be well-understood later. Once a detailed question is ready, the raw data must be prepared before processing. These days, data are often summarized, organized, and analyzed with statistical packages or graphics software. Data must be prepared in such a way they are properly recognized by the program being used. The present study does not discuss this data preparation process, which involves creating a data frame, creating/changing rows and columns, changing the level of a factor, categorical variable, coding, dummy variables, variable transformation, data transformation, missing value, outlier treatment, and noise removal.

We describe the roles and appropriate use of text, tables, and graphs (graphs, plots, or charts), all of which are commonly used in reports, articles, posters, and presentations. Furthermore, we discuss the issues that must be addressed when presenting various kinds of information, and effective methods of presenting data, which are the end products of research, and of emphasizing specific information.

Data Presentation

Data can be presented in one of the three ways:

–as text;

–in tabular form; or

–in graphical form.

Methods of presentation must be determined according to the data format, the method of analysis to be used, and the information to be emphasized. Inappropriately presented data fail to clearly convey information to readers and reviewers. Even when the same information is being conveyed, different methods of presentation must be employed depending on what specific information is going to be emphasized. A method of presentation must be chosen after carefully weighing the advantages and disadvantages of different methods of presentation. For easy comparison of different methods of presentation, let us look at a table ( Table 1 ) and a line graph ( Fig. 1 ) that present the same information [ 1 ]. If one wishes to compare or introduce two values at a certain time point, it is appropriate to use text or the written language. However, a table is the most appropriate when all information requires equal attention, and it allows readers to selectively look at information of their own interest. Graphs allow readers to understand the overall trend in data, and intuitively understand the comparison results between two groups. One thing to always bear in mind regardless of what method is used, however, is the simplicity of presentation.

An external file that holds a picture, illustration, etc.
Object name is kjae-70-267-g001.jpg

VariableGroupBaselineAfter drug1 min3 min5 min
SBPC135.1 ± 13.4139.2 ± 17.1186.0 ± 26.6 160.1 ± 23.2 140.7 ± 18.3
D135.4 ± 23.8131.9 ± 13.5165.2 ± 16.2 127.9 ± 17.5 108.4 ± 12.6
DBPC79.7 ± 9.879.4 ± 15.8104.8 ± 14.9 87.9 ± 15.5 78.9 ± 11.6
D76.7 ± 8.378.4 ± 6.397.0 ± 14.5 74.1 ± 8.3 66.5 ± 7.2
MBPC100.3 ± 11.9103.5 ± 16.8137.2 ± 18.3 116.9 ± 16.2 103.9 ± 13.3
D97.7 ± 14.998.1 ± 8.7123.4 ± 13.8 95.4 ± 11.7 83.4 ± 8.4

Values are expressed as mean ± SD. Group C: normal saline, Group D: dexmedetomidine. SBP: systolic blood pressure, DBP: diastolic blood pressure, MBP: mean blood pressure, HR: heart rate. * P < 0.05 indicates a significant increase in each group, compared with the baseline values. † P < 0.05 indicates a significant decrease noted in Group D, compared with the baseline values. ‡ P < 0.05 indicates a significant difference between the groups.

Text presentation

Text is the main method of conveying information as it is used to explain results and trends, and provide contextual information. Data are fundamentally presented in paragraphs or sentences. Text can be used to provide interpretation or emphasize certain data. If quantitative information to be conveyed consists of one or two numbers, it is more appropriate to use written language than tables or graphs. For instance, information about the incidence rates of delirium following anesthesia in 2016–2017 can be presented with the use of a few numbers: “The incidence rate of delirium following anesthesia was 11% in 2016 and 15% in 2017; no significant difference of incidence rates was found between the two years.” If this information were to be presented in a graph or a table, it would occupy an unnecessarily large space on the page, without enhancing the readers' understanding of the data. If more data are to be presented, or other information such as that regarding data trends are to be conveyed, a table or a graph would be more appropriate. By nature, data take longer to read when presented as texts and when the main text includes a long list of information, readers and reviewers may have difficulties in understanding the information.

Table presentation

Tables, which convey information that has been converted into words or numbers in rows and columns, have been used for nearly 2,000 years. Anyone with a sufficient level of literacy can easily understand the information presented in a table. Tables are the most appropriate for presenting individual information, and can present both quantitative and qualitative information. Examples of qualitative information are the level of sedation [ 2 ], statistical methods/functions [ 3 , 4 ], and intubation conditions [ 5 ].

The strength of tables is that they can accurately present information that cannot be presented with a graph. A number such as “132.145852” can be accurately expressed in a table. Another strength is that information with different units can be presented together. For instance, blood pressure, heart rate, number of drugs administered, and anesthesia time can be presented together in one table. Finally, tables are useful for summarizing and comparing quantitative information of different variables. However, the interpretation of information takes longer in tables than in graphs, and tables are not appropriate for studying data trends. Furthermore, since all data are of equal importance in a table, it is not easy to identify and selectively choose the information required.

For a general guideline for creating tables, refer to the journal submission requirements 1) .

Heat maps for better visualization of information than tables

Heat maps help to further visualize the information presented in a table by applying colors to the background of cells. By adjusting the colors or color saturation, information is conveyed in a more visible manner, and readers can quickly identify the information of interest ( Table 2 ). Software such as Excel (in Microsoft Office, Microsoft, WA, USA) have features that enable easy creation of heat maps through the options available on the “conditional formatting” menu.

Example of a regular tableExample of a heat map
SBPDBPMBPHRSBPDBPMBPHR
128668787128668787
125437085125437085
11452681031145268103
111446679111446679
139618190139618190
103446196103446196
9447618394476183

All numbers were created by the author. SBP: systolic blood pressure, DBP: diastolic blood pressure, MBP: mean blood pressure, HR: heart rate.

Graph presentation

Whereas tables can be used for presenting all the information, graphs simplify complex information by using images and emphasizing data patterns or trends, and are useful for summarizing, explaining, or exploring quantitative data. While graphs are effective for presenting large amounts of data, they can be used in place of tables to present small sets of data. A graph format that best presents information must be chosen so that readers and reviewers can easily understand the information. In the following, we describe frequently used graph formats and the types of data that are appropriately presented with each format with examples.

Scatter plot

Scatter plots present data on the x - and y -axes and are used to investigate an association between two variables. A point represents each individual or object, and an association between two variables can be studied by analyzing patterns across multiple points. A regression line is added to a graph to determine whether the association between two variables can be explained or not. Fig. 2 illustrates correlations between pain scoring systems that are currently used (PSQ, Pain Sensitivity Questionnaire; PASS, Pain Anxiety Symptoms Scale; PCS, Pain Catastrophizing Scale) and Geop-Pain Questionnaire (GPQ) with the correlation coefficient, R, and regression line indicated on the scatter plot [ 6 ]. If multiple points exist at an identical location as in this example ( Fig. 2 ), the correlation level may not be clear. In this case, a correlation coefficient or regression line can be added to further elucidate the correlation.

An external file that holds a picture, illustration, etc.
Object name is kjae-70-267-g002.jpg

Bar graph and histogram

A bar graph is used to indicate and compare values in a discrete category or group, and the frequency or other measurement parameters (i.e. mean). Depending on the number of categories, and the size or complexity of each category, bars may be created vertically or horizontally. The height (or length) of a bar represents the amount of information in a category. Bar graphs are flexible, and can be used in a grouped or subdivided bar format in cases of two or more data sets in each category. Fig. 3 is a representative example of a vertical bar graph, with the x -axis representing the length of recovery room stay and drug-treated group, and the y -axis representing the visual analog scale (VAS) score. The mean and standard deviation of the VAS scores are expressed as whiskers on the bars ( Fig. 3 ) [ 7 ].

An external file that holds a picture, illustration, etc.
Object name is kjae-70-267-g003.jpg

By comparing the endpoints of bars, one can identify the largest and the smallest categories, and understand gradual differences between each category. It is advised to start the x - and y -axes from 0. Illustration of comparison results in the x - and y -axes that do not start from 0 can deceive readers' eyes and lead to overrepresentation of the results.

One form of vertical bar graph is the stacked vertical bar graph. A stack vertical bar graph is used to compare the sum of each category, and analyze parts of a category. While stacked vertical bar graphs are excellent from the aspect of visualization, they do not have a reference line, making comparison of parts of various categories challenging ( Fig. 4 ) [ 8 ].

An external file that holds a picture, illustration, etc.
Object name is kjae-70-267-g004.jpg

A pie chart, which is used to represent nominal data (in other words, data classified in different categories), visually represents a distribution of categories. It is generally the most appropriate format for representing information grouped into a small number of categories. It is also used for data that have no other way of being represented aside from a table (i.e. frequency table). Fig. 5 illustrates the distribution of regular waste from operation rooms by their weight [ 8 ]. A pie chart is also commonly used to illustrate the number of votes each candidate won in an election.

An external file that holds a picture, illustration, etc.
Object name is kjae-70-267-g005.jpg

Line plot with whiskers

A line plot is useful for representing time-series data such as monthly precipitation and yearly unemployment rates; in other words, it is used to study variables that are observed over time. Line graphs are especially useful for studying patterns and trends across data that include climatic influence, large changes or turning points, and are also appropriate for representing not only time-series data, but also data measured over the progression of a continuous variable such as distance. As can be seen in Fig. 1 , mean and standard deviation of systolic blood pressure are indicated for each time point, which enables readers to easily understand changes of systolic pressure over time [ 1 ]. If data are collected at a regular interval, values in between the measurements can be estimated. In a line graph, the x-axis represents the continuous variable, while the y-axis represents the scale and measurement values. It is also useful to represent multiple data sets on a single line graph to compare and analyze patterns across different data sets.

Box and whisker chart

A box and whisker chart does not make any assumptions about the underlying statistical distribution, and represents variations in samples of a population; therefore, it is appropriate for representing nonparametric data. AA box and whisker chart consists of boxes that represent interquartile range (one to three), the median and the mean of the data, and whiskers presented as lines outside of the boxes. Whiskers can be used to present the largest and smallest values in a set of data or only a part of the data (i.e. 95% of all the data). Data that are excluded from the data set are presented as individual points and are called outliers. The spacing at both ends of the box indicates dispersion in the data. The relative location of the median demonstrated within the box indicates skewness ( Fig. 6 ). The box and whisker chart provided as an example represents calculated volumes of an anesthetic, desflurane, consumed over the course of the observation period ( Fig. 7 ) [ 9 ].

An external file that holds a picture, illustration, etc.
Object name is kjae-70-267-g006.jpg

Three-dimensional effects

Most of the recently introduced statistical packages and graphics software have the three-dimensional (3D) effect feature. The 3D effects can add depth and perspective to a graph. However, since they may make reading and interpreting data more difficult, they must only be used after careful consideration. The application of 3D effects on a pie chart makes distinguishing the size of each slice difficult. Even if slices are of similar sizes, slices farther from the front of the pie chart may appear smaller than the slices closer to the front ( Fig. 8 ).

An external file that holds a picture, illustration, etc.
Object name is kjae-70-267-g008.jpg

Drawing a graph: example

Finally, we explain how to create a graph by using a line graph as an example ( Fig. 9 ). In Fig. 9 , the mean values of arterial pressure were randomly produced and assumed to have been measured on an hourly basis. In many graphs, the x- and y-axes meet at the zero point ( Fig. 9A ). In this case, information regarding the mean and standard deviation of mean arterial pressure measurements corresponding to t = 0 cannot be conveyed as the values overlap with the y-axis. The data can be clearly exposed by separating the zero point ( Fig. 9B ). In Fig. 9B , the mean and standard deviation of different groups overlap and cannot be clearly distinguished from each other. Separating the data sets and presenting standard deviations in a single direction prevents overlapping and, therefore, reduces the visual inconvenience. Doing so also reduces the excessive number of ticks on the y-axis, increasing the legibility of the graph ( Fig. 9C ). In the last graph, different shapes were used for the lines connecting different time points to further allow the data to be distinguished, and the y-axis was shortened to get rid of the unnecessary empty space present in the previous graphs ( Fig. 9D ). A graph can be made easier to interpret by assigning each group to a different color, changing the shape of a point, or including graphs of different formats [ 10 ]. The use of random settings for the scale in a graph may lead to inappropriate presentation or presentation of data that can deceive readers' eyes ( Fig. 10 ).

An external file that holds a picture, illustration, etc.
Object name is kjae-70-267-g009.jpg

Owing to the lack of space, we could not discuss all types of graphs, but have focused on describing graphs that are frequently used in scholarly articles. We have summarized the commonly used types of graphs according to the method of data analysis in Table 3 . For general guidelines on graph designs, please refer to the journal submission requirements 2) .

AnalysisSubgroupNumber of variablesType
ComparisonAmong itemsTwo per itemsVariable width column chart
One per itemBar/column chart
Over timeMany periodsCircular area/line chart
Few periodsColumn/line chart
RelationshipTwoScatter chart
ThreeBubble chart
DistributionSingleColumn/line histogram
TwoScatter chart
ThreeThree-dimensional area chart
ComparisonChanging over timeOnly relative differences matterStacked 100% column chart
Relative and absolute differences matterStacked column chart
StaticSimple share of totalPie chart
AccumulationWaterfall chart
Components of componentsStacked 100% column chart with subcomponents

Conclusions

Text, tables, and graphs are effective communication media that present and convey data and information. They aid readers in understanding the content of research, sustain their interest, and effectively present large quantities of complex information. As journal editors and reviewers will scan through these presentations before reading the entire text, their importance cannot be disregarded. For this reason, authors must pay as close attention to selecting appropriate methods of data presentation as when they were collecting data of good quality and analyzing them. In addition, having a well-established understanding of different methods of data presentation and their appropriate use will enable one to develop the ability to recognize and interpret inappropriately presented data or data presented in such a way that it deceives readers' eyes [ 11 ].

<Appendix>

Output for presentation.

Discovery and communication are the two objectives of data visualization. In the discovery phase, various types of graphs must be tried to understand the rough and overall information the data are conveying. The communication phase is focused on presenting the discovered information in a summarized form. During this phase, it is necessary to polish images including graphs, pictures, and videos, and consider the fact that the images may look different when printed than how appear on a computer screen. In this appendix, we discuss important concepts that one must be familiar with to print graphs appropriately.

The KJA asks that pictures and images meet the following requirement before submission 3)

“Figures and photographs should be submitted as ‘TIFF’ files. Submit files of figures and photographs separately from the text of the paper. Width of figure should be 84 mm (one column). Contrast of photos or graphs should be at least 600 dpi. Contrast of line drawings should be at least 1,200 dpi. The Powerpoint file (ppt, pptx) is also acceptable.”

Unfortunately, without sufficient knowledge of computer graphics, it is not easy to understand the submission requirement above. Therefore, it is necessary to develop an understanding of image resolution, image format (bitmap and vector images), and the corresponding file specifications.

Resolution is often mentioned to describe the quality of images containing graphs or CT/MRI scans, and video files. The higher the resolution, the clearer and closer to reality the image is, while the opposite is true for low resolutions. The most representative unit used to describe a resolution is “dpi” (dots per inch): this literally translates to the number of dots required to constitute 1 inch. The greater the number of dots, the higher the resolution. The KJA submission requirements recommend 600 dpi for images, and 1,200 dpi 4) for graphs. In other words, resolutions in which 600 or 1,200 dots constitute one inch are required for submission.

There are requirements for the horizontal length of an image in addition to the resolution requirements. While there are no requirements for the vertical length of an image, it must not exceed the vertical length of a page. The width of a column on one side of a printed page is 84 mm, or 3.3 inches (84/25.4 mm ≒ 3.3 inches). Therefore, a graph must have a resolution in which 1,200 dots constitute 1 inch, and have a width of 3.3 inches.

Bitmap and Vector

Methods of image construction are important. Bitmap images can be considered as images drawn on section paper. Enlarging the image will enlarge the picture along with the grid, resulting in a lower resolution; in other words, aliasing occurs. On the other hand, reducing the size of the image will reduce the size of the picture, while increasing the resolution. In other words, resolution and the size of an image are inversely proportionate to one another in bitmap images, and it is a drawback of bitmap images that resolution must be considered when adjusting the size of an image. To enlarge an image while maintaining the same resolution, the size and resolution of the image must be determined before saving the image. An image that has already been created cannot avoid changes to its resolution according to changes in size. Enlarging an image while maintaining the same resolution will increase the number of horizontal and vertical dots, ultimately increasing the number of pixels 5) of the image, and the file size. In other words, the file size of a bitmap image is affected by the size and resolution of the image (file extensions include JPG [JPEG] 6) , PNG 7) , GIF 8) , and TIF [TIFF] 9) . To avoid this complexity, the width of an image can be set to 4 inches and its resolution to 900 dpi to satisfy the submission requirements of most journals [ 12 ].

Vector images overcome the shortcomings of bitmap images. Vector images are created based on mathematical operations of line segments and areas between different points, and are not affected by aliasing or pixelation. Furthermore, they result in a smaller file size that is not affected by the size of the image. They are commonly used for drawings and illustrations (file extensions include EPS 10) , CGM 11) , and SVG 12) ).

Finally, the PDF 13) is a file format developed by Adobe Systems (Adobe Systems, CA, USA) for electronic documents, and can contain general documents, text, drawings, images, and fonts. They can also contain bitmap and vector images. While vector images are used by researchers when working in Powerpoint, they are saved as 960 × 720 dots when saved in TIFF format in Powerpoint. This results in a resolution that is inappropriate for printing on a paper medium. To save high-resolution bitmap images, the image must be saved as a PDF file instead of a TIFF, and the saved PDF file must be imported into an imaging processing program such as Photoshop™(Adobe Systems, CA, USA) to be saved in TIFF format [ 12 ].

1) Instructions to authors in KJA; section 5-(9) Table; https://ekja.org/index.php?body=instruction

2) Instructions to Authors in KJA; section 6-1)-(10) Figures and illustrations in Manuscript preparation; https://ekja.org/index.php?body=instruction

3) Instructions to Authors in KJA; section 6-1)-(10) Figures and illustrations in Manuscript preparation; https://ekja.org/index.php?body=instruction

4) Resolution; in KJA, it is represented by “contrast.”

5) Pixel is a minimum unit of an image and contains information of a dot and color. It is derived by multiplying the number of vertical and horizontal dots regardless of image size. For example, Full High Definition (FHD) monitor has 1920 × 1080 dots ≒ 2.07 million pixel.

6) Joint Photographic Experts Group.

7) Portable Network Graphics.

8) Graphics Interchange Format

9) Tagged Image File Format; TIFF

10) Encapsulated PostScript.

11) Computer Graphics Metafile.

12) Scalable Vector Graphics.

13) Portable Document Format.

data presentation research

The Ultimate Guide to Qualitative Research - Part 3: Presenting Qualitative Data

data presentation research

  • Introduction

How do you present qualitative data?

Data visualization.

  • Research paper writing
  • Transparency and rigor in research
  • How to publish a research paper

Table of contents

  • Transparency and rigor

Navigate to other guide parts:

Part 1: The Basics or Part 2: Handling Qualitative Data

  • Presenting qualitative data

In the end, presenting qualitative research findings is just as important a skill as mastery of qualitative research methods for the data collection and data analysis process . Simply uncovering insights is insufficient to the research process; presenting a qualitative analysis holds the challenge of persuading your audience of the value of your research. As a result, it's worth spending some time considering how best to report your research to facilitate its contribution to scientific knowledge.

data presentation research

When it comes to research, presenting data in a meaningful and accessible way is as important as gathering it. This is particularly true for qualitative research , where the richness and complexity of the data demand careful and thoughtful presentation. Poorly written research is taken less seriously and left undiscussed by the greater scholarly community; quality research reporting that persuades its audience stands a greater chance of being incorporated in discussions of scientific knowledge.

Qualitative data presentation differs fundamentally from that found in quantitative research. While quantitative data tend to be numerical and easily lend themselves to statistical analysis and graphical representation, qualitative data are often textual and unstructured, requiring an interpretive approach to bring out their inherent meanings. Regardless of the methodological approach , the ultimate goal of data presentation is to communicate research findings effectively to an audience so they can incorporate the generated knowledge into their research inquiry.

As the section on research rigor will suggest, an effective presentation of your research depends on a thorough scientific process that organizes raw data into a structure that allows for a thorough analysis for scientific understanding.

Preparing the data

The first step in presenting qualitative data is preparing the data. This preparation process often begins with cleaning and organizing the data. Cleaning involves checking the data for accuracy and completeness, removing any irrelevant information, and making corrections as needed. Organizing the data often entails arranging the data into categories or groups that make sense for your research framework.

data presentation research

Coding the data

Once the data are cleaned and organized, the next step is coding , a crucial part of qualitative data analysis. Coding involves assigning labels to segments of the data to summarize or categorize them. This process helps to identify patterns and themes in the data, laying the groundwork for subsequent data interpretation and presentation. Qualitative research often involves multiple iterations of coding, creating new and meaningful codes while discarding unnecessary ones , to generate a rich structure through which data analysis can occur.

Uncovering insights

As you navigate through these initial steps, keep in mind the broader aim of qualitative research, which is to provide rich, detailed, and nuanced understandings of people's experiences, behaviors, and social realities. These guiding principles will help to ensure that your data presentation is not only accurate and comprehensive but also meaningful and impactful.

data presentation research

While this process might seem intimidating at first, it's an essential part of any qualitative research project. It's also a skill that can be learned and refined over time, so don't be discouraged if you find it challenging at first. Remember, the goal of presenting qualitative data is to make your research findings accessible and understandable to others. This requires careful preparation, a clear understanding of your data, and a commitment to presenting your findings in a way that respects and honors the complexity of the phenomena you're studying.

In the following sections, we'll delve deeper into how to create a comprehensive narrative from your data, the visualization of qualitative data , and the writing and publication processes . Let's briefly excerpt some of the content in the articles in this part of the guide.

data presentation research

ATLAS.ti helps you make sense of your data

Find out how with a free trial of our powerful data analysis interface.

How often do you read a research article and skip straight to the tables and figures? That's because data visualizations representing qualitative and quantitative data have the power to make large and complex research projects with thousands of data points comprehensible when authors present data to research audiences. Researchers create visual representations to help summarize the data generated from their study and make clear the pathways for actionable insights.

In everyday situations, a picture is always worth a thousand words. Illustrations, figures, and charts convey messages that words alone cannot. In research, data visualization can help explain scientific knowledge, evidence for data insights, and key performance indicators in an orderly manner based on data that is otherwise unstructured.

data presentation research

For all of the various data formats available to researchers, a significant portion of qualitative and social science research is still text-based. Essays, reports, and research articles still rely on writing practices aimed at repackaging research in prose form. This can create the impression that simply writing more will persuade research audiences. Instead, framing research in terms that are easy for your target readers to understand makes it easier for your research to become published in peer-reviewed scholarly journals or find engagement at scholarly conferences. Even in market or professional settings, data visualization is an essential concept when you need to convince others about the insights of your research and the recommendations you make based on the data.

Importance of data visualization

Data visualization is important because it makes it easy for your research audience to understand your data sets and your findings. Also, data visualization helps you organize your data more efficiently. As the explanation of ATLAS.ti's tools will illustrate in this section, data visualization might point you to research inquiries that you might not even be aware of, helping you get the most out of your data. Strictly speaking, the primary role of data visualization is to make the analysis of your data , if not the data itself, clear. Especially in social science research, data visualization makes it easy to see how data scientists collect and analyze data.

Prerequisites for generating data visualizations

Data visualization is effective in explaining research to others only if the researcher or data scientist can make sense of the data in front of them. Traditional research with unstructured data usually calls for coding the data with short, descriptive codes that can be analyzed later, whether statistically or thematically. These codes form the basic data points of a meaningful qualitative analysis . They represent the structure of qualitative data sets, without which a scientific visualization with research rigor would be extremely difficult to achieve. In most respects, data visualization of a qualitative research project requires coding the entire data set so that the codes adequately represent the collected data.

A successfully crafted research study culminates in the writing of the research paper . While a pilot study or preliminary research might guide the research design , a full research study leads to discussion that highlights avenues for further research. As such, the importance of the research paper cannot be overestimated in the overall generation of scientific knowledge.

data presentation research

The physical and natural sciences tend to have a clinical structure for a research paper that mirrors the scientific method: outline the background research, explain the materials and methods of the study, outline the research findings generated from data analysis, and discuss the implications. Qualitative research tends to preserve much of this structure, but there are notable and numerous variations from a traditional research paper that it's worth emphasizing the flexibility in the social sciences with respect to the writing process.

Requirements for research writing

While there aren't any hard and fast rules regarding what belongs in a qualitative research paper , readers expect to find a number of pieces of relevant information in a rigorously-written report. The best way to know what belongs in a full research paper is to look at articles in your target journal or articles that share a particular topic similar to yours and examine how successfully published papers are written.

It's important to emphasize the more mundane but equally important concerns of proofreading and formatting guidelines commonly found when you write a research paper. Research publication shouldn't strictly be a test of one's writing skills, but acknowledging the importance of convincing peer reviewers of the credibility of your research means accepting the responsibility of preparing your research manuscript to commonly accepted standards in research.

As a result, seemingly insignificant things such as spelling mistakes, page numbers, and proper grammar can make a difference with a particularly strict reviewer. Even when you expect to develop a paper through reviewer comments and peer feedback, your manuscript should be as close to a polished final draft as you can make it prior to submission.

Qualitative researchers face particular challenges in convincing their target audience of the value and credibility of their subsequent analysis. Numbers and quantifiable concepts in quantitative studies are relatively easier to understand than their counterparts associated with qualitative methods . Think about how easy it is to make conclusions about the value of items at a store based on their prices, then imagine trying to compare those items based on their design, function, and effectiveness.

Qualitative research involves and requires these sorts of discussions. The goal of qualitative data analysis is to allow a qualitative researcher and their audience to make such determinations, but before the audience can accept these determinations, the process of conducting research that produces the qualitative analysis must first be seen as trustworthy. As a result, it is on the researcher to persuade their audience that their data collection process and subsequent analysis is rigorous.

Qualitative rigor refers to the meticulousness, consistency, and transparency of the research. It is the application of systematic, disciplined, and stringent methods to ensure the credibility, dependability, confirmability, and transferability of research findings. In qualitative inquiry, these attributes ensure the research accurately reflects the phenomenon it is intended to represent, that its findings can be understood or used by others, and that its processes and results are open to scrutiny and validation.

