• Write my thesis
  • Thesis writers
  • Buy thesis papers
  • Bachelor thesis
  • Master's thesis
  • Thesis editing services
  • Thesis proofreading services
  • Buy a thesis online
  • Write my dissertation
  • Dissertation proposal help
  • Pay for dissertation
  • Custom dissertation
  • Dissertation help online
  • Buy dissertation online
  • Cheap dissertation
  • Dissertation editing services
  • Write my research paper
  • Buy research paper online
  • Pay for research paper
  • Research paper help
  • Order research paper
  • Custom research paper
  • Cheap research paper
  • Research papers for sale
  • Thesis subjects
  • How It Works

120 Statistical Research Topics: Explore Up-to-date Trends

Statistical Research Topics Latest Trends & Techniques

Researchers and statistics teachers are often tasked with writing an article or paper on a given stats project idea. One of the most crucial things in writing an outstanding and well-composed statistics research project, paper, or essay is to come up with a very interesting topic that will captivate your reader’s minds and provoke their thoughts.

What Are the Best Statistical Research Topics Worth Writing On?

Leading statistical research topics for college students that will interest you, project topics in statistics worth considering, the best idea for statistics project you can focus on, good experiments for statistics topics you should be writing on, what are the best ap statistics project ideas that will be of keen interest to you, good statistics project ideas suitable for our modern world, some of the most crucial survey topics for statistics project, statistical projects topics every researcher wants to write on, statistical research topics you can focus your research on.

Students often find it difficult to come up with well-composed statistical research project topics that take the format of argumentative essay topics to pass across their message. In this essay, we will look at some of the most interesting statistics research topics to focus your research on.

Here are some of the best statistical research topics worth writing on:

  • Predictive Healthcare Modeling with Machine Learning
  • Analyzing Online Education During COVID-19 Epidemic
  • Modeling How Climate Change Affects Natural Disasters
  • Essential Elements Influencing Personnel Productivity
  • Social Media Influence on Customer Choices and Behavior
  • Can Geographical Statistics Aid In Analyzing Crime Trends and Patterns?
  • Financial Markets and Stock Price Predictions
  • Statistical Analysis of Voting-related Behaviors
  • An Analysis of Public Transportation Usage Trends in Urban Areas
  • How Can Public Health Education Reduce Air Pollution?
  • Statistical Analysis of Suicide In Adolescents and Adults
  • A Review of Divorce and How It Affects Children

As a college student, here are the best statistical projects for high school students to focus your research on, especially if you need social media research topics .

  • Major Factors Influencing College Students’ Academic Performance
  • Social Media and How It Defines thee Mental Health of Students
  • Evaluation of the Elements Influencing Student Engagement and Retention
  • An Examination of Extracurricular Activities On Academic Success
  • Does Parental Involvement Determine Academic Achievement of Kids?
  • Examining How Technology Affects Improving Educational Performance
  • Factors That Motivate Students’ Involvement In Online Learning
  • The Impact of Socioeconomic Status On Academic Performance
  • Does Criticism Enhance Student Performance?
  • Student-Centered Learning and Improved Performance
  • A Cursory Look At Students’ Career Goals and Major Life Decisions
  • Does Mental Health Impact Academic Achievement?

Are you a student tasked with writing a project but can’t come up with befitting stats research topics? Here are the best ideas for statistical projects worth considering:

  • Financial Data And Stock Price Forecasting
  • Investigation of Variables Influencing Students’ Grades
  • What Causes Traffic Flow and Congestion In Urban Areas?
  • How to Guarantee Customer Retention In the Retail Sector
  • Using Epidemiological Data to Model the Spread of Infectious Diseases
  • Does Direct Advertisement Affect Consumer Preferences and Behavior?
  • How to Predict and Adapt to Climate Change
  • Using Spatial Statistics to Analyze Trends and Patterns In Crime
  • Examination of the Elements Influencing Workplace Morale and Productivity
  • Understanding User Behavior and Preferences Through Statistical Analysis of Social Media Data
  • How Many Percent Get Married After Their Degree Programs?
  • A Comparative Analysis of Different Academic Fee Payments

If you have been confused based on the availability of different statistics project topics to choose from, here are some of the best thesis statement about social media to choose from:

  • Analysis of the Variables Affecting A Startup’s Success
  • The Valid Connection Between Mental Health and Social Media Use
  • Different Teaching Strategies and Academic Performance
  • Factors Influencing Employee Satisfaction In Different Work Environments
  • The Impact of Public Policy On Different Population Groups
  • Reviewing Different Health Outcomes and Incomes
  • Different Marketing Tactics for Good Service Promotion
  • What Influences Results In Different Sports Competitions?
  • Differentiating Elements Affecting Students’ Performance In A Given Subject
  • Internal Communication and Building An Effective Workplace
  • Does the Use of Business Technologies Boost Workers’ Output?
  • The Role of Modern Communication In An Effective Company Management

Are you a student tasked with writing an essay on social issues research topics but having challenges coming up with a topic? Here are some amazing statistical experiments ideas you can center your research on.

  • How Global Pandemic Affects Local Businesses
  • Investigating the Link Between Income and Health Outcomes In a Demography
  • Key Motivators for Student’s Performance In a Particular Academic Program
  • Evaluating the Success of a Promotional Plan Over Others
  • Continuous Social Media Use and Impact On Mental Health
  • Does Culture Impact the Religious Beliefs of Certain Groups?
  • Key Indicators of War and How to Manage These Indicators
  • An Overview of War As a Money Laundering Scheme
  • How Implementations Guarantee Effectiveness of Laws In Rural Areas
  • Performance of Students In War-torn Areas
  • Key Indicators For Measuring the Success of Your Venture
  • How Providing FAQs Can Help a Business Scale

The best AP statistic project ideas every student especially those interested in research topics for STEM students  will want to write in include:

  • The Most Affected Age Demography By the Covid-19 Pandemic
  • The Health Outcomes Peculiar to a Specific Demography
  • Unusual Ways to Enhance Student Performance In a Classroom
  • How Marketing Efforts Can Determine Promotional Outputs
  • Can Mental Health Solutions Be Provided On Social Media?
  • Assessing How Certain Species Are Affected By Climate Change.
  • What Influences Voter Turnouts In Different Elections?
  • How Many People Have Used Physical Exercises to Improve Mental Health
  • How Financial Circumstances Can Determine Criminal Activities
  • Ways DUI Laws Can Reduce Road Accidents
  • Examining the Connection Between Corruption and Underdevelopment In Africa
  • What Key Elements Do Top Global Firms Engage for Success?

If you need some of the best economics research paper topics , here are the best statistics experiment ideas you can write research on:

  • Retail Client Behaviors and Weather Trends
  • The Impact of Marketing Initiatives On Sales and Customer Retention
  • How Socioeconomic Factors Determine Crime Rates In Different Locations
  • Public and Private School Students: Who Performs Better?
  • How Fitness Affects the Mental Health of People In Different Ages
  • Focus On the Unbanked Employees Globally
  • Does Getting Involve In a Kid’s Life Make Them Better?
  • Dietary Decisions and a Healthy Life
  • Managing Diabetes and High Blood Pressure of a Specific Group
  • How to Engage Different Learning Methods for Effectiveness
  • Understudying the Sleeping Habits of Specific Age Groups
  • How the Numbers Can Help You Create a Brand Recognition

As a student who needs fresh ideas relating to the topic for a statistics project to write on, here are crucial survey topics for statistics that will interest you.

  • Understanding Consumer Spending and Behavior In Different Regions
  • Why Some People in Certain Areas Live Longer than Others
  • Comparative Analysis of Different Customer Behaviors
  • Do Social Media Businesses Benefit More than Physical Businesses?
  • Does a Healthy Work Environment Guarantee Productivity?
  • The Impact of Ethnicity and Religion On Voting Patterns
  • Does Financial Literacy Guarantee Better Money Management?
  • Cultural Identities and Behavioral Patterns
  • How Religious Orientation Determines Social Media Use
  • The Growing Need for Economists Globally
  • Getting Started with Businesses On Social Media
  • Which Is Better: A 9-5 or An Entrepreneurial Job?

Do you want to write on unique statistical experiment ideas? Here are some topics you do not want to miss out on:

  • Consumer Satisfaction-Related Variables on E-Commerce Websites
  • Obesity Rates and Socioeconomic Status In Developed Countries
  • How Marketing Strategies Can Make or Mar Sales Performance
  • The Correlation Between Increased Income and Happiness In Various Nations
  • Regression Models and Forecasting Home Prices
  • Climate Change Affecting Agricultural Production In Specific Areas
  • A Study of Employee Satisfaction In the Healthcare Industry
  • Social Media, Marketing Tactics, and Consumer Behavior In the Fashion Industry
  • Predicting the Risk of Default Among Credit Card Holders In Different Regions
  • Why Crime Rates Are Increasing In Urban Areas than Rural Areas
  • Statistical Evaluation of Methamphetamine’s Impact On Drug Users
  • Genes and a Child’s Total Immunity

Here are some of the most carefully selected stat research topics you can focus on.

  • Social Media’s Effects On Consumer Behavior
  • The Correlation Between Urban Crime Rates and Poverty Levels
  • Physical Exercise and Mental Health Consequences
  • Predictive Modeling In the Financial Markets
  • How Minimum Wage Regulations Impact Employment Rates
  • Healthcare Outcomes and Access Across Various Socioeconomic Groups
  • How High School Students’ Environment Affect Academic Performance
  • Automated Technology and Employment Loss
  • Environmental Elements and Their Effects On Public Health
  • Various Advertising Tactics and How They Influence Customer Behavior
  • Political Polarization And Economic Inequality
  • Climate Change and Agricultural Productivity

The above statistics final project examples will stimulate your curiosity and test your abilities, and they can even be linked to some biochemistry topics and anatomy research paper topics . Writing about these statistics project ideas helps provide a deeper grasp of the natural and social phenomena that affect our lives and the environment by studying these subjects.

