12.3 Geometric Sequences and Series

Learning objectives.

By the end of this section, you will be able to:

  • Determine if a sequence is geometric
  • Find the general term (nth term) of a geometric sequence
  • Find the sum of the first n n terms of a geometric sequence
  • Find the sum of an infinite geometric series
  • Apply geometric sequences and series in the real world

Be Prepared 12.7

Before you get started, take this readiness quiz.

Simplify: 24 32 . 24 32 . If you missed this problem, review Example 1.24 .

Be Prepared 12.8

Evaluate: ⓐ 3 4 3 4 ⓑ ( 1 2 ) 4 . ( 1 2 ) 4 . If you missed this problem, review Example 1.19 .

Be Prepared 12.9

If f ( x ) = 4 · 3 x , f ( x ) = 4 · 3 x , find ⓐ f ( 1 ) f ( 1 ) ⓑ f ( 2 ) f ( 2 ) ⓒ f ( 3 ) . f ( 3 ) . If you missed this problem, review Example 3.49 .

Determine if a Sequence is Geometric

We are now ready to look at the second special type of sequence, the geometric sequence.

A sequence is called a geometric sequence if the ratio between consecutive terms is always the same. The ratio between consecutive terms in a geometric sequence is r , the common ratio , where n is greater than or equal to two.

Geometric Sequence

A geometric sequence is a sequence where the ratio between consecutive terms is always the same.

The ratio between consecutive terms, a n a n − 1 , a n a n − 1 , is r , the common ratio . n is greater than or equal to two.

Consider these sequences.

Example 12.21

Determine if each sequence is geometric. If so, indicate the common ratio.

ⓐ 4 , 8 , 16 , 32 , 64 , 128 , … 4 , 8 , 16 , 32 , 64 , 128 , …

ⓑ −2 , 6 , −12 , 36 , −72 , 216 , … −2 , 6 , −12 , 36 , −72 , 216 , …

ⓒ 27 , 9 , 3 , 1 , 1 3 , 1 9 , … 27 , 9 , 3 , 1 , 1 3 , 1 9 , …

To determine if the sequence is geometric, we find the ratio of the consecutive terms shown.

Find the ratio of the consecutive terms.
The sequence is geometric. The common ratio is
Find the ratio of the consecutive terms.
The sequence is not geometric. There is no common ratio.
Find the ratio of the consecutive terms.
The sequence is geometric. The common ratio is

Try It 12.41

Determine if each sequence is geometric. If so indicate the common ratio.

ⓐ 7 , 21 , 63 , 189 , 567 , 1,701 , … 7 , 21 , 63 , 189 , 567 , 1,701 , …

ⓑ 64 , 16 , 4 , 1 , 1 4 , 1 16 , … 64 , 16 , 4 , 1 , 1 4 , 1 16 , …

ⓒ 2 , 4 , 12 , 48 , 240 , 1,440 , … 2 , 4 , 12 , 48 , 240 , 1,440 , …

Try It 12.42

ⓐ −150 , −30 , −15 , −5 , − 5 2 , 0 , … −150 , −30 , −15 , −5 , − 5 2 , 0 , …

ⓑ 5 , 10 , 20 , 40 , 80 , 160 , … 5 , 10 , 20 , 40 , 80 , 160 , …

ⓒ 8 , 4 , 2 , 1 , 1 2 , 1 4 , … 8 , 4 , 2 , 1 , 1 2 , 1 4 , …

If we know the first term, a 1 , a 1 , and the common ratio, r , we can list a finite number of terms of the sequence.

Example 12.22

Write the first five terms of the sequence where the first term is 3 and the common ratio is r = −2 . r = −2 .

We start with the first term and multiply it by the common ratio. Then we multiply that result by the common ratio to get the next term, and so on.

The sequence is 3 , −6 , 12 , −24 , 48 , … 3 , −6 , 12 , −24 , 48 , …

Try It 12.43

Write the first five terms of the sequence where the first term is 7 and the common ratio is r = −3 . r = −3 .

Try It 12.44

Write the first five terms of the sequence where the first term is 6 and the common ratio is r = −4 . r = −4 .

Find the General Term ( n th Term) of a Geometric Sequence

Just as we found a formula for the general term of a sequence and an arithmetic sequence, we can also find a formula for the general term of a geometric sequence.

Let’s write the first few terms of the sequence where the first term is a 1 a 1 and the common ratio is r . We will then look for a pattern.

As we look for a pattern in the five terms above, we see that each of the terms starts with a 1 . a 1 .

The first term, a 1 , a 1 , is not multiplied by any r . In the second term, the a 1 a 1 is multiplied by r . In the third term, the a 1 a 1 is multiplied by r two times ( r · r r · r or r 2 r 2 ). In the fourth term, the a 1 a 1 is multiplied by r three times ( r · r · r r · r · r or r 3 r 3 ) and in the fifth term, the a 1 a 1 is multiplied by r four times. In each term, the number of times a 1 a 1 is multiplied by r is one less than the number of the term. This leads us to the following

General Term ( n th term) of a Geometric Sequence

The general term of a geometric sequence with first term a 1 a 1 and the common ratio r is

We will use this formula in the next example to find the fourteenth term of a sequence.

Example 12.23

Find the fourteenth term of a sequence where the first term is 64 and the common ratio is r = 1 2 . r = 1 2 .

To find the fourteenth term,
use the formula with and
Substitute in the values.
Simplify.

Try It 12.45

Find the thirteenth term of a sequence where the first term is 81 and the common ratio is r = 1 3 . r = 1 3 .

Try It 12.46

Find the twelfth term of a sequence where the first term is 256 and the common ratio is r = 1 4 . r = 1 4 .