Transparency

It is easier to believe the information presented to you if there is a rigorous analysis process behind that information, and if that process is explicitly detailed. The same is true for qualitative research results, making transparency a key element in qualitative research methodologies. Transparency is a fundamental aspect of rigor in qualitative research. It involves the clear, detailed, and explicit documentation of all stages of the research process. This allows other researchers to understand, evaluate, replicate, and build upon the study. Transparency in qualitative research is essential for maintaining rigor, trustworthiness, and ethical integrity. By being transparent, researchers allow their work to be scrutinized, critiqued, and improved upon, contributing to the ongoing development and refinement of knowledge in their field.

Research papers are only as useful as their audience in the scientific community is wide. To reach that audience, a paper needs to pass the peer review process of an academic journal. However, the idea of having research published in peer-reviewed journals may seem daunting to newer researchers, so it's important to provide a guide on how an academic journal looks at your research paper as well as how to determine what is the right journal for your research.

data presentation research

In simple terms, a research article is good if it is accepted as credible and rigorous by the scientific community. A study that isn't seen as a valid contribution to scientific knowledge shouldn't be published; ultimately, it is up to peers within the field in which the study is being considered to determine the study's value. In established academic research, this determination is manifest in the peer review process. Journal editors at a peer-reviewed journal assign papers to reviewers who will determine the credibility of the research. A peer-reviewed article that completed this process and is published in a reputable journal can be seen as credible with novel research that can make a profound contribution to scientific knowledge.

The process of research publication

The process has been codified and standardized within the scholarly community to include three main stages. These stages include the initial submission stage where the editor reviews the relevance of the paper, the review stage where experts in your field offer feedback, and, if reviewers approve your paper, the copyediting stage where you work with the journal to prepare the paper for inclusion in their journal.

Publishing a research paper may seem like an opaque process where those involved with academic journals make arbitrary decisions about the worthiness of research manuscripts. In reality, reputable publications assign a rubric or a set of guidelines that reviewers need to keep in mind when they review a submission. These guidelines will most likely differ depending on the journal, but they fall into a number of typical categories that are applicable regardless of the research area or the type of methods employed in a research study, including the strength of the literature review , rigor in research methodology , and novelty of findings.

Choosing the right journal isn't simply a matter of which journal is the most famous or has the broadest reach. Many universities keep lists of prominent journals where graduate students and faculty members should publish a research paper , but oftentimes this list is determined by a journal's impact factor and their inclusion in major academic databases.

data presentation research

Guide your research to publication with ATLAS.ti

Turn insights into visualizations with our easy-to-use interface. Download a free trial today.

This section is part of an entire guide. Use this table of contents to jump to any page in the guide.

Part 1: The Basics

  • What is qualitative data?
  • 10 examples of qualitative data
  • Qualitative vs. quantitative research
  • What is mixed methods research?
  • Theoretical perspective
  • Theoretical framework
  • Literature reviews
  • Research questions
  • Conceptual framework
  • Conceptual vs. theoretical framework
  • Focus groups
  • Observational research
  • Case studies
  • Survey research
  • What is ethnographic research?
  • Confidentiality and privacy in research
  • Bias in research
  • Power dynamics in research
  • Reflexivity

Part 2: Handling Qualitative Data

  • Research transcripts
  • Field notes in research
  • Research memos
  • Survey data
  • Images, audio, and video in qualitative research
  • Coding qualitative data
  • Coding frame
  • Auto-coding and smart coding
  • Organizing codes
  • Content analysis
  • Thematic analysis
  • Thematic analysis vs. content analysis
  • Narrative research
  • Phenomenological research
  • Discourse analysis
  • Grounded theory
  • Deductive reasoning
  • What is inductive reasoning?
  • Inductive vs. deductive reasoning
  • What is data interpretation?
  • Qualitative analysis software

Part 3: Presenting Qualitative Data

  • Data visualization - What is it and why is it important?

data presentation research

Member-only story

How to Create a Successful Data Presentation

Presentation tips for different audiences.

Vicky Yu

Towards Data Science

Whether you’re a data scientist or data analyst, at one point in your career you’ll have to present your results to an audience. Knowing what to say and include in your presentation will impact your success. After giving many data presentations over the years, I’d like to share my tips on how to increase your chances for a successful presentation.

Know your audience

The audience for your presentation will dictate the level of detail and information you’ll present. There are three main types of audiences:

  • Peers — These are data analysts, data scientists, and anyone in analytics that understand what you’re explaining if you drill down to methodology, analytic approaches, or code. Detailed information is preferable for this audience to share your work and for them to understand your approach and possibly leverage for their projects.
  • Stakeholders —These are people in the department you support that asks you questions. A moderate level of detail is needed in your presentation for stakeholders to understand the results and make decisions.
  • Senior leadership — These are people that manage your stakeholders and occupy senior positions in the company. Only high level…

Vicky Yu

Written by Vicky Yu

Musings of a data scientist turned data analyst. Sharing my data experiences one story at a time.

Text to speech

We use essential cookies to make Venngage work. By clicking “Accept All Cookies”, you agree to the storing of cookies on your device to enhance site navigation, analyze site usage, and assist in our marketing efforts.

Manage Cookies

Cookies and similar technologies collect certain information about how you’re using our website. Some of them are essential, and without them you wouldn’t be able to use Venngage. But others are optional, and you get to choose whether we use them or not.

Strictly Necessary Cookies

These cookies are always on, as they’re essential for making Venngage work, and making it safe. Without these cookies, services you’ve asked for can’t be provided.

Show cookie providers

  • Google Login

Functionality Cookies

These cookies help us provide enhanced functionality and personalisation, and remember your settings. They may be set by us or by third party providers.

Performance Cookies

These cookies help us analyze how many people are using Venngage, where they come from and how they're using it. If you opt out of these cookies, we can’t get feedback to make Venngage better for you and all our users.

  • Google Analytics

Targeting Cookies

These cookies are set by our advertising partners to track your activity and show you relevant Venngage ads on other sites as you browse the internet.

  • Google Tag Manager
  • Infographics
  • Daily Infographics
  • Popular Templates
  • Accessibility
  • Graphic Design
  • Graphs and Charts
  • Data Visualization
  • Human Resources
  • Beginner Guides

Blog Data Visualization 10 Data Presentation Examples For Strategic Communication

10 Data Presentation Examples For Strategic Communication

Written by: Krystle Wong Sep 28, 2023

Data Presentation Examples

Knowing how to present data is like having a superpower. 

Data presentation today is no longer just about numbers on a screen; it’s storytelling with a purpose. It’s about captivating your audience, making complex stuff look simple and inspiring action. 

To help turn your data into stories that stick, influence decisions and make an impact, check out Venngage’s free chart maker or follow me on a tour into the world of data storytelling along with data presentation templates that work across different fields, from business boardrooms to the classroom and beyond. Keep scrolling to learn more! 

Click to jump ahead:

10 Essential data presentation examples + methods you should know

What should be included in a data presentation, what are some common mistakes to avoid when presenting data, faqs on data presentation examples, transform your message with impactful data storytelling.

Data presentation is a vital skill in today’s information-driven world. Whether you’re in business, academia, or simply want to convey information effectively, knowing the different ways of presenting data is crucial. For impactful data storytelling, consider these essential data presentation methods:

1. Bar graph

Ideal for comparing data across categories or showing trends over time.

Bar graphs, also known as bar charts are workhorses of data presentation. They’re like the Swiss Army knives of visualization methods because they can be used to compare data in different categories or display data changes over time. 

In a bar chart, categories are displayed on the x-axis and the corresponding values are represented by the height of the bars on the y-axis. 

data presentation research

It’s a straightforward and effective way to showcase raw data, making it a staple in business reports, academic presentations and beyond.

Make sure your bar charts are concise with easy-to-read labels. Whether your bars go up or sideways, keep it simple by not overloading with too many categories.

data presentation research

2. Line graph

Great for displaying trends and variations in data points over time or continuous variables.

Line charts or line graphs are your go-to when you want to visualize trends and variations in data sets over time.

One of the best quantitative data presentation examples, they work exceptionally well for showing continuous data, such as sales projections over the last couple of years or supply and demand fluctuations. 

data presentation research

The x-axis represents time or a continuous variable and the y-axis represents the data values. By connecting the data points with lines, you can easily spot trends and fluctuations.

A tip when presenting data with line charts is to minimize the lines and not make it too crowded. Highlight the big changes, put on some labels and give it a catchy title.

data presentation research

3. Pie chart

Useful for illustrating parts of a whole, such as percentages or proportions.

Pie charts are perfect for showing how a whole is divided into parts. They’re commonly used to represent percentages or proportions and are great for presenting survey results that involve demographic data. 

Each “slice” of the pie represents a portion of the whole and the size of each slice corresponds to its share of the total. 

data presentation research

While pie charts are handy for illustrating simple distributions, they can become confusing when dealing with too many categories or when the differences in proportions are subtle.

Don’t get too carried away with slices — label those slices with percentages or values so people know what’s what and consider using a legend for more categories.

data presentation research

4. Scatter plot

Effective for showing the relationship between two variables and identifying correlations.

Scatter plots are all about exploring relationships between two variables. They’re great for uncovering correlations, trends or patterns in data. 

In a scatter plot, every data point appears as a dot on the chart, with one variable marked on the horizontal x-axis and the other on the vertical y-axis.

data presentation research

By examining the scatter of points, you can discern the nature of the relationship between the variables, whether it’s positive, negative or no correlation at all.

If you’re using scatter plots to reveal relationships between two variables, be sure to add trendlines or regression analysis when appropriate to clarify patterns. Label data points selectively or provide tooltips for detailed information.

data presentation research

5. Histogram

Best for visualizing the distribution and frequency of a single variable.

Histograms are your choice when you want to understand the distribution and frequency of a single variable. 

They divide the data into “bins” or intervals and the height of each bar represents the frequency or count of data points falling into that interval. 

data presentation research

Histograms are excellent for helping to identify trends in data distributions, such as peaks, gaps or skewness.

Here’s something to take note of — ensure that your histogram bins are appropriately sized to capture meaningful data patterns. Using clear axis labels and titles can also help explain the distribution of the data effectively.

data presentation research

6. Stacked bar chart

Useful for showing how different components contribute to a whole over multiple categories.

Stacked bar charts are a handy choice when you want to illustrate how different components contribute to a whole across multiple categories. 

Each bar represents a category and the bars are divided into segments to show the contribution of various components within each category. 

data presentation research

This method is ideal for highlighting both the individual and collective significance of each component, making it a valuable tool for comparative analysis.

Stacked bar charts are like data sandwiches—label each layer so people know what’s what. Keep the order logical and don’t forget the paintbrush for snazzy colors. Here’s a data analysis presentation example on writers’ productivity using stacked bar charts:

data presentation research

7. Area chart

Similar to line charts but with the area below the lines filled, making them suitable for showing cumulative data.

Area charts are close cousins of line charts but come with a twist. 

Imagine plotting the sales of a product over several months. In an area chart, the space between the line and the x-axis is filled, providing a visual representation of the cumulative total. 

data presentation research

This makes it easy to see how values stack up over time, making area charts a valuable tool for tracking trends in data.

For area charts, use them to visualize cumulative data and trends, but avoid overcrowding the chart. Add labels, especially at significant points and make sure the area under the lines is filled with a visually appealing color gradient.

data presentation research

8. Tabular presentation

Presenting data in rows and columns, often used for precise data values and comparisons.

Tabular data presentation is all about clarity and precision. Think of it as presenting numerical data in a structured grid, with rows and columns clearly displaying individual data points. 

A table is invaluable for showcasing detailed data, facilitating comparisons and presenting numerical information that needs to be exact. They’re commonly used in reports, spreadsheets and academic papers.

data presentation research

When presenting tabular data, organize it neatly with clear headers and appropriate column widths. Highlight important data points or patterns using shading or font formatting for better readability.

9. Textual data

Utilizing written or descriptive content to explain or complement data, such as annotations or explanatory text.

Textual data presentation may not involve charts or graphs, but it’s one of the most used qualitative data presentation examples. 

It involves using written content to provide context, explanations or annotations alongside data visuals. Think of it as the narrative that guides your audience through the data. 

Well-crafted textual data can make complex information more accessible and help your audience understand the significance of the numbers and visuals.

Textual data is your chance to tell a story. Break down complex information into bullet points or short paragraphs and use headings to guide the reader’s attention.

10. Pictogram

Using simple icons or images to represent data is especially useful for conveying information in a visually intuitive manner.

Pictograms are all about harnessing the power of images to convey data in an easy-to-understand way. 

Instead of using numbers or complex graphs, you use simple icons or images to represent data points. 

For instance, you could use a thumbs up emoji to illustrate customer satisfaction levels, where each face represents a different level of satisfaction. 

data presentation research

Pictograms are great for conveying data visually, so choose symbols that are easy to interpret and relevant to the data. Use consistent scaling and a legend to explain the symbols’ meanings, ensuring clarity in your presentation.

data presentation research

Looking for more data presentation ideas? Use the Venngage graph maker or browse through our gallery of chart templates to pick a template and get started! 

A comprehensive data presentation should include several key elements to effectively convey information and insights to your audience. Here’s a list of what should be included in a data presentation:

1. Title and objective

  • Begin with a clear and informative title that sets the context for your presentation.
  • State the primary objective or purpose of the presentation to provide a clear focus.

data presentation research

2. Key data points

  • Present the most essential data points or findings that align with your objective.
  • Use charts, graphical presentations or visuals to illustrate these key points for better comprehension.

data presentation research

3. Context and significance

  • Provide a brief overview of the context in which the data was collected and why it’s significant.
  • Explain how the data relates to the larger picture or the problem you’re addressing.

4. Key takeaways

  • Summarize the main insights or conclusions that can be drawn from the data.
  • Highlight the key takeaways that the audience should remember.

5. Visuals and charts

  • Use clear and appropriate visual aids to complement the data.
  • Ensure that visuals are easy to understand and support your narrative.

data presentation research

6. Implications or actions

  • Discuss the practical implications of the data or any recommended actions.
  • If applicable, outline next steps or decisions that should be taken based on the data.

data presentation research

7. Q&A and discussion

  • Allocate time for questions and open discussion to engage the audience.
  • Address queries and provide additional insights or context as needed.

Presenting data is a crucial skill in various professional fields, from business to academia and beyond. To ensure your data presentations hit the mark, here are some common mistakes that you should steer clear of:

Overloading with data

Presenting too much data at once can overwhelm your audience. Focus on the key points and relevant information to keep the presentation concise and focused. Here are some free data visualization tools you can use to convey data in an engaging and impactful way. 

Assuming everyone’s on the same page

It’s easy to assume that your audience understands as much about the topic as you do. But this can lead to either dumbing things down too much or diving into a bunch of jargon that leaves folks scratching their heads. Take a beat to figure out where your audience is coming from and tailor your presentation accordingly.

Misleading visuals

Using misleading visuals, such as distorted scales or inappropriate chart types can distort the data’s meaning. Pick the right data infographics and understandable charts to ensure that your visual representations accurately reflect the data.

Not providing context

Data without context is like a puzzle piece with no picture on it. Without proper context, data may be meaningless or misinterpreted. Explain the background, methodology and significance of the data.

Not citing sources properly

Neglecting to cite sources and provide citations for your data can erode its credibility. Always attribute data to its source and utilize reliable sources for your presentation.

Not telling a story

Avoid simply presenting numbers. If your presentation lacks a clear, engaging story that takes your audience on a journey from the beginning (setting the scene) through the middle (data analysis) to the end (the big insights and recommendations), you’re likely to lose their interest.

Infographics are great for storytelling because they mix cool visuals with short and sweet text to explain complicated stuff in a fun and easy way. Create one with Venngage’s free infographic maker to create a memorable story that your audience will remember.

Ignoring data quality

Presenting data without first checking its quality and accuracy can lead to misinformation. Validate and clean your data before presenting it.

Simplify your visuals

Fancy charts might look cool, but if they confuse people, what’s the point? Go for the simplest visual that gets your message across. Having a dilemma between presenting data with infographics v.s data design? This article on the difference between data design and infographics might help you out. 

Missing the emotional connection

Data isn’t just about numbers; it’s about people and real-life situations. Don’t forget to sprinkle in some human touch, whether it’s through relatable stories, examples or showing how the data impacts real lives.

Skipping the actionable insights

At the end of the day, your audience wants to know what they should do with all the data. If you don’t wrap up with clear, actionable insights or recommendations, you’re leaving them hanging. Always finish up with practical takeaways and the next steps.

Can you provide some data presentation examples for business reports?

Business reports often benefit from data presentation through bar charts showing sales trends over time, pie charts displaying market share,or tables presenting financial performance metrics like revenue and profit margins.

What are some creative data presentation examples for academic presentations?

Creative data presentation ideas for academic presentations include using statistical infographics to illustrate research findings and statistical data, incorporating storytelling techniques to engage the audience or utilizing heat maps to visualize data patterns.

What are the key considerations when choosing the right data presentation format?

When choosing a chart format , consider factors like data complexity, audience expertise and the message you want to convey. Options include charts (e.g., bar, line, pie), tables, heat maps, data visualization infographics and interactive dashboards.

Knowing the type of data visualization that best serves your data is just half the battle. Here are some best practices for data visualization to make sure that the final output is optimized. 

How can I choose the right data presentation method for my data?

To select the right data presentation method, start by defining your presentation’s purpose and audience. Then, match your data type (e.g., quantitative, qualitative) with suitable visualization techniques (e.g., histograms, word clouds) and choose an appropriate presentation format (e.g., slide deck, report, live demo).

For more presentation ideas , check out this guide on how to make a good presentation or use a presentation software to simplify the process.  

How can I make my data presentations more engaging and informative?

To enhance data presentations, use compelling narratives, relatable examples and fun data infographics that simplify complex data. Encourage audience interaction, offer actionable insights and incorporate storytelling elements to engage and inform effectively.

The opening of your presentation holds immense power in setting the stage for your audience. To design a presentation and convey your data in an engaging and informative, try out Venngage’s free presentation maker to pick the right presentation design for your audience and topic. 

What is the difference between data visualization and data presentation?

Data presentation typically involves conveying data reports and insights to an audience, often using visuals like charts and graphs. Data visualization , on the other hand, focuses on creating those visual representations of data to facilitate understanding and analysis. 

Now that you’ve learned a thing or two about how to use these methods of data presentation to tell a compelling data story , it’s time to take these strategies and make them your own. 

But here’s the deal: these aren’t just one-size-fits-all solutions. Remember that each example we’ve uncovered here is not a rigid template but a source of inspiration. It’s all about making your audience go, “Wow, I get it now!”

Think of your data presentations as your canvas – it’s where you paint your story, convey meaningful insights and make real change happen. 

So, go forth, present your data with confidence and purpose and watch as your strategic influence grows, one compelling presentation at a time.

Discover popular designs

data presentation research

Infographic maker

data presentation research

Brochure maker

data presentation research

White paper online

data presentation research

Newsletter creator

data presentation research

Flyer maker

data presentation research

Timeline maker

data presentation research

Letterhead maker

data presentation research

Mind map maker

data presentation research

Ebook maker

A Guide to Effective Data Presentation

Key objectives of data presentation, charts and graphs for great visuals, storytelling with data, visuals, and text, audiences and data presentation, the main idea in data presentation, storyboarding and data presentation, additional resources, data presentation.

Tools for effective data presentation

Financial analysts are required to present their findings in a neat, clear, and straightforward manner. They spend most of their time working with spreadsheets in MS Excel, building financial models , and crunching numbers. These models and calculations can be pretty extensive and complex and may only be understood by the analyst who created them. Effective data presentation skills are critical for being a world-class financial analyst .

Data Presentation

It is the analyst’s job to effectively communicate the output to the target audience, such as the management team or a company’s external investors. This requires focusing on the main points, facts, insights, and recommendations that will prompt the necessary action from the audience.

One challenge is making intricate and elaborate work easy to comprehend through great visuals and dashboards. For example, tables, graphs, and charts are tools that an analyst can use to their advantage to give deeper meaning to a company’s financial information. These tools organize relevant numbers that are rather dull and give life and story to them.

Here are some key objectives to think about when presenting financial analysis:

  • Visual communication
  • Audience and context
  • Charts, graphs, and images
  • Focus on important points
  • Design principles
  • Storytelling
  • Persuasiveness

For a breakdown of these objectives, check out Excel Dashboards & Data Visualization course to help you become a world-class financial analyst.

Charts and graphs make any financial analysis readable, easy to follow, and provide great data presentation. They are often included in the financial model’s output, which is essential for the key decision-makers in a company.

The decision-makers comprise executives and managers who usually won’t have enough time to synthesize and interpret data on their own to make sound business decisions. Therefore, it is the job of the analyst to enhance the decision-making process and help guide the executives and managers to create value for the company.

When an analyst uses charts, it is necessary to be aware of what good charts and bad charts look like and how to avoid the latter when telling a story with data.

Examples of Good Charts

As for great visuals, you can quickly see what’s going on with the data presentation, saving you time for deciphering their actual meaning. More importantly, great visuals facilitate business decision-making because their goal is to provide persuasive, clear, and unambiguous numeric communication.

For reference, take a look at the example below that shows a dashboard, which includes a gauge chart for growth rates, a bar chart for the number of orders, an area chart for company revenues, and a line chart for EBITDA margins.

To learn the step-by-step process of creating these essential tools in MS Excel, watch our video course titled “ Excel Dashboard & Data Visualization .”  Aside from what is given in the example below, our course will also teach how you can use other tables and charts to make your financial analysis stand out professionally.

Financial Dashboard Screenshot

Learn how to build the graph above in our Dashboards Course !

Example of Poorly Crafted Charts

A bad chart, as seen below, will give the reader a difficult time to find the main takeaway of a report or presentation, because it contains too many colors, labels, and legends, and thus, will often look too busy. It also doesn’t help much if a chart, such as a pie chart, is displayed in 3D, as it skews the size and perceived value of the underlying data. A bad chart will be hard to follow and understand.

bad data presentation

Aside from understanding the meaning of the numbers, a financial analyst must learn to combine numbers and language to craft an effective story. Relying only on data for a presentation may leave your audience finding it difficult to read, interpret, and analyze your data. You must do the work for them, and a good story will be easier to follow. It will help you arrive at the main points faster, rather than just solely presenting your report or live presentation with numbers.

The data can be in the form of revenues, expenses, profits, and cash flow. Simply adding notes, comments, and opinions to each line item will add an extra layer of insight, angle, and a new perspective to the report.

Furthermore, by combining data, visuals, and text, your audience will get a clear understanding of the current situation,  past events, and possible conclusions and recommendations that can be made for the future.

The simple diagram below shows the different categories of your audience.

audience presentation

  This chart is taken from our course on how to present data .

Internal Audience

An internal audience can either be the executives of the company or any employee who works in that company. For executives, the purpose of communicating a data-filled presentation is to give an update about a certain business activity such as a project or an initiative.

Another important purpose is to facilitate decision-making on managing the company’s operations, growing its core business, acquiring new markets and customers, investing in R&D, and other considerations. Knowing the relevant data and information beforehand will guide the decision-makers in making the right choices that will best position the company toward more success.

External Audience

An external audience can either be the company’s existing clients, where there are projects in progress, or new clients that the company wants to build a relationship with and win new business from. The other external audience is the general public, such as the company’s external shareholders and prospective investors of the company.

When it comes to winning new business, the analyst’s presentation will be more promotional and sales-oriented, whereas a project update will contain more specific information for the client, usually with lots of industry jargon.

Audiences for Live and Emailed Presentation

A live presentation contains more visuals and storytelling to connect more with the audience. It must be more precise and should get to the point faster and avoid long-winded speech or text because of limited time.

In contrast, an emailed presentation is expected to be read, so it will include more text. Just like a document or a book, it will include more detailed information, because its context will not be explained with a voice-over as in a live presentation.

When it comes to details, acronyms, and jargon in the presentation, these things depend on whether your audience are experts or not.

Every great presentation requires a clear “main idea”. It is the core purpose of the presentation and should be addressed clearly. Its significance should be highlighted and should cause the targeted audience to take some action on the matter.

An example of a serious and profound idea is given below.

the main idea

To communicate this big idea, we have to come up with appropriate and effective visual displays to show both the good and bad things surrounding the idea. It should put emphasis and attention on the most important part, which is the critical cash balance and capital investment situation for next year. This is an important component of data presentation.

The storyboarding below is how an analyst would build the presentation based on the big idea. Once the issue or the main idea has been introduced, it will be followed by a demonstration of the positive aspects of the company’s performance, as well as the negative aspects, which are more important and will likely require more attention.

Various ideas will then be suggested to solve the negative issues. However, before choosing the best option, a comparison of the different outcomes of the suggested ideas will be performed. Finally, a recommendation will be made that centers around the optimal choice to address the imminent problem highlighted in the big idea.

storyboarding

This storyboard is taken from our course on how to present data .

To get to the final point (recommendation), a great deal of analysis has been performed, which includes the charts and graphs discussed earlier, to make the whole presentation easy to follow, convincing, and compelling for your audience.

CFI offers the Business Intelligence & Data Analyst (BIDA)® certification program for those looking to take their careers to the next level. To keep learning and developing your knowledge base, please explore the additional relevant resources below:

  • Investment Banking Pitch Books
  • Excel Dashboards
  • Financial Modeling Guide
  • Startup Pitch Book
  • See all business intelligence resources
  • Share this article

Excel Fundamentals - Formulas for Finance

Create a free account to unlock this Template

Access and download collection of free Templates to help power your productivity and performance.

Already have an account? Log in

Supercharge your skills with Premium Templates

Take your learning and productivity to the next level with our Premium Templates.

Upgrading to a paid membership gives you access to our extensive collection of plug-and-play Templates designed to power your performance—as well as CFI's full course catalog and accredited Certification Programs.

Already have a Self-Study or Full-Immersion membership? Log in

Access Exclusive Templates

Gain unlimited access to more than 250 productivity Templates, CFI's full course catalog and accredited Certification Programs, hundreds of resources, expert reviews and support, the chance to work with real-world finance and research tools, and more.

Already have a Full-Immersion membership? Log in

10 Superb Data Presentation Examples To Learn From

The best way to learn how to present data effectively is to see data presentation examples from the professionals in the field.

We collected superb examples of graphical presentation and visualization of data in statistics, research, sales, marketing, business management, and other areas.

On this page:

How to present data effectively? Clever tips.

  • 10 Real-life examples of data presentation with interpretation.

Download the above infographic in PDF

Your audience should be able to walk through the graphs and visualizations easily while enjoy and respond to the story.

[bctt tweet=”Your reports and graphical presentations should not just deliver statistics, numbers, and data. Instead, they must tell a story, illustrate a situation, provide proofs, win arguments, and even change minds.” username=””]

Before going to data presentation examples let’s see some essential tips to help you build powerful data presentations.

1. Keep it simple and clear

The presentation should be focused on your key message and you need to illustrate it very briefly.