Leave a Reply Cancel reply

  • Buy Custom Assignment
  • Custom College Papers
  • Buy Dissertation
  • Buy Research Papers
  • Buy Custom Term Papers
  • Cheap Custom Term Papers
  • Custom Courseworks
  • Custom Thesis Papers
  • Custom Expository Essays
  • Custom Plagiarism Check
  • Cheap Custom Essay
  • Custom Case Study
  • Custom Annotated Bibliography
  • Custom Book Report
  • How It Works
  • Writing Guides
  • +1 (888) 398 0091
  • Essay Samples
  • Essay Topics
  • Research Topics
  • Writing Tips

Statistics Research Topics: Ideas & Questions

June 16, 2023

Looking for research topics in statistics? Whether you’re a student working on a class project or a researcher in need of inspiration, finding the right topic can be challenging. With numerous areas to explore in statistics, narrowing down your options can be overwhelming. But with some creativity and research, you can find an interesting and relevant topic. This article offers ideas and examples of statistics research topics to consider, so let’s dive in!

Statistics Research: What It Comprises

The data collected by statistics research can be quantitative (numbers) or qualitative (text). The data can also be presented in tables or graphs for easy understanding by the audience. However, it is not always necessary to present the data in the form of tables or graphs, as sometimes the raw data can be good enough to convey the message from the researcher.

In statistics projects, the researchers usually design experiments to test specific hypotheses about a population’s characteristics or behavior. For example, suppose you want to know whether people who wear glasses will have better eyesight than those who don’t wear glasses. In that case, you need to collect information about their vision before and after wearing glasses (experimental group) and compare their vision with those who do not wear glasses (control group). You would then find out whether there was any difference between these two groups with respect to eyesight improvement due to wearing glasses.

Tips on How to Choose a Statistics Research Topic

Firstly, remember that a good statistics topic should interest you and also have a substantial amount of data available for analysis. Once you have decided on your topic, you can collect data for your study using secondary sources or conducting primary research through surveys or interviews.

You can also use search engines like Google or Yahoo! to find information about your topic of interest. You can use keywords like “income disparity” or “inequality causes” to find relevant websites on which you can find information related to your topic of interest.

Next, consider what types of questions your supervisor would like answered with this data type. For example, if you’re looking at crime rates in your city, maybe they would like to know which areas have higher crime rates than others to plan police patrols accordingly. Or maybe they just want to know whether there’s any correlation between high crime rates and low-income neighborhoods (there probably will be).

Feel free to select any topic and try our free AI essay generator to craft your essay.

Statistics Research Topics in Business

  • Understanding the factors that influence consumer purchase decisions in the technology industry
  • Advertising and sales revenue: a time-series analysis
  • The effectiveness of customer loyalty programs in increasing customer retention and revenue
  • The relationship between employee job satisfaction and productivity
  • The factors that contribute to employee turnover in the hospitality industry
  • Product quality on customer satisfaction and loyalty: a longitudinal study
  • The application of social media marketing in increasing brand awareness and customer engagement
  • Corporate social responsibility (CSR) initiatives and brand reputation: a meta-analysis
  • Understanding the factors that influence customer satisfaction in the restaurant industry
  • E-commerce on traditional brick-and-mortar retail sales: a comparative analysis
  • The effectiveness of supply chain management strategies in reducing operational costs and improving efficiency
  • The relationship between market competition and innovation: a cross-country analysis
  • Understanding the factors that influence employee motivation and engagement in the workplace
  • Business analytics on strategic decision-making: a case study approach
  • The effectiveness of performance-based incentives in increasing employee productivity and job satisfaction
  • Organizational performance dependence on employee diversity and organizational performance
  • Understanding the factors that contribute to startup success in the technology industry
  • The impact of pricing strategies on sales revenue and profitability
  • The effectiveness of corporate training programs in improving employee skill development and performance
  • The relationship between brand image and customer loyalty

Research Topics in Applied Statistics

  • The impact of educational attainment on income level
  • The effectiveness of different advertising strategies in increasing sales
  • The relationship between socioeconomic status and health outcomes
  • The effectiveness of different teaching methods in promoting academic success
  • The impact of job training programs on employment rates
  • The relationship between crime rates and community demographics
  • Different medication dosages in treating a particular condition
  • The influence of environmental pollutants on health outcomes
  • The interconnection between access to healthcare and health outcomes
  • The effectiveness of different weight loss programs in promoting weight loss
  • The impact of social support on mental health outcomes
  • The relationship between demographic factors and political affiliation
  • The effectiveness of different exercise programs in promoting physical fitness
  • The influence of parenting styles on child behavior
  • The relationship between diet and chronic disease risk
  • Different smoking cessation programs for promoting smoking cessation
  • The impact of public transportation on urban development
  • The relationship between technology usage and social isolation
  • The effectiveness of different stress reduction techniques in reducing stress levels
  • The influence of climate change on crop

Statistics Research Topics in Psychology

  • The correlation between childhood trauma and adult depression
  • The effectiveness of cognitive-behavioral therapy in treating anxiety disorders
  • The impact of social media on self-esteem and body image in adolescents
  • Personality traits and job satisfaction: how are they related?
  • The prevalence and predictors of bullying in schools
  • The effects of sleep deprivation on cognitive performance
  • The role of parenting styles in the development of emotional intelligence
  • The effectiveness of mindfulness-based interventions in reducing stress and anxiety
  • The impact of childhood abuse on adult relationship satisfaction
  • The influence of social support on coping with chronic illness
  • The factors that contribute to successful aging
  • The prevalence and predictors of addiction relapse
  • The impact of cultural factors on mental health diagnosis and treatment
  • Exercise and mental health: in which way are they connected?
  • The effectiveness of art therapy in treating trauma-related disorders
  • The prevalence and predictors of eating disorders in college students
  • The influence of attachment styles on romantic relationships
  • The effectiveness of group therapy in treating substance abuse disorders
  • The prevalence and predictors of postpartum depression
  • The impact of childhood socioeconomic

Sports Statistics Research Topics

  • The relationship between player performance and team success in the National Football League (NFL)
  • Understanding the factors that influence home-field advantage in professional soccer
  • The impact of game-day weather conditions on player performance in Major League Baseball (MLB)
  • The effectiveness of different training regimens in improving endurance and performance in long-distance running
  • The relationship between athlete injury history and future injury risk in professional basketball
  • The impact of crowd noise on team performance in college football
  • The effectiveness of sports psychology interventions in improving athlete performance and mental health
  • The relationship between player height and success in professional basketball: a regression analysis
  • Understanding the factors that contribute to the development of youth soccer players in the United States
  • The influence of playing surface on injury rates in professional football: a longitudinal study
  • The effectiveness of pre-game routines in improving athlete performance in tennis
  • The relationship between athletic ability and academic success among college athletes
  • Understanding the factors that influence injury risk and recovery time in professional hockey players
  • The impact of in-game statistics on coaching decisions in professional basketball
  • The effectiveness of different dietary regimens in improving athlete performance in endurance sports
  • The relationship between athlete sleep habits and performance: a longitudinal study
  • Understanding the factors that influence athlete endorsement deals and sponsorships in professional sports
  • The influence of stadium design on crowd noise levels and player performance in college football
  • The effectiveness of different strength training regimens in improving athlete performance in track and field events
  • The relationship between player salary and team success in professional baseball: a longitudinal analysis

Survey Methods Statistics Research Topics

  • Understanding the factors that influence response rates in online surveys
  • The effectiveness of different survey question formats in eliciting accurate and reliable responses
  • The relationship between survey mode (phone, online, mail) and response quality in political polling
  • The impact of incentives on survey response rates and data quality
  • Understanding the factors that contribute to respondent satisfaction in surveys
  • The effectiveness of different sampling methods in achieving representative samples in survey research
  • The relationship between survey item order and response bias: a meta-analysis
  • The impact of social desirability bias on survey responses: a longitudinal study
  • Understanding the factors that influence survey question wording and response bias
  • The effectiveness of different visual aids in improving respondent comprehension and response quality
  • The relationship between survey timing and response rate: a comparative analysis
  • The impact of interviewer characteristics on survey response quality in face-to-face surveys
  • Understanding the factors that contribute to nonresponse bias in survey research
  • The effectiveness of different response scales in measuring attitudes and perceptions in surveys
  • The relationship between survey length and respondent engagement: a cross-sectional analysis
  • The influence of skip patterns on survey response quality and completion rates
  • Understanding the factors that influence survey item nonresponse and item refusal rates
  • The effectiveness of pre-testing and piloting surveys in improving data quality and reliability
  • The relationship between survey administration and response quality: a comparative analysis of phone, online, and in-person surveys
  • The impact of survey fatigue on response quality and data completeness: a longitudinal study

As mentioned above, statistics is the science of collecting and analyzing data to draw conclusions and make predictions. To conduct a proper statistical analysis, you must first define your research question, gather data from various sources, analyze the information, and draw conclusions based on the results.

This process can be challenging for many people who do not have an extensive background in statistics. However, it does not have to be so tricky if you use our professional Custom Writing help. Our writers are highly qualified professionals who will work with you to develop a clear understanding of your research problem and then guide you through every step of the process. We will also ensure that your paper follows all academic standards to meet all requirements for originality and quality.

Sociology Research Topics Ideas

Importance of Computer in Nursing Practice Essay

History Research Paper Topics For Students

By clicking “Continue”, you agree to our terms of service and privacy policy. We’ll occasionally send you promo and account related emails.

Latest Articles

Debating in class or composing a persuasive paper is a fruitful intellectual practice. Doing so, participants and writers are expected...

Most students wonder whether it is possible to cite an article in an essay. The answer is “Yes”! Why not...

Let us explain what is what and how it can be used. An anthology is a published collection of poems...

I want to feel as happy, as your customers do, so I'd better order now

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.

Innovative Statistics Project Ideas for Insightful Analysis

image

Table of contents

  • 1.1 AP Statistics Topics for Project
  • 1.2 Statistics Project Topics for High School Students
  • 1.3 Statistical Survey Topics
  • 1.4 Statistical Experiment Ideas
  • 1.5 Easy Stats Project Ideas
  • 1.6 Business Ideas for Statistics Project
  • 1.7 Socio-Economic Easy Statistics Project Ideas
  • 1.8 Experiment Ideas for Statistics and Analysis
  • 2 Conclusion: Navigating the World of Data Through Statistics

Diving into the world of data, statistics presents a unique blend of challenges and opportunities to uncover patterns, test hypotheses, and make informed decisions. It is a fascinating field that offers many opportunities for exploration and discovery. This article is designed to inspire students, educators, and statistics enthusiasts with various project ideas. We will cover:

  • Challenging concepts suitable for advanced placement courses.
  • Accessible ideas that are engaging and educational for younger students.
  • Ideas for conducting surveys and analyzing the results.
  • Topics that explore the application of statistics in business and socio-economic areas.