Sometimes we do not know the common ratio and we must use the given information to find it before we find the requested term.

Example 12.24

Find the twelfth term of the sequence 3, 6, 12, 24, 48, 96, … Find the general term for the sequence.

To find the twelfth term, we use the formula, a n = a 1 r n − 1 , a n = a 1 r n − 1 , and so we need to first determine a 1 a 1 and the common ratio r .

The first term is three.
Find the common ratio.
The common ratio is
To find the twelfth term, use the
formula with
Substitute in the values.
Simplify.
Find the general term.
We use the formula with

Try It 12.47

Find the ninth term of the sequence 6, 18, 54, 162, 486, 1,458, … Then find the general term for the sequence.

Try It 12.48

Find the eleventh term of the sequence 7, 14, 28, 56, 112, 224, … Then find the general term for the sequence.

Find the Sum of the First n Terms of a Geometric Sequence

We found the sum of both general sequences and arithmetic sequence. We will now do the same for geometric sequences. The sum, S n , S n , of the first n terms of a geometric sequence is written as S n = a 1 + a 2 + a 3 + ... + a n . S n = a 1 + a 2 + a 3 + ... + a n . We can write this sum by starting with the first term, a 1 , a 1 , and keep multiplying by r to get the next term as:

Let’s also multiply both sides of the equation by r .

Next, we subtract these equations. We will see that when we subtract, all but the first term of the top equation and the last term of the bottom equation subtract to zero.

We factor both sides.
To obtain the formula for
divide both sides by

Sum of the First n Terms of a Geometric Series

The sum, S n , S n , of the first n terms of a geometric sequence is

where a 1 a 1 is the first term and r is the common ratio, and r is not equal to one.

We apply this formula in the next example where the first few terms of the sequence are given. Notice the sum of a geometric sequence typically gets very large when the common ratio is greater than one.

Example 12.25

Find the sum of the first 20 terms of the geometric sequence 7, 14, 28, 56, 112, 224, …

To find the sum, we will use the formula S n = a 1 ( 1 − r n ) 1 − r . S n = a 1 ( 1 − r n ) 1 − r . We know a 1 = 7 , a 1 = 7 , r = 2 , r = 2 , and n = 20 . n = 20 .

Knowing and
use the sum formula.
Substitute in the values.
Simplify.

Try It 12.49

Find the sum of the first 20 terms of the geometric sequence 3, 6, 12, 24, 48, 96, …

Try It 12.50

Find the sum of the first 20 terms of the geometric sequence 6, 18, 54, 162, 486, 1,458, …

In the next example, we are given the sum in summation notation. While adding all the terms might be possible, most often it is easiest to use the formula to find the sum of the first n terms.

To use the formula, we need r . We can find it by writing out the first few terms of the sequence and find their ratio. Another option is to realize that in summation notation, a sequence is written in the form ∑ i = 1 k a ( r ) i , ∑ i = 1 k a ( r ) i , where r is the common ratio.

Example 12.26

Find the sum: ∑ i = 1 15 2 ( 3 ) i . ∑ i = 1 15 2 ( 3 ) i .

To find the sum, we will use the formula S n = a 1 ( 1 − r n ) 1 − r , S n = a 1 ( 1 − r n ) 1 − r , which requires a 1 a 1 and r . We will write out a few of the terms, so we can get the needed information.

Write out the first few terms.
Identify .

Find the common ratio.


Knowing and
use the sum formula.

Substitute in the values.
Simplify.

Try It 12.51

Find the sum: ∑ i = 1 15 6 ( 2 ) i . ∑ i = 1 15 6 ( 2 ) i .

Try It 12.52

Find the sum: ∑ i = 1 10 5 ( 2 ) i . ∑ i = 1 10 5 ( 2 ) i .

Find the Sum of an Infinite Geometric Series

If we take a geometric sequence and add the terms, we have a sum that is called a geometric series. An infinite geometric series is an infinite sum whose first term is a 1 a 1 and common ratio is r and is written

Infinite Geometric Series

An infinite geometric series is an infinite sum whose first term is a 1 a 1 and common ratio is r and is written

We know how to find the sum of the first n terms of a geometric series using the formula, S n = a 1 ( 1 − r n ) 1 − r . S n = a 1 ( 1 − r n ) 1 − r . But how do we find the sum of an infinite sum?

Let’s look at the infinite geometric series 3 + 6 + 12 + 24 + 48 + 96 + … . 3 + 6 + 12 + 24 + 48 + 96 + … . Each term gets larger and larger so it makes sense that the sum of the infinite number of terms gets larger. Let’s look at a few partial sums for this series. We see a 1 = 3 a 1 = 3 and r = 2 r = 2

As n gets larger and larger, the sum gets larger and larger. This is true when | r | ≥ 1 | r | ≥ 1 and we call the series divergent. We cannot find a sum of an infinite geometric series when | r | ≥ 1 . | r | ≥ 1 .

Let’s look at an infinite geometric series whose common ratio is a fraction less than one, 1 2 + 1 4 + 1 8 + 1 16 + 1 32 + 1 64 + … 1 2 + 1 4 + 1 8 + 1 16 + 1 32 + 1 64 + … . Here the terms get smaller and smaller as n gets larger. Let’s look at a few finite sums for this series. We see a 1 = 1 2 a 1 = 1 2 and r = 1 2 . r = 1 2 .

Notice the sum gets larger and larger but also gets closer and closer to one. When | r | < 1 , | r | < 1 , the expression r n r n gets smaller and smaller. In this case, we call the series convergent. As n approaches infinity, (gets infinitely large), r n r n gets closer and closer to zero. In our sum formula, we can replace the r n r n with zero and then we get a formula for the sum, S , for an infinite geometric series when | r | < 1 . | r | < 1 .