Graphs and charts should communicate your core message, not distract from it. A complicated and overloaded chart can distract and confuse. Eliminate anything repetitive or decorative.

2. Pick up the right visuals for the job

A vast number of types of graphs and charts are available at your disposal – pie charts, line and bar graphs, scatter plot , Venn diagram , etc.

Choosing the right type of chart can be a tricky business. Practically, the choice depends on 2 major things: on the kind of analysis you want to present and on the data types you have.

Commonly, when we aim to facilitate a comparison, we use a bar chart or radar chart. When we want to show trends over time, we use a line chart or an area chart and etc.

3. Break the complex concepts into multiple graphics

It’s can be very hard for a public to understand a complicated graphical visualization. Don’t present it as a huge amount of visual data.

Instead, break the graphics into pieces and illustrate how each piece corresponds to the previous one.

4. Carefully choose the colors

Colors provoke different emotions and associations that affect the way your brand or story is perceived. Sometimes color choices can make or break your visuals.

It is no need to be a designer to make the right color selections. Some golden rules are to stick to 3 or 4 colors avoiding full-on rainbow look and to borrow ideas from relevant chart designs.

Another tip is to consider the brand attributes and your audience profile. You will see appropriate color use in the below data presentation examples.

5. Don’t leave a lot of room for words

The key point in graphical data presentation is to tell the story using visuals and images, not words. Give your audience visual facts, not text.

However, that doesn’t mean words have no importance.

A great advice here is to think that every letter is critical, and there’s no room for wasted and empty words. Also, don’t create generic titles and headlines, build them around the core message.

6. Use good templates and software tools

Building data presentation with AI nowadays means using some kind of software programs and templates. There are many available options – from free graphing software solutions to advanced data visualization tools.

Choosing a good software gives you the power to create good and high-quality visualizations. Make sure you are using templates that provides characteristics like colors, fonts, and chart styles.

A small investment of time to research the software options prevents a large loss of productivity and efficiency at the end.

10 Superb data presentation examples 

Here we collected some of the best examples of data presentation made by one of the biggest names in the graphical data visualization software and information research.

These brands put a lot of money and efforts to investigate how professional graphs and charts should look.

1. Sales Stage History  Funnel Chart 

Data is beautiful and this sales stage funnel chart by Zoho Reports prove this. The above funnel chart represents the different stages in a sales process (Qualification, Need Analysis, Initial Offer, etc.) and shows the potential revenue for each stage for the last and this quarter.

The potential revenue for each sales stage is displayed by a different color and sized according to the amount. The chart is very colorful, eye-catching, and intriguing.

2. Facebook Ads Data Presentation Examples

These are other data presentation examples from Zoho Reports. The first one is a stacked bar chart that displays the impressions breakdown by months and types of Facebook campaigns.

Impressions are one of the vital KPI examples in digital marketing intelligence and business. The first graph is designed to help you compare and notice sharp differences at the Facebook campaigns that have the most influence on impression movements.

The second one is an area chart that shows the changes in the costs for the same Facebook campaigns over the months.

The 2 examples illustrate how multiple and complicated data can be presented clearly and simply in a visually appealing way.

3. Sales Opportunity Data Presentation

These two bar charts (stacked and horizontal bar charts) by Microsoft Power Bi are created to track sales opportunities and revenue by region and sales stage.

The stacked bar graph shows the revenue probability in percentage determined by the current sales stage (Lead, Quality, Solution…) over the months. The horizontal bar chart represents the size of the sales opportunity (Small, Medium, Large) according to regions (East, Central, West).

Both graphs are impressive ways for a sales manager to introduce the upcoming opportunity to C-level managers and stakeholders. The color combination is rich but easy to digest.

4. Power 100 Data Visualization 

Want to show hierarchical data? Treemaps can be perfect for the job. This is a stunning treemap example by Infogram.com that shows you who are the most influential industries. As you see the Government is on the top.

This treemap is a very compact and space-efficient visualization option for presenting hierarchies, that gives you a quick overview of the structure of the most powerful industries.

So beautiful way to compare the proportions between things via their area size.

When it comes to best research data presentation examples in statistics, Nielsen information company is an undoubted leader. The above professional looking line graph by Nielsen represent the slowing alcoholic grow of 4 alcohol categories (Beer, Wine, Spirits, CPG) for the period of 12 months.

The chart is an ideal example of a data visualization that incorporates all the necessary elements of an effective and engaging graph. It uses color to let you easily differentiate trends and allows you to get a global sense of the data. Additionally, it is incredibly simple to understand.

6. Digital Health Research Data Visualization Example

Digital health is a very hot topic nowadays and this stunning donut chart by IQVIA shows the proportion of different mobile health apps by therapy area (Mental Health, Diabetes, Kidney Disease, and etc.). 100% = 1749 unique apps.

This is a wonderful example of research data presentation that provides evidence of Digital Health’s accelerating innovation and app expansion.

Besides good-looking, this donut chart is very space-efficient because the blank space inside it is used to display information too.

7. Disease Research Data Visualization Examples

Presenting relationships among different variables is hard to understand and confusing -especially when there is a huge number of them. But using the appropriate visuals and colors, the IQVIA did a great job simplifying this data into a clear and digestible format.

The above stacked bar charts by IQVIA represents the distribution of oncology medicine spendings by years and product segments (Protected Brand Price, Protected Brand Volume, New Brands, etc.).

The chart allows you to clearly see the changes in spendings and where they occurred – a great example of telling a deeper story in a simple way.

8. Textual and Qualitative Data Presentation Example

When it comes to easy to understand and good looking textual and qualitative data visualization, pyramid graph has a top place. To know what is qualitative data see our post quantitative vs qualitative data .

9. Product Metrics Graph Example

If you are searching for excel data presentation examples, this stylish template from Smartsheet can give you good ideas for professional looking design.

The above stacked bar chart represents product revenue breakdown by months and product items. It reveals patterns and trends over the first half of the year that can be a good basis for data-driven decision-making .

10. Supply Chain Data Visualization Example 

This bar chart created by ClicData  is an excellent example of how trends over time can be effectively and professionally communicated through the use of well-presented visualization.

It shows the dynamics of pricing through the months based on units sold, units shipped, and current inventory. This type of graph pack a whole lot of information into a simple visual. In addition, the chart is connected to real data and is fully interactive.

The above data presentation examples aim to help you learn how to present data effectively and professionally.

About The Author

data presentation research

Silvia Valcheva

Silvia Valcheva is a digital marketer with over a decade of experience creating content for the tech industry. She has a strong passion for writing about emerging software and technologies such as big data, AI (Artificial Intelligence), IoT (Internet of Things), process automation, etc.

Leave a Reply Cancel Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed .

Data Journeys: Organizing and Optimizing Your Research Data

Title: Data Journeys: Organizing and Optimizing Your Research Data   

Date: September 26 

Time: 11 a.m. - 12 p.m.  

Location: Zoom 

Learn how to organize and optimize your research data! This workshop, a combination of presentation and question and answer period, will introduce the basics of research data management with a particular focus on best practices for managing research data.  

By the end of this workshop, participants will have: 

  • Foundational understanding of research data management  
  • List of easy steps to implement to better manage their research data

Supplementary drop-in office hour  

For those interested in talking about their specific project, drop by room 323 in Dana Porter Library on Tuesday October 1 from 11 a.m. – 12 p.m.  

If you're interested in talking about your specific project but can't make the office hours, book a time with Anneliese (RDM Librarian) or Antonio (Digital Scholarship Librarian).   

Please register to receive the online event link and help us understand specific disciplinary considerations. If you have accommodation requests or questions, reach out to Anneliese Eber ( [email protected] ) with your needs. 

Register now

Share via Facebook

Events by date

September 2024.

S M T W T F S
  • November (1)
  • October (3)
  • September (1)
  • February (8)
  • January (5)
  • November (6)
  • October (13)
  • September (2)
  • February (3)

Research guides

Course reserves

My library account

Book a study room

News and events

Work for the Library

Give to the Library

We want to hear from you.  Please send us your feedback !

  • Contact Waterloo
  • Maps & Directions
  • Accessibility

The University of Waterloo acknowledges that much of our work takes place on the traditional territory of the Neutral, Anishinaabeg, and Haudenosaunee peoples. Our main campus is situated on the Haldimand Tract, the land granted to the Six Nations that includes six miles on each side of the Grand River. Our active work toward reconciliation takes place across our campuses through research, learning, teaching, and community building, and is co-ordinated within the Office of Indigenous Relations .

Information

  • Author Services

Initiatives

You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.

All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess .

Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.

Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Original Submission Date Received: .

  • Active Journals
  • Find a Journal
  • Proceedings Series
  • For Authors
  • For Reviewers
  • For Editors
  • For Librarians
  • For Publishers
  • For Societies
  • For Conference Organizers
  • Open Access Policy
  • Institutional Open Access Program
  • Special Issues Guidelines
  • Editorial Process
  • Research and Publication Ethics
  • Article Processing Charges
  • Testimonials
  • Preprints.org
  • SciProfiles
  • Encyclopedia

biotech-logo

Article Menu

data presentation research

  • Subscribe SciFeed
  • Recommended Articles
  • Google Scholar
  • on Google Scholar
  • Table of Contents

Find support for a specific problem in the support section of our website.

Please let us know what you think of our products and services.

Visit our dedicated information section to learn more about MDPI.

JSmol Viewer

Data management in biobanking: strategies, challenges, and future directions.

data presentation research

1. Introduction

2. biospecimens, 2.1. importance of biospecimens, 2.2. types of biospecimens.

  • Blood samples: Blood plays a crucial role in the body, transporting oxygen, nutrients, hormones, and waste products. Obtained through procedures like venipuncture or finger pricking, blood samples are rich in information, containing details like blood cell counts, biochemical markers, hormones, and genetic material (DNA and RNA). They are utilized across various medical fields for diagnostics, disease tracking, and research endeavors.
  • Tissue biopsies: Tissue biopsies involve extracting small tissue samples from organs or lesions for microscopic examination. These samples provide vital diagnostic insights, enabling pathologists to identify cellular irregularities, tissue structures, and molecular markers associated with conditions such as cancer, infections, and autoimmune disorders. Techniques like needle biopsies, surgical excision, and endoscopic procedures are employed to obtain tissue biopsies.
  • Saliva and oral swabs: Saliva and oral swabs contain a mix of cells, enzymes, proteins, and microorganisms that are present in the oral cavity. These specimens are collected non-invasively and are employed to study oral health, detect oral pathogens, and analyze the oral microbiome. Saliva samples also offer insights into systemic conditions like diabetes, cardiovascular disease, and autoimmune disorders. Oral swabs find utility in genetic testing and forensic analysis.
  • Urine samples: Urine, a waste product produced by the kidneys, holds metabolic byproducts, electrolytes, hormones, and other substances filtered from the blood. Routinely collected for urinalysis, urine samples help evaluate the kidney function, hydration status, and presence of abnormalities such as urinary tract infections, kidney stones, and proteinuria. They are also utilized in drug screening, pregnancy testing, and research studies.
  • Stool samples: Stool, or feces, is the waste product expelled from the gastrointestinal tract. Stool samples contain undigested food, water, bacteria, viruses, and other substances. Collected for diagnostic purposes, they help detect gastrointestinal infections, evaluate digestive function, and screen for colorectal cancer. Stool samples are also used to explore the gut microbiome, digestive disorders, and inflammatory bowel diseases.

3. Data Types in Biobanking

3.1. clinical data, 3.2. image data.

  • Histopathological images: Histopathological images capture tissue samples stained with diverse dyes to visualize cellular structures and arrangements. These images are pivotal in disease diagnosis, tumor evaluation, and prognostic assessment. Biobanks maintain archives of histopathological slides alongside detailed clinical annotations, empowering researchers to correlate histological characteristics with molecular profiles and clinical outcomes.
  • Medical imaging: Medical imaging encompasses a plethora of techniques including MRI, CT scans, PET scans, ultrasound, X-rays, and thermal imaging, facilitating the non-invasive visualization of anatomical structures, physiological activities, and pathological changes in living organisms. Biobanks curate repositories of medical imaging data obtained from routine clinical procedures, research studies, and clinical trials, enabling retrospective analyses and longitudinal investigations across diverse patient cohorts [ 19 , 20 ].
  • Microscopy images: Microscopy images capture intricate cellular and subcellular structures with remarkable resolution, providing insights into cellular morphologies, spatial organizations, and dynamic processes. Biobanks preserve microscopy images that are acquired through various techniques such as light microscopy, electron microscopy, and confocal microscopy, supporting research endeavors in fields such as cell biology, neuroscience, and developmental biology. These images facilitate quantitative analyses of cellular phenotypes, protein distributions, and cellular interactions in both healthy and diseased states.

3.3. Omics Data

  • Genomic data, encapsulating DNA sequences, variations, and structural nuances, constitute an indispensable facet of biobanking. Driven by advances in high-throughput sequencing technologies, biobanks house diverse genomic datasets spanning entire genomes, exomes, and genotyping arrays. These datasets facilitate genome-wide association studies (GWASs), variant exploration, and pharmacogenomic investigations, with the integration of genomic data and clinical insights holding promise for deciphering genotype–phenotype relationships and guiding tailored treatment approaches.
  • Transcriptomic data: Transcriptomic data capture the expression profiles of genes under various biological conditions, unraveling intricate cellular processes and regulatory networks. Biobanks curate transcriptomic datasets derived from methodologies like microarrays and RNA sequencing (RNA-seq), enabling researchers to probe gene expression patterns linked to disease states, tissue phenotypes, and therapeutic responses. Transcriptomic analyses of biobanked specimens drive biomarker discovery, target identification, and mechanistic inquiries across diverse domains spanning oncology to neurology.
  • Proteomic data: Proteomic data entail the identification and quantification of proteins within biological samples, offering a snapshot of their cellular functions and signaling pathways. Biobanks store proteomic datasets derived from mass spectrometry-based techniques, immunoassays, and protein arrays, facilitating the characterization of protein expression, modifications, and interactions. The integration of proteomic insights with other omics layers enriches our understanding of disease mechanisms, biomarker profiles, and treatment responses, thereby paving the way for precise therapeutic interventions.
  • Metabolomic data: Metabolomic data capture the repertoire of small-molecule metabolites within biological samples, serving as mirrors of cellular metabolism and biochemical pathways. Biobanks archive metabolomic profiles obtained using methodologies like nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography–mass spectrometry (LC-MS), enabling investigations into metabolic dysregulations across diseases such as cancer, metabolic disorders, and neurodegenerative conditions. The integration of metabolomic signatures with other omics datasets furnishes holistic insights into disease phenotypes and metabolic imbalances underpinning health and disease.

4. Challenges in Data Management

4.1. data heterogeneity.

  • Diverse data types: Biobanks collect a wide range of biological samples, including tissues, blood, urine, and cells, each with its unique characteristics and properties. Furthermore, the associated data encompass a wide range of data types, including genomic data, clinical records, imaging data, and information on environmental exposure. Managing such diverse datasets requires robust systems capable of handling multiple data formats, structures, and standards [ 26 ].
  • Varying data standards: Different biobanks may adhere to varying data standards, terminology, and annotation protocols, leading to inconsistencies in data representation and interoperability challenges. Harmonizing data across multiple biobanks and research studies becomes inherently challenging due to the lack of standardized practices for data collection, annotation, and storage.
  • Data annotation and metadata: Effective data management relies on accurate metadata annotation to provide context and interpretability to the stored data. However, the heterogeneity of data sources often results in incomplete or inconsistent metadata, making it challenging to interpret and analyze the data accurately. Standardizing metadata annotation practices is essential for ensuring data integrity and facilitating data integration across different biobanks and research projects.
  • Integration and interoperability: Integrating heterogeneous datasets from multiple sources is crucial for conducting comprehensive analyses and deriving meaningful insights. However, data heterogeneity complicates the integration process, requiring sophisticated data integration methods and tools to reconcile the differences in data formats, semantics, and ontologies. Achieving interoperability across disparate datasets is essential for promoting data sharing and collaboration in the scientific community.
  • Data quality and reliability: Heterogeneous data sources may vary in quality, completeness, and reliability, posing challenges for ensuring data accuracy and consistency. Quality control measures must be implemented throughout the data lifecycle to identify and rectify errors, outliers, and inconsistencies. Data validation, cleaning, and normalization techniques are essential for maintaining data quality and reliability, particularly in large-scale biobanking initiatives.
  • Ethical and legal considerations: Data heterogeneity also extends to ethical and legal considerations surrounding data privacy, consent, and ownership. Harmonizing ethical standards and regulatory requirements across different jurisdictions is essential to ensure adherence to data protection regulations like GDPR and HIPAA.

4.2. Data Quality Assurance

  • Sample integrity and traceability: Biobanks must maintain the integrity and traceability of biological samples throughout their lifecycle, from collection to storage and distribution. Ensuring proper sample handling, storage conditions, and chain-of-custody protocols is crucial for preventing sample degradation, contamination, or mislabeling, which could compromise data quality and research outcomes.
  • Data accuracy and consistency: The data collected and curated in biobanks must be accurate, consistent, and reliable to support meaningful research conclusions. However, data entry errors, inconsistencies in data annotation, and discrepancies between different data sources can introduce inaccuracies and biases into the dataset. Implementing data validation checks, standardizing data entry procedures, and conducting regular data audits are imperative for upholding data accuracy and consistency.
  • Missing data and incomplete records: Incomplete or missing data entries are common challenges in biobanking, where data may be unavailable or incomplete due to various reasons such as sample collection limitations, participant non-compliance, or data entry errors. Addressing missing data requires robust data imputation techniques and strategies for data completeness assessment. Additionally, establishing protocols for documenting missing data and mitigating its impact on research outcomes is essential for maintaining data quality.
  • Data reconciliation and harmonization: Biobanks often aggregate data from multiple sources, including clinical records, laboratory measurements, and genetic analyses. Reconciling and harmonizing heterogeneous data sources to ensure consistency and interoperability pose significant challenges. Establishing standardized data formats, vocabularies, and ontologies, along with data normalization and transformation techniques, is essential for integrating diverse datasets while maintaining data quality.
  • Quality control processes: Implementing rigorous quality control processes is crucial for identifying and rectifying data errors, outliers, and inconsistencies. Quality control measures might encompass data validation checks, data cleaning procedures, and outlier detection algorithms, all aimed at ensuring the integrity and reliability of the data. Regular quality assessments and audits help monitor data quality over time and ensure adherence to established quality standards.
  • Long-term data preservation: Preserving data integrity and accessibility over the long term presents a considerable challenge for biobanks, particularly as technology and data formats evolve over time. Establishing robust data stewardship and preservation strategies, including data backup, version control, and migration plans, is essential for safeguarding data integrity and ensuring their longevity for future research endeavors.
  • Ethical and regulatory compliance: Data quality assurance in biobanking needs to adhere to ethical principles and regulatory requirements governing participant privacy, consent, and data protection. Implementing data governance frameworks, privacy safeguards, and security measures is essential for compliance with legal and ethical guidelines such as GDPR [ 27 ] and HIPAA while maintaining data quality and integrity.

4.3. Privacy and Security

  • Participant confidentiality: Biobanks hold considerable amounts of data containing sensitive information about participants, including personal identifiers, medical histories, and genetic profiles. Ensuring participant confidentiality and protecting privacy rights are fundamental ethical principles in biobanking. However, the amount and diversity of the data increase the risk of unintended disclosures or privacy breaches, necessitating robust privacy safeguards and access controls.
  • Encryption and access management: Deploying robust encryption protocols and access management systems is crucial for safeguarding biobank data against unauthorized access or breaches. Encryption methods like data-at-rest and data-in-transit encryption serve to secure data both during storage on servers and while they are being transmitted. Access management strategies, such as role-based access control (RBAC) and multi-factor authentication (MFA), limit access solely to authorized individuals, thereby reducing the potential for insider threats.
  • Data anonymization and de-identification: Anonymizing or de-identifying data represents a prevalent approach in biobanking, aiming to safeguard participant privacy while retaining data usefulness for research endeavors. However, achieving true anonymity or irreversibility poses challenges, as re-identification risks remain, especially with the proliferation of data linkage and re-identification techniques. Balancing data anonymization with data utility requires the careful consideration of anonymization methods and privacy-preserving techniques.
  • Data sharing and consent management: Facilitating data sharing while respecting participant consent preferences is a complex undertaking in biobanking. Ensuring that participants have meaningful control over their data and understanding how their data will be used is essential for fostering trust and transparency. Implementing robust consent management systems, including dynamic consent models and granular consent options, enables participants to specify their preferences regarding data sharing and use.
  • Regulatory compliance: Biobanking data management must comply with a myriad of legal and regulatory requirements governing data privacy and security, including General Data Protection Regulation (GDPR) [ 28 ], Health Insurance Portability and Accountability Act (HIPAA) [ 29 ], and other data protection laws. Adhering to regulatory standards requires implementing comprehensive data governance frameworks, conducting privacy impact assessments, and maintaining documentation of data processing activities. Failure to comply can lead to significant penalties and harm to the reputation of biobanks.
  • Data breach preparedness and response: Despite best efforts to prevent breaches, biobanks need to be ready to react promptly and efficiently in case of a data breach. Establishing incident response plans, including procedures for breach notification, forensic investigation, and communication with affected parties, is crucial for mitigating the impact of breaches on participant privacy and trust.
  • Data lifecycle management: Ensuring the effective management of data from its collection to disposal necessitates the implementation of robust data management practices that prioritize privacy and security. Implementing data minimization strategies, secure data disposal procedures, and audit trails for data access and usage enhances accountability and mitigates the risk of unauthorized data exposure

4.4. Data Governance and Regulatory Compliance

  • Legal and ethical frameworks: Biobanks operate within a framework of legal and ethical guidelines that govern the collection, storage, and use of biological samples and their associated data. Adherence to regulations like the GDPR and HIPAA as well as the ethical principles outlined in documents like the Declaration of Helsinki are prerequisites for the protection of participant rights and ensuring research integrity.
  • Informed consent and participant privacy: Obtaining informed consent from participants is a cornerstone of ethical biobanking practices, guaranteeing that individuals comprehend the objectives of data collection, the intended utilization of their data, and any potential risks inherent in the process [ 4 ]. However, obtaining meaningful consent can be challenging, especially in longitudinal studies or when data may be used for future, unforeseen research purposes. Balancing participant autonomy with the need for scientific advancement requires clear communication and consent management strategies.
  • Data ownership and intellectual property: Elucidating rights to data ownership and addressing intellectual property concerns is essential for resolving legal and ethical issues surrounding data usage, access, and commercialization. Biobanks often navigate complex relationships between participants, researchers, institutions, and commercial entities, necessitating clear policies and agreements regarding data ownership, sharing, and commercialization rights.
  • Data access and sharing policies: Establishing transparent data access and sharing policies is essential for promoting research collaboration, maximizing data utility, and ensuring equitable access to biobank resources. However, balancing openness with privacy concerns and intellectual property rights poses challenges, particularly when sharing data across international borders or with commercial partners. Implementing access control mechanisms and data use agreements helps regulate data access while protecting participant privacy and confidentiality.
  • Data security and confidentiality: Protecting the security and confidentiality of biobank data is a legal and ethical imperative, requiring robust data security measures and safeguards against unauthorized access or breaches. Adhering to data protection regulations like GDPR and HIPAA entails implementing encryption, access controls, and data anonymization techniques to mitigate privacy risks and safeguard participant confidentiality.
  • Audit and compliance monitoring: Monitoring compliance with data governance policies and regulatory requirements requires robust audit mechanisms and oversight processes. Conducting regular audits of data management practices, documentation, and security controls helps identify potential compliance gaps and mitigate risks of non-compliance. Establishing clear lines of accountability and oversight responsibilities is essential for ensuring adherence to regulatory standards.
  • Data retention and disposal: Developing policies for data retention and disposal is essential for effectively managing the data lifecycle and minimizing privacy risks. Determining appropriate retention periods, archival strategies, and secure data disposal procedures requires the consideration of legal requirements, research needs, and participant consent preferences. Implementing data minimization principles and regular data purging practices reduces the risk of unauthorized data exposure and facilitates compliance with data protection laws.

5. Strategies for Effective Data Management

5.1. standardization and metadata annotation.

  • Data standardization: Standardizing data formats, vocabularies, and ontologies is essential for ensuring consistency and interoperability across the diverse datasets collected and stored in biobanks [ 30 ]. With the adoption of common data standards and terminologies, biobanks facilitate data sharing, integration, and reusability across multiple research studies and platforms [ 31 , 32 ]. Standardization efforts encompass various aspects of data management, including sample metadata, clinical annotations, genomic data formats, and laboratory measurements [ 33 , 34 ].
  • Harmonization of data: Harmonizing heterogeneous datasets from different sources involves reconciling the differences in data formats, semantics, and structures to enable seamless data integration and analysis. Harmonization efforts aim to ensure that the data collected across multiple biobanks or research studies are compatible and comparable, thereby maximizing the utility of aggregated datasets for research purposes. Establishing harmonization guidelines, mapping protocols, and data transformation procedures helps address discrepancies and inconsistencies in data representation [ 35 ].
  • Metadata annotation: Metadata annotation provides essential context and descriptive information about biological samples and their associated data, enhancing data interpretability and usability. Metadata encompass a wide range of attributes, including sample characteristics, experimental protocols, data provenance, and quality metrics. Annotating data with standardized metadata terms and controlled vocabularies enables researchers to search, filter, and analyze data effectively, facilitating data discovery and interpretation [ 36 , 37 ].
  • Data integration platforms: Leveraging data integration platforms and bioinformatics tools streamlines the process of harmonizing and annotating heterogeneous datasets in biobanking. These platforms provide capabilities for data mapping, transformation, and enrichment, enabling researchers to aggregate, query, and analyze diverse datasets from multiple sources. By providing a unified interface for data access and analysis, data integration platforms promote collaboration, accelerate research discoveries, and maximize the value of biobank resources [ 38 ].
  • Ontology development and adoption: Ontologies play a crucial role in standardizing and formalizing knowledge representation in biobanking, enabling semantic interoperability and data integration [ 39 ]. Ontologies provide structured vocabularies and hierarchical relationships for annotating biological concepts, phenotypic traits, and experimental variables [ 40 ]. Adopting community-developed ontologies, such as the Human Phenotype Ontology (HPO) or the Experimental Factor Ontology (EFO), facilitates data annotation and enhances data interoperability across different biobanks and research domains.
  • Metadata quality assurance: Ensuring the quality and completeness of metadata annotations is essential for maintaining data integrity and facilitating accurate data interpretation. Metadata quality assurance measures include validation checks, consistency audits, and adherence to metadata standards and best practices. Establishing metadata curation guidelines, metadata validation rules, and quality control procedures helps mitigate errors and inconsistencies in metadata annotations, enhancing the reliability and usability of biobank data.
  • Community engagement and collaboration: Collaborative efforts within the scientific community are crucial for driving standardization and metadata annotation initiatives in biobanking. Engaging stakeholders, including researchers, data scientists, informaticians, and domain experts, fosters consensus building, promotes knowledge sharing, and accelerates the adoption of standardized data management practices. Community-driven initiatives, such as data standards consortia, working groups, and data harmonization projects, play a vital role in advancing data standardization and metadata annotation efforts across the biobanking community.