Each category of topics for the statistics project provides unique insights into the world of statistics, offering opportunities for learning and application. Let’s dive into these ideas and explore the exciting world of statistical analysis.

Top Statistics Project Ideas for High School

Statistics is not only about numbers and data; it’s a unique lens for interpreting the world. Ideal for students, educators, or anyone with a curiosity about statistical analysis, these project ideas offer an interactive, hands-on approach to learning. These projects range from fundamental concepts suitable for beginners to more intricate studies for advanced learners. They are designed to ignite interest in statistics by demonstrating its real-world applications, making it accessible and enjoyable for people of all skill levels.

Need help with statistics project? Get your paper written by a professional writer Get Help Reviews.io 4.9/5

AP Statistics Topics for Project

  • Analyzing Variance in Climate Data Over Decades.
  • The Correlation Between Economic Indicators and Standard of Living.
  • Statistical Analysis of Voter Behavior Patterns.
  • Probability Models in Sports: Predicting Outcomes.
  • The Effectiveness of Different Teaching Methods: A Statistical Study.
  • Analysis of Demographic Data in Public Health.
  • Time Series Analysis of Stock Market Trends.
  • Investigating the Impact of Social Media on Academic Performance.
  • Survival Analysis in Clinical Trial Data.
  • Regression Analysis on Housing Prices and Market Factors.

Statistics Project Topics for High School Students

  • The Mathematics of Personal Finance: Budgeting and Spending Habits.
  • Analysis of Class Performance: Test Scores and Study Habits.
  • A Statistical Comparison of Local Public Transportation Options.
  • Survey on Dietary Habits and Physical Health Among Teenagers.
  • Analyzing the Popularity of Various Music Genres in School.
  • The Impact of Sleep on Academic Performance: A Statistical Approach.
  • Statistical Study on the Use of Technology in Education.
  • Comparing Athletic Performance Across Different Sports.
  • Trends in Social Media Usage Among High School Students.
  • The Effect of Part-Time Jobs on Student Academic Achievement.

Statistical Survey Topics

  • Public Opinion on Environmental Conservation Efforts.
  • Consumer Preferences in the Fast Food Industry.
  • Attitudes Towards Online Learning vs. Traditional Classroom Learning.
  • Survey on Workplace Satisfaction and Productivity.
  • Public Health: Attitudes Towards Vaccination.
  • Trends in Mobile Phone Usage and Preferences.
  • Community Response to Local Government Policies.
  • Consumer Behavior in Online vs. Offline Shopping.
  • Perceptions of Public Safety and Law Enforcement.
  • Social Media Influence on Political Opinions.

Statistical Experiment Ideas

  • The Effect of Light on Plant Growth.
  • Memory Retention: Visual vs. Auditory Information.
  • Caffeine Consumption and Cognitive Performance.
  • The Impact of Exercise on Stress Levels.
  • Testing the Efficacy of Natural vs. Chemical Fertilizers.
  • The Influence of Color on Mood and Perception.
  • Sleep Patterns: Analyzing Factors Affecting Sleep Quality.
  • The Effectiveness of Different Types of Water Filters.
  • Analyzing the Impact of Room Temperature on Concentration.
  • Testing the Strength of Different Brands of Batteries.

Easy Stats Project Ideas

  • Average Daily Screen Time Among Students.
  • Analyzing the Most Common Birth Months.
  • Favorite School Subjects Among Peers.
  • Average Time Spent on Homework Weekly.
  • Frequency of Public Transport Usage.
  • Comparison of Pet Ownership in the Community.
  • Favorite Types of Movies or TV Shows.
  • Daily Water Consumption Habits.
  • Common Breakfast Choices and Their Nutritional Value.
  • Steps Count: A Week-Long Study.

Business Ideas for Statistics Project

  • Analyzing Customer Satisfaction in Retail Stores.
  • Market Analysis of a New Product Launch.
  • Employee Performance Metrics and Organizational Success.
  • Sales Data Analysis for E-commerce Websites.
  • Impact of Advertising on Consumer Buying Behavior.
  • Analysis of Supply Chain Efficiency.
  • Customer Loyalty and Retention Strategies.
  • Trend Analysis in Social Media Marketing.
  • Financial Risk Assessment in Investment Decisions.
  • Market Segmentation and Targeting Strategies.

Socio-Economic Easy Statistics Project Ideas

  • Income Inequality and Its Impact on Education.
  • The Correlation Between Unemployment Rates and Crime Levels.
  • Analyzing the Effects of Minimum Wage Changes.
  • The Relationship Between Public Health Expenditure and Population Health.
  • Demographic Analysis of Housing Affordability.
  • The Impact of Immigration on Local Economies.
  • Analysis of Gender Pay Gap in Different Industries.
  • Statistical Study of Homelessness Causes and Solutions.
  • Education Levels and Their Impact on Job Opportunities.
  • Analyzing Trends in Government Social Spending.

Experiment Ideas for Statistics and Analysis

  • Multivariate Analysis of Global Climate Change Data.
  • Time-Series Analysis in Predicting Economic Recessions.
  • Logistic Regression in Medical Outcome Prediction.
  • Machine Learning Applications in Statistical Modeling.
  • Network Analysis in Social Media Data.
  • Bayesian Analysis of Scientific Research Data.
  • The Use of Factor Analysis in Psychology Studies.
  • Spatial Data Analysis in Geographic Information Systems (GIS).
  • Predictive Analysis in Customer Relationship Management (CRM).
  • Cluster Analysis in Market Research.

Conclusion: Navigating the World of Data Through Statistics

In this exploration of good statistics project ideas, we’ve ventured through various topics, from the straightforward to the complex, from personal finance to global climate change. These ideas are gateways to understanding the world of data and statistics, and platforms for cultivating critical thinking and analytical skills. Whether you’re a high school student, a college student, or a professional, engaging in these projects can deepen your appreciation of how statistics shapes our understanding of the world around us. These projects encourage exploration, inquiry, and a deeper engagement with the world of numbers, trends, and patterns – the essence of statistics.

Readers also enjoyed

The Data Deep Dive: Statistical Analysis Guide

WHY WAIT? PLACE AN ORDER RIGHT NOW!

Just fill out the form, press the button, and have no worries!

We use cookies to give you the best experience possible. By continuing we’ll assume you board with our cookie policy.

research topics with statistics

research topics with statistics

Research Topics & Ideas: Data Science

50 Topic Ideas To Kickstart Your Research Project

Research topics and ideas about data science and big data analytics

If you’re just starting out exploring data science-related topics for your dissertation, thesis or research project, you’ve come to the right place. In this post, we’ll help kickstart your research by providing a hearty list of data science and analytics-related research ideas , including examples from recent studies.

PS – This is just the start…

We know it’s exciting to run through a list of research topics, but please keep in mind that this list is just a starting point . These topic ideas provided here are intentionally broad and generic , so keep in mind that you will need to develop them further. Nevertheless, they should inspire some ideas for your project.

To develop a suitable research topic, you’ll need to identify a clear and convincing research gap , and a viable plan to fill that gap. If this sounds foreign to you, check out our free research topic webinar that explores how to find and refine a high-quality research topic, from scratch. Alternatively, consider our 1-on-1 coaching service .

Research topic idea mega list

Data Science-Related Research Topics

  • Developing machine learning models for real-time fraud detection in online transactions.
  • The use of big data analytics in predicting and managing urban traffic flow.
  • Investigating the effectiveness of data mining techniques in identifying early signs of mental health issues from social media usage.
  • The application of predictive analytics in personalizing cancer treatment plans.
  • Analyzing consumer behavior through big data to enhance retail marketing strategies.
  • The role of data science in optimizing renewable energy generation from wind farms.
  • Developing natural language processing algorithms for real-time news aggregation and summarization.
  • The application of big data in monitoring and predicting epidemic outbreaks.
  • Investigating the use of machine learning in automating credit scoring for microfinance.
  • The role of data analytics in improving patient care in telemedicine.
  • Developing AI-driven models for predictive maintenance in the manufacturing industry.
  • The use of big data analytics in enhancing cybersecurity threat intelligence.
  • Investigating the impact of sentiment analysis on brand reputation management.
  • The application of data science in optimizing logistics and supply chain operations.
  • Developing deep learning techniques for image recognition in medical diagnostics.
  • The role of big data in analyzing climate change impacts on agricultural productivity.
  • Investigating the use of data analytics in optimizing energy consumption in smart buildings.
  • The application of machine learning in detecting plagiarism in academic works.
  • Analyzing social media data for trends in political opinion and electoral predictions.
  • The role of big data in enhancing sports performance analytics.
  • Developing data-driven strategies for effective water resource management.
  • The use of big data in improving customer experience in the banking sector.
  • Investigating the application of data science in fraud detection in insurance claims.
  • The role of predictive analytics in financial market risk assessment.
  • Developing AI models for early detection of network vulnerabilities.

Research topic evaluator

Data Science Research Ideas (Continued)

  • The application of big data in public transportation systems for route optimization.
  • Investigating the impact of big data analytics on e-commerce recommendation systems.
  • The use of data mining techniques in understanding consumer preferences in the entertainment industry.
  • Developing predictive models for real estate pricing and market trends.
  • The role of big data in tracking and managing environmental pollution.
  • Investigating the use of data analytics in improving airline operational efficiency.
  • The application of machine learning in optimizing pharmaceutical drug discovery.
  • Analyzing online customer reviews to inform product development in the tech industry.
  • The role of data science in crime prediction and prevention strategies.
  • Developing models for analyzing financial time series data for investment strategies.
  • The use of big data in assessing the impact of educational policies on student performance.
  • Investigating the effectiveness of data visualization techniques in business reporting.
  • The application of data analytics in human resource management and talent acquisition.
  • Developing algorithms for anomaly detection in network traffic data.
  • The role of machine learning in enhancing personalized online learning experiences.
  • Investigating the use of big data in urban planning and smart city development.
  • The application of predictive analytics in weather forecasting and disaster management.
  • Analyzing consumer data to drive innovations in the automotive industry.
  • The role of data science in optimizing content delivery networks for streaming services.
  • Developing machine learning models for automated text classification in legal documents.
  • The use of big data in tracking global supply chain disruptions.
  • Investigating the application of data analytics in personalized nutrition and fitness.
  • The role of big data in enhancing the accuracy of geological surveying for natural resource exploration.
  • Developing predictive models for customer churn in the telecommunications industry.
  • The application of data science in optimizing advertisement placement and reach.