This formula gives us the sum of the infinite geometric sequence. Notice the S does not have the subscript n as in S n S n as we are not adding a finite number of terms.

Sum of an Infinite Geometric Series

For an infinite geometric series whose first term is a 1 a 1 and common ratio r ,

If | r | < 1 , the sum is If | r | < 1 , the sum is

If | r | ≥ 1 , the infinite geometric series does not have a sum. We say the series diverges. If | r | ≥ 1 , the infinite geometric series does not have a sum. We say the series diverges.

Example 12.27

Find the sum of the infinite geometric series 54 + 18 + 6 + 2 + 2 3 + 2 9 + … 54 + 18 + 6 + 2 + 2 3 + 2 9 + …

To find the sum, we first have to verify that the common ratio | r | < 1 | r | < 1 and then we can use the sum formula S = a 1 1 − r . S = a 1 1 − r .

Find the common ratio.
Identify
Knowing
use the sum formula.
Substitute in the values.
Simplify.

Try It 12.53

Find the sum of the infinite geometric series 48 + 24 + 12 + 6 + 3 + 3 2 + … 48 + 24 + 12 + 6 + 3 + 3 2 + …

Try It 12.54

Find the sum of the infinite geometric series 64 + 16 + 4 + 1 + 1 4 + 1 16 + … 64 + 16 + 4 + 1 + 1 4 + 1 16 + …

An interesting use of infinite geometric series is to write a repeating decimal as a fraction.

Example 12.28

Write the repeating decimal 0. 5 – 0. 5 – as a fraction.

Rewrite the showing the repeating five.
Use place value to rewrite this as a sum.
This is an infinite geometric series.
Find the common ratio.
Identify
Knowing
use the sum formula.
Substitute in the values.
Simplify.
Multiply numerator and denominator by 10.
We are asked to find the fraction form.

Try It 12.55

Write the repeating decimal 0. 4 – 0. 4 – as a fraction.

Try It 12.56

Write the repeating decimal 0. 8 – 0. 8 – as a fraction.

Apply Geometric Sequences and Series in the Real World

One application of geometric sequences has to do with consumer spending. If a tax rebate is given to each household, the effect on the economy is many times the amount of the individual rebate.

Example 12.29

The government has decided to give a $1,000 tax rebate to each household in order to stimulate the economy. The government statistics say that each household will spend 80% of the rebate in goods and services. The businesses and individuals who benefitted from that 80% will then spend 80% of what they received and so on. The result is called the multiplier effect. What is the total effect of the rebate on the economy?

Every time money goes into the economy, 80% of it is spent and is then in the economy to be spent. Again, 80% of this money is spent in the economy again. This situation continues and so leads us to an infinite geometric series.

Here the first term is 1,000, a 1 = 1000 . a 1 = 1000 . The common ratio is 0.8 , 0.8 , r = 0.8 . r = 0.8 . We can evaluate this sum since 0.8 < 1 . 0.8 < 1 . We use the formula for the sum on an infinite geometric series.

Substitute in the values, and
Evaluate.

The total effect of the $1,000 received by each household will be a $5,000 growth in the economy.

Try It 12.57

What is the total effect on the economy of a government tax rebate of $1,000 to each household in order to stimulate the economy if each household will spend 90% of the rebate in goods and services?

Try It 12.58

What is the total effect on the economy of a government tax rebate of $500 to each household in order to stimulate the economy if each household will spend 85% of the rebate in goods and services?

We have looked at a compound interest formula where a principal, P , is invested at an interest rate, r , for t years. The new balance, A , is A = P ( 1 + r n ) n t A = P ( 1 + r n ) n t when interest is compounded n times a year. This formula applies when a lump sum was invested upfront and tells us the value after a certain time period.

An annuity is an investment that is a sequence of equal periodic deposits. We will be looking at annuities that pay the interest at the time of the deposits. As we develop the formula for the value of an annuity, we are going to let n = 1 . n = 1 . That means there is one deposit per year.

Let
Simplify.

Suppose P dollars is invested at the end of each year. One year later that deposit is worth P ( 1 + r ) 1 P ( 1 + r ) 1 dollars, and another year later it is worth P ( 1 + r ) 2 P ( 1 + r ) 2 dollars. After t years, it will be worth A = P ( 1 + r ) t A = P ( 1 + r ) t dollars.

End of year 1 End of year 2 End of year 3
First Deposit
@ end of year 1
Amount 1 year later
Amount 2 years later
2nd Deposit
@ end of year 2
Amount 1 year later
3 Deposit
@ end of year 3

After three years, the value of the annuity is

This a sum of the terms of a geometric sequence where the first term is P and the common ratio is 1 + r . 1 + r . We substitute these values into the sum formula. Be careful, we have two different uses of r . The r in the sum formula is the common ratio of the sequence. In this case, that is 1 + r 1 + r where r is the interest rate.

Substitute in the values.
Simplify.

Remember our premise was that one deposit was made at the end of each year.

We can adapt this formula for n deposits made per year and the interest is compounded n times a year.

Value of an Annuity with Interest Compounded n n Times a Year

For a principal, P , invested at the end of a compounding period, with an interest rate, r , which is compounded n times a year, the new balance, A, after t years, is

Example 12.30

New parents decide to invest $100 per month in an annuity for their baby daughter. The account will pay 5% interest per year which is compounded monthly. How much will be in the child’s account at her eighteenth birthday?

To find the Annuity formula, A t = P ( ( 1 + r n ) n t − 1 ) r n , A t = P ( ( 1 + r n ) n t − 1 ) r n , we need to identify P , r , n , and t .