5.2. Data Quality Control

  • Data validation: Data validation verifies the data’s accuracy, consistency, and integrity through systematic checks and predefined criteria. These checks, conducted at data entry or import, identify errors, anomalies, and inconsistencies such as missing values or outliers, ensuring only high-quality data are inputted into the system.
  • Quality assurance protocols: Developing quality assurance protocols and standard operating procedures (SOPs) are essential for the maintenance of consistent data quality standards across biobank operations. SOPs define procedures for data collection, storage, curation, and documentation, ensuring adherence to best practices and regulatory requirements. Regular training and audits help enforce compliance with quality assurance protocols and identify areas for improvement.
  • Data cleaning and transformation: Data cleaning addresses errors, inconsistencies, and outliers in the dataset to enhance data quality and reliability. Cleaning procedures may include data deduplication, outlier detection, imputation of missing values, and normalization of data formats. Data transformation techniques, such as standardization or log transformation, help prepare data for analysis and mitigate biases introduced by data heterogeneity.
  • Standardized data entry and documentation: Standardizing data entry procedures and documentation formats promotes consistency and accuracy in data collection and annotation. Providing clear guidelines, data dictionaries, and templates for data entry facilitates uniform data capture and ensures that relevant metadata are documented consistently [ 41 , 42 ]. Validating data against predefined data standards and vocabularies further enhances data quality and interoperability.
  • Automated quality control checks: Implementing automated quality control checks and algorithms helps streamline data validation and cleaning processes, reducing manual effort and human errors. Automated checks may include range validation, format validation, and logical consistency checks to flag potential data anomalies in real time. Integrating automated quality control checks into data management workflows improves efficiency and ensures timely detection and resolution of data issues.
  • Continuous monitoring and improvement: Data quality control is an ongoing process that requires continuous monitoring and enhancement to maintain data integrity over time. Monitoring data quality metrics like data completeness, accuracy rates, and error frequencies allows biobanks to evaluate the effectiveness of quality control measures and identify areas for optimization. Establishing feedback mechanisms and quality improvement initiatives fosters a culture of continuous quality improvement and enhances the reliability of biobank data.
  • External quality assessment programs: Participating in external quality assessment programs and proficiency testing schemes provides independent validation of data quality and performance against established benchmarks and standards. External assessments help benchmark biobank performance, identify areas for improvement, and demonstrate compliance with regulatory requirements and accreditation standards. Engaging in collaborative quality assurance initiatives strengthens the credibility and trustworthiness of biobank data within the scientific community.

5.3. Secure Data Infrastructure

  • Data encryption: Deploying strong encryption methods for data, both at rest and in transit, serves to protect biobank data from unauthorized access or interception. Encryption standards such as the Advanced Encryption Standard (AES) for data storage and Transport Layer Security (TLS) for data transmission ensure that data remain encrypted and indecipherable to unauthorized parties, thus mitigating the risk of data breaches or interception during transmission.
  • Access control and authentication: Establishing policies for access control and authentication mechanisms is essential in governing access to biobank data, ensuring that only authorized personnel can access sensitive information. Role-based access control (RBAC), multi-factor authentication (MFA), and stringent password policies serve to limit access to data based on user roles, privileges, and authentication credentials, thereby reducing the risk of unauthorized data access or insider threats.
  • Data segregation and isolation: The segregation and isolation of sensitive data within secure environments, such as secure servers or dedicated data centers, help to thwart unauthorized access or tampering with biobank data. The implementation of network segmentation, firewalls, and intrusion detection systems (IDSs) effectively separates sensitive data from less secure networks, minimizing the impact of security breaches or cyberattacks on biobank operations.
  • Secure data storage and backup: Employing secure data storage solutions, such as encrypted databases or cloud storage with integrated encryption and access controls, serves to safeguard biobank data from loss, theft, or corruption. Regular data backups and comprehensive disaster recovery plans ensure data resilience and enable swift data recovery in the event of hardware failures, natural disasters, or ransomware attacks, thereby minimizing downtime and potential data loss.
  • Data masking and anonymization: Applying data masking or anonymization techniques to sensitive data helps protect participant privacy and confidentiality while preserving data utility for research purposes. Masking personally identifiable information (PII) or de-identifying data before sharing or analysis reduces the risk of re-identification and unauthorized disclosure of sensitive information, ensuring compliance with privacy regulations and ethical guidelines.
  • Auditing and monitoring: Integrating robust auditing and monitoring mechanisms empowers biobanks to monitor data access, usage, and modifications, facilitating accountability and compliance with data governance policies. Audit trails, logging mechanisms, and real-time monitoring tools offer visibility into data activities and aid in detecting anomalous behavior or security incidents, enabling prompt response and remediation.
  • Security awareness and training: Promoting security awareness and providing training to personnel on security best practices, data handling procedures, and incident response protocols is crucial for fostering a culture of security within the biobank. Educating staff about potential security risks, phishing attacks, and social engineering tactics helps mitigate human errors and strengthens defenses against cybersecurity threats, enhancing overall data security posture.
  • Regulatory compliance and certifications: Ensuring compliance with regulatory requirements, such as GDPR, HIPAA, and ISO/IEC 27001 [ 9 ], demonstrates commitment to data security and privacy best practices. Obtaining certifications and undergoing independent audits validate a biobank’s adherence to industry standards and regulatory guidelines, instilling confidence in data security practices among stakeholders, researchers, and participants.

5.4. Data Sharing and Collaboration

  • Promoting open data sharing: Embracing a culture of open data sharing facilitates transparency, reproducibility, and innovation in biomedical research [ 44 ]. Biobanks can promote open data sharing by adopting data-sharing policies, releasing datasets to public repositories, and adhering to data sharing mandates from funding agencies or regulatory bodies. Open data sharing fosters collaboration, accelerates scientific progress, and increases the impact of research findings by enabling broader access to biobank resources.
  • Establishing data access policies: Developing clear and transparent data access policies helps regulate access to biobank data while balancing privacy concerns, data governance requirements, and research needs [ 45 ]. Data access policies outline procedures for requesting, accessing, and sharing data, specifying eligibility criteria, data use restrictions, and compliance requirements. Implementing access control mechanisms, such as data use agreements and data access committees, ensures that data are accessed and used responsibly and ethically.
  • Creating collaborative platforms: Establishing collaborative platforms and data-sharing portals facilitates communication, collaboration, and data exchange among researchers, biobanks, and other stakeholders. Collaborative platforms provide centralized access to data, tools, and resources, enabling researchers to discover, access, and analyze biobank data efficiently [ 46 ]. These platforms may include data repositories, virtual research environments, or collaborative networks tailored to specific research domains or disease areas.
  • Data harmonization and integration: Harmonizing and integrating heterogeneous datasets from multiple biobanks or research studies enhances data interoperability and facilitates cross-study comparisons and meta-analyses. Collaborative efforts to standardize data formats, metadata annotations, and ontologies streamline data integration processes and enable researchers to aggregate, analyze, and interpret data from diverse sources effectively. Data harmonization initiatives promote data reuse, reduce redundancy, and maximize the value of biobank resources for research [ 3 ].
  • Facilitating data-sharing agreements: Negotiating data-sharing agreements and collaborations with external partners, including academic institutions, industry partners, and international consortia, expands research opportunities and promotes knowledge exchange [ 47 ]. Data-sharing agreements delineate the terms and conditions governing data sharing, including data ownership, intellectual property rights, and data use restrictions, ensuring that data are shared responsibly and in compliance with legal and ethical requirements [ 48 ].
  • Enabling federated data analysis: Federated data analysis approaches enable collaborative analysis of distributed datasets across multiple biobanks or research sites while preserving data privacy and security. Federated analysis platforms facilitate data aggregation, analysis, and knowledge discovery without centrally pooling or sharing sensitive data. By leveraging federated analysis techniques, researchers can collaborate on large-scale data analyses, identify patterns, and derive insights from diverse datasets while protecting participant privacy and data confidentiality.
  • Promoting data citation and attribution: Encouraging data citation and attribution practices acknowledges the contributions of data contributors, promotes data reuse, and enhances research reproducibility and transparency. Providing persistent identifiers (DOIs) for datasets, citing data sources in publications, and adhering to data citation standards facilitate the proper attribution and recognition of data contributors. Data citation policies and guidelines promote responsible data use and incentivize data sharing within the research community.

6. Literature Reviews

7. future directions, 7.1. integration of advanced technologies.

  • Blockchain technology: Blockchain technology provides a decentralized and tamper-resistant platform for secure and transparent data management in biobanking [ 79 ]. By utilizing blockchain’s unalterable ledger and cryptographic hashing, biobanks can ensure data integrity, traceability, and auditability throughout the data lifecycle. Blockchain-based solutions enable secure data sharing, provenance tracking, and consent management, fostering trust among data contributors, researchers, and participants [ 80 ].
  • Post-quantum cryptography and quantum-secure communication: To enhance data security against emerging threats posed by quantum computing, the integration of post-quantum cryptography (PQC) and quantum-secure communication technologies offers a promising path forward. These approaches are designed to counteract vulnerabilities that quantum computing could exploit, potentially compromising existing cryptographic systems. ○ Post-quantum cryptography: This involves developing cryptographic algorithms that are designed to stay secure even when quantum computers are in use. Unlike classical computers that use binary bits, quantum computers utilize qubits, which can exist in multiple states at the same time due to the principle of quantum superposition, allowing for significantly faster computations. This capability poses a threat to cryptographic methods such as RSA and Elliptic Curve Cryptography (ECC), which depend on the difficulty of solving mathematical problems like factoring large numbers or calculating discrete logarithms; these are tasks that quantum algorithms can handle much more efficiently. In biobanking, adopting PQC is vital to protect the vast amounts of sensitive personal and genetic data stored in these repositories. Given the potential for cyberattacks targeting personal identifiers and genetic sequences, PQC algorithms—such as those based on lattice-based cryptography, hash-based signatures, and multivariate quadratic equations—are being developed and standardized. Implementing these algorithms will help ensure that sensitive information remains secure, even as quantum computing becomes more widespread [ 81 ]. ○ Quantum-secure communication: Quantum-secure communication uses the principles of quantum mechanics to safeguard data transmissions. Key techniques encompass Quantum Key Distribution (QKD) and quantum entanglement. QKD enables two parties to create a shared secret key protected by quantum laws. Any eavesdropping attempts would disturb the quantum states, making the intrusion detectable. For biobanks, using quantum-secure communication methods can greatly improve the protection of sensitive data during transmission. Given the frequent exchange of personal and genetic information among researchers, institutions, and regulatory bodies, ensuring the security and confidentiality of these communications is crucial. Technologies like QKD provide strong defenses against interception and tampering, thereby enhancing the security of data exchanges across networks [ 82 , 83 ].
  • Artificial intelligence and machine learning: Artificial intelligence and machine learning algorithms enable biobanks to analyze large-scale datasets [ 84 , 85 ], identify patterns, and extract actionable insights for precision medicine and personalized healthcare [ 86 ]. AI-driven approaches facilitate data mining, predictive modeling, and biomarker discovery, accelerating the translation of biomedical research into clinical applications [ 87 ]. AI-powered decision support systems aid in clinical diagnosis, treatment optimization, and patient stratification based on genetic and clinical data [ 88 , 89 ].
  • Federated learning: Federated learning facilitates collaborative model training across dispersed data sources while upholding data privacy and confidentiality. In biobanking, federated learning facilitates multi-center data analysis, enabling researchers to aggregate and analyze data from disparate biobanks without centrally pooling sensitive data. Federated learning platforms empower biobanks to collaborate on large-scale data analyses, share insights, and derive collective knowledge while protecting participant privacy and data security.
  • Genomic data analysis: Advances in genomic technologies, such as next-generation sequencing (NGS) and single-cell sequencing, revolutionize genomic data analysis in biobanking [ 90 ]. High-throughput sequencing platforms generate vast amounts of genomic data, enabling the comprehensive characterization of genetic variation, gene expression, and epigenetic modifications. Bioinformatics tools and cloud-based analysis platforms facilitate genomic data analysis [ 13 , 91 ], variant interpretation, and genotype–phenotype association studies, advancing our understanding of complex diseases and guiding personalized medicine approaches [ 33 ].
  • Omics integration: Integrating multi-omics data, including genomics, transcriptomics, proteomics, and metabolomics, offers holistic insights into biological systems and disease mechanisms [ 92 ]. Integrative omics analysis enables researchers to elucidate molecular pathways, identify biomarkers, and uncover therapeutic targets for precision medicine interventions [ 48 ]. Integrative bioinformatics approaches, such as pathway analysis, network modeling, and data fusion techniques, enhance data interpretation and facilitate discovery-driven research in biobanking [ 93 ].
  • Biobanking informatics platforms: Biobanking informatics platforms provide integrated solutions for data management, analysis, and collaboration, streamlining biobank operations and supporting research workflows [ 45 , 94 , 95 ]. These platforms offer features such as sample tracking, metadata management, data curation, and analysis tools tailored to biobanking needs [ 26 , 96 , 97 ]. Cloud-based informatics platforms enable scalable and secure data storage, analysis, and sharing, empowering biobanks to leverage advanced technologies and collaborate with researchers worldwide [ 98 ].
  • Emerging technologies: Emerging technologies, such as single-cell analysis, spatial transcriptomics, and organoid modeling, offer novel approaches for studying cellular heterogeneity, tissue architecture, and disease mechanisms in biobanking. These technologies enable researchers to capture fine-grained molecular profiles, spatially resolve cellular interactions, and model complex biological processes in vitro. Integrating emerging technologies into biobanking workflows expands research capabilities, facilitates disease modeling, and accelerates drug discovery efforts [ 99 ].

7.2. Long-Term Data Sustainability

  • Data stewardship and governance: Establishing robust data stewardship and governance frameworks is essential for ensuring the long-term sustainability of biobank data [ 100 ]. Data stewardship involves the responsible management, curation, and preservation of data assets [ 101 ], while governance encompasses policies, procedures, and oversight mechanisms to ensure compliance with legal, ethical, and regulatory requirements. Implementing clear roles, responsibilities, and accountability structures fosters a culture of data stewardship and ensures the continuity of data management practices over time.
  • Data preservation and archiving: Preserving data integrity and accessibility over the long term requires establishing archival strategies and preservation methods tailored to the unique characteristics of biobank data. Archiving data in secure, redundant storage systems, such as digital repositories or cloud-based storage solutions, safeguards against data loss, hardware failures, or technological obsolescence. Implementing data backup, versioning, and migration strategies ensures data resilience and facilitates data recovery in the event of system failures or disasters.
  • Metadata standardization and documentation: Standardizing metadata formats, documentation practices, and data descriptors enhances data discoverability, interoperability, and usability over time [ 34 ]. Documenting metadata attributes, data provenance, and data processing protocols ensures that data remain comprehensible and interpretable by future users. Metadata standards, such as the Minimum Information About a Biobank (MIABIS) or the FAIR (Findable, Accessible, Interoperable, and Reusable) principles [ 30 , 101 ], guide metadata documentation and promote data sustainability by enhancing data reuse and interoperability.
  • Data quality assurance and maintenance: Maintaining data quality and reliability is essential for preserving the value and integrity of biobank data over time. Implementing data quality assurance measures, such as regular audits, validation checks, and data cleaning procedures, ensures that data remain accurate, consistent, and fit for purpose. Ongoing surveillance of data quality metrics and performance indicators allows biobanks to detect and rectify instances of data degradation or quality issues proactively, thereby sustaining data utility and trustworthiness.
  • Data security and privacy protection: Safeguarding data security and protecting participant privacy are paramount considerations for ensuring the long-term sustainability of biobank data [ 102 ]. Deploying strong data security measures, encryption techniques, access controls, and privacy safeguards helps alleviate the potential for data breaches, unauthorized access, or the misuse of data. Adhering to data protection laws, ethical guidelines, and best practices for data anonymization and de-identification ensures that data remain ethically and legally compliant while supporting data sharing and research collaboration.
  • Community engagement and collaboration: Engaging stakeholders, including researchers, participants, funding agencies, and regulatory bodies, fosters collaboration, promotes transparency, and ensures the continued relevance and sustainability of biobank data resources. Soliciting feedback, addressing community needs, and involving stakeholders in decision-making processes empower stakeholders to contribute to data governance, policy development, and resource allocation efforts [ 103 , 104 ]. Collaborative initiatives, such as data-sharing consortia, working groups, and community-driven projects, foster a sense of ownership and collective responsibility for sustaining biobank data resources [ 105 ].

7.3. Ethical and Social Implications

  • Informed consent and participant autonomy: Upholding the principles of informed consent and participant autonomy is paramount in biobanking to ensure that individuals have the right to make informed decisions about the use of their biological samples and data [ 107 ]. Future directions should focus on enhancing consent processes, providing clear and understandable information to participants, and offering opportunities for dynamic consent, allowing individuals to update their preferences over time [ 108 , 109 ].
  • Privacy and data confidentiality: Protecting participant privacy and ensuring the confidentiality of sensitive data are ethical imperatives in biobanking [ 110 ]. As biobanks collect and store large volumes of personal health information and genetic data, future directions should prioritize robust data security measures, anonymization techniques, and encryption protocols to mitigate privacy risks and prevent unauthorized access or breaches.
  • Equitable access and benefit sharing: Addressing issues of equity and justice in biobanking involves ensuring that the benefits derived from research are shared equitably among participants, communities, and stakeholders. Future directions should promote transparent and fair access to biobank resources, prioritize the inclusion of under-represented populations in research, and establish mechanisms for benefit sharing, such as community engagement initiatives, research partnerships, and capacity-building programs.
  • Data governance and oversight: Implementing effective data governance mechanisms and oversight frameworks is essential for ensuring responsible and ethical conduct in biobanking. Future directions should focus on developing robust data governance policies, establishing independent oversight bodies, and fostering collaboration among stakeholders to promote accountability, transparency, and ethical decision making in data management and research practices.
  • Cultural sensitivity and respect for diversity: Recognizing and respecting cultural differences, values, and beliefs is essential in biobanking to ensure that research practices are culturally sensitive and inclusive [ 108 ]. Future directions should prioritize culturally tailored approaches to consent processes, engage with diverse communities in research planning and implementation, and address cultural concerns and preferences regarding data sharing, storage, and use [ 111 ].
  • Public engagement and trust building: Building public trust and fostering the meaningful engagement of stakeholders are critical for success and sustainability of biobanking initiatives. Future directions should emphasize transparency, communication, and dialogue with the public, raise awareness about the benefits and risks of biobanking, and solicit input from diverse perspectives to inform decision-making processes and research priorities.
  • Ethical use of biobank resources: Ensuring that biobank resources are used ethically and responsibly requires adherence to ethical guidelines, professional standards, and regulatory requirements. Future directions should prioritize ethical considerations in research design, data analysis, and the dissemination of findings, promote responsible conduct of research, and establish mechanisms for ethical review and oversight to safeguard participant welfare and uphold research integrity.

8. Conclusions

Author contributions, institutional review board statement, informed consent statement, data availability statement, acknowledgments, conflicts of interest.