Recent Data Science-Related Studies

While the ideas we’ve presented above are a decent starting point for finding a research topic, they are fairly generic and non-specific. So, it helps to look at actual studies in the data science and analytics space to see how this all comes together in practice.

Below, we’ve included a selection of recent studies to help refine your thinking. These are actual studies,  so they can provide some useful insight as to what a research topic looks like in practice.

  • Data Science in Healthcare: COVID-19 and Beyond (Hulsen, 2022)
  • Auto-ML Web-application for Automated Machine Learning Algorithm Training and evaluation (Mukherjee & Rao, 2022)
  • Survey on Statistics and ML in Data Science and Effect in Businesses (Reddy et al., 2022)
  • Visualization in Data Science VDS @ KDD 2022 (Plant et al., 2022)
  • An Essay on How Data Science Can Strengthen Business (Santos, 2023)
  • A Deep study of Data science related problems, application and machine learning algorithms utilized in Data science (Ranjani et al., 2022)
  • You Teach WHAT in Your Data Science Course?!? (Posner & Kerby-Helm, 2022)
  • Statistical Analysis for the Traffic Police Activity: Nashville, Tennessee, USA (Tufail & Gul, 2022)
  • Data Management and Visual Information Processing in Financial Organization using Machine Learning (Balamurugan et al., 2022)
  • A Proposal of an Interactive Web Application Tool QuickViz: To Automate Exploratory Data Analysis (Pitroda, 2022)
  • Applications of Data Science in Respective Engineering Domains (Rasool & Chaudhary, 2022)
  • Jupyter Notebooks for Introducing Data Science to Novice Users (Fruchart et al., 2022)
  • Towards a Systematic Review of Data Science Programs: Themes, Courses, and Ethics (Nellore & Zimmer, 2022)
  • Application of data science and bioinformatics in healthcare technologies (Veeranki & Varshney, 2022)
  • TAPS Responsibility Matrix: A tool for responsible data science by design (Urovi et al., 2023)
  • Data Detectives: A Data Science Program for Middle Grade Learners (Thompson & Irgens, 2022)
  • MACHINE LEARNING FOR NON-MAJORS: A WHITE BOX APPROACH (Mike & Hazzan, 2022)
  • COMPONENTS OF DATA SCIENCE AND ITS APPLICATIONS (Paul et al., 2022)
  • Analysis on the Application of Data Science in Business Analytics (Wang, 2022)

As you can see, these research topics are a lot more focused than the generic topic ideas we presented earlier. So, for you to develop a high-quality research topic, you’ll need to get specific and laser-focused on a specific context with specific variables of interest.  In the video below, we explore some other important things you’ll need to consider when crafting your research topic.

Get 1-On-1 Help

If you’re still unsure about how to find a quality research topic, check out our Research Topic Kickstarter service, which is the perfect starting point for developing a unique, well-justified research topic.

Research Topic Kickstarter - Need Help Finding A Research Topic?

I have to submit dissertation. can I get any help

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

statistics project topics for college students

155 Best Statistics Project Topics for College Students

Are you a college student seeking an exciting project that blends your love for numbers with real-world impact? Your search ends here! Statistics projects are your gateway to unlock the power of data analysis and make a difference. The first step? Selecting the perfect project topic. It’s the foundation of your success. 

In this blog, we’ve made it easy for you. We’ve compiled a list of the best statistics project topics for college students, ensuring you have a wealth of options to choose from. Let’s dive into the world of statistics and find the ideal project that’ll make your academic journey truly remarkable.

Table of Contents

What are Statistics Topics?

Statistics topics encompass a wide range of subjects within the field of data analysis. These topics involve the collection, interpretation, and presentation of numerical data to draw meaningful conclusions. Some common statistics topics include data analysis, hypothesis testing, regression analysis, predictive modeling, and more. These topics are applied in various fields such as finance, healthcare, sports, psychology, and environmental science, to name a few. Statistics project topics for college students help researchers and analysts make informed decisions, solve real-world problems, and uncover patterns and trends within data, making them a fundamental aspect of academic and practical research.

Why Choose the Right Statistics Project Topic?

Before we dive into the list of statistics project topics for college students, you need to know the importance of choosing the project topics of statistics. Choosing the right statistics project topic is of paramount importance for several reasons:

  • Relevance: A well-chosen topic ensures that your project aligns with your academic and career goals.
  • Motivation: Selecting a topic that genuinely interests you keeps you motivated throughout the project.
  • Data Availability: It ensures that there is sufficient data available for analysis, preventing potential roadblocks.
  • Real-World Impact: A carefully chosen topic can lead to practical applications and contribute to solving real-world problems.
  • Academic Success: The right topic increases the likelihood of academic success, leading to higher grades and a stronger understanding of statistical concepts.
  • Career Opportunities: A project aligned with your interests can open doors to career opportunities in your chosen field.
  • Personal Growth: It allows you to grow as a statistician or data analyst, gaining valuable skills and experience.

Also Read: Best Project Ideas for Software Engineering

List of Statistics Project Topics for College Students

Here is a complete list of statistics project topics for college students in 2023:

Descriptive Statistics

  • Mean, Median, and Mode Analysis in Different Datasets
  • Variance and Standard Deviation Comparison in Various Fields
  • Exploring Measures of Central Tendency in Finance
  • Analyzing Data Skewness and Kurtosis
  • Quartile and Percentile Analysis in Health Data
  • Frequency Distribution of Crime Rates in Different Regions
  • Interquartile Range Examination in Educational Data
  • Comparative Study of Dispersion in Sales Data
  • Histogram Analysis for Population Growth
  • Time Series Analysis of Temperature Data
  • Measures of Spread in Sports Statistics
  • Analysis of Wealth Distribution using Box Plots
  • Exploring Descriptive Statistics in Environmental Data
  • Examining Data Distribution in Political Surveys
  • Analyzing Income Inequality using Gini Coefficient
  • Correlation and Covariance in Social Sciences

Hypothesis Testing

  • Testing the Gender Pay Gap Hypothesis
  • T-Test Analysis of Educational Interventions
  • Chi-Square Analysis in Healthcare Outcomes
  • ANOVA Testing in Market Research
  • Z-Test for Hypothesis in Retail Data
  • Paired T-Test for Employee Productivity
  • Wilcoxon Rank-Sum Test in Customer Satisfaction
  • McNemar’s Test in Social Media Usage
  • Kruskal-Wallis Test for Regional Sales Comparison
  • Mann-Whitney U Test in Product Preferences
  • Two-Proportion Z-Test in Voting Behavior
  • Poisson Test in Accident Frequency
  • Testing the Null Hypothesis in Quality Control
  • Analysis of Correlation Significance in Marriage Age
  • Hypothesis Testing in Criminal Justice Reform
  • A/B Testing for Website Conversion Rates

Regression Analysis

  • Simple Linear Regression in Predicting House Prices
  • Multiple Regression Analysis in Car Mileage
  • Logistic Regression for Credit Risk Assessment
  • Polynomial Regression for Stock Market Prediction
  • Ridge Regression in Environmental Impact Assessment
  • Lasso Regression in Movie Box Office Predictions
  • Time Series Forecasting with Exponential Smoothing
  • ARIMA Modeling for Sales Forecasting
  • Regression Trees for Customer Churn Prediction
  • Analysis of Non-Linear Regression in Health Data
  • Stepwise Regression for Predicting Academic Success
  • Poisson Regression in Traffic Accident Analysis
  • Logistic Regression for Disease Diagnosis
  • Hierarchical Regression in Employee Satisfaction
  • Multiple Regression Analysis in Urban Development
  • Quantile Regression in Income Prediction

Bayesian Statistics

  • Bayesian Inference in Drug Efficacy Testing
  • Bayesian Decision Theory in Investment Strategies
  • Bayesian Updating in Weather Forecasting
  • Bayesian Networks for Disease Outbreak Prediction
  • Bayesian Parameter Estimation in Machine Learning
  • Markov Chain Monte Carlo (MCMC) in Political Polling
  • Bayesian Classification in Email Spam Filtering
  • Bayesian Optimization for Hyperparameter Tuning
  • Bayesian Survival Analysis in Medical Research
  • Bayesian Econometrics in Economic Forecasting
  • Bayesian Analysis of Social Network Data
  • Bayesian Belief Networks in Fraud Detection
  • Bayesian Time Series Analysis in Financial Markets
  • Bayesian Inference in Image Recognition
  • Bayesian Spatial Analysis for Crime Prediction
  • Bayesian Meta-Analysis in Clinical Trials

Experimental Design

  • Factorial Design in Manufacturing Process Optimization
  • Randomized Controlled Trials in Healthcare Interventions
  • Latin Square Design in Agricultural Experiments
  • Split-Plot Design for Quality Control
  • Response Surface Methodology in Product Development
  • Completely Randomized Design in Education Assessment
  • Block Design for Agricultural Field Trials
  • Fractional Factorial Design in Chemical Engineering
  • Cross-Over Design in Drug Testing
  • Two-Level Factorial Design for Marketing Campaigns
  • Nested Design in Wildlife Ecology Studies
  • Factorial ANOVA in Psychological Experiments
  • Repeated Measures Design in Sports Performance Analysis
  • Taguchi Design of Experiments in Engineering
  • D-Optimal Design in Clinical Trials
  • Central Composite Design for Food Process Optimization

Nonparametric Statistics

  • Wilcoxon Signed-Rank Test in Employee Salaries
  • Mann-Whitney U Test in Online Shopping Habits
  • Kruskal-Wallis Test for Restaurant Ratings
  • Spearman’s Rank Correlation in Social Media Metrics
  • Friedman Test in Voting Preference Analysis
  • Sign Test in Stock Price Movement
  • Kendall’s Tau in Customer Satisfaction
  • Anderson-Darling Test for Data Normality
  • McNemar’s Test for Medical Diagnosis
  • Kolmogorov-Smirnov Test in Marketing Analytics
  • Nonparametric Regression Analysis in Real Estate
  • The Hodges-Lehmann Estimator in Financial Data
  • Nonparametric Tests for Time Series Data
  • Mann-Whitney U Test in Product Reviews
  • Mood’s Median Test in Consumer Preferences
  • Comparing Nonparametric Tests in Various Fields