Identify , the amount invested each month.
Identify , the annual interest rate, in decimal form.
Identify ,
the number of times the deposit
will be made and the interest compounded
each year.
Identify , the number of years.
Knowing
use the sum formula.
Substitute in the values.
Use the calculator to evaluate. Be sure to
use parentheses as needed.
The child will have $34,920.20 when she turns
18.

Try It 12.59

New grandparents decide to invest $200 per month in an annuity for their grandson. The account will pay 5% interest per year which is compounded monthly. How much will be in the child’s account at his twenty-first birthday?

Try It 12.60

Arturo just got his first full-time job after graduating from college at age 27. He decided to invest $200 per month in an IRA (an annuity). The interest on the annuity is 8%, which is compounded monthly. How much will be in the Arturo’s account when he retires at his sixty-seventh birthday?

Access these online resources for additional instruction and practice with sequences.

  • Geometric Sequences
  • Geometric Series
  • Future Value Annuities and Geometric Series
  • Application of a Geometric Series: Tax Rebate

Section 12.3 Exercises

Practice makes perfect.

In the following exercises, determine if the sequence is geometric, and if so, indicate the common ratio.

3 , 12 , 48 , 192 , 768 , 3072 , … 3 , 12 , 48 , 192 , 768 , 3072 , …

2 , 10 , 50 , 250 , 1250 , 6250 , … 2 , 10 , 50 , 250 , 1250 , 6250 , …

72 , 36 , 18 , 9 , 9 2 , 9 4 , … 72 , 36 , 18 , 9 , 9 2 , 9 4 , …

54 , 18 , 6 , 2 , 2 3 , 2 9 , … 54 , 18 , 6 , 2 , 2 3 , 2 9 , …

−3 , 6 , −12 , 24 , −48 , 96 , … −3 , 6 , −12 , 24 , −48 , 96 , …

2 , −6 , 18 , −54 , 162 , −486 , … 2 , −6 , 18 , −54 , 162 , −486 , …

In the following exercises, determine if each sequence is arithmetic, geometric or neither. If arithmetic, indicate the common difference. If geometric, indicate the common ratio.

48 , 24 , 12 , 6 , 3 , 3 2 , … 48 , 24 , 12 , 6 , 3 , 3 2 , …

12 , 6 , 0 , −6 , −12 , −18 , … 12 , 6 , 0 , −6 , −12 , −18 , …

−7 , −2 , 3 , 8 , 13 , 18 , … −7 , −2 , 3 , 8 , 13 , 18 , …

5 , 9 , 13 , 17 , 21 , 25 , … 5 , 9 , 13 , 17 , 21 , 25 , …

1 2 , 1 4 , 1 8 , 1 16 , 1 32 , 1 64 , … 1 2 , 1 4 , 1 8 , 1 16 , 1 32 , 1 64 , …

4 , 8 , 12 , 24 , 48 , 96 , … 4 , 8 , 12 , 24 , 48 , 96 , …

In the following exercises, write the first five terms of each geometric sequence with the given first term and common ratio.

a 1 = 4 a 1 = 4 and r = 3 r = 3

a 1 = 9 a 1 = 9 and r = 2 r = 2

a 1 = −4 a 1 = −4 and r = −2 r = −2

a 1 = −5 a 1 = −5 and r = −3 r = −3

a 1 = 27 a 1 = 27 and r = 1 3 r = 1 3

a 1 = 64 a 1 = 64 and r = 1 4 r = 1 4

In the following exercises, find the indicated term of a sequence where the first term and the common ratio is given.

Find a 11 a 11 given a 1 = 8 a 1 = 8 and r = 3 . r = 3 .

Find a 13 a 13 given a 1 = 7 a 1 = 7 and r = 2 . r = 2 .

Find a 10 a 10 given a 1 = −6 a 1 = −6 and r = −2 . r = −2 .

Find a 15 a 15 given a 1 = −4 a 1 = −4 and r = −3 . r = −3 .

Find a 10 a 10 given a 1 = 100,000 a 1 = 100,000 and r = 0.1 . r = 0.1 .

Find a 8 a 8 given a 1 = 1,000,000 a 1 = 1,000,000 and r = 0.01 . r = 0.01 .

In the following exercises, find the indicated term of the given sequence. Find the general term for the sequence.

Find a 9 a 9 of the sequence, 9 , 18 , 36 , 72 , 144 , 288 , … 9 , 18 , 36 , 72 , 144 , 288 , …

Find a 12 a 12 of the sequence, 5 , 15 , 45 , 135 , 405 , 1215 , … 5 , 15 , 45 , 135 , 405 , 1215 , …

Find a 15 a 15 of the sequence, −486 , 162 , −54 , 18 , −6 , 2 , … −486 , 162 , −54 , 18 , −6 , 2 , …

Find a 16 a 16 of the sequence, 224 , −112 , 56 , −28 , 14 , −7 , … 224 , −112 , 56 , −28 , 14 , −7 , …

Find a 10 a 10 of the sequence, 1 , 0.1 , 0.01 , 0.001 , 0.0001 , 0.00001 , … 1 , 0.1 , 0.01 , 0.001 , 0.0001 , 0.00001 , …

Find a 9 a 9 of the sequence, 1000 , 100 , 10 , 1 , 0.1 , 0.01 , … 1000 , 100 , 10 , 1 , 0.1 , 0.01 , …

Find the Sum of the First n terms of a Geometric Sequence

In the following exercises, find the sum of the first fifteen terms of each geometric sequence.