  • Malsagova, K.; Kopylov, A.; Stepanov, A.; Butkova, T.; Sinitsyna, A.; Izotov, A.; Kaysheva, A. Biobanks—A Platform for Scientific and Biomedical Research. Diagnostics 2020 , 10 , 485. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Harati, M.D.; Williams, R.R.; Movassaghi, M.; Hojat, A.; Lucey, G.M.; Yong, W.H. An Introduction to Starting a Biobank ; Springer: New York, NY, USA, 2019; pp. 7–16. [ Google Scholar ]
  • Coppola, L.; Cianflone, A.; Grimaldi, A.M.; Incoronato, M.; Bevilacqua, P.; Messina, F.; Baselice, S.; Soricelli, A.; Mirabelli, P.; Salvatore, M. Biobanking in health care: Evolution and future directions. J. Transl. Med. 2019 , 17 , 172. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Annaratone, L.; De Palma, G.; Bonizzi, G.; Sapino, A.; Botti, G.; Berrino, E.; Mannelli, C.; Arcella, P.; Di Martino, S.; Steffan, A.; et al. Basic principles of biobanking: From biological samples to precision medicine for patients. Virchows Arch. 2021 , 479 , 233–246. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Lieb, W.; Strathmann, E.A.; Röder, C.; Jacobs, G.; Gaede, K.I.; Richter, G.; Illig, T.; Krawczak, M. Population-Based Biobanking. Genes 2024 , 15 , 66. [ Google Scholar ] [ CrossRef ]
  • Lermen, D.; Gwinner, F.; Bartel-Steinbach, M.; Mueller, S.C.; Habermann, J.K.; Balwir, M.-B.; Smits, E.; Virgolino, A.; Fiddicke, U.; Berglund, M.; et al. Towards Harmonized Biobanking for Biomonitoring: A Comparison of Human Biomonitoring-Related and Clinical Biorepositories. Biopreserv. Biobank. 2020 , 18 , 122–135. [ Google Scholar ] [ CrossRef ]
  • Zeh, R.M.; Glisic, M.; Capossela, S.; Bertolo, A.; Valido, E.; Jordan, X.; Hund-Georgiadis, M.; Pannek, J.; Eriks-Hoogland, I.; Stucki, G.; et al. The Swiss Spinal Cord Injury Cohort Study (SwiSCI) biobank: From concept to reality. Spinal Cord 2024 , 62 , 117–124. [ Google Scholar ] [ CrossRef ]
  • Poline, J.-B.; Kennedy, D.N.; Sommer, F.T.; Ascoli, G.A.; Van Essen, D.C.; Ferguson, A.R.; Grethe, J.S.; Hawrylycz, M.J.; Thompson, P.M.; Poldrack, R.A.; et al. Is Neuroscience FAIR? A Call for Collaborative Standardisation of Neuroscience Data. Neuroinformatics 2022 , 20 , 507–512. [ Google Scholar ] [ CrossRef ]
  • De Blasio, P.; Biunno, I. New Challenges for Biobanks: Accreditation to the New ISO 20387:2018 Standard Specific for Biobanks. BioTech 2021 , 10 , 13. [ Google Scholar ] [ CrossRef ]
  • Lin, Z.; Li, Y.; Tang, S.; Deng, Q.; Jiang, J.; Zhou, C. Comparative analysis of genomic profiles between tissue-based and plasma-based next-generation sequencing in patients with non-small cell lung cancer. Lung Cancer 2023 , 182 , 107282. [ Google Scholar ] [ CrossRef ]
  • Yoshida, T.; Kates, M.; Fujita, K.; Bivalacqua, T.J.; McConkey, D.J. Predictive biomarkers for drug response in bladder cancer. Int. J. Urol. 2019 , 26 , 1044–1053. [ Google Scholar ] [ CrossRef ]
  • Beier, K.; Nussbeck, S.; Wemheuer, W. Why brain banking should be regarded as a special type of biobanking: Ethical, practical, and data-management challenges. J. Biorepository Sci. Appl. Med. 2015 , 3 , 3–14. [ Google Scholar ] [ CrossRef ]
  • Kinkorová, J.; Topolčan, O. Biobanks in the era of big data: Objectives, challenges, perspectives, and innovations for predictive, preventive, and personalised medicine. EPMA J. 2020 , 11 , 333–341. [ Google Scholar ] [ CrossRef ]
  • Gabelloni, M.; Faggioni, L.; Borgheresi, R.; Restante, G.; Shortrede, J.; Tumminello, L.; Scapicchio, C.; Coppola, F.; Cioni, D.; Gómez-Rico, I.; et al. Bridging gaps between images and data: A systematic update on imaging biobanks. Eur. Radiol. 2022 , 32 , 3173–3186. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Littlejohns, T.J.; Holliday, J.; Gibson, L.M.; Garratt, S.; Oesingmann, N.; Alfaro-Almagro, F.; Bell, J.D.; Boultwood, C.; Collins, R.; Conroy, M.C.; et al. The UK Biobank imaging enhancement of 100,000 participants: rationale, data collection, management and future directions. Nat. Commun. 2020 , 11 , 2624. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Jalloul, R.; Chethan, H.K.; Alkhatib, R. A Review of Machine Learning Techniques for the Classification and Detection of Breast Cancer from Medical Images. Diagnostics 2023 , 13 , 2460. [ Google Scholar ] [ CrossRef ]
  • Kondylakis, H.; Kalokyri, V.; Sfakianakis, S.; Marias, K.; Tsiknakis, M.; Jimenez-Pastor, A.; Camacho-Ramos, E.; Blanquer, I.; Segrelles, J.D.; López-Huguet, S.; et al. Data infrastructures for AI in medical imaging: A report on the experiences of five EU projects. Eur. Radiol. Exp. 2023 , 7 , 20. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Esposito, G.; Pagliari, G.; Randon, M.; Mirabelli, P.; Lavitrano, M.; Aiello, M.; Salvatore, M. BCU Imaging Biobank, an Innovative Digital Resource for Biomedical Research Collecting Imaging and Clinical Data From Human Healthy and Pathological Subjects. Open J. Bioresour. 2021 , 8 , 1. [ Google Scholar ] [ CrossRef ]
  • Dregely, I.; Prezzi, D.; Kelly-Morland, C.; Roccia, E.; Neji, R.; Goh, V. Imaging biomarkers in oncology: Basics and application to MRI. J. Magn. Reson. Imaging 2018 , 48 , 13–26. [ Google Scholar ] [ CrossRef ]
  • Aiello, M.; Baldi, D.; Esposito, G.; Valentino, M.; Randon, M.; Salvatore, M.; Cavaliere, C. Evaluation of AI-based segmentation tools for COVID-19 lung lesions on conventional and ultra-low dose CT scans. Dose-Response 2022 , 20 , 15593258221082896. [ Google Scholar ] [ CrossRef ]
  • Olund, G.; Lindqvist, P.; Litton, J.E. BIMS: An information management system for biobanking in the 21st century. IBM Systems Journal 2007 , 46 , 171–182. [ Google Scholar ] [ CrossRef ]
  • Wang, X.; Williams, C.; Liu, Z.H.; Croghan, J. Big data management challenges in health research—A literature review. Brief. Bioinform. 2019 , 20 , 156–167. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Bull, S.; Bhagwandin, N. The ethics of data sharing and biobanking in health research. Wellcome Open Res. 2020 , 5 , 270. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Rychnovská, D. Anticipatory Governance in Biobanking: Security and Risk Management in Digital Health. Sci. Eng. Ethics 2021 , 27 , 30. [ Google Scholar ] [ CrossRef ]
  • In den Bäumen, T.S.; Paci, D.; Ibarreta, D. Data Protection and Sample Management in Biobanking—A legal dichotomy. Genom. Soc. Policy 2010 , 6 , 33. [ Google Scholar ] [ CrossRef ]
  • Jacotot, L.; Woodward, M.; de Montalier, A.; Vaglio, P. Utilizing Modular Biobanking Software in Different Types of Biobanking Activities. Biopreserv. Biobank. 2022 , 20 , 417–422. [ Google Scholar ] [ CrossRef ]
  • General Data Protection Regulation (GDPR). General Data Protection Regulation (GDPR)-Official Legal Text. Available online: https://gdpr-info.eu/ (accessed on 23 April 2023).
  • Albrecht, J.P. How the GDPR will change the world. Eur. Data Prot. L. Rev. 2016 , 2 , 287. [ Google Scholar ] [ CrossRef ]
  • Nass, S.J.; Levit, L.A.; Gostin, L.O. (Eds.) Beyond the HIPAA Privacy Rule: Enhancing Privacy, Improving Health through Research ; National Academies Press (US): Washington, DC, USA, 2009. [ Google Scholar ] [ PubMed ]
  • Scapicchio, C.; Gabelloni, M.; Forte, S.M.; Alberich, L.C.; Faggioni, L.; Borgheresi, R.; Erba, P.; Paiar, F.; Marti-Bonmati, L.; Neri, E. DICOM-MIABIS integration model for biobanks: A use case of the EU PRIMAGE project. Eur. Radiol. Exp. 2021 , 5 , 20. [ Google Scholar ] [ CrossRef ]
  • Stöhr, M.R.; Günther, A.; Majeed, R.W. The Collaborative Metadata Repository (CoMetaR) Web App: Quantitative and Qualitative Usability Evaluation. JMIR Med. Inform. 2021 , 9 , e30308. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Brancato, V.; Esposito, G.; Coppola, L.; Cavaliere, C.; Mirabelli, P.; Scapicchio, C.; Borgheresi, R.; Neri, E.; Salvatore, M.; Aiello, M. Standardizing digital biobanks: Integrating imaging, genomic, and clinical data for precision medicine. J. Transl. Med. 2024 , 22 , 136. [ Google Scholar ] [ CrossRef ]
  • Müller, H.; Dagher, G.; Loibner, M.; Stumptner, C.; Kungl, P.; Zatloukal, K. Biobanks for life sciences and personalized medicine: Importance of standardization, biosafety, biosecurity, and data management. Curr. Opin. Biotechnol. 2020 , 65 , 45–51. [ Google Scholar ] [ CrossRef ]
  • Yeh, C.-Y.; Peng, S.-J.; Yang, H.C.; Islam, M.; Poly, T.N.; Hsu, C.-Y.; Huff, S.M.; Chen, H.-C.; Lin, M.-C. Logical Observation Identifiers Names and Codes (LOINC®) Applied to Microbiology: A National Laboratory Mapping Experience in Taiwan. Diagnostics 2021 , 11 , 8. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Sass, J.; Bartschke, A.; Lehne, M.; Essenwanger, A.; Rinaldi, E.; Rudolph, S.; Heitmann, K.U.; Vehreschild, J.J.; von Kalle, C.; Thun, S. The German Corona Consensus Dataset (GECCO): A standardized dataset for COVID-19 research in university medicine and beyond. BMC Med. Inform. Decis. Mak. 2020 , 20 , 341. [ Google Scholar ] [ CrossRef ]
  • Kreimeyer, K.; Foster, M.; Pandey, A.; Arya, N.; Halford, G.; Jones, S.F. Natural language processing systems for capturing and standardizing unstructured clinical information: A systematic review. J Biomed Inf. 2017 , 73 , 14–29. [ Google Scholar ] [ CrossRef ]
  • Ghanem, F.A.; Padma, M.C.; Alkhatib, R. Automatic Short Text Summarization Techniques in Social Media Platforms. Future Internet 2023 , 15 , 311. [ Google Scholar ] [ CrossRef ]
  • Schüttler, C.; Huth, V.; von Jagwitz-Biegnitz, M.; Lablans, M.; Prokosch, H.-U.; Griebel, L. A Federated Online Search Tool for Biospecimens (Sample Locator): Usability Study. J. Med. Internet Res. 2020 , 22 , e17739. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Shi, Z.; Traverso, A.; Soest, J.; Dekker, A.; Wee, L. Technical note: Ontology-guided radiomics analysis workflow (O-RAW). Med. Phys. 2019 , 46 , 5677–5684. [ Google Scholar ] [ CrossRef ]
  • Luschi, A.; Petraccone, C.; Fico, G.; Pecchia, L.; Iadanza, E. Semantic Ontologies for Complex Healthcare Structures: A Scoping Review. IEEE Access 2023 , 11 , 19228–19246. [ Google Scholar ] [ CrossRef ]
  • Goldberg, I.G.; Allan, C.; Burel, J.M.; Creager, D.; Falconi, A.; Hochheiser, H. The Open Microscopy Environment (OME) Data Model and XML file: Open tools for informatics and quantitative analysis in biological imaging. Genome Biol 2005 , 6 , R47. [ Google Scholar ] [ CrossRef ]
  • Alkhatib, R.; Scholl, M.H. CXQU: A compact XML storage for efficient query and update processing. In Proceedings of the 2008 Third International Conference on Digital Information Management, London, UK, 13–16 November 2008; pp. 605–612. [ Google Scholar ]
  • Santhosh, B. Internet of Medical Things in Secure Assistive Technologies. In AI-Based Digital Health Communication for Securing Assistive Systems ; IGI Global: Hershey, PA, USA, 2023; pp. 244–270. [ Google Scholar ]
  • Auray-Blais, C.; Patenaude, J. A biobank management model applicable to biomedical research. BMC Med. Ethics 2006 , 7 , 4. [ Google Scholar ] [ CrossRef ]
  • Reihs, R.; Proynova, R.; Maqsood, S.; Ataian, M.; Lablans, M.; Quinlan, P.R.; Lawrence, E.; Bowman, E.; van Enckevort, E.; Bučík, D.F.; et al. BBMRI-ERIC Negotiator: Implementing Efficient Access to Biobanks. Biopreserv. Biobank. 2021 , 19 , 414–421. [ Google Scholar ] [ CrossRef ]
  • Herz, C.; Fillion-Robin, J.-C.; Onken, M.; Riesmeier, J.; Lasso, A.; Pinter, C.; Fichtinger, G.; Pieper, S.; Clunie, D.; Kikinis, R.; et al. dcmqi: An Open Source Library for Standardized Communication of Quantitative Image Analysis Results Using DICOM. Cancer Res. 2017 , 77 , e87–e90. [ Google Scholar ] [ CrossRef ]
  • Eklund, N.; Andrianarisoa, N.H.; van Enckevort, E.; Anton, G.; Debucquoy, A.; Müller, H.; Zaharenko, L.; Engels, C.; Ebert, L.; Neumann, M.; et al. Extending the Minimum Information About BIobank Data Sharing Terminology to Describe Samples, Sample Donors, and Events. Biopreserv. Biobank. 2020 , 18 , 155–164. [ Google Scholar ] [ CrossRef ]
  • Chervitz, S.A.; Deutsch, E.W.; Field, D.; Parkinson, H.; Quackenbush, J.; Rocca-Serra, P. Data standards for Omics data: The basis of data sharing and reuse. Methods Mol. Biol. 2011 , 719 , 31–69. [ Google Scholar ] [ PubMed ]
  • Xu, W.; Liang, X.; Chen, L.; Hong, W.; Hu, X. Biobanks in chronic disease management: A comprehensive review of strategies, challenges, and future directions. Heliyon 2024 , 10 , e32063. [ Google Scholar ] [ CrossRef ]
  • Sánchez-López, A.M.; Catalina, P.; Franco, F.; Panadero-Fajardo, S.; Rejón, J.D.; Romero-Sánchez, M.C.; Puerta-Puerta, J.M.; Aguilar-Quesada, R. Data Model for the Comprehensive Management of Biobanks and Its Contribution to Personalized Medicine. J. Pers. Med. 2024 , 14 , 668. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Petersen, E.; Chudakova, D.; Shabalina, E.; Shiryaev, A.; Sukortseva, N.; Zhemerikin, G.; Karalkin, P.; Reshetov, I. Biobanks as an important tool in modern translational oncology. Biol. Commun. 2022 , 67 , 301–311. [ Google Scholar ] [ CrossRef ]
  • Goisauf, M.; Martin, G.; Bentzen, H.B.; Budin-Ljøsne, I.; Ursin, L.; Durnová, A.; Leitsalu, L.; Smith, K.; Casati, S.; Lavitrano, M.; et al. Data in question: A survey of European biobank professionals on ethical, legal and societal challenges of biobank research. PLoS ONE 2019 , 14 , e0221496. [ Google Scholar ]
  • Ampavathi, A.; T, V.S. Research challenges and future directions towards medical data processing. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2022 , 10 , 633–652. [ Google Scholar ] [ CrossRef ]
  • Leusmann, P.; Veeck, J.; Jäkel, J.; Dahl, E.; Knüchel-Clarke, R.; Spreckelsen, C. Towards sustainable data management in professional biobanking. In eHealth2015–Health Informatics Meets eHealth ; IOS Press: Amsterdam, The Netherlands, 2015; pp. 94–102. [ Google Scholar ]
  • Vaught, J.; Hainaut, P.; Pasterk, M.; Zatloukal, K. The Future of Biobanking: Meeting Tomorrow’s Challenges. In Biobanking of Human Biospecimens ; Springer: Cham, Switzerland, 2021; pp. 187–197. [ Google Scholar ] [ CrossRef ]
  • Eder, J.; Shekhovtsov, V.A. Managing the Quality of Data and Metadata for Biobanks. In International Conference on Future Data and Security Engineering ; Springer Nature: Singapore, 2022; pp. 52–69. [ Google Scholar ]
  • Shekhovtsov, V.A.; Eder, J. Metadata Quality for Biobanks. Appl. Sci. 2022 , 12 , 9578. [ Google Scholar ] [ CrossRef ]
  • Mate, S.; Kampf, M.; Rödle, W.; Kraus, S.; Proynova, R.; Silander, K.; Ebert, L.; Lablans, M.; Schüttler, C.; Knell, C.; et al. Pan-European Data Harmonization for Biobanks in ADOPT BBMRI-ERIC. Appl. Clin. Inform. 2019 , 10 , 679–692. [ Google Scholar ] [ CrossRef ]
  • Assareh, H.; Waterhouse, M.A.; Moser, C.; Brighouse, R.D.; Foster, K.A.; Smith, I.R.; Mengersen, K. Data Quality Improvement in Clinical Databases Using Statistical Quality Control: Review and Case Study. Ther. Innov. Regul. Sci. 2013 , 47 , 70–81. [ Google Scholar ] [ CrossRef ]
  • Morehouse, K.N.; Kurdi, B.; Nosek, B.A. Responsible data sharing: Identifying and remedying possible re-identification of human participants. Am. Psychol. 2024 , 5 . Advance online publication . [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Thorogood, A. Population Neuroscience: Strategies to Promote Data Sharing While Protecting Privacy. In Current Topics in Behavioral Neurosciences ; Springer: Berlin/Heidelberg, Germany, 2024. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Li, W.; Li, Y.; Zheng, C.; He, R. Blockchain-based Model for Privacy-enhanced Data Sharing. In Proceedings of the 2023 10th International Conference on Dependable Systems and Their Applications (DSA), Tokyo, Japan, 10–11 August 2023; pp. 406–417. [ Google Scholar ]
  • Molnár, V.; Sági, J.C.; Molnár, M.J. Az érzékeny kutatási adatok megosztása a személyre szabott orvoslás gyakorlatában. Orvosi Hetil. 2023 , 164 , 811–819. [ Google Scholar ] [ CrossRef ]
  • Kvale, L.H.; Pharo, N.; Darch, P. Sharing Qualitative Interview Data in Dialogue with Research Participants. Proc. Assoc. Inf. Sci. Technol. 2023 , 60 , 223–232. [ Google Scholar ] [ CrossRef ]
  • Tzortzatou-Nanopoulou, O.; Akyüz, K.; Goisauf, M.; Kozera, Ł.; Mežinska, S.; Mayrhofer, M.T.; Slokenberga, S.; Reichel, J.; Croxton, T.; Ziaka, A.; et al. Ethical, legal, and social implications in research biobanking: A checklist for navigating complexity. Dev. World Bioeth. 2023 , 7 , 1–12. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Ranasinghe, S.; Pichler, H.; Eder, J. Report on Data Quality in Biobanks: Problems, Issues, State-of-the-Art. arXiv 2018 , arXiv:1812.10423. [ Google Scholar ]
  • Mirkes, E.; Coats, T.; Levesley, J.; Gorban, A. Handling missing data in large healthcare dataset: A case study of unknown trauma outcomes. Comput. Biol. Med. 2016 , 75 , 203–216. [ Google Scholar ] [ CrossRef ]
  • Heymans, M.W.; Twisk, J.W. Handling missing data in clinical research. J. Clin. Epidemiol. 2022 , 151 , 185–188. [ Google Scholar ] [ CrossRef ]
  • Georgiev, A.; Valkanov, V. Custom data quality mechanism in Data Warehouse facilitated by data integrity checks. Math. Educ. Math. 2024 , 53 , 67–75. [ Google Scholar ] [ CrossRef ]
  • Thompson, R. Ethical and Governance Challenges in Population Biobanking: The Case of the Global Anti-Doping Administration & Management System. Ph.D. Thesis, Swansea University, Swansea, UK, 2022. [ Google Scholar ]
  • Vodosin, P.; Jorgensen, A.K.; Mendy, M.; Kozlakidis, Z.; Caboux, E.; Zawati, M.H. A Review of Regulatory Frameworks Governing Biobanking in the Low and Middle Income Member Countries of BCNet. Biopreserv. Biobank. 2021 , 19 , 444–452. [ Google Scholar ] [ CrossRef ]
  • Maseme, M. Ethical Considerations for Health Research Data Governance. In Data Integrity and Data Governance ; IntechOpen: London, UK, 2023. [ Google Scholar ]
  • Kumar, B.S. Introductory Chapter: Data Integrity and Data Governance. In Data Integrity and Data Governance ; IntechOpen: London, UK, 2023. [ Google Scholar ]
  • Brall, C.; Berlin, C.; Zwahlen, M.; Vayena, E.; Egger, M.; Ormond, K.E. Public preferences towards data management and governance in Swiss biobanks: Results from a nationwide survey. BMJ Open 2022 , 12 , e060844. [ Google Scholar ] [ CrossRef ]
  • Sanchini, V.; Marelli, L.; Monturano, M.; Bonizzi, G.; Peruzzotti, G.; Orecchia, R.; Pravettoni, G. A comprehensive ethics and data governance framework for data-intensive health research: Lessons from an Italian cancer research institute. Account. Res. 2023 , 1–18. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Schüttler, C.; Buschhüter, N.; Döllinger, C.; Ebert, L.; Hummel, M.; Linde, J.; Prokosch, H.; Proynova, R.; Lablans, M. Anforderungen an eine standortübergreifende Biobanken-IT-Infrastruktur. Der Pathol. 2018 , 39 , 289–296. [ Google Scholar ] [ CrossRef ]
  • Rajeswari, J.; Jagannath, M. Advances in biomedical signal and image processing—A systematic review. Inf. Med. Unlocked 2017 , 8 , 13–19. [ Google Scholar ] [ CrossRef ]
  • Bonizzi, G.; Capra, M.; Cassi, C.; Taliento, G.; Pala, O.; Sajjadi, E.; Venetis, K.; Ivanova, M.; Monturano, M.; Renne, G.; et al. Biobank for Translational Medicine: Standard Operating Procedures for Optimal Sample Management. J. Vis. Exp. 2022 , 189 , e63950. [ Google Scholar ]
  • Stanescu, A.; Vajaiala, C.; Cocirlea, D. Leveraging Distributed Storage Systems in Conjunction with Blockchain Solutions to Enhance Data Redundancy and Privacy in Organizations. 2023. Available online: https://www.researchsquare.com/article/rs-3254210/v1 (accessed on 30 August 2024).
  • Kimura, L.T.; Shiraishi, F.K.; Andrade, E.R.; Carvalho, T.C.M.B.; Simplicio, M.A. Amazon Biobank: Assessing the Implementation of a Blockchain-Based Genomic Database. IEEE Access 2024 , 12 , 9632–9647. [ Google Scholar ] [ CrossRef ]
  • Bernstein, D.J.; Lange, T. Post-quantum cryptography. Nature 2017 , 549 , 188–194. [ Google Scholar ] [ CrossRef ]
  • Cao, Y.; Zhao, Y.; Wang, J.; Yu, X.; Ma, Z.; Zhang, J. KaaS: Key as a Service over Quantum Key Distribution Integrated Optical Networks. IEEE Commun. Mag. 2019 , 57 , 152–159. [ Google Scholar ] [ CrossRef ]
  • Pan, D.; Lin, Z.; Wu, J.; Zhang, H.; Sun, Z.; Ruan, D.; Yin, L.; Long, G.L. Experimental free-space quantum secure direct communication and its security analysis. Photon. Res. 2020 , 8 , 1522–1531. [ Google Scholar ] [ CrossRef ]
  • Alkhatib, R.; Sahwan, W.; Alkhatieb, A.; Schütt, B. A Brief Review of Machine Learning Algorithms in Forest Fires Science. Appl. Sci. 2023 , 13 , 8275. [ Google Scholar ] [ CrossRef ]
  • Wassouf, W.N.; Alkhatib, R.; Salloum, K.; Balloul, S. Predictive analytics using big data for increased customer loyalty: Syriatel Telecom Company case study. J. Big Data 2020 , 7 , 29. [ Google Scholar ] [ CrossRef ]
  • Ahmed, F.; Kang, I.S.; Kim, K.H.; Asif, A.; Rahim, C.S.A.; Samantasinghar, A. Drug repurposing for viral cancers: A paradigm of machine learning, deep learning, and virtual screening-based approaches. J. Med. Virol. 2023 , 95 , e28693. [ Google Scholar ] [ CrossRef ]
  • Battineni, G.; Hossain, M.A.; Chintalapudi, N.; Amenta, F. A Survey on the Role of Artificial Intelligence in Biobanking Studies: A Systematic Review. Diagnostics 2022 , 12 , 1179. [ Google Scholar ] [ CrossRef ]
  • Anas, A.; Xingwang, L.; Ramez, A.; Khaled, R.; Galymzhan, N. Intelligent Reflecting Surface-aided UAV Communications: A survey and Research Opportunities. In Proceedings of the 2022 13th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), Porto, Portugal, 20–22 July 2022; pp. 362–367. [ Google Scholar ]
  • Frascarelli, C.; Bonizzi, G.; Musico, C.R.; Mane, E.; Cassi, C.; Rocco, E.G.; Farina, A.; Scarpa, A.; Lawlor, R.; Bonetti, L.R.; et al. Revolutionizing Cancer Research: The Impact of Artificial Intelligence in Digital Biobanking. J. Pers. Med. 2023 , 13 , 1390. [ Google Scholar ] [ CrossRef ]
  • Roy, S.; Coldren, C.; Karunamurthy, A.; Kip, N.S.; Klee, E.W.; Lincoln, S.E. Standards and guidelines for validating next-generation sequencing Bioinformatics Pipelines. J. Mol. Diagn. 2018 , 20 , 4–27. [ Google Scholar ] [ CrossRef ]
  • Mathur, P. Cloud Computing Infrastructure, Platforms, and Software for Scientific Research. In High Performance Computing in Biomimetics: Modeling, Architecture and Applications ; Springer Nature: Singapore, 2024; pp. 89–127. [ Google Scholar ]
  • Biswas, A.; Kumari, A.; Gaikwad, D.; Pandey, D.K. Revolutionizing Biological Science: The Synergy of Genomics in Health, Bioinformatics, Agriculture, and Artificial Intelligence. OMICS A J. Integr. Biol. 2023 , 27 , 550–569. [ Google Scholar ] [ CrossRef ]
  • Ibrahim, A.; Primakov, S.; Beuque, M.; Woodruff, H.C.; Halilaj, I.; Wu, G. Radiomics for precision medicine: Current challenges, future prospects, and the proposal of a new framework. Methods 2021 , 188 , 20–29. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Dowst, H.; Pew, B.; Watkins, C.; McOwiti, A.; Barney, J.; Qu, S.; Becnel, L.B. Acquire: An open-source comprehensive cancer biobanking system. Bioinformatics 2015 , 31 , 1655–1662. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Im, K.; Gui, D.; Yong, W.H. An Introduction to Hardware, Software, and Other Information Technology Needs of Biomedical Biobanks ; Springer: New York, NY, USA, 2019; pp. 17–29. [ Google Scholar ]
  • Kersting, M.; Prokein, J.; Bernemann, I.; Drobek, D.; Illig, T. IT-Systems for Biobanking—A Brief Overview ; Hannover United Biobank, Hannover Medical School: Hannover, Germany, 2014; Available online: http://www.markus-kersting.de/wp-content/uploads/2014/12/Poster_Biobank_Systeme_HUB_2014_12_01_mk_b.pdf (accessed on 30 August 2024).
  • Öfelein, M.; Reichold, M.; Christian, M. Designing a framework of components to support patient engagement. Stud. Health Technol. Inform. 2019 , 267 , 20–27. [ Google Scholar ]
  • Medina-Martínez, J.S.; Arango-Ossa, J.E.; Levine, M.F.; Zhou, Y.; Gundem, G.; Kung, A.L.; Papaemmanuil, E. Isabl Platform, a digital biobank for processing multimodal patient data. BMC Bioinform. 2020 , 21 , 549. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Aribi, H.B.; Ghidaoui, M.H.; Fattouch, S. Monitoring Environmental Performance of Agricultural Supply Chains Using Internet of Things. In Integrating Intelligence and Sustainability in Supply Chains ; IGI Global: Hershey, PA, USA, 2023; pp. 273–292. [ Google Scholar ]
  • Gille, F.; Vayena, E.; Blasimme, A. Future-proofing biobanks’ governance. Eur. J. Hum. Genet. 2020 , 28 , 989–996. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.-W.; da Silva Santos, L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 2016 , 3 , 160018. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Duhm-Harbeck, P.; Habermann, J.K. Data Protection in Healthcare-Integrated Biobanking. Innov. Digit. Health Diagn. Biomark. 2023 , 3 , 1–7. [ Google Scholar ] [ CrossRef ]
  • Montague, T.; Nemis-White, J.; Aylen, J.; Torr, E.; Martin, L.; Gogovor, A. Canada's Evolving Medicare: Patient-Centred Care. Healthc. Q. 2019 , 22 , 27–31. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Haldeman, K.; Cadigan, R.; Davis, A.; Goldenberg, A.; Henderson, G.; Lassiter, D.; Reavely, E. Community Engagement in US Biobanking: Multiplicity of Meaning and Method. Public Health Genom. 2014 , 17 , 84–94. [ Google Scholar ] [ CrossRef ]
  • Batra, G.; Aktaa, S.; Wallentin, L.; Maggioni, A.P.; Wilkinson, C.; Casadei, B. Methodology for the development of international clinical data standards for common cardiovascular conditions: European unified registries for Heart Care evaluation and randomised trials (EuroHeart). Eur. Heart J. Qual. Care Clin. Outcomes 2023 , 9 , 161–168. [ Google Scholar ] [ CrossRef ]
  • Zhang, J.; Zhang, Z.-M. Ethics and governance of trustworthy medical artificial intelligence. BMC Med. Inform. Decis. Mak. 2023 , 23 , 7. [ Google Scholar ] [ CrossRef ]
  • Ahmed, F.; Samantasinghar, A.; Soomro, A.M.; Kim, S.; Choi, K.H. A systematic review of computational approaches to understand cancer biology for informed drug repurposing. J. Biomed. Inf. 2023 , 142 , 104373. [ Google Scholar ] [ CrossRef ]
  • Alahmad, G. Informed Consent in Pediatric Oncology. Cancer Control 2018 , 25 , 107327481877372. [ Google Scholar ] [ CrossRef ]
  • Paskal, W.; Paskal, A.M.; Dębski, T.; Gryziak, M.; Jaworowski, J. Aspects of Modern Biobank Activity—Comprehensive Review. Pathol. Oncol. Res. 2018 , 24 , 771–785. [ Google Scholar ] [ CrossRef ]
  • Bonomi, L.; Huang, Y.; Ohno-Machado, L. Privacy challenges and research opportunities for genomic data sharing. Nat. Genet. 2020 , 52 , 646–654. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Alahmad, G.; Al-Jumah, M.; Dierickx, K. Review of national research ethics regulations and guidelines in Middle Eastern Arab countries. BMC Med. Ethics 2012 , 13 , 34. [ Google Scholar ] [ CrossRef ] [ PubMed ]

Click here to enlarge figure

The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

Alkhatib, R.; Gaede, K.I. Data Management in Biobanking: Strategies, Challenges, and Future Directions. BioTech 2024 , 13 , 34. https://doi.org/10.3390/biotech13030034

Alkhatib R, Gaede KI. Data Management in Biobanking: Strategies, Challenges, and Future Directions. BioTech . 2024; 13(3):34. https://doi.org/10.3390/biotech13030034

Alkhatib, Ramez, and Karoline I. Gaede. 2024. "Data Management in Biobanking: Strategies, Challenges, and Future Directions" BioTech 13, no. 3: 34. https://doi.org/10.3390/biotech13030034

Article Metrics

Article access statistics, further information, mdpi initiatives, follow mdpi.

MDPI

Subscribe to receive issue release notifications and newsletters from MDPI journals

  • iSchool Connect

Jiangping Chen

Jiangping Chen CV

Interim Executive Associate Dean and Visiting Professor

PhD, Information Transfer, Syracuse University

Room 112E, 501 E. Daniel St.

(217) 333-3280

[email protected]

  • https://idealabunt.github.io/home/index.html

Other professional appointments

2023-2024 Co-Chairs, ALISE Council of Deans, Directors, and Chairs

Research focus

Honors and awards.