Multivariate Analysis

  • Principal Component Analysis in Financial Risk Assessment
  • Factor Analysis for Customer Satisfaction
  • Canonical Correlation Analysis in Marketing Research
  • Discriminant Analysis for Species Classification
  • Cluster Analysis in Social Network Grouping
  • Multidimensional Scaling for Image Similarity
  • MANOVA in Psychological Assessment
  • Redundancy Analysis in Environmental Impact Studies
  • Structural Equation Modeling (SEM) for Education
  • Canonical Discriminant Analysis in Healthcare Outcomes
  • Correspondence Analysis for Political Surveys
  • Path Analysis in Consumer Behavior
  • Multiway Analysis in Image Compression
  • Discriminant Analysis in Credit Scoring
  • Cluster Analysis for Customer Segmentation
  • Multivariate Time Series Analysis in Stock Prices

Survival Analysis

  • Kaplan-Meier Survival Analysis in Cancer Studies
  • Cox Proportional Hazards Model in Finance
  • Log-Rank Test in Epidemiology
  • Weibull Distribution in Engineering Reliability
  • Parametric Survival Models in Pharmaceutical Trials
  • Survival Analysis in Employee Retention
  • Competing Risk Survival Analysis in Healthcare
  • Bayesian Survival Analysis in Disease Progression
  • Nonparametric Survival Analysis in Social Sciences
  • Survival Analysis in Customer Churn
  • Survival Analysis for Product Durability
  • Time-Dependent Covariates in Survival Studies
  • Frailty Models in Aging Research
  • Cure Models in Medical Research
  • Event History Analysis in Demography
  • Survival Analysis of Wildlife Populations

Time Series Analysis

  • Autocorrelation Function (ACF) and Partial ACF (PACF) Analysis
  • Box-Jenkins Methodology for ARIMA Modeling
  • Seasonal Decomposition of Time Series (STL)
  • Exponential Smoothing Methods for Forecasting
  • GARCH Models for Financial Volatility
  • State Space Models for Economic Time Series
  • Time Series Clustering Techniques
  • Granger Causality Testing in Macroeconomics
  • ARMA-GARCH Models in Stock Market Volatility
  • Time Series Forecasting in Energy Consumption
  • Wavelet Transform Analysis in Signal Processing
  • Multivariate Time Series Forecasting in Supply Chain
  • Long Short-Term Memory (LSTM) in Deep Learning
  • Time Series Decomposition in Retail Sales
  • Vector Autoregression (VAR) Models in Macroeconomic Analysis
  • Time Series Analysis in Weather Forecasting

Machine Learning and Big Data

  • Predictive Analytics using Machine Learning Algorithms
  • Feature Selection Techniques in Big Data Analysis
  • Random Forest Classification in Customer Churn Prediction
  • Support Vector Machines (SVM) for Anomaly Detection
  • Natural Language Processing (NLP) for Sentiment Analysis
  • Clustering and Association Analysis in Market Basket Data
  • Recommender Systems in E-commerce
  • Deep Learning for Image Recognition
  • Time Series Forecasting with Recurrent Neural Networks (RNN)
  • Text Mining and Topic Modeling for Social Media Data
  • Ensemble Learning Methods in Credit Scoring
  • Big Data Analysis using Hadoop and Spark
  • Classification and Regression Trees (CART) in Healthcare
  • Unsupervised Learning for Customer Segmentation
  • Machine Learning in Fraud Detection
  • Dimensionality Reduction Techniques in High-Dimensional Data

These statistics project topics for college students should provide a diverse range of options for their statistics projects across various fields and methodologies.

How to Select the Perfect Statistics Project Topic?

Selecting the perfect statistics project topics for college students involves the following steps:

  • Identify Your Interests: Choose a topic that genuinely interests you as it will keep you motivated throughout the project.
  • Research Existing Data: Ensure that data related to your chosen topic is accessible and can be used for analysis.
  • Define a Clear Objective: Clearly state the purpose of your project and the questions you aim to answer.
  • Consult with Professors: Seek guidance from your professors to ensure the feasibility and relevance of your chosen topic.
  • Consider Real-world Impact: Think about how your project can contribute to solving real-world problems or advancing a particular field.
  • Plan Your Methodology: Outline the statistical techniques and tools you intend to use for analysis.
  • Stay Organized: Keep detailed records of your work, data sources, and results to make the reporting phase easier.

In conclusion, the significance of selecting the right statistics project topics for college students cannot be overstated. It is the initial stride on your academic journey that sets the stage for a fulfilling and impactful experience. Fortunately, the diverse array of statistics project topics, spanning fields like sports, healthcare, finance, and psychology, ensures that there’s something for everyone. Your project is not merely an academic exercise but a chance to explore your passion and contribute meaningfully to your chosen area of study. By adhering to the steps outlined for topic selection, you can confidently venture into the world of statistics, where learning and discovery go hand in hand. So, choose wisely and embark on a statistical journey that promises both knowledge and fulfillment.

FAQs (Statistics Project Topics for College Students)

1. can i choose a statistics project topic outside my major.

Absolutely! Choosing a topic that interests you is more important than sticking to your major.

2. How do I access the necessary data for my project?

You can find datasets online, in academic libraries, or by collaborating with professionals in relevant fields.

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Top 50 Statistics Project Ideas [Revised]

Statistics Project Ideas

  • Post author By admin
  • April 23, 2024

Welcome, curious minds! Today, we’re diving into the exciting world of statistics projects. Now, before you let out a groan thinking about boring numbers, let me tell you something – statistics can be fun, useful, and even eye-opening! Whether you’re a student looking for a cool project or just someone intrigued by the power of numbers, stick around. We’re going to explore different types of statistics project ideas you can try out.

Table of Contents

Factors to Consider When Choosing a Project

So, you’re ready to embark on a statistics project adventure. Before you jump in, it’s essential to consider a few key factors. These considerations will not only help you choose the right project but also ensure a smoother journey from start to finish.

  • Interest and Relevance
  • Interest: First and foremost, pick a topic that genuinely interests you. Passion drives motivation, and when you’re excited about a subject, the project becomes more enjoyable.
  • Relevance: Consider the real-world relevance of your project. Is it something that has practical applications? Perhaps it’s an issue in your community, a challenge in your field of study, or a topic you’ve always been curious about.
  • Available Data
  • Data Access: Do you have access to the data you need? It could be public datasets, surveys you conduct, or information from your workplace or school.
  • Data Quality: Ensure the data you’re working with is reliable and of good quality. Poor-quality data can lead to inaccurate conclusions.
  • Complexity and Feasibility
  • Start Simple: Especially if you’re new to statistics projects, it’s wise to start with something manageable. Overly complex projects can be overwhelming and may not be completed successfully.
  • Resources: Consider the resources you have at your disposal. This includes time, software, access to experts or mentors, and any other tools you’ll need.
  • Potential Impact or Contribution
  • Who Benefits: Think about who could benefit from your project. Is it purely for academic purposes, or could it have real-world applications? Projects with tangible impacts can be incredibly rewarding.
  • Contribution: Consider how your project fits into the larger picture. Could it contribute to existing research, shed light on an important issue, or offer insights that haven’t been explored before?
  • Ethical Considerations
  • Privacy and Consent: If your project involves human subjects or sensitive data, ensure you have proper consent and follow ethical guidelines.
  • Bias Awareness: Be aware of potential biases in your data collection and analysis. Take steps to minimize biases and ensure fairness in your conclusions.
  • Timeline and Scope
  • Realistic Timeline: Be realistic about how much time you have to dedicate to the project. Consider deadlines and other commitments.
  • Project Scope: Make sure you know exactly what your project is about. What questions are you trying to answer, and what do you hope to find out? This will help keep your project focused and manageable.
  • Learning Objectives
  • Skills Development: Consider what skills you want to develop through this project. Are you looking to improve your data analysis, presentation, or critical thinking skills?
  • Learning Goals: Define clear learning goals. What do you hope to learn or discover through this project? Setting objectives will guide your work and help you stay on track.
  • Feedback and Iteration
  • Plan for Feedback: Consider how you’ll gather feedback throughout the project. This could be from peers, instructors, or experts in the field.
  • Iterative Process: Understand that projects often evolve. Be open to making adjustments based on feedback and new insights that emerge during your analysis.

Top 50 Statistics Project Ideas: Category Wise

Health and medicine.

  • Analyze patient recovery times for different treatments.
  • Investigate the relationship between exercise frequency and heart health.
  • Study the effectiveness of different diets on weight loss.
  • Compare the prevalence of mental health disorders across age groups.
  • Examine the impact of smoking on lung capacity using a controlled study.
  • Analyze hospital readmission rates for specific conditions.

Business and Economics

  • Conduct a market segmentation analysis for a new product.
  • Analyze customer churn rates for a subscription-based service.
  • Study the impact of advertising on product sales.
  • Compare the financial performance of companies in different industries.
  • Predict stock market trends using historical data.
  • Analyze factors influencing employee satisfaction and productivity.

Social Sciences

  • Investigate the relationship between income levels and voting patterns.
  • Analyze survey data to understand public perception of climate change.
  • Study crime rates and factors influencing crime in urban areas.
  • Examine the impact of social media on interpersonal relationships.
  • Analyze trends in education attainment across generations.
  • Investigate the gender pay gap in a specific industry.

Environmental Studies

  • Study the effects of pollution on respiratory health in a city.
  • Analyze temperature trends to understand climate change in a region.
  • Investigate the impact of deforestation on biodiversity.
  • Study the effectiveness of recycling programs in reducing waste.
  • Analyze water quality data from different sources (rivers, lakes, etc.).
  • Investigate the relationship between air quality and asthma rates.
  • Analyze standardized test scores to identify trends in student performance.
  • Study the impact of class size on academic achievement.
  • Investigate factors influencing student dropout rates.
  • Analyze the effectiveness of different teaching methods on learning outcomes.
  • Study the correlation between parental involvement and student success.
  • Analyze trends in college acceptance rates over the years.