8 , 24 , 72 , 216 , 648 , 1944 , … 8 , 24 , 72 , 216 , 648 , 1944 , …

7 , 14 , 28 , 56 , 112 , 224 , … 7 , 14 , 28 , 56 , 112 , 224 , …

−6 , 12 , −24 , 48 , −96 , 192 , … −6 , 12 , −24 , 48 , −96 , 192 , …

−4 , 12 , −36 , 108 , −324 , 972 , … −4 , 12 , −36 , 108 , −324 , 972 , …

81 , 27 , 9 , 3 , 1 , 1 3 , … 81 , 27 , 9 , 3 , 1 , 1 3 , …

256 , 64 , 16 , 4 , 1 , 1 4 , 1 16 , … 256 , 64 , 16 , 4 , 1 , 1 4 , 1 16 , …

In the following exercises, find the sum of the geometric sequence.

∑ i = 1 15 ( 2 ) i ∑ i = 1 15 ( 2 ) i

∑ i = 1 10 ( 3 ) i ∑ i = 1 10 ( 3 ) i

∑ i = 1 9 4 ( 2 ) i ∑ i = 1 9 4 ( 2 ) i

∑ i = 1 8 5 ( 3 ) i ∑ i = 1 8 5 ( 3 ) i

∑ i = 1 10 9 ( 1 3 ) i ∑ i = 1 10 9 ( 1 3 ) i

∑ i = 1 15 4 ( 1 2 ) i ∑ i = 1 15 4 ( 1 2 ) i

In the following exercises, find the sum of each infinite geometric series.

1 + 1 3 + 1 9 + 1 27 + 1 81 + 1 243 + 1 729 + … 1 + 1 3 + 1 9 + 1 27 + 1 81 + 1 243 + 1 729 + …

1 + 1 2 + 1 4 + 1 8 + 1 16 + 1 32 + 1 64 + … 1 + 1 2 + 1 4 + 1 8 + 1 16 + 1 32 + 1 64 + …

6 − 2 + 2 3 − 2 9 + 2 27 − 2 81 + … 6 − 2 + 2 3 − 2 9 + 2 27 − 2 81 + …

−4 + 2 − 1 + 1 2 − 1 4 + 1 8 − … −4 + 2 − 1 + 1 2 − 1 4 + 1 8 − …

6 + 12 + 24 + 48 + 96 + 192 + … 6 + 12 + 24 + 48 + 96 + 192 + …

5 + 15 + 45 + 135 + 405 + 1215 + … 5 + 15 + 45 + 135 + 405 + 1215 + …

1,024 + 512 + 256 + 128 + 64 + 32 + … 1,024 + 512 + 256 + 128 + 64 + 32 + …

6,561 + 2187 + 729 + 243 + 81 + 27 + … 6,561 + 2187 + 729 + 243 + 81 + 27 + …

In the following exercises, write each repeating decimal as a fraction.

0. 3 – 0. 3 –

0. 6 – 0. 6 –

0. 7 – 0. 7 –

0. 2 – 0. 2 –

0. 45 — 0. 45 —

0. 27 — 0. 27 —

In the following exercises, solve the problem.

Find the total effect on the economy of each government tax rebate to each household in order to stimulate the economy if each household will spend the indicated percent of the rebate in goods and services.

Tax rebate to each household Percent spent on goods and services Total Effect on the economy

New grandparents decide to invest $ 100 $ 100 per month in an annuity for their grandchild. The account will pay 6 % 6 % interest per year which is compounded monthly (12 times a year). How much will be in the child’s account at their twenty-first birthday?

Berenice just got her first full-time job after graduating from college at age 30. She decided to invest $ 500 $ 500 per quarter in an IRA (an annuity). The interest on the annuity is 7 % 7 % which is compounded quarterly (4 times a year). How much will be in the Berenice’s account when she retires at age 65?

Alice wants to purchase a home in about five years. She is depositing $ 500 $ 500 a month into an annuity that earns 5 % 5 % per year that is compounded monthly (12 times a year). How much will Alice have for her down payment in five years?

Myra just got her first full-time job after graduating from college. She plans to get a master’s degree, and so is depositing $ 2,500 $ 2,500 a year from her year-end bonus into an annuity. The annuity pays 6.5 % 6.5 % per year and is compounded yearly. How much will she have saved in five years to pursue her master’s degree?

Writing Exercises

In your own words, explain how to determine whether a sequence is geometric.

In your own words, explain how to find the general term of a geometric sequence.

In your own words, explain the difference between a geometric sequence and a geometric series.

In your own words, explain how to determine if an infinite geometric series has a sum and how to find it.

ⓐ After completing the exercises, use this checklist to evaluate your mastery of the objectives of this section.

ⓑ What does this checklist tell you about your mastery of this section? What steps will you take to improve?

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/intermediate-algebra-2e/pages/1-introduction
  • Authors: Lynn Marecek, Andrea Honeycutt Mathis
  • Publisher/website: OpenStax
  • Book title: Intermediate Algebra 2e
  • Publication date: May 6, 2020
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/intermediate-algebra-2e/pages/1-introduction
  • Section URL: https://openstax.org/books/intermediate-algebra-2e/pages/12-3-geometric-sequences-and-series

© Jul 24, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Additional menu

Khan Academy Blog

Free Math Worksheets — Over 100k free practice problems on Khan Academy

Looking for free math worksheets.

You’ve found something even better!

That’s because Khan Academy has over 100,000 free practice questions. And they’re even better than traditional math worksheets – more instantaneous, more interactive, and more fun!

Just choose your grade level or topic to get access to 100% free practice questions:

Kindergarten, basic geometry, pre-algebra, algebra basics, high school geometry.