  • Regents Professor, University of North Texas, 2024
  • Outstanding Department Award, University of North Texas, 2022
  • LIBINF Top 10 Cited Article (IF 2019-2020), ELSEVIER, 2022
  • Star Performer Award, University of North Texas, 2021
  • Recognition of Service Award, Association for Computing Machinery (ACM), 2018
  • ISI/ASIS&T Doctoral Dissertation Proposal Award, 2003

Dr. Chen is currently the interim executive associate dean and visiting professor at the iSchool. Before joining UIUC in August 2024, she was Regents professor and the chair of the Department of Information Science in the College of Information at the University of North Texas (UNT). She conducts interdisciplinary research, spanning information science, data science, and health informatics. She is the founder of UNT's Intelligent Information Access (IIA) Lab, which explores methods for access, interaction, and analysis of large, distributed, heterogeneous, multimedia, and multilingual information. 

Her professional contributions include authoring numerous publications, including a monograph on multilingual digital libraries,  journal articles, book chapters, and conference proceedings as well as giving invited presentations and talks. She served as the editor-in-chief for The Electronic Library for seven years and as chair of the Joint Conference on Digital Libraries (JCDL) in 2018. Dr. Chen holds a PhD in information transfer from Syracuse University, a master's degree in information science from the Library of Chinese Academy of Sciences, and a bachelor's degree in information science from Wuhan University.

Publications & Papers

Selected publications

Ogbadu-Oladapo, L., Chung, H., Li, J., & Chen, J. (2023). An investigation of the use of theories in misinformation studies. Proceedings of 2023 annual conference of the American Society for Information Science and Technology , London, UK, October 27-31. https://doi.org/10.1002/pra2.790 . Nguyen, H., Ogbadu-Oladapo, L., Irhamni, A., Chen, H., & Chen, J. (2023). Fighting misinformation: where are we and where to go? Proceedings of iConference 2023 , Barcelona, Spain, March 27-29. https://doi.org/10.1007/978-3-031-28035-1_27 . Wu, A. & Chen, J. (2022). Sustaining multilinguality: case studies of two multilingual digital libraries. The Electronic Library , 40(6), 625-645. https://doi.org/10.1108/EL-03-2022-0061 . Chen, H., Wu, L., Lu, W., Chen, J., & Ding, J. (2022). A comparative study of automated legal text classification using random forests and deep learning. Information Processing and Management , 59(2). https://doi.org/10.1016/j.ipm.2021.102798 . Chen, H., Nguyen, H., & Chen, J. (2021). Demystifying COVID-19 publications: researchers, topics, diseases, and therapeutics. Journal of the Medical Library Association , 109(3), 395-405. https://doi.org/10.5195/jmla.2021.1141 . Chen, J. (2020). Beyond information organization and evaluation: how can information scientists contribute to independent thinking. Data and Information Management , 4(3), 171-176. https://doi.org/10.2478/dim-2020-0017 . Wang, C., Huang, R., Li, J., & Chen, J. (2020). Towards better information services: A framework for immigrant information needs and library services. Library and Information Science Research , 42(1), https://doi.org/10.1016/j.lisr.2019.101000 . Brenda, R., Knudson, R., Chen, J., Cao, G., & Wang, X. (2018). Metadata records machine translation combining multi-engine outputs with limited parallel data. Journal of the Association for Information Science and Technology . 69(1), 47-59, 2018. https://doi.org/10.1002/asi.23925 . Chen, J. 2016. Multilingual Access And Services For Digital Collections . Santa Barbara, CA: Libraries Unlimited. https://www.amazon.com/Multilingual-Access-Services-Digital-Collections/dp/1440839549 .   

  • Data Analytics and Human Centered Data
  • Digital Libraries
  • Information Retrieval
  • Natural Language Processing, Text Mining, Text Analysis, Computational Linguistics
  • Privacy, Security, and Trust
  • Open access
  • Published: 31 August 2024

Effects of pecha kucha presentation pedagogy on nursing students’ presentation skills: a quasi-experimental study in Tanzania

  • Setberth Jonas Haramba 1 ,
  • Walter C. Millanzi 1 &
  • Saada A. Seif 2  

BMC Medical Education volume  24 , Article number:  952 ( 2024 ) Cite this article

1 Altmetric

Metrics details

Introduction

Ineffective and non-interactive learning among nursing students limits opportunities for students’ classroom presentation skills, creativity, and innovation upon completion of their classroom learning activities. Pecha Kucha presentation is the new promising pedagogy that engages students in learning and improves students’ speaking skills and other survival skills. It involves the use of 20 slides, each covering 20 seconds of its presentation. The current study examined the effect of Pecha Kucha’s presentation pedagogy on presentation skills among nursing students in Tanzania.

The aim of this study was to establish comparative nursing student’s presentation skills between exposure to the traditional PowerPoint presentations and Pecha Kucha presentations.

The study employed an uncontrolled quasi-experimental design (pre-post) using a quantitative research approach among 230 randomly selected nursing students at the respective training institution. An interviewer-administered structured questionnaire adopted from previous studies to measure presentation skills between June and July 2023 was used. The study involved the training of research assistants, pre-assessment of presentation skills, training of participants, assigning topics to participants, classroom presentations, and post-intervention assessment. A linear regression analysis model was used to determine the effect of the intervention on nursing students’ presentation skills using Statistical Package for Social Solution (SPSS) version 26, set at a 95% confidence interval and 5% significance level.

Findings revealed that 63 (70.87%) participants were aged ≤ 23 years, of which 151 (65.65%) and 189 (82.17%) of them were males and undergraduate students, respectively. Post-test findings showed a significant mean score change in participants’ presentation skills between baseline (M = 4.07 ± SD = 0.56) and end-line (M = 4.54 ± SD = 0.59) that accounted for 0.4717 ± 0.7793; p  < .0001(95%CI) presentation skills mean score change with a medium effect size of 0.78. An increase in participants’ knowledge of Pecha Kucha presentation was associated with a 0.0239 ( p  < .0001) increase in presentation skills.

Pecha Kucha presentations have a significant effect on nursing students’ presentation skills as they enhance inquiry and mastery of their learning content before classroom presentations. The pedagogical approach appeared to enhance nursing students’ confidence during the classroom presentation. Therefore, there is a need to incorporate Pecha Kucha presentation pedagogy into nursing curricula and nursing education at large to promote student-centered teaching and learning activities and the development of survival skills.

Trial registration

It was not applicable as it was a quasi-experimental study.

Peer Review reports

The nursing students need to have different skills acquired during the learning process in order to enable them to provide quality nursing care and management in the society [ 1 ]. The referred nursing care and management practices include identifying, analyzing, synthesizing, and effective communication within and between healthcare professionals [ 1 ]. Given an increasing global economy and international competition for jobs and opportunities, the current traditional classroom learning methods are insufficient to meet such 21st - century challenges and demands [ 2 ]. The integration of presentation skills, creativity, innovation, collaboration, information, and media literacy skills helps to overcome the noted challenges among students [ 2 , 3 , 4 ]. The skills in question constitute the survival skills that help the students not only for career development and success but also for their personal, social and public quality of life as they enable students to overcome 21st challenges upon graduation [ 2 ].

To enhance the nursing students’ participation in learning, stimulating their presentation skills, critical thinking, creativity, and innovation, a combination of teaching and learning pedagogy should be employed [ 5 , 6 , 7 , 8 ]. Among others, classroom presentations, group discussions, problem-based learning, demonstrations, reflection, and role-play are commonly used for those purposes [ 5 ]. However, ineffective and non-interactive learning which contribute to limited presentation skills, creativity, and innovation, have been reported by several scholars [ 9 , 10 , 11 ]. For example, poor use and design of student PowerPoint presentations led to confusing graphics due to the many texts in the slides and the reading of about 80 slides [ 12 , 13 , 14 ]. Indeed, such non-interactive learning becomes boring and tiresome among the learners, and it is usually evidenced by glazing eyes, long yawning, occasional snoring, the use of a phone and frequent trips to the bathroom [ 12 , 14 ].

With an increasing number of nursing students in higher education institutions in Tanzania, the students’ traditional presentation pedagogy is insufficient to stimulate their presentation skills. They limit nursing student innovation, creativity, critical thinking, and meaningful learning in an attempt to solve health challenges [ 15 , 16 ].These hinder nursing students ability to communicate effectively by being able to demonstrate their knowledge and mastery of learning content [ 17 , 18 ]. Furthermore, it affects their future careers by not being able to demonstrate and express their expertise clearly in a variety of workplace settings, such as being able to present at scientific conferences, participating in job interviews, giving clinic case reports, handover reports, and giving feedback to clients [ 17 , 18 , 19 ].

Pecha Kucha presentation is a new promising approach for students’ learning in the classroom context as it motivates learners’ self-directed and collaborative learning, learner creativity, and presentation skills [ 20 , 21 , 22 ]. It encourages students to read more materials, enhances cooperative learning among learners, and is interesting and enjoyable among students [ 23 ].

Pecha Kucha presentation originated from the Japanese word “ chit chat , ” which represents the fast-paced presentation used in different fields, including teaching, marketing, advertising, and designing [ 24 , 25 , 26 ]. It involves 20 slides, where each slide covers 20 s, thus making a total of 6 min and 40 s for the whole presentation [ 22 ]. For effective learning through Pecha Kucha presentations, the design and format of the presentation should be meaningfully limited to 20 slides and targeted at 20 s for each slide, rich in content of the presented topic using high-quality images or pictures attuned to the content knowledge and message to be delivered to the target audiences [ 14 , 16 ]. Each slide should contain a primordial message with well-balanced information. In other words, the message should be simple in the sense that each slide should contain only one concept or idea with neither too much nor too little information, thus making it easy to be grasped by the audience [ 14 , 17 , 19 ].

The “true spirit” of Pecha Kucha is that it mostly consists of powerful images and meaningful specific text rather than the text that is being read by the presenter from the slides, an image, and short phrases that should communicate the core idea while the speaker offers well-rehearsed and elaborated comments [ 22 , 28 ]. The presenter should master the subject matter and incorporate the necessary information from classwork [ 14 , 20 ]. The audience’s engagement in learning by paying attention and actively listening to the Pecha Kucha presentation was higher compared with that in traditional PowerPoint presentations [ 29 ]. The creativity and collaboration during designing and selecting the appropriate images and contents, rehearsal before the presentation, and discussion after each presentation made students satisfied by enjoying Pecha Kucha presentations compared with traditional presentations [ 21 , 22 ]. Time management and students’ self-regulation were found to be significant through the Pecha Kucha presentation among the students and teachers or instructors who could appropriately plan the time for classroom instruction [ 22 , 23 ].

However, little is known about Pecha Kucha presentation in nursing education in Sub-Saharan African countries, including Tanzania, since there is insufficient evidence for the research(s) that have been published on the description of its effects on enhancing students’ presentation skills. Thus, this study assessed the effect of Pecha Kucha’s presentation pedagogy on enhancing presentation skills among nursing students. In particular, the study largely focused on nursing students’ presentation skills during the preparation and presentation of the students’ assignments, project works, case reports, or field reports.

The study answered the null hypothesis H 0  = H 1, which hypothesized that there is no significant difference in nursing students’ classroom presentation skills scores between the baseline and end-line assessments. The association between nursing students’ presentation skills and participants’ sociodemographic characteristics was formulated and analyzed before and after the intervention. This study forms the basis for developing new presentation pedagogy among nursing students in order to stimulate effective learning and the development of presentation skills during the teaching and learning process and the acquisition of 21st - century skills, which are characterized by an increased competitive knowledge-based society due to changing nature and technological eruptions.

The current study also forms the basis for re-defining classroom practices in an attempt to enhance and transform nursing students’ learning experiences. This will cultivate the production of graduates nurses who will share their expertise and practical skills in the health care team by attending scientific conferences, clinical case presentations, and job interviews in the global health market. To achieve this, the study determined the baseline and end-line nursing students’ presentation skills during the preparation and presentation of classroom assignments using the traditional PowerPoint presentation and Pecha Kucha presentation format.

Methods and materials

This study was conducted in health training institutions in Tanzania. Tanzania has a total of 47 registered public and private universities and university colleges that offer health programs ranging from certificate to doctorate degrees [ 24 , 25 ]. A total of seven [ 7 ] out of 47 universities offer a bachelor of science in nursing, and four [ 4 ] universities offer master’s to doctorate degree programs in nursing and midwifery sciences [ 24 , 26 ]. To enhance the representation of nursing students in Tanzania, this study was conducted in Dodoma Municipal Council, which is one of Tanzania’s 30 administrative regions [ 33 ]. Dodoma Region has two [ 2 ] universities that offer nursing programs at diploma and degree levels [ 34 ]. The referred universities host a large number of nursing students compared to the other five [ 5 ] universities in Tanzania, with traditional students’ presentation approaches predominating nursing students’ teaching and learning processes [ 7 , 32 , 35 ].

The two universities under study include the University of Dodoma and St. John’s University of Tanzania, which are located in Dodoma Urban District. The University of Dodoma is a public university that provides 142 training programs at the diploma, bachelor degree, and master’s degree levels with about 28,225 undergraduate students and 724 postgraduate students [ 26 , 27 ]. The University of Dodoma also has 1,031 nursing students pursuing a Bachelor of Science in Nursing and 335 nursing students pursuing a Diploma in Nursing in the academic year 2022–2023 [ 33 ]. The St. John’s University of Tanzania is a non-profit private university that is legally connected with the Christian-Anglican Church [ 36 ]. It has student enrollment ranging from 5000 to 5999 and it provides training programs leading to higher education degrees in a variety of fields, including diplomas, bachelor degrees, and master’s degrees [ 37 ]. It hosts 766 nursing students pursuing a Bachelor of Science in Nursing and 113 nursing students pursuing a Diploma in Nursing in the academic year 2022–2023 [ 30 , 31 ].

Study design and approach

An uncontrolled quasi-experimental design with a quantitative research approach was used to establish quantifiable data on the participants’ socio-demographic profiles and outcome variables under study. The design involved pre- and post-tests to determine the effects of the intervention on the aforementioned outcome variable. The design involved three phases, namely the baseline data collection process (pre-test via a cross-sectional survey), implementation of the intervention (process), and end-line assessment (post-test), as shown in Fig.  1 [ 7 ].

figure 1

A flow pattern of study design and approach

Target population

The study involved nursing students pursuing a Diploma in nursing and a bachelor of science in nursing in Tanzania. The population was highly expected to demonstrate competences and mastery of different survival and life skills in order to enable them to work independent at various levels of health facilities within and outside Tanzania. This cohort of undergraduate nursing students also involved adult learners who can set goals, develop strategies to achieve their goals, and hence achieve positive professional behavioral outcomes [ 7 ]. Moreover, as per annual data, the average number of graduate nursing students ranges from 3,500 to 4,000 from all colleges and universities in the country [ 38 ].

Study population

The study involved first- and third-year nursing students pursuing a Diploma in Nursing and first-, second-, and third-year nursing students pursuing a Bachelor of Science in Nursing at the University of Dodoma. The population had a large number of enrolled undergraduate nursing students, thus making it an ideal population for intervention, and it approximately served as a good representation of the universities offering nursing programs [ 11 , 29 ].

Inclusion criteria

The study included male and female nursing students pursuing a Diploma in nursing and a bachelor of science in nursing at the University of Dodoma. The referred students included those who were registered at the University of Dodoma during the time of study. Such students live on or off campus, and they were not exposed to PK training despite having regular classroom attendance. This enhanced enrollment of adequate study samples from each study program, monitoring of study intervention, and easy control of con-founders.

Exclusion criteria

All students recruited in the study were assessed at baseline, exposed to a training package and obtained their post-intervention learning experience. None of the study participants, who either dropped out of the study or failed to meet the recruitment criteria.

Sample size determination

A quasi-experimental study on Pecha Kucha as an alternative to traditional PowerPoint presentations at Worcester University, United States of America, reported significant student engagement during Pecha Kucha presentations compared with traditional PowerPoint presentations [ 29 ]. The mean score for the classroom with the traditional PowerPoint presentation was 2.63, while the mean score for the Pecha Kucha presentation was 4.08. This study adopted the formula that was used to calculate the required sample size for an uncontrolled quasi-experimental study among pre-scholars [ 39 ]. The formula is stated as:

Where: Zα was set at 1.96 from the normal distribution table.

Zβ was set at 0.80 power of the study.

Mean zero (π0) was the mean score of audiences’ engagement in using PowerPoint presentation = 2.63.

Mean one (π1) was the mean score of audience’s engagement in using Pecha Kucha presentation = 4.08.

Sampling technique

Given the availability of higher-training institutions in the study area that offer undergraduate nursing programs, a simple random sampling technique was used, whereby two cards, one labelled “University of Dodoma” and the other being labelled “St. Johns University of Tanzania,” were prepared and put in the first pot. The other two cards, one labelled “yes” to represent the study setting and the other being labelled “No” to represent the absence of study setting, were put in the second pot. Two research assistants were asked to select a card from each pot, and consequently, the University of Dodoma was selected as the study setting.

To obtain the target population, the study employed purposive sampling techniques to select the school of nursing and public health at the University of Dodoma. Upon arriving at the School of Nursing and Public Health of the University of Dodoma, the convenience sampling technique was employed to obtain the number of classes for undergraduate nursing students pursuing a Diploma in Nursing and a Bachelor of Science in Nursing. The study sample comprised the students who were available at the time of study. A total of five [ 5 ] classes of Diploma in Nursing first-, second-, and third-years and Bachelor of Science in Nursing first-, second-, and third-years were obtained.

To establish the representation for a minimum sample from each class, the number of students by sex was obtained from each classroom list using the proportionate stratified sampling technique (sample size/population size× stratum size) as recommended by scholars [ 40 ]. To recruit the required sample size from each class by gender, a simple random sampling technique through the lottery method was employed to obtain the required sample size from each stratum. During this phase, the student lists by gender from each class were obtained, and cards with code numbers, which were mixed with empty cards depending on the strata size, were allocated for each class and strata. Both labeled and empty cards were put into different pots, which were labeled appropriately by their class and strata names. Upon arriving at the specific classroom and after the introduction, the research assistant asked each nursing student to pick one card from the respective strata pot. Those who selected cards with code numbers were recruited in the study with their code numbers as their participation identity numbers. The process continued for each class until the required sample size was obtained.

To ensure the effective participation of nursing students in the study, the research assistant worked hand in hand with the facilitators and lecturers of the respective classrooms, the head of the department, and class representatives. The importance, advantages, and disadvantages of participating in the study were given to study participants during the recruitment process in order to create awareness and remove possible fears. During the intervention, study participants were also given pens and notebooks in an attempt to enable them to take notes. Moreover, the bites were provided during the training sessions. The number of participants from each classroom and the sampling process are shown in Fig.  2 [ 7 ].

figure 2

Flow pattern of participants sampling procedures

Data collection tools

The study adapted and modified the students’ questionnaire on presentation skills from scholars [ 20 , 23 , 26 , 27 , 28 , 29 ]. The modification involved rephrasing the question statement, breaking down items into specific questions, deleting repeated items that were found to measure the same variables, and improving language to meet the literacy level and cultural norms of study participants.

The data collection tool consisted of 68 question items that assessed the socio-demographic characteristics of the study participants and 33 question items rated on a five-point Likert scale, which ranges from 5 = strongly agree, 4 = agree, 3 = not sure, 2 = disagree, and 1 = strongly disagree. The referred tool was used to assess the students’ skills during the preparation and presentation of the assignments using the traditional PowerPoint presentation and Pecha Kucha presentation formats.

The students’ assessment specifically focused on the students’ ability to prepare the presentation content, master the learning content, share presentation materials, and communicate their understanding to audiences in the classroom context.

Validity and reliability of research instruments

Validity of the research instrument refers to whether the instrument measures the behaviors or qualities that are intended to be measured, and it is a measure of how well the measuring instrument performs its function [ 41 ]. The structured questionnaire, which intends to assess the participants’ presentation skills was validated for face and content validity. The principal investigator initially adapted the question items for different domains of students’ learning when preparing and presenting their assignment in the classroom.

The items were shared and discussed by two [ 2 ] educationists, two [ 2 ] research experts, one [ 1 ] statistician, and supervisors in order to ensure clarity, appropriateness, adequacy, and coverage of the presentation skills using Pecha Kucha presentation format. The content validity test was used until the saturation of experts’ opinions and inputs was achieved. The inter-observer rating scale on a five-point Likert scale ranging from 5-points = very relevant to 1-point = not relevant was also used.

The process involved addition, input deletion, correction, and editing for relevance, appropriateness, and scope of the content for the study participants. Some of the question items were broken down into more specific questions, and new domains evolved. Other question items that were found to measure the same variables were also deleted to ease the data collection and analysis. Moreover, the grammar and language issues were improved for clarity based on the literacy level of the study participants.

Reliability of the research instruments refers to the ability of the research instruments or tools to provide similar and consistent results when applied at different times and circumstances [ 41 ]. This study adapted the tools and question items used by different scholars to assess the impact of PKP on student learning [ 12 , 15 , 18 ].

To ensure the reliability of the tools, a pilot study was conducted in one of the nursing training institutions in order to assess the complexity, readability, clarity, completeness, length, and duration of the tool. Ambiguous and difficult (left unanswered) items were modified or deleted based on the consensus that was reached with the consulted experts and supervisor before subjecting the questionnaires to a pre-test.

The study involved 10% of undergraduate nursing students from an independent geographical location for a pilot study. The findings from the pilot study were subjected to explanatory factor analysis (Set a ≥ 0.3) and scale analysis in order to determine the internal consistency of the tools using the Cronbach alpha of ≥ 0.7, which was considered reliable [ 42 , 43 , 44 ]. Furthermore, after the data collection, the scale analysis was computed in an attempt to assess their internal consistency using SPPSS version 26, whereby the Cronbach alpha for question items that assessed the participants’ presentation skills was 0.965.

Data collection method

The study used the researcher-administered questionnaire to collect the participants’ socio-demographic information, co-related factors, and presentation skills as nursing students prepare and present their assignments in the classroom. This enhanced the clarity and participants’ understanding of all question items before providing the appropriate responses. The data were collected by the research assistants in the classroom with the study participants sitting distantly to ensure privacy, confidentiality, and the quality of the information that was provided by the research participants. The research assistant guided and led the study participants to answer the questions and fill in information in the questionnaire for each section, domain, and question item. The research assistant also collected the baseline information (pre-test) before the intervention, which was then compared with the post-intervention information. This was done in the first week of June 2023, after training and orientation of the research assistant on the data collection tools and recruitment of the study participants.

Using the researcher-administered questionnaire, the research assistant also collected the participants’ information related to presentation skills as they prepared and presented their given assignments after the intervention during the second week of July 2023. The participants submitted their presentations to the principle investigator and research assistant to assess the organization, visual appeal and creativity, content knowledge, and adherence to Pecha Kucha presentation requirements. Furthermore, the evaluation of the participants’ ability to share and communicate the given assignment was observed in the classroom presentation using the Pecha Kucha presentation format.

Definitions of variables

Pecha kucha presentation.

It refers to a specific style of presentation whereby the presenter delivers the content using 20 slides that are dominated by images, pictures, tables, or figures. Each slide is displayed for 20 s, thus making a total of 400 s (6 min and 40 s) for the whole presentation.

Presentation skills in this study

This involved students’ ability to plan, prepare, master learning content, create presentation materials, and share them with peers or the audience in the classroom. They constitute the learning activities that stimulate creativity, innovation, critical thinking, and problem-solving skills.

Measurement of pecha kucha preparation and presentation skills

The students’ presentation skills were measured using the four [ 4 ] learning domains. The first domain constituted the students’ ability to plan and prepare the presentation content. It consisted of 17 question items that assessed the students’ ability to gather and select information, search for specific content to be presented in the classroom, find out the learning content from different resources, and search for literature materials for the preparation of the assignment using traditional PowerPoint presentations and Pecha Kucha formats. It also aimed to ascertain a deeper understanding of the contents or topic, learning ownership and motivation to learn the topics with clear understanding and the ability to identify the relevant audience, segregate, and remove unnecessary contents using the Pecha Kucha format.

The second domain constituted the students’ mastery of learning during the preparation and presentation of their assignment before the audience in the classroom. It consisted of six [ 6 ] question items that measured the students’ ability to read several times, rehearse before the classroom presentation, and practice the assignment and presentation harder. It also measures the students’ ability to evaluate the selected information and content before their actual presentation and make revisions to the selected information and content before the presentation using the Pecha Kucha format.

The third domain constituted the students’ ability to prepare the presentation materials. It consisted of six [ 6 ] question items that measured the students’ ability to organize the information and contents, prepare the classroom presentation, revise and edit presentation resources, materials, and contents, and think about the audience and classroom design. The fourth domain constituted the students’ ability to share their learning. It consisted of four [ 4 ] question items that measured the students’ ability to communicate their learning with the audience, present a new understanding to the audience, transfer the learning to the audience, and answer the questions about the topic or assignment given. The variable was measured using a 5-point Likert scale. The average scores were computed for each domain, and an overall mean score was calculated across all domains. Additionally, an encompassing skills score was derived from the cumulative scores of all four domains, thus providing a comprehensive evaluation of the overall skills level.

Implementation of intervention

The implementation of the study involved the training of research assistants, sampling of the study participants, setting of the venue, pre-assessment of the students’ presentation skills using traditional PowerPoint presentations, training and demonstration of Pecha Kucha presentations to study participants, and assigning the topics to study participants. The implementation of the study also involved the participants’ submission of their assignments to the Principal Investigator for evaluation, the participants’ presentation of their assigned topic using the Pecha Kucha format, post-intervention assessment of the students’ presentation skills, data analysis, and reporting [ 7 ]. The intervention involved Principal Investigator and two [ 2 ] trained research assistants. The intervention in question was based on the concept of multimedia theory of cognitive learning (MTCL) for enhancing effective leaning in 21st century.

Training of research assistants

Two research assistants were trained with regard to the principles, characteristics, and format of Pecha Kucha presentations using the curriculum from the official Pecha Kucha website. Also, research assistants were oriented to the data collection tools and methods in an attempt to guarantee the relevancy and appropriate collection of the participants’ information.

Schedule and duration of training among research assistants

The PI prepared the training schedule and venue after negotiation and consensus with the research assistants. Moreover, the Principle Investigator trained the research assistants to assess the learning, learn how to collect the data using the questionnaire, and maintain the privacy and confidentiality of the study participants.

Descriptions of interventions

The intervention was conducted among the nursing students at the University of Dodoma, which is located in Dodoma Region, Tanzania Mainland, after obtaining their consent. The participants were trained regarding the concepts, principles, and characteristics of Pecha Kucha presentations and how to prepare and present their assignments using the Pecha Kucha presentation format. The study participants were also trained regarding the advantages and disadvantages of Pecha Kucha presentations. The training was accompanied by one example of an ideal Pecha Kucha presentation on the concepts of pressure ulcers. The teaching methods included lecturing, brainstorming, and small group discussion. After the training session, the evaluation was conducted to assess the participants’ understanding of the Pecha Kucha conceptualization, its characteristics, and its principles.