Psychology and Behavior

  • Study the impact of social media use on self-esteem among teenagers.
  • Analyze sleep patterns and their effects on cognitive performance.
  • Investigate the correlation between stress levels and physical health.
  • Study the effects of music on productivity in a workplace setting.
  • Analyze factors influencing consumer purchasing decisions.
  • Investigate the relationship between personality traits and career choices.

Technology and Data Analysis

  • Analyze website traffic data to optimize user experience.
  • Study the effectiveness of different spam filters in email systems.
  • Investigate trends in mobile app usage across demographics.
  • Analyze cybersecurity threats and vulnerabilities in a network.
  • Study the impact of social media algorithms on content visibility.
  • Analyze user reviews to identify trends and patterns in product satisfaction.

Demographics and Population Studies

  • Study population growth and migration patterns in a specific region.
  • Analyze demographic trends to predict future housing needs.
  • Investigate the impact of aging populations on healthcare systems.
  • Study the correlation between income levels and family size.
  • Analyze trends in marriage and divorce rates over the years.
  • Investigate factors influencing immigration patterns.

Sports and Fitness

  • Analyze performance data to identify factors contributing to athletic success.
  • Study the impact of different training programs on athlete performance.

How Do You Start A Statistics Project?

Starting a statistics project can seem daunting at first, but with a structured approach, it becomes manageable and even exciting. Here’s a step-by-step guide to help you kick off your statistics project:

Step 1: Define Your Objective

  • Identify Your Interest: What topic interests you the most? Choose a subject that you’re curious about or passionate about.
  • Define Your Goal: What do you want to achieve with this project? Are you trying to uncover trends, test a hypothesis, or make predictions?

Step 2: Formulate a Research Question

  • Narrow Down Your Focus: Based on your objective, create a specific research question. It should be clear, concise, and focused.
  • Example: “Does exercise frequency affect heart rate in adults over 50?”

Step 3: Gather Data

  • Identify Data Sources: Determine where you’ll get your data. It could be from public datasets, surveys, experiments, or existing research.
  • Collect Data: If you need to collect new data, design a methodical approach. For surveys, create clear questions. For experiments, plan your variables and controls.

Step 4: Clean and Prepare Your Data

  • Data Cleaning: This is crucial. Remove errors, inconsistencies, and outliers from your dataset.
  • Organize Data: Arrange your data in a format suitable for analysis. Use software like Excel, Python, R, or SPSS for this step.

Step 5: Choose Your Statistical Methods

  • Select Appropriate Tests: Based on your research question and data type (continuous, categorical, etc.), choose the right statistical tests. Common tests include t-tests, ANOVA, regression, chi-square, etc.
  • Consider Descriptive vs. Inferential: Decide if you’re focusing on descriptive statistics (summarizing data) or inferential statistics (making predictions or generalizations).

Step 6: Perform Analysis

  • Run Your Tests: Use your chosen statistical software to run the tests.
  • Interpret Results: Analyze the output. What do the numbers and graphs tell you? Do they support your hypothesis or research question?

Step 7: Create Visualizations

  • Charts and Graphs: Create visual representations of your data . Bar charts, scatter plots, histograms, etc., can help convey your findings.
  • Narrate Your Story: Explain what each visualization means in relation to your research question.

Step 8: Draw Conclusions

  • Answer Your Research Question: Based on your analysis, what’s the answer to your research question?
  • Discuss Implications: What do your findings mean? How do they contribute to the existing knowledge in the field?

Step 9: Document Your Process

  • Write a Report: Document your entire process, from the research question to the conclusions. Include details about data sources, methods, and results.
  • Include Citations: If you used external sources or datasets, cite them properly.
  • Create Presentations: If needed, prepare a presentation to showcase your findings.

Step 10: Reflect and Iterate

  • Reflect on Your Experience: What did you learn from this project? What would you do differently next time?
  • Share Your Work: Present your project to peers, mentors, or teachers for feedback.
  • Consider Next Steps: Does your project lead to further questions or investigations? Think about the next phase of research.
  • Start Early: Give yourself plenty of time, especially for data collection and analysis.
  • Stay Organized: Keep track of your data sources, methods, and analysis steps.
  • Seek Help: If you’re stuck, don’t hesitate to ask for guidance from teachers, mentors, or online communities.
  • Enjoy the Process: Statistics projects can be fascinating and rewarding. Embrace the journey of discovery!

Phew! We’ve covered a lot, haven’t we? Hopefully, this journey through statistics projects has shown you that numbers aren’t just for mathematicians in stuffy rooms. They’re tools we can all use to uncover truths, make decisions, and even change the world a bit.

So, whether you’re intrigued by the idea of predicting the stock market, exploring climate change data, or understanding why people love certain ice cream flavors, there are  statistics project ideas out there waiting for you. Go ahead, pick one that sparks your interest, gather some data, and let the numbers tell their story.

Remember, statistics isn’t just about math; it’s about curiosity, exploration, and making sense of the world around us. Happy analyzing!

  • australia (2)
  • duolingo (13)
  • Education (284)
  • General (78)
  • How To (18)
  • IELTS (127)
  • Latest Updates (162)
  • Malta Visa (6)
  • Permanent residency (1)
  • Programming (31)
  • Scholarship (1)
  • Sponsored (4)
  • Study Abroad (187)
  • Technology (12)
  • work permit (8)

Recent Posts

Top 10 Colleges For Study Abroad For Indian Students

Library Home

Statistics for Research Students

(2 reviews)

research topics with statistics

Erich C Fein, Toowoomba, Australia

John Gilmour, Toowoomba, Australia

Tayna Machin, Toowoomba, Australia

Liam Hendry, Toowoomba, Australia

Copyright Year: 2022

ISBN 13: 9780645326109

Publisher: University of Southern Queensland

Language: English

Formats Available

Conditions of use.

Attribution

Learn more about reviews.

Reviewed by Sojib Bin Zaman, Assistant Professor, James Madison University on 3/18/24

From exploring data in Chapter One to learning advanced methodologies such as moderation and mediation in Chapter Seven, the reader is guided through the entire process of statistical methodology. With each chapter covering a different statistical... read more

Comprehensiveness rating: 5 see less

From exploring data in Chapter One to learning advanced methodologies such as moderation and mediation in Chapter Seven, the reader is guided through the entire process of statistical methodology. With each chapter covering a different statistical technique and methodology, students gain a comprehensive understanding of statistical research techniques.

Content Accuracy rating: 5

During my review of the textbook, I did not find any notable errors or omissions. In my opinion, the material was comprehensive, resulting in an enjoyable learning experience.

Relevance/Longevity rating: 5

A majority of the textbook's content is aligned with current trends, advancements, and enduring principles in the field of statistics. Several emerging methodologies and technologies are incorporated into this textbook to enhance students' statistical knowledge. It will be a valuable resource in the long run if students and researchers can properly utilize this textbook.

Clarity rating: 5

A clear explanation of complex statistical concepts such as moderation and mediation is provided in the writing style. Examples and problem sets are provided in the textbook in a comprehensive and well-explained manner.

Consistency rating: 5

Each chapter maintains consistent formatting and language, with resources organized consistently. Headings and subheadings worked well.

Modularity rating: 5

The textbook is well-structured, featuring cohesive chapters that flow smoothly from one to another. It is carefully crafted with a focus on defining terms clearly, facilitating understanding, and ensuring logical flow.

Organization/Structure/Flow rating: 5

From basic to advanced concepts, this book provides clarity of progression, logical arranging of sections and chapters, and effective headings and subheadings that guide readers. Further, the organization provides students with a lot of information on complex statistical methodologies.

Interface rating: 5

The available formats included PDFs, online access, and e-books. The e-book interface was particularly appealing to me, as it provided seamless navigation and viewing of content without compromising usability.

Grammatical Errors rating: 5

I found no significant errors in this document, and the overall quality of the writing was commendable. There was a high level of clarity and coherence in the text, which contributed to a positive reading experience.

Cultural Relevance rating: 5

The content of the book, as well as its accompanying examples, demonstrates a dedication to inclusivity by taking into account cultural diversity and a variety of perspectives. Furthermore, the material actively promotes cultural diversity, which enables readers to develop a deeper understanding of various cultural contexts and experiences.

In summary, this textbook provides a comprehensive resource tailored for advanced statistics courses, characterized by meticulous organization and practical supplementary materials. This book also provides valuable insights into the interpretation of computer output that enhance a greater understanding of each concept presented.

Reviewed by Zhuanzhuan Ma, Assistant Professor, University of Texas Rio Grande Valley on 3/7/24

The textbook covers all necessary areas and topics for students who want to conduct research in statistics. It includes foundational concepts, application methods, and advanced statistical techniques relevant to research methodologies. read more

The textbook covers all necessary areas and topics for students who want to conduct research in statistics. It includes foundational concepts, application methods, and advanced statistical techniques relevant to research methodologies.

The textbook presents statistical methods and data accurately, with up-to-date statistical practices and examples.

Relevance/Longevity rating: 4

The textbook's content is relevant to current research practices. The book includes contemporary examples and case studies that are currently prevalent in research communities. One small drawback is that the textbook did not include the example code for conduct data analysis.

The textbook break down complex statistical methods into understandable segments. All the concepts are clearly explained. Authors used diagrams, examples, and all kinds of explanations to facilitate learning for students with varying levels of background knowledge.

The terminology, framework, and presentation style (e.g. concepts, methodologies, and examples) seem consistent throughout the book.

The textbook is well organized that each chapter and section can be used independently without losing the context necessary for understanding. Also, the modular structure allows instructors and students to adapt the materials for different study plans.

The textbook is well-organized and progresses from basic concepts to more complex methods, making it easier for students to follow along. There is a logical flow of the content.

The digital format of the textbook has an interface that includes the design, layout, and navigational features. It is easier to use for readers.

The quality of writing is very high. The well-written texts help both instructors and students to follow the ideas clearly.

The textbook does not perpetuate stereotypes or biases and are inclusive in their examples, language, and perspectives.