  • Trigonometry

Statistics and probability

High school statistics, ap®︎/college statistics, precalculus, differential calculus, integral calculus, ap®︎/college calculus ab, ap®︎/college calculus bc, multivariable calculus, differential equations, linear algebra.

  • Addition and subtraction
  • Place value (tens and hundreds)
  • Addition and subtraction within 20
  • Addition and subtraction within 100
  • Addition and subtraction within 1000
  • Measurement and data
  • Counting and place value
  • Measurement and geometry
  • Place value
  • Measurement, data, and geometry
  • Add and subtract within 20
  • Add and subtract within 100
  • Add and subtract within 1,000
  • Money and time
  • Measurement
  • Intro to multiplication
  • 1-digit multiplication
  • Addition, subtraction, and estimation
  • Intro to division
  • Understand fractions
  • Equivalent fractions and comparing fractions
  • More with multiplication and division
  • Arithmetic patterns and problem solving
  • Quadrilaterals
  • Represent and interpret data
  • Multiply by 1-digit numbers
  • Multiply by 2-digit numbers
  • Factors, multiples and patterns
  • Add and subtract fractions
  • Multiply fractions
  • Understand decimals
  • Plane figures
  • Measuring angles
  • Area and perimeter
  • Units of measurement
  • Decimal place value
  • Add decimals
  • Subtract decimals
  • Multi-digit multiplication and division
  • Divide fractions
  • Multiply decimals
  • Divide decimals
  • Powers of ten
  • Coordinate plane
  • Algebraic thinking
  • Converting units of measure
  • Properties of shapes
  • Ratios, rates, & percentages
  • Arithmetic operations
  • Negative numbers
  • Properties of numbers
  • Variables & expressions
  • Equations & inequalities introduction
  • Data and statistics
  • Negative numbers: addition and subtraction
  • Negative numbers: multiplication and division
  • Fractions, decimals, & percentages
  • Rates & proportional relationships
  • Expressions, equations, & inequalities
  • Numbers and operations
  • Solving equations with one unknown
  • Linear equations and functions
  • Systems of equations
  • Geometric transformations
  • Data and modeling
  • Volume and surface area
  • Pythagorean theorem
  • Transformations, congruence, and similarity
  • Arithmetic properties
  • Factors and multiples
  • Reading and interpreting data
  • Negative numbers and coordinate plane
  • Ratios, rates, proportions
  • Equations, expressions, and inequalities
  • Exponents, radicals, and scientific notation
  • Foundations
  • Algebraic expressions
  • Linear equations and inequalities
  • Graphing lines and slope
  • Expressions with exponents
  • Quadratics and polynomials
  • Equations and geometry
  • Algebra foundations
  • Solving equations & inequalities
  • Working with units
  • Linear equations & graphs
  • Forms of linear equations
  • Inequalities (systems & graphs)
  • Absolute value & piecewise functions
  • Exponents & radicals
  • Exponential growth & decay
  • Quadratics: Multiplying & factoring
  • Quadratic functions & equations
  • Irrational numbers
  • Performing transformations
  • Transformation properties and proofs
  • Right triangles & trigonometry
  • Non-right triangles & trigonometry (Advanced)
  • Analytic geometry
  • Conic sections
  • Solid geometry
  • Polynomial arithmetic
  • Complex numbers
  • Polynomial factorization
  • Polynomial division
  • Polynomial graphs
  • Rational exponents and radicals
  • Exponential models
  • Transformations of functions
  • Rational functions
  • Trigonometric functions
  • Non-right triangles & trigonometry
  • Trigonometric equations and identities
  • Analyzing categorical data
  • Displaying and comparing quantitative data
  • Summarizing quantitative data
  • Modeling data distributions
  • Exploring bivariate numerical data
  • Study design
  • Probability
  • Counting, permutations, and combinations
  • Random variables
  • Sampling distributions
  • Confidence intervals
  • Significance tests (hypothesis testing)
  • Two-sample inference for the difference between groups
  • Inference for categorical data (chi-square tests)
  • Advanced regression (inference and transforming)
  • Analysis of variance (ANOVA)
  • Scatterplots
  • Data distributions
  • Two-way tables
  • Binomial probability
  • Normal distributions
  • Displaying and describing quantitative data
  • Inference comparing two groups or populations
  • Chi-square tests for categorical data
  • More on regression
  • Prepare for the 2020 AP®︎ Statistics Exam
  • AP®︎ Statistics Standards mappings
  • Polynomials
  • Composite functions
  • Probability and combinatorics
  • Limits and continuity
  • Derivatives: definition and basic rules
  • Derivatives: chain rule and other advanced topics
  • Applications of derivatives
  • Analyzing functions
  • Parametric equations, polar coordinates, and vector-valued functions
  • Applications of integrals
  • Differentiation: definition and basic derivative rules
  • Differentiation: composite, implicit, and inverse functions
  • Contextual applications of differentiation
  • Applying derivatives to analyze functions
  • Integration and accumulation of change
  • Applications of integration
  • AP Calculus AB solved free response questions from past exams
  • AP®︎ Calculus AB Standards mappings
  • Infinite sequences and series
  • AP Calculus BC solved exams
  • AP®︎ Calculus BC Standards mappings
  • Integrals review
  • Integration techniques
  • Thinking about multivariable functions
  • Derivatives of multivariable functions
  • Applications of multivariable derivatives
  • Integrating multivariable functions
  • Green’s, Stokes’, and the divergence theorems
  • First order differential equations
  • Second order linear equations
  • Laplace transform
  • Vectors and spaces
  • Matrix transformations
  • Alternate coordinate systems (bases)

Frequently Asked Questions about Khan Academy and Math Worksheets

Why is khan academy even better than traditional math worksheets.