Each participant was given a topic as an assignment from the fundamentals of nursing, medical nursing, surgical nursing, community health nursing, mental health nursing, emergency critical care, pediatric, reproductive, and child health, midwifery, communicable diseases, non-communicable diseases, orthopedics and cross-cutting issues in nursing as recommended by scholars [ 21 , 38 ]. The study participants were given 14 days for preparation, rehearsal of their presentation using the Pecha Kucha presentation format, and submission of the prepared slides to the research assistant and principle investigator for evaluation and arrangement before the actual classroom presentation. The evaluation of the participants’ assignments involved the number of slides, quality of images used, number of words, organization of content and messages to be delivered, slide transition, duration of presentation, flow, and organization of slides.

Afterwards, each participant was given 6 min and 40 s for the presentation and 5 min to 10 min for answering the questions on the topic presented as raised by other participants. An average of 4 participants obtained the opportunity to present their assignments in the classroom every hour. After the completion of all presentations, the research assistants assessed the participant’s presentation skills using the researcher-administered questionnaire. The collected data were entered in SPSS version 26 and analyzed in an attempt to compare the mean score of participants’ presentation skills with the baseline mean score. The intervention sessions were conducted in the selected classrooms, which were able to accommodate all participants at the time that was arranged by the participant’s coordinators, institution administrators, and subject facilitators of the University of Dodoma, as described in Table  1 [ 7 ].

Evaluation of intervention

During the classroom presentation, there were 5 to 10 min for classroom discussion and reflection on the content presented, which was guided by the research assistant. During this time, the participants were given the opportunity to ask the questions, get clarification from the presenter, and provide their opinion on how the instructional messages were presented, content coverage, areas of strength and weakness for improvement, and academic growth. After the completion of the presentation sessions, the research assistant provided the questionnaire to participants in order to determine their presentation skills during the preparation of their assignments and classroom presentations using the Pecha Kucha presentation format.

Data analysis

The findings from this study were analyzed using the Statistical Package for Social Science (SPSS) computer software program version 26. The percentages, frequencies, frequency distributions, means, standard deviations, skewness, and kurtosis were calculated, and the results were presented using the figures, tables, and graphs. The mean score analysis was computed, and descriptive statistical analysis was used to analyze the demographic information of the participants in an attempt to determine the frequencies, percentages, and mean scores of their distributions. A paired sample t-test was used to compare the mean score differences of the presentation skills within the groups before and after the intervention. The mean score differences were determined based on the baseline scores against the post-intervention scores in order to establish any change in terms of presentation skills among the study participants.

The association between the Pecha Kucha presentation and the development of participants’ presentation skills was established using linear regression analysis set at a 95% confidence interval and 5% (≤ 0.05) significance level in an attempt to accept or reject the null hypothesis.

However, N-1 dummy variables were formed for the categorical independent variables so as to run the linear regression for the factors associated with the presentation skills. The linear regression equation with dummy variables is presented as follows:

Β 0 is the intercept.

Β 1 , Β 2 , …. Β k-1 are the coefficients which correspond to the dummy variables representing the levels of X 1 .

Β k is the coefficient which corresponds to the dummy variable representing the levels of X 2 .

Β k+1 is the coefficient which corresponds to the continuous predictor X 3 .

X 1,1 , X 1,2 ,……. X 1,k-1 are the dummy variables corresponding to the different levels of X 1 .

ε represents the error term.

The coefficients B1, B2… Bk indicate the change in the expected value of Y for each category relative to the reference category. If the Beta estimate is positive for the categorical or dummy variables, it means that the corresponding covariate has a positive impact on the outcome variable compared to reference category. However, if the beta estimate is positive for the case of continuous covariates, it means that the corresponding covariate has direct proportion effect on the outcome variables.

The distribution of the outcome variables was approximately normally distributed since the normality of the data is one of the requirements for parametric analysis. A paired t test was performed to compare the presentation skills of nursing students before and after the intervention.

Social-demographic characteristics of the study participants

The study involved a total of 230 nursing students, of whom 151 (65.65%) were male and the rest were female. The mean age of study participants was 23.03 ± 2.69, with the minimum age being 19 and the maximum age being 37. The total of 163 (70.87%) students, which comprised a large proportion of respondents, were aged less than or equal to 23, 215 (93.48%) participants were living on campus, and 216 (93.91) participants were exposed to social media.

A large number of study participants (82.17%) were pursuing a bachelor of Science in Nursing, with the majority being first-year students (30.87%). The total of 213 (92.61%) study participants had Form Six education as their entry qualification, with 176 (76.52%) participants being the product of public secondary schools and interested in the nursing profession. Lastly, the total of 121 (52.61%) study participants had never been exposed to any presentation training; 215 (93.48%) students had access to individual classroom presentations; and 227 (98.70%) study participants had access to group presentations during their learning process. The detailed findings for the participants’ social demographic information are indicated in Table  2 [ 46 ].

Baseline nursing students’ presentation skills using traditional powerPoint presentations

The current study assessed the participant’s presentation skills when preparing and presenting the materials before the audience using traditional PowerPoint presentations. The study revealed that the overall mean score of the participants’ presentation skills was 4.07 ± 0.56, including a mean score of 3.98 ± 0.62 for the participants’ presentation skills during the preparation of presentation content before the classroom presentation and a mean score of 4.18 ± 0.78 for the participants’ mastery of learning content before the classroom presentation. Moreover, the study revealed a mean score of 4.07 ± 0.71 for participants’ ability to prepare presentation materials for classroom presentations and a mean score of 4.04 ± 0.76 for participants’ ability to share the presentation materials in the classroom, as indicated in Table  3 [ 46 ].

Factors Associated with participants’ presentation skills through traditional powerPoint presentation

The current study revealed that the participants’ study program has a significant effect on their presentation skills, whereby being the bachelor of science in nursing was associated with a 0.37561 (P value < 0.027) increase in the participants’ presentation skills.The year of study also had significant effects on the participants’ presentation skills, whereby being a second-year bachelor student was associated with a 0.34771 (P value < 0.0022) increase in the participants’ presentation skills compared to first-year bachelor students and diploma students. Depending on loans as a source of student income retards presentation skills by 0.24663 (P value < 0.0272) compared to those who do not depend on loans as the source of income. Furthermore, exposure to individual presentations has significant effects on the participants’ presentation skills, whereby obtaining an opportunity for individual presentations was associated with a 0.33732 (P value 0.0272) increase in presentation skills through traditional PowerPoint presentations as shown in Table  4 [ 46 ].

Nursing student presentation skills through pecha kucha presentations

The current study assessed the participant’s presentation skills when preparing and presenting the materials before the audience using Pecha Kucha presentations. The study revealed that the overall mean score and standard deviation of participants’ presentation skills using the Pecha Kucha presentation format were 4.54 ± 0.59, including a mean score of 4.49 ± 0.66 for participant’s presentation skills during preparation of the content before classroom presentation and a mean score of 4.58 ± 0.65 for participants’ mastery of learning content before classroom presentation. Moreover, the study revealed a mean score of 4.58 ± 0.67 for participants ability to prepare the presentation materials for classroom presentation and a mean score of 4.51 ± 0.72 for participants ability to share the presentation materials in the classroom using Pecha Kucha presentation format as indicated in Table  5 [ 46 ].

Comparing Mean scores of participants’ presentation skills between traditional PowerPoint presentation and pecha kucha Presentation

The current study computed a paired t-test to compare and determine the mean change, effect size, and significance associated with the participants’ presentation skills when using the traditional PowerPoint presentation and Pecha Kucha presentation formats. The study revealed that the mean score of the participants’ presentation skills through the Pecha Kucha presentation was 4.54 ± 0.59 (p value < 0.0001) compared to the mean score of 4.07 ± 0.56 for the participants’ presentation skills using the traditional power point presentation with an effect change of 0.78. With regard to the presentation skills during the preparation of presentation content before the classroom presentation, the mean score was 4.49 ± 0.66 using the Pecha Kucha presentation compared to the mean score of 3.98 ± 0.62 for the traditional PowerPoint presentation. Its mean change was 0.51 ± 0.84 ( p  < .0001) with an effect size of 0.61.

Regarding the participants’ mastery of learning content before the classroom presentation, the mean score was 4.58 ± 0.65 when using the Pecha Kucha presentation format, compared to the mean score of 4.18 ± 0.78 when using the traditional power point presentation. Its mean change was 0.40 ± 0.27 ( p  < .0001) with an effect size of 1.48. Regarding the ability of the participants to prepare the presentation materials for classroom presentations, the mean score was 4.58 ± 0.67 when using the Pecha Kucha presentation format, compared to 4.07 ± 0.71 when using the traditional PowerPoint presentation. Its mean change was 0.51 ± 0.96 ( p  < .0001) with an effect size of 0.53.

Regarding the participants’ presentation skills when sharing the presentation material in the classroom, the mean score was 4.51 ± 0.72 when using the Pecha Kucha presentation format, compared to 4.04 ± 0.76 when using the traditional PowerPoint presentations. Its mean change was 0.47 ± 0.10, with a large effect size of 4.7. Therefore, Pecha Kucha presentation pedagogy has a significant effect on the participants’ presentation skills than the traditional PowerPoint presentation as shown in Table  6 [ 46 ].

Factors associated with presentation skills among nursing students through pecha kucha presentation

The current study revealed that the participant’s presentation skills using the Pecha Kucha presentation format were significantly associated with knowledge of the Pecha Kucha presentation format, whereby increase in knowledge was associated with a 0.0239 ( p  < .0001) increase in presentation skills. Moreover, the current study revealed that the presentation through the Pecha Kucha presentation format was not influenced by the year of study, whereby being a second-year student could retard the presentation skills by 0.23093 (p 0.039) compared to a traditional PowerPoint presentation. Other factors are shown in Table  7 [ 46 ].

Social-demographic characteristics profiles of participants

The proportion of male participants was larger than the proportion of female participants in the current study. This was attributable to the distribution of sex across the nursing students at the university understudy, whose number of male nursing students enrolled was higher than female students. This demonstrates the high rate of male nursing students’ enrolment in higher training institutions to pursue nursing and midwifery education programs. Different from the previous years, the nursing training institutions were predominantly comprised of female students and female nurses in different settings. This significant increase in male nursing students’ enrollment in nursing training institutions predicts a significant increase in the male nursing workforce in the future in different settings.

These findings on Pecha Kucha as an alternative to PowerPoint presentations in Massachusetts, where the proportion of female participants was large as compared to male participants, are different from the experimental study among English language students [ 29 ]. The referred findings are different from the results of the randomized control study among the nursing students in Anakara, Turkey, where a large proportion of participants were female nursing students [ 47 ]. This difference in participants’ sex may be associated with the difference in socio-cultural beliefs of the study settings, country’s socio-economic status, which influence the participants to join the nursing profession on the basis of securing employment easily, an opportunity abroad, or pressure from peers and parents. Nevertheless, such differences account for the decreased stereotypes towards male nurses in the community and the better performance of male students in science subjects compared to female students in the country.

The mean age of the study participants was predominantly young adults with advanced secondary education. Their ages reflect adherence to national education policy by considering the appropriate age of enrollment of the pupils in primary and secondary schools, which comprise the industries for students at higher training institutions. This age range of the participants in the current study suits the cognitive capability expected from the participants in order to demonstrate different survival and life skills by being able to set learning goals and develop strategies to achieve their goals according to Jean Piaget’s theory of cognitive learning [ 41 , 42 ].

Similar age groups were noted in the study among nursing students in a randomized control study in Anakara Turkey where the average age was 19.05 ± 0.2 [ 47 ]. A similar age group was also found in a randomized control study among liberal arts students in Anakara, Turkey, on differences in instructor, presenter, and audience ratings of Pecha Kucha presentations and traditional student presentations where the ages of the participants ranged between 19 and 22 years [ 49 ].

Lastly, a large proportion of the study participants had the opportunity for individual and group presentations in the classroom despite having not been exposed to any presentation training before. This implies that the teaching and learning process in a nursing education program is participatory and student-centered, thus giving the students the opportunity to interact with learning contents, peers, experts, webpages, and other learning resources to become knowledgeable. These findings fit with the principle that guides and facilitates the student’s learning from peers and teachers according to the constructivism theory of learning by Lev Vygotsky [ 48 ].

Effects of pecha kucha presentation pedagogy on participants’ presentation skills

The participants’ presentation skills were higher for Pecha Kucha presentations compared with traditional PowerPoint presentations. This display of the Pecha Kucha presentation style enables the nursing students to prepare the learning content, master their learning content before classroom presentations, create good presentation materials and present the materials, before the audience in the classroom. This finding was similar to that at Padang State University, Indonesia, among first-year English and literature students whereby the Pecha Kucha Presentation format helped the students improve their skills in presentation [ 20 ]. Pecha Kucha was also found to facilitate careful selection of the topic, organization and outlining of the students’ ideas, selection of appropriate images, preparation of presentations, rehearsing, and delivery of the presentations before the audience in a qualitative study among English language students at the Private University of Manila, Philippines [ 23 ].

The current study found that Pecha Kucha presentations enable the students to perform literature searches from different webpages, journals, and books in an attempt to identify specific contents during the preparation of the classroom presentations more than traditional PowerPoint presentations. This is triggered by the ability of the presentation format to force the students to filter relevant and specific information to be included in the presentation and search for appropriate images, pictures, or figures to be presented before the audience. Pecha Kucha presentations were found to increase the ability to perform literature searches before classroom presentations compared to traditional PowerPoint presentations in an experimental study among English language students at Worcester State University [ 29 ].

The current study revealed that Pecha Kucha presentations enable the students to create a well-structured classroom presentation effectively by designing 20 meaningful and content-rich slides containing 20 images, pictures, or figures and a transitional flow of 20 s for each slide, more than the traditional PowerPoint presentation with an unlimited number of slides containing bullets with many texts or words. Similarly, in a cross-sectional study of medical students in India, Pecha Kucha presentations were found to help undergraduate first-year medical students learn how to organize knowledge in a sequential fashion [ 26 ].

The current study revealed that Pecha Kucha presentations enhance sound mastery of the learning contents and presentation materials before the classroom presentation compared with traditional PowerPoint presentations. This is hastened by the fact that there is no slide reading during the classroom Pecha Kucha presentation, thus forcing students to read several times, rehearse, and practice harder the presentation contents and materials before the classroom presentation. Pecha Kucha presentation needed first year English and literature students to practice a lot before their classroom presentation in a descriptive qualitative study at Padang State University-Indonesia [ 20 ].

The current study revealed that the participants became more confident in answering the questions about the topic during the classroom presentation using the Pecha Kucha presentation style than during the classroom presentation using the tradition PowerPoint presentation. This is precipitated by the mastery level of the presentation contents and materials through rehearsal, re-reading, and material synthesis before the classroom presentations. Moreover, Pecha Kucha was found to significantly increase the students’ confidence during classroom presentation and preparation in a qualitative study among English language students at the Private University of Manila, Philippines [ 23 ].

Hence, there was enough evidence to reject the null hypothesis in that there was no significant difference in nursing students’ presentation skills between the baseline and end line. The Pecha Kucha presentation format has a significant effect on nursing student’s classroom presentation skills as it enables them to prepare the learning content, have good mastery of the learning contents, create presentation materials, and confidently share their learning with the audience in the classroom.

The current study’s findings complement the available pieces of evidence on the effects of Pecha Kucha presentations on the students’ learning and development of survival life skills in the 21st century. Pecha kucha presentations have more significant effects on the students’ presentation skills compared with traditional PowerPoint presentations. It enables the students to select the topic carefully, organize and outline the presentation ideas, select appropriate images, create presentations, rehearse the presentations, and deliver them confidently before an audience. It also enables the students to select and organize the learning contents for classroom presentations more than traditional PowerPoint presentations.

Pecha Kucha presentations enhance the mastery of learning content by encouraging the students to read the content several times, rehearse, and practice hard before the actual classroom presentation. It increases the students’ ability to perform literature searches before the classroom presentation compared to a traditional PowerPoint presentation. Pecha Kucha presentations enable the students to create well-structured classroom presentations more effectively compared to traditional PowerPoint presentations. Furthermore, Pecha Kucha presentations make the students confident during the presentation of their assignments and project works before the audience and during answering the questions.

Lastly, Pecha Kucha presentations enhance creativity among the students by providing the opportunity for them to decide on the learning content to be presented. Specifically, they are able to select the learning content, appropriate images, pictures, or figures, organize and structure the presentation slides into a meaningful and transitional flow of ideas, rehearse and practice individually before the actual classroom presentation.

Strength of the study

This study has addressed the pedagogical gap in nursing training and education by providing new insights on the innovative students’ presentation format that engages students actively in their learning to bring about meaningful and effective students’ learning. It has also managed to recruit, asses, and provide intended intervention to 230 nursing students without dropout.

Study limitation

The current study has pointed out some of the strengths of the PechaKucha presentations on the students’ presentation skills over the traditional students’ presentations. However, the study had the following limitations: It involved one group of nursing students from one of the public training institutions in Tanzania. The use of one university may obscure the interpretation of the effects of the size of the intervention on the outcome variables of interest, thus limiting the generalization of the study findings to all training institutions in Tanzania. Therefore, the findings from this study need to be interpreted by considering this limitation. The use of one group of nursing students from one university to explore their learning experience through different presentation formats may also limit the generalization of the study findings to all nursing students in the country. The limited generalization may be attributed to differences in socio-demographic characteristics, learning environments, and teaching and learning approaches. Therefore, the findings from this study need to be interpreted by considering this limitation.

Suggestions for future research

The future research should try to overcome the current study limitations and shortcomings and extend the areas assessed by the study to different study settings and different characteristics of nursing students in Tanzania as follows: To test rigorously the effects of Pecha Kucha presentations in enhancing the nursing students’ learning, the future studies should involve nursing students’ different health training institutions rather than one training institution. Future studies should better use the control students by randomly allocating the nursing students or training institutions in the intervention group or control group in order to assess the students’ learning experiences through the use of Pecha Kucha presentations and PowerPoint presentations consecutively. Lastly, future studies should focus on nursing students’ mastery of content knowledge and students’ classroom performance through the use of the Pecha Kucha presentation format in the teaching and learning process.

Data availability

The datasets generated and analyzed by this study can be obtained from the corresponding author on reasonable request through [email protected] & [email protected].

Abbreviations

Doctor (PhD)

Multimedia Theory of Cognitive Learning

National Council for Technical and Vocational Education and Training

Principle Investigator

Pecha Kucha presentation

Statistical Package for Social Sciences

Tanzania Commission for Universities

World Health Organization

International Council of Nurses. Nursing Care Continuum Framework and Competencies. 2008.

Partnership for 21st Century Skills. 21st Century Skills, Education & Competitiveness. a Resour Policy Guid [Internet]. 2008;20. https://files.eric.ed.gov/fulltext/ED519337.pdf

Partnership for 21st Century Skills. 21St Century Knowledge and Skills in Educator Preparation. Education [Internet]. 2010;(September):40. https://files.eric.ed.gov/fulltext/ED519336.pdf

Partnership for 21st Century Skills. A State Leaders Action Guide to 21st Century Skills: A New Vision for Education. 2006; http://apcrsi.pt/website/wp-content/uploads/20170317_Partnership_for_21st_Century_Learning.pdf

World Health Organization. Four-Year Integrated Nursing And Midwifery Competency-Based Prototype Curriculum for the African Region [Internet]. Republic of South Africa: WHO Regional Office for Africa. 2016; 2016. 13 p. https://apps.who.int/iris/bitstream/handle/10665/331471/9789290232612-eng.pdf?sequence=1&isAllowed=y

World Health Organization, THREE-YEAR REGIONAL PROTOTYPE PRE-SERVICE COMPETENCY-BASED NURSING, CURRICULUM [Internet]. 2016. https://apps.who.int/iris/bitstream/handle/10665/331657/9789290232629-eng.pdf?sequence=1&isAllowed=y

Haramba SJ, Millanzi WC, Seif SA. Enhancing nursing student presentation competences using Facilitatory Pecha kucha presentation pedagogy: a quasi-experimental study protocol in Tanzania. BMC Med Educ [Internet]. 2023;23(1):628. https://bmcmededuc.biomedcentral.com/articles/ https://doi.org/10.1186/s12909-023-04628-z

Millanzi WC, Osaki KM, Kibusi SM. Non-cognitive skills for safe sexual behavior: an exploration of baseline abstinence skills, condom use negotiation, Self-esteem, and assertiveness skills from a controlled problem-based Learning Intervention among adolescents in Tanzania. Glob J Med Res. 2020;20(10):1–18.

Google Scholar  

Millanzi WC, Herman PZ, Hussein MR. The impact of facilitation in a problem- based pedagogy on self-directed learning readiness among nursing students : a quasi- experimental study in Tanzania. BMC Nurs. 2021;20(242):1–11.

Millanzi WC, Kibusi SM. Exploring the effect of problem-based facilitatory teaching approach on metacognition in nursing education: a quasi-experimental study of nurse students in Tanzania. Nurs Open. 2020;7(April):1431–45.

Article   Google Scholar  

Millanzi WC, Kibusi SM. Exploring the effect of problem based facilitatory teaching approach on motivation to learn: a quasi-experimental study of nursing students in Tanzania. BMC Nurs [Internet]. 2021;20(1):3. https://bmcnurs.biomedcentral.com/articles/ https://doi.org/10.1186/s12912-020-00509-8

Hadiyanti KMW, Widya W. Analyzing the values and effects of Powerpoint presentations. LLT J J Lang Lang Teach. 2018;21(Suppl):87–95.

Nichani A. Life after death by power point: PechaKucha to the rescue? J Indian Soc Periodontol [Internet]. 2014;18(2):127. http://www.jisponline.com/text.asp?2014/18/2/127/131292

Uzun AM, Kilis S. Impressions of Pre-service teachers about Use of PowerPoint slides by their instructors and its effects on their learning. Int J Contemp Educ Res. 2019.

Unesco National Commission TM. UNESCO National Commission Country ReportTemplate Higher Education Report. [ UNITED REPUBLIC OF TANZANIA ]; 2022.

TCU. VitalStats on University Education in Tanzania. 2020. 2021;1–4. https://www.tcu.go.tz/sites/default/files/VitalStats 2020.pdf.

Kwame A, Petrucka PM. A literature-based study of patient-centered care and communication in nurse-patient interactions: barriers, facilitators, and the way forward. BMC Nurs [Internet]. 2021;20(1):158. https://bmcnurs.biomedcentral.com/articles/ https://doi.org/10.1186/s12912-021-00684-2

Kourkouta L, Papathanasiou I. Communication in Nursing Practice. Mater Socio Medica [Internet]. 2014;26(1):65. http://www.scopemed.org/fulltextpdf.php?mno=153817

Foulkes M. Presentation skills for nurses. Nurs Stand [Internet]. 2015;29(25):52–8. http://rcnpublishing.com/doi/ https://doi.org/10.7748/ns.29.25.52.e9488

Solusia C, Kher DF, Rani YA. The Use of Pecha Kucha Presentation Method in the speaking for Informal Interaction Class. 2020;411(Icoelt 2019):190–4.

Sen G. What is PechaKucha in Teaching and How Does It Work? Clear Facts About PechaKucha in Classroom [Internet]. Asian College of Teachers. 2016 [cited 2022 Jun 15]. https://www.asiancollegeofteachers.com/blogs/452-What-is-PechaKucha-in-Teaching-and-How-Does-It-Work-Clear-Facts-About-PechaKucha-in-Classroom-blog.php

Pecha Kucha Website. Pecha Kucha School [Internet]. 2022. https://www.pechakucha.com/schools

Mabuan RA. Developing Esl/Efl Learners Public Speaking Skills through Pecha Kucha Presentations. Engl Rev J Engl Educ. 2017;6(1):1.

Laieb M, Cherbal A. Improving speaking performance through Pecha Kucha Presentations among Algerian EFL Learners. The case of secondary School students. Jijel: University of Mohammed Seddik Ben Yahia; 2021.

Angelina P, IMPROVING INDONESIAN EFL STUDENTS SPEAKING, SKILL THROUGH PECHA KUCHA. LLT J A. J Lang Lang Teach [Internet]. 2019;22(1):86–97. https://e-journal.usd.ac.id/index.php/LLT/article/view/1789

Abraham RR, Torke S, Gonsalves J, Narayanan SN, Kamath MG, Prakash J, et al. Modified directed self-learning sessions in physiology with prereading assignments and Pecha Kucha talks: perceptions of students. Adv Physiol Educ. 2018;42(1):26–31.

Coskun A. The Effect of Pecha Kucha Presentations on Students’ English Public Speaking Anxiety. Profile Issues Teach Prof Dev [Internet]. 2017;19(_sup1):11–22. https://revistas.unal.edu.co/index.php/profile/article/view/68495

González Ruiz C, STUDENT PERCEPTIONS OF THE USE OF PECHAKUCHA, In PRESENTATIONS IN SPANISH AS A FOREIGN LANGUAGE. 2016. pp. 7504–12. http://library.iated.org/view/GONZALEZRUIZ2016STU

Warmuth KA. PechaKucha as an Alternative to Traditional Student Presentations. Curr Teach Learn Acad J [Internet]. 2021;(January). https://www.researchgate.net/publication/350189239

Hayashi PMJ, Holland SJ. Pecha Kucha: Transforming Student Presentations. Transform Lang Educ [Internet]. 2017; https://jalt-publications.org/files/pdf-article/jalt2016-pcp-039.pdf

Solmaz O. Developing EFL Learners ’ speaking and oral presentation skills through Pecha Kucha presentation technique. 2019;10(4):542–65.

Tanzania Commission for Universities. University Institutions operating in Tanzania. THE UNITED REPUBLIC OF TANZANIA; 2021.

The University of Dodoma. About Us [Internet]. 2022 [cited 2022 Aug 22]. https://www.udom.ac.tz/about

NACTVET. Registered Institutions [Internet]. The United Republic of Tanzania. 2022. https://www.nacte.go.tz/?s=HEALTH

TCU. University education in tanzania 2021. VitalStats, [Internet]. 2022;(May):63. https://www.tcu.go.tz/sites/default/files/VitalStats 2021.pdf.