Table of Contents

  • Acknowledgement of Country
  • Accessibility Information
  • About the Authors
  • Introduction
  • I. Chapter One - Exploring Your Data
  • II. Chapter Two - Test Statistics, p Values, Confidence Intervals and Effect Sizes
  • III. Chapter Three- Comparing Two Group Means
  • IV. Chapter Four - Comparing Associations Between Two Variables
  • V. Chapter Five- Comparing Associations Between Multiple Variables
  • VI. Chapter Six- Comparing Three or More Group Means
  • VII. Chapter Seven- Moderation and Mediation Analyses
  • VIII. Chapter Eight- Factor Analysis and Scale Reliability
  • IX. Chapter Nine- Nonparametric Statistics

Ancillary Material

About the book.

This book aims to help you understand and navigate statistical concepts and the main types of statistical analyses essential for research students. 

About the Contributors

Dr Erich C. Fein  is an Associate Professor at the University of Southern Queensland. He received substantial training in research methods and statistics during his PhD program at Ohio State University.  He currently teaches four courses in research methods and statistics.  His research involves leadership, occupational health, and motivation, as well as issues related to research methods such as the following article: “ Safeguarding Access and Safeguarding Meaning as Strategies for Achieving Confidentiality .”  Click here to link to his  Google Scholar  profile.

Dr John Gilmour  is a Lecturer at the University of Southern Queensland and a Postdoctoral Research Fellow at the University of Queensland, His research focuses on the locational and temporal analyses of crime, and the evaluation of police training and procedures. John has worked across many different sectors including PTSD, social media, criminology, and medicine.

Dr Tanya Machin  is a Senior Lecturer and Associate Dean at the University of Southern Queensland. Her research focuses on social media and technology across the lifespan. Tanya has co-taught Honours research methods with Erich, and is also interested in ethics and qualitative research methods. Tanya has worked across many different sectors including primary schools, financial services, and mental health.

Dr Liam Hendry  is a Lecturer at the University of Southern Queensland. His research interests focus on long-term and short-term memory, measurement of human memory, attention, learning & diverse aspects of cognitive psychology.

Contribute to this Page

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

The Beginner's Guide to Statistical Analysis | 5 Steps & Examples

Statistical analysis means investigating trends, patterns, and relationships using quantitative data . It is an important research tool used by scientists, governments, businesses, and other organizations.

To draw valid conclusions, statistical analysis requires careful planning from the very start of the research process . You need to specify your hypotheses and make decisions about your research design, sample size, and sampling procedure.

After collecting data from your sample, you can organize and summarize the data using descriptive statistics . Then, you can use inferential statistics to formally test hypotheses and make estimates about the population. Finally, you can interpret and generalize your findings.

This article is a practical introduction to statistical analysis for students and researchers. We’ll walk you through the steps using two research examples. The first investigates a potential cause-and-effect relationship, while the second investigates a potential correlation between variables.

Table of contents

Step 1: write your hypotheses and plan your research design, step 2: collect data from a sample, step 3: summarize your data with descriptive statistics, step 4: test hypotheses or make estimates with inferential statistics, step 5: interpret your results, other interesting articles.

To collect valid data for statistical analysis, you first need to specify your hypotheses and plan out your research design.

Writing statistical hypotheses

The goal of research is often to investigate a relationship between variables within a population . You start with a prediction, and use statistical analysis to test that prediction.

A statistical hypothesis is a formal way of writing a prediction about a population. Every research prediction is rephrased into null and alternative hypotheses that can be tested using sample data.

While the null hypothesis always predicts no effect or no relationship between variables, the alternative hypothesis states your research prediction of an effect or relationship.

  • Null hypothesis: A 5-minute meditation exercise will have no effect on math test scores in teenagers.
  • Alternative hypothesis: A 5-minute meditation exercise will improve math test scores in teenagers.
  • Null hypothesis: Parental income and GPA have no relationship with each other in college students.
  • Alternative hypothesis: Parental income and GPA are positively correlated in college students.

Planning your research design

A research design is your overall strategy for data collection and analysis. It determines the statistical tests you can use to test your hypothesis later on.

First, decide whether your research will use a descriptive, correlational, or experimental design. Experiments directly influence variables, whereas descriptive and correlational studies only measure variables.

  • In an experimental design , you can assess a cause-and-effect relationship (e.g., the effect of meditation on test scores) using statistical tests of comparison or regression.
  • In a correlational design , you can explore relationships between variables (e.g., parental income and GPA) without any assumption of causality using correlation coefficients and significance tests.
  • In a descriptive design , you can study the characteristics of a population or phenomenon (e.g., the prevalence of anxiety in U.S. college students) using statistical tests to draw inferences from sample data.

Your research design also concerns whether you’ll compare participants at the group level or individual level, or both.

  • In a between-subjects design , you compare the group-level outcomes of participants who have been exposed to different treatments (e.g., those who performed a meditation exercise vs those who didn’t).
  • In a within-subjects design , you compare repeated measures from participants who have participated in all treatments of a study (e.g., scores from before and after performing a meditation exercise).
  • In a mixed (factorial) design , one variable is altered between subjects and another is altered within subjects (e.g., pretest and posttest scores from participants who either did or didn’t do a meditation exercise).
  • Experimental
  • Correlational

First, you’ll take baseline test scores from participants. Then, your participants will undergo a 5-minute meditation exercise. Finally, you’ll record participants’ scores from a second math test.

In this experiment, the independent variable is the 5-minute meditation exercise, and the dependent variable is the math test score from before and after the intervention. Example: Correlational research design In a correlational study, you test whether there is a relationship between parental income and GPA in graduating college students. To collect your data, you will ask participants to fill in a survey and self-report their parents’ incomes and their own GPA.

Measuring variables

When planning a research design, you should operationalize your variables and decide exactly how you will measure them.

For statistical analysis, it’s important to consider the level of measurement of your variables, which tells you what kind of data they contain:

  • Categorical data represents groupings. These may be nominal (e.g., gender) or ordinal (e.g. level of language ability).
  • Quantitative data represents amounts. These may be on an interval scale (e.g. test score) or a ratio scale (e.g. age).

Many variables can be measured at different levels of precision. For example, age data can be quantitative (8 years old) or categorical (young). If a variable is coded numerically (e.g., level of agreement from 1–5), it doesn’t automatically mean that it’s quantitative instead of categorical.

Identifying the measurement level is important for choosing appropriate statistics and hypothesis tests. For example, you can calculate a mean score with quantitative data, but not with categorical data.

In a research study, along with measures of your variables of interest, you’ll often collect data on relevant participant characteristics.

Variable Type of data
Age Quantitative (ratio)
Gender Categorical (nominal)
Race or ethnicity Categorical (nominal)
Baseline test scores Quantitative (interval)
Final test scores Quantitative (interval)
Parental income Quantitative (ratio)
GPA Quantitative (interval)

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

research topics with statistics

In most cases, it’s too difficult or expensive to collect data from every member of the population you’re interested in studying. Instead, you’ll collect data from a sample.

Statistical analysis allows you to apply your findings beyond your own sample as long as you use appropriate sampling procedures . You should aim for a sample that is representative of the population.

Sampling for statistical analysis

There are two main approaches to selecting a sample.

  • Probability sampling: every member of the population has a chance of being selected for the study through random selection.
  • Non-probability sampling: some members of the population are more likely than others to be selected for the study because of criteria such as convenience or voluntary self-selection.

In theory, for highly generalizable findings, you should use a probability sampling method. Random selection reduces several types of research bias , like sampling bias , and ensures that data from your sample is actually typical of the population. Parametric tests can be used to make strong statistical inferences when data are collected using probability sampling.

But in practice, it’s rarely possible to gather the ideal sample. While non-probability samples are more likely to at risk for biases like self-selection bias , they are much easier to recruit and collect data from. Non-parametric tests are more appropriate for non-probability samples, but they result in weaker inferences about the population.

If you want to use parametric tests for non-probability samples, you have to make the case that:

  • your sample is representative of the population you’re generalizing your findings to.
  • your sample lacks systematic bias.

Keep in mind that external validity means that you can only generalize your conclusions to others who share the characteristics of your sample. For instance, results from Western, Educated, Industrialized, Rich and Democratic samples (e.g., college students in the US) aren’t automatically applicable to all non-WEIRD populations.

If you apply parametric tests to data from non-probability samples, be sure to elaborate on the limitations of how far your results can be generalized in your discussion section .

Create an appropriate sampling procedure

Based on the resources available for your research, decide on how you’ll recruit participants.

  • Will you have resources to advertise your study widely, including outside of your university setting?
  • Will you have the means to recruit a diverse sample that represents a broad population?
  • Do you have time to contact and follow up with members of hard-to-reach groups?

Your participants are self-selected by their schools. Although you’re using a non-probability sample, you aim for a diverse and representative sample. Example: Sampling (correlational study) Your main population of interest is male college students in the US. Using social media advertising, you recruit senior-year male college students from a smaller subpopulation: seven universities in the Boston area.

Calculate sufficient sample size

Before recruiting participants, decide on your sample size either by looking at other studies in your field or using statistics. A sample that’s too small may be unrepresentative of the sample, while a sample that’s too large will be more costly than necessary.

There are many sample size calculators online. Different formulas are used depending on whether you have subgroups or how rigorous your study should be (e.g., in clinical research). As a rule of thumb, a minimum of 30 units or more per subgroup is necessary.

To use these calculators, you have to understand and input these key components:

  • Significance level (alpha): the risk of rejecting a true null hypothesis that you are willing to take, usually set at 5%.
  • Statistical power : the probability of your study detecting an effect of a certain size if there is one, usually 80% or higher.
  • Expected effect size : a standardized indication of how large the expected result of your study will be, usually based on other similar studies.
  • Population standard deviation: an estimate of the population parameter based on a previous study or a pilot study of your own.

Once you’ve collected all of your data, you can inspect them and calculate descriptive statistics that summarize them.

Inspect your data

There are various ways to inspect your data, including the following:

  • Organizing data from each variable in frequency distribution tables .
  • Displaying data from a key variable in a bar chart to view the distribution of responses.
  • Visualizing the relationship between two variables using a scatter plot .

By visualizing your data in tables and graphs, you can assess whether your data follow a skewed or normal distribution and whether there are any outliers or missing data.

A normal distribution means that your data are symmetrically distributed around a center where most values lie, with the values tapering off at the tail ends.

Mean, median, mode, and standard deviation in a normal distribution

In contrast, a skewed distribution is asymmetric and has more values on one end than the other. The shape of the distribution is important to keep in mind because only some descriptive statistics should be used with skewed distributions.