Khan Academy’s 100,000+ free practice questions give instant feedback, don’t need to be graded, and don’t require a printer.

Math WorksheetsKhan Academy
Math worksheets take forever to hunt down across the internetKhan Academy is your one-stop-shop for practice from arithmetic to calculus
Math worksheets can vary in quality from site to siteEvery Khan Academy question was written by a math expert with a strong education background
Math worksheets can have ads or cost moneyKhan Academy is a nonprofit whose resources are always free to teachers and learners – no ads, no subscriptions
Printing math worksheets use up a significant amount of paper and are hard to distribute during virtual learningKhan Academy practice requires no paper and can be distributed whether your students are in-person or online
Math worksheets can lead to cheating or a lack of differentiation since every student works on the same questionsKhan Academy has a full question bank to draw from, ensuring that each student works on different questions – and at their perfect skill level
Math worksheets can slow down student learning since they need to wait for feedbackKhan Academy gives instant feedback after every answer – including hints and video support if students are stuck
Math worksheets take up time to collect and take up valuable planning time to gradeKhan Academy questions are graded instantly and automatically for you

What do Khan Academy’s interactive math worksheets look like?

Here’s an example:

What are teachers saying about Khan Academy’s interactive math worksheets?

“My students love Khan Academy because they can immediately learn from their mistakes, unlike traditional worksheets.”

Is Khan Academy free?

Khan Academy’s practice questions are 100% free—with no ads or subscriptions.

What do Khan Academy’s interactive math worksheets cover?

Our 100,000+ practice questions cover every math topic from arithmetic to calculus, as well as ELA, Science, Social Studies, and more.

Is Khan Academy a company?

Khan Academy is a nonprofit with a mission to provide a free, world-class education to anyone, anywhere.

Want to get even more out of Khan Academy?

Then be sure to check out our teacher tools . They’ll help you assign the perfect practice for each student from our full math curriculum and track your students’ progress across the year. Plus, they’re also 100% free — with no subscriptions and no ads.

Get Khanmigo

The best way to learn and teach with AI is here. Ace the school year with our AI-powered guide, Khanmigo. 

For learners     For teachers     For parents

Microsoft

Game Central

Get step-by-step explanations

Get step-by-step explanations

Graph your math problems

Graph your math problems

Practice, practice, practice

Practice, practice, practice

Get math help in your language

Get math help in your language

Mathwarehouse Logo

Algebra Function Worksheets with Answer Keys

Feel free to download and enjoy these free worksheets on functions and relations .Each one has model problems worked out step by step, practice problems, as well as challenge questions at the sheets end. Plus each one comes with an answer key.

  • Domain and Range (Algebra 1)
  • Functions vs Relations (distinguish function from relation, state domain etc..) (Algebra 2)
  • Evaluating Functions (Algebra 2)
  • 1 to 1 Functions (Algebra 2)
  • Composition of Functions (Algebra 2)
  • Inverse Functions Worksheet (Algebra 2)
  • Operations With Functions (Algebra 2)
  • Functions Review Worksheet (Algebra 2)

Ultimate Math Solver (Free) Free Algebra Solver ... type anything in there!

Popular pages @ mathwarehouse.com.

Surface area of a Cylinder

Please ensure that your password is at least 8 characters and contains each of the following:

  • a special character: @$#!%*?&

IMAGES

  1. Geometry Homework Worksheet Answers

    evaluate homework and practice geometry

  2. Geometry Homework

    evaluate homework and practice geometry

  3. Geometry Proof Practice Worksheet

    evaluate homework and practice geometry

  4. Geometry Homework or Revision Sheets

    evaluate homework and practice geometry

  5. Geometry Proof Practice Worksheet

    evaluate homework and practice geometry

  6. 7 Pages of Geometry Worksheets for 5th Graders with Answer Key

    evaluate homework and practice geometry

COMMENTS

  1. Algebra 1, Volume 1

    Now, with expert-verified solutions from Algebra 1, Volume 1 1st Edition, you'll learn how to solve your toughest homework problems. Our resource for Algebra 1, Volume 1 includes answers to chapter exercises, as well as detailed information to walk you through the process step by step. With Expert Solutions for thousands of practice problems ...

  2. Geometry: Homework Practice Workbook

    Our resource for Geometry: Homework Practice Workbook includes answers to chapter exercises, as well as detailed information to walk you through the process step by step. With Expert Solutions for thousands of practice problems, you can take the guesswork out of studying and move forward with confidence. Find step-by-step solutions and answers ...

  3. Geometry, Volume 2

    Now, with expert-verified solutions from Geometry, Volume 2 1st Edition, you'll learn how to solve your toughest homework problems. Our resource for Geometry, Volume 2 includes answers to chapter exercises, as well as detailed information to walk you through the process step by step. With Expert Solutions for thousands of practice problems ...

  4. PDF Homework Practice

    A builder is trying to level out some ground with a front-end loader. He picks up some excess dirt at (9, 16) and then maneuvers through the job site along the vectors 6, 0 , 2, 5 , and 8, 10 to get to the spot to unload the dirt. Find the coordinates of the unloading point.

  5. PDF Evaluate: Homework and Practice

    Evaluate: Homework and Practice 1. Interpret the Answer Katherine is using a cone to fill a cylinder with sand. If the radii and height are equal on both objects, and Katherine fills the cone to the very top, how many cones will it take to fill the cylinder with sand? Explain your answer. Find the volume of the cone. Round the answer to the ...

  6. 12.3 Geometric Sequences and Series

    Practice Makes Perfect. Determine if a Sequence is Geometric. In the following exercises, determine if the sequence is geometric, and if so, indicate the common ratio. ... ⓐ After completing the exercises, use this checklist to evaluate your mastery of the objectives of this section.