St. John University of Tanzania. About St. John University [Internet]. 2022 [cited 2022 Aug 22]. https://sjut.ac.tz/our-university/

TopUniversitieslist. St John’s University of Tanzania Ranking [Internet]. World University Rankings & Reviews. 2023 [cited 2023 Jul 1]. https://topuniversitieslist.com/st-johns-university-of-tanzania/

Tanzania Nursing and Midwifery Council. TANZANIA NURSING AND MIDWIFERY COUNCIL THE REGISTRATION AND LICENSURE EXAMINATION GUIDELINE FOR NURSESAND MIDWIVES IN TANZANIA REVISED VERSION. : 2020; https://www.tnmc.go.tz/downloads/

Salim MA, Gabrieli P, Millanzi WC. Enhancing pre-school teachers’ competence in managing pediatric injuries in Pemba Island, Zanzibar. BMC Pediatr. 2022;22(1):1–13.

Iliyasu R, Etikan I. Comparison of quota sampling and stratified random sampling. Biometrics Biostat Int J [Internet]. 2021;10(1):24–7. https://medcraveonline.com/BBIJ/comparison-of-quota-sampling-and-stratified-random-sampling.html

Surucu L, Ahmet M, VALIDITY, AND RELIABILITY IN QUANTITATIVE RESEARCH. Bus Manag Stud An Int J [Internet]. 2020;8(3):2694–726. https://bmij.org/index.php/1/article/view/1540

Lima E, de Barreto P, Assunção SM. Factor structure, internal consistency and reliability of the posttraumatic stress disorder checklist (PCL): an exploratory study. Trends Psychiatry Psychother. 2012;34(4):215–22.

Taber KS. The Use of Cronbach’s alpha when developing and Reporting Research Instruments in Science Education. Res Sci Educ. 2018;48(6):1273–96.

Tavakol M, Dennick R. Making sense of Cronbach’s alpha. Int J Med Educ. 2011;2(2011):53–5.

Madar P, London W, ASSESSING THE STUDENT :. PECHAKUCHA. 2013;3(2):4–10.

Haramba, S. J., Millanzi, W. C., & Seif, S. A. (2023). Enhancing nursing student presentation competencies using Facilitatory Pecha Kucha presentation pedagogy: a quasi-experimental study protocol in Tanzania. BMC Medical Education, 23(1), 628. https://doi.org/10.1186/s12909-023-04628-z

Bakcek O, Tastan S, Iyigun E, Kurtoglu P, Tastan B. Comparison of PechaKucha and traditional PowerPoint presentations in nursing education: A randomized controlled study. Nurse Educ Pract [Internet]. 2020;42:102695. https://linkinghub.elsevier.com/retrieve/pii/S1471595317305097

Mcleod G. Learning theory and Instructional Design. Learn Matters. 2001;2(2003):35–43.

Warmuth KA, Caple AH. Differences in Instructor, Presenter, and Audience Ratings of PechaKucha and Traditional Student Presentations. Teach Psychol [Internet]. 2022;49(3):224–35. http://journals.sagepub.com/doi/10.1177/00986283211006389

Download references

Acknowledgements

The supervisors at the University of Dodoma, statisticians, my employer, family members, research assistants and postgraduate colleagues are acknowledged for their support in an attempt to facilitate the development and completion of this manuscript.

The source of funds to conduct this study was the registrar, Tanzania Nursing and Midwifery Council (TNMC) who is the employer of the corresponding author. The funds helped the author in developing the protocol, printing the questionnaires, and facilitating communication during the data collection and data analysis and manuscript preparation.

Author information

Authors and affiliations.

Department of Nursing Management and Education, The University of Dodoma, Dodoma, United Republic of Tanzania

Setberth Jonas Haramba & Walter C. Millanzi

Department of Public and Community Health Nursing, The University of Dodoma, Dodoma, United Republic of Tanzania

Saada A. Seif

You can also search for this author in PubMed   Google Scholar

Contributions

S.J.H: conceptualization, proposal development, data collection, data entry, data cleaning and analysis, writing the original draft of the manuscript W.C.M: Conceptualization, supervision, review, and editing of the proposal, and the final manuscript S.S.A: Conceptualization, supervision, review, and editing of the proposal and the final manuscript.

Corresponding author

Correspondence to Setberth Jonas Haramba .

Ethics declarations

Ethics approval and consent to participate.

All methods were carried out under the relevant guidelines and regulations. Since the study involved the manipulation of human behaviors and practices and the exploration of human internal learning experiences, there was a pressing need to obtain ethical clearance and permission from the University of Dodoma (UDOM) Institution of Research Review Ethics Committee (IRREC) in order to conduct this study. The written informed consents were obtained from all the participants, after explaining to them the purpose, the importance of participating in the study, the significance of the study findings to students’ learning, and confidentiality and privacy of the information that will be provided. The nursing students who participated in this study benefited from the knowledge of the Pecha Kucha presentation format and how to prepare and present their assignments using the Pecha Kucha presentation format.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/ .

Reprints and permissions

About this article

Cite this article.

Haramba, S.J., Millanzi, W.C. & Seif, S.A. Effects of pecha kucha presentation pedagogy on nursing students’ presentation skills: a quasi-experimental study in Tanzania. BMC Med Educ 24 , 952 (2024). https://doi.org/10.1186/s12909-024-05920-2

Download citation

Received : 16 October 2023

Accepted : 16 August 2024

Published : 31 August 2024

DOI : https://doi.org/10.1186/s12909-024-05920-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Nursing students
  • Pecha Kucha presentation pedagogy and presentation skills

BMC Medical Education

ISSN: 1472-6920

data presentation research

The University of Chicago The Law School

Abrams environmental law clinic—significant achievements for 2023-24, protecting our great lakes, rivers, and shorelines.

The Abrams Clinic represents Friends of the Chicago River and the Sierra Club in their efforts to hold Trump Tower in downtown Chicago accountable for withdrawing water illegally from the Chicago River. To cool the building, Trump Tower draws water at high volumes, similar to industrial factories or power plants, but Trump Tower operated for more than a decade without ever conducting the legally required studies to determine the impact of those operations on aquatic life or without installing sufficient equipment to protect aquatic life consistent with federal regulations. After the Clinic sent a notice of intent to sue Trump Tower, the State of Illinois filed its own case in the summer of 2018, and the Clinic moved successfully to intervene in that case. In 2023-24, motions practice and discovery continued. Working with co-counsel at Northwestern University’s Pritzker Law School’s Environmental Advocacy Center, the Clinic moved to amend its complaint to include Trump Tower’s systematic underreporting each month of the volume of water that it intakes from and discharges to the Chicago River. The Clinic and co-counsel addressed Trump Tower’s motion to dismiss some of our clients’ claims, and we filed a motion for summary judgment on our claim that Trump Tower has committed a public nuisance. We also worked closely with our expert, Dr. Peter Henderson, on a supplemental disclosure and on defending an additional deposition of him. In summer 2024, the Clinic is defending its motion for summary judgment and challenging Trump Tower’s own motion for summary judgment. The Clinic is also preparing for trial, which could take place as early as fall 2024.

Since 2016, the Abrams Clinic has worked with the Chicago chapter of the Surfrider Foundation to protect water quality along the Lake Michigan shoreline in northwest Indiana, where its members surf. In April 2017, the U. S. Steel plant in Portage, Indiana, spilled approximately 300 pounds of hexavalent chromium into Lake Michigan. In January 2018, the Abrams Clinic filed a suit on behalf of Surfrider against U. S. Steel, alleging multiple violations of U. S. Steel’s discharge permits; the City of Chicago filed suit shortly after. When the US government and the State of Indiana filed their own, separate case, the Clinic filed extensive comments on the proposed consent decree. In August 2021, the court entered a revised consent decree which included provisions advocated for by Surfrider and the City of Chicago, namely a water sampling project that alerts beachgoers as to Lake Michigan’s water quality conditions, better notifications in case of future spills, and improvements to U. S. Steel’s operations and maintenance plans. In the 2023-24 academic year, the Clinic successfully litigated its claims for attorneys’ fees as a substantially prevailing party. Significantly, the court’s order adopted the “Fitzpatrick matrix,” used by the US Attorney’s Office for the District of Columbia to determine appropriate hourly rates for civil litigants, endorsed Chicago legal market rates as the appropriate rates for complex environmental litigation in Northwest Indiana, and allowed for partially reconstructed time records. The Clinic’s work, which has received significant media attention, helped to spawn other litigation to address pollution by other industrial facilities in Northwest Indiana and other enforcement against U. S. Steel by the State of Indiana.

In Winter Quarter 2024, Clinic students worked closely with Dr. John Ikerd, an agricultural economist and emeritus professor at the University of Missouri, to file an amicus brief in Food & Water Watch v. U.S. Environmental Protection Agency . In that case pending before the Ninth Circuit, Food & Water Watch argues that US EPA is illegally allowing Concentrated Animal Feeding Operations, more commonly known as factory farms, to pollute waterways significantly more than is allowable under the Clean Water Act. In the brief for Dr. Ikerd and co-amici Austin Frerick, Crawford Stewardship Project, Family Farm Defenders, Farm Aid, Missouri Rural Crisis Center, National Family Farm Coalition, National Sustainable Agriculture Coalition, and Western Organization of Resource Councils, we argued that EPA’s refusal to regulate CAFOs effectively is an unwarranted application of “agricultural exceptionalism” to industrial agriculture and that EPA effectively distorts the animal production market by allowing CAFOs to externalize their pollution costs and diminishing the ability of family farms to compete. Attorneys for the litigants will argue the case in September 2024.

Energy and Climate

Energy justice.

The Abrams Clinic supported grassroots organizations advocating for energy justice in low-income communities and Black, Indigenous, and People of Color (BIPOC) communities in Michigan. With the Clinic’s representation, these organizations intervened in cases before the Michigan Public Service Commission (MPSC), which regulates investor-owned utilities. Students conducted discovery, drafted written testimony, cross-examined utility executives, participated in settlement discussions, and filed briefs for these projects. The Clinic’s representation has elevated the concerns of these community organizations and forced both the utilities and regulators to consider issues of equity to an unprecedented degree. This year, on behalf of Soulardarity (Highland Park, MI), We Want Green, Too (Detroit, MI), and Urban Core Collective (Grand Rapids, MI), Clinic students engaged in eight contested cases before the MPSC against DTE Electric, DTE Gas, and Consumers Energy, as well as provided support for our clients’ advocacy in other non-contested MPSC proceedings.

The Clinic started this past fall with wins in three cases. First, the Clinic’s clients settled with DTE Electric in its Integrated Resource Plan case. The settlement included an agreement to close the second dirtiest coal power plant in Michigan three years early, $30 million from DTE’s shareholders to assist low-income customers in paying their bills, and $8 million from DTE’s shareholders toward a community fund that assists low-income customers with installing energy efficiency improvements, renewable energy, and battery technology. Second, in DTE Electric’s 2023 request for a rate hike (a “rate case”), the Commission required DTE Electric to develop a more robust environmental justice analysis and rejected the Company’s second attempt to waive consumer protections through a proposed electric utility prepayment program with a questionable history of success during its pilot run. The final Commission order and the administrative law judge’s proposal for final decision cited the Clinic’s testimony and briefs. Third, in Consumers Electric’s 2023 rate case, the Commission rejected the Company’s request for a higher ratepayer-funded return on its investments and required the Company to create a process that will enable intervenors to obtain accurate GIS data. The Clinic intends to use this data to map the disparate impact of infrastructure investment in low-income and BIPOC communities.

In the winter, the Clinic filed public comments regarding DTE Electric and Consumers Energy’s “distribution grid plans” (DGP) as well as supported interventions in two additional cases: Consumers Energy’s voluntary green pricing (VGP) case and the Clinic’s first case against the gas utility DTE Gas. Beginning with the DGP comments, the Clinic first addressed Consumers’s 2023 Electric Distribution Infrastructure Investment Plan (EDIIP), which detailed current distribution system health and the utility’s approximately $7 billion capital project planning ($2 billion of which went unaccounted for in the EDIIP) over 2023–2028. The Clinic then commented on DTE Electric’s 2023 DGP, which outlined the utility’s opaque project prioritization and planned more than $9 billion in capital investments and associated maintenance over 2024–2028. The comments targeted four areas of deficiencies in both the EDIIP and DGP: (1) inadequate consideration of distributed energy resources (DERs) as providing grid reliability, resiliency, and energy transition benefits; (2) flawed environmental justice analysis, particularly with respect to the collection of performance metrics and the narrow implementation of the Michigan Environmental Justice Screen Tool; (3) inequitable investment patterns across census tracts, with emphasis on DTE Electric’s skewed prioritization for retaining its old circuits rather than upgrading those circuits; and (4) failing to engage with community feedback.

For the VGP case against Consumers, the Clinic supported the filing of both an initial brief and reply brief requesting that the Commission reject the Company’s flawed proposal for a “community solar” program. In a prior case, the Clinic advocated for the development of a community solar program that would provide low-income, BIPOC communities with access to clean energy. As a result of our efforts, the Commission approved a settlement agreement requiring the Company “to evaluate and provide a strawman recommendation on community solar in its Voluntary Green Pricing Program.” However, the Company’s subsequent proposal in its VGP case violated the Commission’s order because it (1) was not consistent with the applicable law, MCL 460.1061; (2) was not a true community solar program; (3) lacked essential details; (4) failed to compensate subscribers sufficiently; (5) included overpriced and inflexible subscriptions; (6) excessively limited capacity; and (7) failed to provide a clear pathway for certain participants to transition into other VGP programs. For these reasons, the Clinic argued that the Commission should reject the Company’s proposal.

In DTE Gas’s current rate case, the Clinic worked with four witnesses to develop testimony that would rebut DTE Gas’s request for a rate hike on its customers. The testimony advocated for a pathway to a just energy transition that avoids dumping the costs of stranded gas assets on the low-income and BIPOC communities that are likely to be the last to electrify. Instead, the testimony proposed that the gas and electric utilities undertake integrated planning that would prioritize electric infrastructure over gas infrastructure investment to ensure that DTE Gas does not over-invest in gas infrastructure that will be rendered obsolete in the coming decades. The Clinic also worked with one expert witness to develop an analysis of DTE Gas’s unaffordable bills and inequitable shutoff, deposit, and collections practices. Lastly, the Clinic offered testimony on behalf of and from community members who would be directly impacted by the Company’s rate hike and lack of affordable and quality service. Clinic students have spent the summer drafting an approximately one-hundred-page brief making these arguments formally. We expect the Commission’s decision this fall.

Finally, both DTE Electric and Consumers Energy have filed additional requests for rate increases after the conclusion of their respective rate cases filed in 2023. On behalf of our Clients, the Clinic has intervened in these cases, and clinic students have already reviewed thousands of pages of documents and started to develop arguments and strategies to protect low-income and BIPOC communities from the utility’s ceaseless efforts to increase the cost of energy.

Corporate Climate Greenwashing

The Abrams Environmental Law Clinic worked with a leading international nonprofit dedicated to using the law to protect the environment to research corporate climate greenwashing, focusing on consumer protection, green financing, and securities liability. Clinic students spent the year examining an innovative state law, drafted a fifty-page guide to the statute and relevant cases, and examined how the law would apply to a variety of potential cases. Students then presented their findings in a case study and oral presentation to members of ClientEarth, including the organization’s North American head and members of its European team. The project helped identify the strengths and weaknesses of potential new strategies for increasing corporate accountability in the fight against climate change.

Land Contamination, Lead, and Hazardous Waste

The Abrams Clinic continues to represent East Chicago, Indiana, residents who live or lived on or adjacent to the USS Lead Superfund site. This year, the Clinic worked closely with the East Chicago/Calumet Coalition Community Advisory Group (CAG) to advance the CAG’s advocacy beyond the Superfund site and the adjacent Dupont RCRA site. Through multiple forms of advocacy, the clinics challenged the poor performance and permit modification and renewal attempts of Tradebe Treatment and Recycling, LLC (Tradebe), a hazardous waste storage and recycling facility in the community. Clinic students sent letters to US EPA and Indiana Department of Environmental Management officials about how IDEM has failed to assess meaningful penalties against Tradebe for repeated violations of the law and how IDEM has allowed Tradebe to continue to threaten public and worker health and safety by not improving its operations. Students also drafted substantial comments for the CAG on the US EPA’s Lead and Copper Rule improvements, the Suppliers’ Park proposed cleanup, and Sims Metal’s proposed air permit revisions. The Clinic has also continued working with the CAG, environmental experts, and regulators since US EPA awarded $200,000 to the CAG for community air monitoring. The Clinic and its clients also joined comments drafted by other environmental organizations about poor operations and loose regulatory oversight of several industrial facilities in the area.

Endangered Species

The Abrams Clinic represented the Center for Biological Diversity (CBD) and the Hoosier Environmental Council (HEC) in litigation regarding the US Fish and Wildlife Service’s (Service) failure to list the Kirtland’s snake as threatened or endangered under the Endangered Species Act. The Kirtland’s snake is a small, secretive, non-venomous snake historically located across the Midwest and the Ohio River Valley. Development and climate change have undermined large portions of the snake’s habitat, and populations are declining. Accordingly, the Clinic sued the Service in the US District Court for the District of Columbia last summer over the Service’s denial of CBD’s request to have the Kirtland’s snake protected. This spring, the Clinic was able to reach a settlement with the Service that requires the Service to reconsider its listing decision for the Kirtland’s snake and to pay attorney fees.

The Clinic also represented CBD in preparation for litigation regarding the Service’s failure to list another species as threatened or endangered. Threats from land development and climate change have devastated this species as well, and the species has already been extirpated from two of the sixteen US states in its range. As such, the Clinic worked this winter and spring to prepare a notice of intent (NOI) to sue the Service. The Team poured over hundreds of FOIA documents and dug into the Service’s supporting documentation to create strong arguments against the Service in the imminent litigation. The Clinic will send the NOI and file a complaint in the next few months.

Students and Faculty

Twenty-four law school students from the classes of 2024 and 2025 participated in the Clinic, performing complex legal research, reviewing documents obtained through discovery, drafting legal research memos and briefs, conferring with clients, conducting cross-examination, participating in settlement conferences, and arguing motions. Students secured nine clerkships, five were heading to private practice after graduation, and two are pursuing public interest work. Sam Heppell joined the Clinic from civil rights private practice, bringing the Clinic to its full complement of three attorneys.

IMAGES

  1. (PDF) Chapter 1 Data Presentation

    data presentation research

  2. PPT

    data presentation research

  3. Top 5 Easy-to-Follow Data Presentation Examples

    data presentation research

  4. Research Data Presentation Templates

    data presentation research

  5. Stunning Data Analysis Presentation Templates Design

    data presentation research

  6. Data Presentation in Research

    data presentation research

VIDEO

  1. Presentation of Data |Chapter 2 |Statistics

  2. Report Writing & Presentation of data

  3. CHAPTER FOUR DATA ANALYSIS AND GENERATING CHAPTER FIVE

  4. Superstore Sales Data Analysis Report Presentation

  5. Data Science

  6. Data presentation methods (lecture 7)

COMMENTS

  1. Understanding Data Presentations (Guide + Examples)

    Understanding Data Presentations (Guide + Examples) Design • March 20th, 2024. In this age of overwhelming information, the skill to effectively convey data has become extremely valuable. Initiating a discussion on data presentation types involves thoughtful consideration of the nature of your data and the message you aim to convey.

  2. Present Your Data Like a Pro

    Demystify the numbers. Your audience will thank you. Summary. While a good presentation has data, data alone doesn't guarantee a good presentation. It's all about how that data is presented ...

  3. Data Presentation

    5. Histograms. It is a perfect Presentation of the spread of numerical data. The main differentiation that separates data graphs and histograms are the gaps in the data graphs. 6. Box plots. Box plot or Box-plot is a way of representing groups of numerical data through quartiles. Data Presentation is easier with this style of graph dealing with ...

  4. Data presentation: A comprehensive guide

    Data presentation is the process of visually representing data sets to convey information effectively to an audience. In an era where the amount of data generated is vast, visually presenting data using methods such as diagrams, graphs, and charts has become crucial. By simplifying complex data sets, presentation of the data may helps your ...

  5. (PDF) Statistical data presentation

    Data Presentation. Data can be presented in one of the three wa ys: - as text; - in tabular form; or. - in graphical form. Methods of presenta tion must be determined according. to the data ...

  6. How to Make a Successful Research Presentation

    Turning a research paper into a visual presentation is difficult; there are pitfalls, and navigating the path to a brief, informative presentation takes time and practice. As a TA for GEO/WRI 201: Methods in Data Analysis & Scientific Writing this past fall, I saw how this process works from an instructor's standpoint.

  7. What Is Data Presentation? (Definition, Types And How-To)

    Data presentation is a process of comparing two or more data sets with visual aids, such as graphs. Using a graph, you can represent how the information relates to other data. ... Identifying the main ideas of your data and research helps organise your presentation and communicate clearly with your audience about the significance of the ...

  8. Data Collection, Presentation and Analysis

    Abstract. This chapter covers the topics of data collection, data presentation and data analysis. It gives attention to data collection for studies based on experiments, on data derived from existing published or unpublished data sets, on observation, on simulation and digital twins, on surveys, on interviews and on focus group discussions.

  9. Data Presentation

    Data presentation and communication cannot be accomplished through improvising and approximating methods and instruments. It requires a combined and joint knowledge and expertise of statistical methodology, cognitive science, and communication. Data Presentation and Communication: Integral Component of the Statistical Work in QoL Research Field

  10. How To Create A Successful Data Presentation

    Storytelling with data is a highly valued skill in the workforce today and translating data and insights for a non-technical audience is rare to see than it is expected. Here's my five-step routine to make and deliver your data presentation right where it is intended —. 1. Understand Your Data & Make It Seen.

  11. 10 Methods of Data Presentation That Really Work in 2024

    Among various types of data presentation, tabular is the most fundamental method, with data presented in rows and columns. Excel or Google Sheets would qualify for the job. Nothing fancy. This is an example of a tabular presentation of data on Google Sheets.

  12. How to Make Your Data Science Presentation Great and Memorable

    Great presentations help you to build a brand for your research and yourself, which will guide you immensely in your academic or professional career prospects. T his post guides you through some of the key points that would make a data science research presentation more effective. I start by discussing five generic ideas and dive a bit deeper ...

  13. Chapter Four Data Presentation, Analysis and Interpretation 4.0

    DATA PRESENTATION, ANALYSIS AND INTERPRETATION. 4.0 Introduction. This chapter is concerned with data pres entation, of the findings obtained through the study. The. findings are presented in ...

  14. How To Present Research Data?

    Start with response rate and description of research participants (these information give the readers an idea of the representativeness of the research data), then the key findings and relevant statistical analyses. Data should answer the research questions identified earlier. Leave the process of data collection to the methods section.

  15. Statistical data presentation

    In this article, the techniques of data and information presentation in textual, tabular, and graphical forms are introduced. Text is the principal method for explaining findings, outlining trends, and providing contextual information. A table is best suited for representing individual information and represents both quantitative and ...

  16. How to Present Qualitative Data?

    Qualitative data presentation differs fundamentally from that found in quantitative research. While quantitative data tend to be numerical and easily lend themselves to statistical analysis and graphical representation, qualitative data are often textual and unstructured, requiring an interpretive approach to bring out their inherent meanings.

  17. How to Create a Successful Data Presentation

    This is my formula to determine how many slides to include in my main presentation assuming I spend about five minutes per slide. (Presentation length in minutes-10 minutes for questions ) / 5 minutes per slide. For an hour presentation that comes out to ( 60-10 ) / 5 = 10 slides.

  18. (PDF) Data Presentation in Qualitative Research: The Outcomes of the

    The data presentation is one of the segments of the methodology in every research depending on the approach. The methodology, therefore, refers to the design and the theory that underpins the ...

  19. 10 Data Presentation Examples For Strategic Communication

    8. Tabular presentation. Presenting data in rows and columns, often used for precise data values and comparisons. Tabular data presentation is all about clarity and precision. Think of it as presenting numerical data in a structured grid, with rows and columns clearly displaying individual data points.

  20. Data Presentation

    A Guide to Effective Data Presentation. Financial analysts are required to present their findings in a neat, clear, and straightforward manner. They spend most of their time working with spreadsheets in MS Excel, building financial models, and crunching numbers.These models and calculations can be pretty extensive and complex and may only be understood by the analyst who created them.

  21. PDF Data Presentation

    Data Presentation The purpose of putting results of experiments into graphs, charts and tables is two-fold. First, it is a visual way to look at the data and see what happened and make interpretations. Second, it is usually the best way to show the data to others. Reading lots of numbers in the text puts people to sleep and does little to convey

  22. 10 Superb Data Presentation Examples To Learn From

    Research Data Presentation Examples When it comes to best research data presentation examples in statistics, Nielsen information company is an undoubted leader. The above professional looking line graph by Nielsen represent the slowing alcoholic grow of 4 alcohol categories (Beer, Wine, Spirits, CPG) for the period of 12 months.

  23. Ten tips for delivering excellent scientific presentations

    Giving a presentation to a scientific meeting or clinical conference provides an excellent opportunity to showcase your research, test ideas, review current understanding in a field of interest, or educate your audience on new developments or concepts. We have all attended lectures that are well-structured, inspiring, entertaining, and informative.

  24. Data Journeys: Organizing and Optimizing Your Research Data

    Title: Data Journeys: Organizing and Optimizing Your Research Data Date: September 26 Time: 11 a.m. - 12 p.m. Location: Zoom Learn how to organize and optimize your research data! This workshop, a combination of presentation and question and answer period, will introduce the basics of research data management with a particular focus on best practices for managing research data.

  25. Data Management in Biobanking: Strategies, Challenges, and Future

    Biobanking plays a pivotal role in biomedical research by providing standardized processing, precise storing, and management of biological sample collections along with the associated data. Effective data management is a prerequisite to ensure the integrity, quality, and accessibility of these resources. This review provides a current landscape of data management in biobanking, discussing key ...

  26. Jiangping Chen

    Dr. Chen is currently the interim executive associate dean and visiting professor at the iSchool. Before joining UIUC in August 2024, she was Regents professor and the chair of the Department of Information Science in the College of Information at the University of North Texas (UNT). She conducts interdisciplinary research, spanning information science, data science, and health informatics ...

  27. Effects of pecha kucha presentation pedagogy on nursing students

    Ineffective and non-interactive learning among nursing students limits opportunities for students' classroom presentation skills, creativity, and innovation upon completion of their classroom learning activities. Pecha Kucha presentation is the new promising pedagogy that engages students in learning and improves students' speaking skills and other survival skills.

  28. Abrams Environmental Law Clinic—Significant Achievements 2023-24

    Students then presented their findings in a case study and oral presentation to members of ClientEarth, including the organization's North American head and members of its European team. ... The Clinic intends to use this data to map the disparate impact of infrastructure investment in low-income and BIPOC communities. In the winter, the ...