  7. Free Math Worksheets

    Khan Academy's 100,000+ free practice questions give instant feedback, don't need to be graded, and don't require a printer. Math Worksheets. Khan Academy. Math worksheets take forever to hunt down across the internet. Khan Academy is your one-stop-shop for practice from arithmetic to calculus. Math worksheets can vary in quality from ...

  8. PDF Evaluate: Homework and Practice

    Circumference of great circle is 14π cm 3.7 in. 11 ft 20 cm 1 m circle is 81π in2 Area of great © Houghton Mifflin Harcourt Publishing Company Find the volume of ...

  9. PDF Evaluate: Homework and Practice

    Evaluate: Homework and Practice For each trigonometric function, identify the vertical stretch or compression and the horizontal stretch or compression. Then, graph the function and identify its period. 1. y = 4 sin x 2. y = _1 cos 2 2 x 3. y = -3 sin _1 x 6 4. y = -2 cos _1 x 3 Module 19 969 Lesson 1 DO NOT EDIT--Changes must be made through ...

  10. Microsoft Math Solver

    Online math solver with free step by step solutions to algebra, calculus, and other math problems. ... Evaluate Fractions. Linear Equations. Quadratic Equations. Inequalities. ... Practice, practice, practice. Search for additional learning materials, such as related worksheets and video tutorials.

  11. Evaluate Homework and Practice Answers Geometry

    Evaluate Homework and Practice Answers Geometry - Free download as PDF File (.pdf), Text File (.txt) or read online for free.

  12. Algebra Function Worksheets with Answer Keys

    Free printable Function worksheets (pdf) with answer keys on the domain/range, evaluating functions, composition of functions ,1 to 1 , and more. Math Gifs Algebra

  13. Geometry, Volume 1

    Exercise 8. Exercise 9. At Quizlet, we're giving you the tools you need to take on any subject without having to carry around solutions manuals or printing out PDFs! Now, with expert-verified solutions from Geometry, Volume 1 1st Edition, you'll learn how to solve your toughest homework problems. Our resource for Geometry, Volume 1 includes ...

  14. PDF 3.3 Piecewise Functions

    Sully's blood pressure starts at 90 and rises 5 points every hour for the first 4 hours. Sully chills out for lunch from 12-1 and maintains a cool 110 blood pressure. Last period of the day hits from 1-3 and Sully's blood pressure rises from 110 at 10 points per hour. 2 points per hour until his 8 o'clock bedtime. 5.

  15. Mathway

    Free math problem solver answers your algebra homework questions with step-by-step explanations.

  16. Function Notation and Evaluation Practice

    Given f : {whole numbers} → {whole numbers}. The function f accepts a whole number and returns the square of the smallest place value digit in the number. [Hint: smallest place value digit in 34 is 3.]

  17. Solved Personal Evaluate: Homework and Practice Math Trainer

    Question: Personal Evaluate: Homework and Practice Math Trainer - Online Homework • Hints and Help Extra Practice 1. Finding distances using similar triangles is called ? Use similar triangles AABC and AXYZ to find the missing height h. 3. BN 2. B z Ab 15618 156 ft 3 3.8 ft 108.5 ft x 208 ft 15.2 ft Use similar triangles AEFG and AIHG to find ...

  18. Solved Evaluate: Homework and Practice Personal Math Trainer

    Transcribed image text: Evaluate: Homework and Practice Personal Math Trainer Online Homework Hints and Help Extra Practice Given p (x), find p (-3) by using synthetic substitution. 1. p (x) = 8x' + 7x* + 2x + 4 2. p (x) = **+ 6x + 7x - 25 3. p (x) = 2x! + 5x? - 3x 4. p (x) = =-+ 5xl - 8x + 45 Houghton Mifflincourt Publishing Company Given a ...

  19. Effective Practices for Homework

    Homework has four basic purposes: Practice (e.g., after the teacher has directly taught a math algorithm in class, the homework is to complete several problems requiring use of that algorithm).; Preparation (e.g., pre-reading or looking over a new unit of study in a text for the next class meeting).; Study (e.g., reviewing content to prepare for a test). ...

  20. Integrated Mathematics 2

    Exercise 5. Exercise 6. At Quizlet, we're giving you the tools you need to take on any subject without having to carry around solutions manuals or printing out PDFs! Now, with expert-verified solutions from Integrated Mathematics 2 1st Edition, you'll learn how to solve your toughest homework problems. Our resource for Integrated ...

  21. PDF Name Lesson 1.11 Evaluate Numerical Expressions

    WRITE Math Give two examples that show how using parentheses can change the order in which operations are performed in an expression. Chapter 1 71 Rewrite the expression with parentheses to equal the given value. 5. 3 3 4 2 1 1 2 value: 11 6. 2 3 6 4 2 1 1 value: 4 7. 5 1 3 3 2 2 6 value: 10 120 2 41 79 Practice and Homework Lesson 1.11

  22. Evaluate homework and practice workbook answers geometry

    Click here 👆 to get an answer to your question ️ Evaluate homework and practice workbook answers geometry Evaluate homework and practice workbook answers geometry - brainly.com See what teachers have to say about Brainly's new learning tools!

  23. Texas Algebra 2, Volume 2

    Exercise 9. At Quizlet, we're giving you the tools you need to take on any subject without having to carry around solutions manuals or printing out PDFs! Now, with expert-verified solutions from Texas Algebra 2, Volume 2 1st Edition, you'll learn how to solve your toughest homework problems. Our resource for Texas Algebra 2, Volume 2 ...