Extreme outliers can also produce misleading statistics, so you may need a systematic approach to dealing with these values.

Calculate measures of central tendency

Measures of central tendency describe where most of the values in a data set lie. Three main measures of central tendency are often reported:

  • Mode : the most popular response or value in the data set.
  • Median : the value in the exact middle of the data set when ordered from low to high.
  • Mean : the sum of all values divided by the number of values.

However, depending on the shape of the distribution and level of measurement, only one or two of these measures may be appropriate. For example, many demographic characteristics can only be described using the mode or proportions, while a variable like reaction time may not have a mode at all.

Calculate measures of variability

Measures of variability tell you how spread out the values in a data set are. Four main measures of variability are often reported:

  • Range : the highest value minus the lowest value of the data set.
  • Interquartile range : the range of the middle half of the data set.
  • Standard deviation : the average distance between each value in your data set and the mean.
  • Variance : the square of the standard deviation.

Once again, the shape of the distribution and level of measurement should guide your choice of variability statistics. The interquartile range is the best measure for skewed distributions, while standard deviation and variance provide the best information for normal distributions.

Using your table, you should check whether the units of the descriptive statistics are comparable for pretest and posttest scores. For example, are the variance levels similar across the groups? Are there any extreme values? If there are, you may need to identify and remove extreme outliers in your data set or transform your data before performing a statistical test.

Pretest scores Posttest scores
Mean 68.44 75.25
Standard deviation 9.43 9.88
Variance 88.96 97.96
Range 36.25 45.12
30

From this table, we can see that the mean score increased after the meditation exercise, and the variances of the two scores are comparable. Next, we can perform a statistical test to find out if this improvement in test scores is statistically significant in the population. Example: Descriptive statistics (correlational study) After collecting data from 653 students, you tabulate descriptive statistics for annual parental income and GPA.

It’s important to check whether you have a broad range of data points. If you don’t, your data may be skewed towards some groups more than others (e.g., high academic achievers), and only limited inferences can be made about a relationship.

Parental income (USD) GPA
Mean 62,100 3.12
Standard deviation 15,000 0.45
Variance 225,000,000 0.16
Range 8,000–378,000 2.64–4.00
653

A number that describes a sample is called a statistic , while a number describing a population is called a parameter . Using inferential statistics , you can make conclusions about population parameters based on sample statistics.

Researchers often use two main methods (simultaneously) to make inferences in statistics.

  • Estimation: calculating population parameters based on sample statistics.
  • Hypothesis testing: a formal process for testing research predictions about the population using samples.

You can make two types of estimates of population parameters from sample statistics:

  • A point estimate : a value that represents your best guess of the exact parameter.
  • An interval estimate : a range of values that represent your best guess of where the parameter lies.

If your aim is to infer and report population characteristics from sample data, it’s best to use both point and interval estimates in your paper.

You can consider a sample statistic a point estimate for the population parameter when you have a representative sample (e.g., in a wide public opinion poll, the proportion of a sample that supports the current government is taken as the population proportion of government supporters).

There’s always error involved in estimation, so you should also provide a confidence interval as an interval estimate to show the variability around a point estimate.

A confidence interval uses the standard error and the z score from the standard normal distribution to convey where you’d generally expect to find the population parameter most of the time.

Hypothesis testing

Using data from a sample, you can test hypotheses about relationships between variables in the population. Hypothesis testing starts with the assumption that the null hypothesis is true in the population, and you use statistical tests to assess whether the null hypothesis can be rejected or not.

Statistical tests determine where your sample data would lie on an expected distribution of sample data if the null hypothesis were true. These tests give two main outputs:

  • A test statistic tells you how much your data differs from the null hypothesis of the test.
  • A p value tells you the likelihood of obtaining your results if the null hypothesis is actually true in the population.

Statistical tests come in three main varieties:

  • Comparison tests assess group differences in outcomes.
  • Regression tests assess cause-and-effect relationships between variables.
  • Correlation tests assess relationships between variables without assuming causation.

Your choice of statistical test depends on your research questions, research design, sampling method, and data characteristics.

Parametric tests

Parametric tests make powerful inferences about the population based on sample data. But to use them, some assumptions must be met, and only some types of variables can be used. If your data violate these assumptions, you can perform appropriate data transformations or use alternative non-parametric tests instead.

A regression models the extent to which changes in a predictor variable results in changes in outcome variable(s).

  • A simple linear regression includes one predictor variable and one outcome variable.
  • A multiple linear regression includes two or more predictor variables and one outcome variable.

Comparison tests usually compare the means of groups. These may be the means of different groups within a sample (e.g., a treatment and control group), the means of one sample group taken at different times (e.g., pretest and posttest scores), or a sample mean and a population mean.

  • A t test is for exactly 1 or 2 groups when the sample is small (30 or less).
  • A z test is for exactly 1 or 2 groups when the sample is large.
  • An ANOVA is for 3 or more groups.

The z and t tests have subtypes based on the number and types of samples and the hypotheses:

  • If you have only one sample that you want to compare to a population mean, use a one-sample test .
  • If you have paired measurements (within-subjects design), use a dependent (paired) samples test .
  • If you have completely separate measurements from two unmatched groups (between-subjects design), use an independent (unpaired) samples test .
  • If you expect a difference between groups in a specific direction, use a one-tailed test .
  • If you don’t have any expectations for the direction of a difference between groups, use a two-tailed test .

The only parametric correlation test is Pearson’s r . The correlation coefficient ( r ) tells you the strength of a linear relationship between two quantitative variables.

However, to test whether the correlation in the sample is strong enough to be important in the population, you also need to perform a significance test of the correlation coefficient, usually a t test, to obtain a p value. This test uses your sample size to calculate how much the correlation coefficient differs from zero in the population.

You use a dependent-samples, one-tailed t test to assess whether the meditation exercise significantly improved math test scores. The test gives you:

  • a t value (test statistic) of 3.00
  • a p value of 0.0028

Although Pearson’s r is a test statistic, it doesn’t tell you anything about how significant the correlation is in the population. You also need to test whether this sample correlation coefficient is large enough to demonstrate a correlation in the population.

A t test can also determine how significantly a correlation coefficient differs from zero based on sample size. Since you expect a positive correlation between parental income and GPA, you use a one-sample, one-tailed t test. The t test gives you:

  • a t value of 3.08
  • a p value of 0.001

The final step of statistical analysis is interpreting your results.

Statistical significance

In hypothesis testing, statistical significance is the main criterion for forming conclusions. You compare your p value to a set significance level (usually 0.05) to decide whether your results are statistically significant or non-significant.

Statistically significant results are considered unlikely to have arisen solely due to chance. There is only a very low chance of such a result occurring if the null hypothesis is true in the population.

This means that you believe the meditation intervention, rather than random factors, directly caused the increase in test scores. Example: Interpret your results (correlational study) You compare your p value of 0.001 to your significance threshold of 0.05. With a p value under this threshold, you can reject the null hypothesis. This indicates a statistically significant correlation between parental income and GPA in male college students.

Note that correlation doesn’t always mean causation, because there are often many underlying factors contributing to a complex variable like GPA. Even if one variable is related to another, this may be because of a third variable influencing both of them, or indirect links between the two variables.

Effect size

A statistically significant result doesn’t necessarily mean that there are important real life applications or clinical outcomes for a finding.

In contrast, the effect size indicates the practical significance of your results. It’s important to report effect sizes along with your inferential statistics for a complete picture of your results. You should also report interval estimates of effect sizes if you’re writing an APA style paper .

With a Cohen’s d of 0.72, there’s medium to high practical significance to your finding that the meditation exercise improved test scores. Example: Effect size (correlational study) To determine the effect size of the correlation coefficient, you compare your Pearson’s r value to Cohen’s effect size criteria.

Decision errors

Type I and Type II errors are mistakes made in research conclusions. A Type I error means rejecting the null hypothesis when it’s actually true, while a Type II error means failing to reject the null hypothesis when it’s false.

You can aim to minimize the risk of these errors by selecting an optimal significance level and ensuring high power . However, there’s a trade-off between the two errors, so a fine balance is necessary.

Frequentist versus Bayesian statistics

Traditionally, frequentist statistics emphasizes null hypothesis significance testing and always starts with the assumption of a true null hypothesis.

However, Bayesian statistics has grown in popularity as an alternative approach in the last few decades. In this approach, you use previous research to continually update your hypotheses based on your expectations and observations.

Bayes factor compares the relative strength of evidence for the null versus the alternative hypothesis rather than making a conclusion about rejecting the null hypothesis or not.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Student’s  t -distribution
  • Normal distribution
  • Null and Alternative Hypotheses
  • Chi square tests
  • Confidence interval

Methodology

  • Cluster sampling
  • Stratified sampling
  • Data cleansing
  • Reproducibility vs Replicability
  • Peer review
  • Likert scale

Research bias

  • Implicit bias
  • Framing effect
  • Cognitive bias
  • Placebo effect
  • Hawthorne effect
  • Hostile attribution bias
  • Affect heuristic

Is this article helpful?

Other students also liked.

  • Descriptive Statistics | Definitions, Types, Examples
  • Inferential Statistics | An Easy Introduction & Examples
  • Choosing the Right Statistical Test | Types & Examples

More interesting articles

  • Akaike Information Criterion | When & How to Use It (Example)
  • An Easy Introduction to Statistical Significance (With Examples)
  • An Introduction to t Tests | Definitions, Formula and Examples
  • ANOVA in R | A Complete Step-by-Step Guide with Examples
  • Central Limit Theorem | Formula, Definition & Examples
  • Central Tendency | Understanding the Mean, Median & Mode
  • Chi-Square (Χ²) Distributions | Definition & Examples
  • Chi-Square (Χ²) Table | Examples & Downloadable Table
  • Chi-Square (Χ²) Tests | Types, Formula & Examples
  • Chi-Square Goodness of Fit Test | Formula, Guide & Examples
  • Chi-Square Test of Independence | Formula, Guide & Examples
  • Coefficient of Determination (R²) | Calculation & Interpretation
  • Correlation Coefficient | Types, Formulas & Examples
  • Frequency Distribution | Tables, Types & Examples
  • How to Calculate Standard Deviation (Guide) | Calculator & Examples
  • How to Calculate Variance | Calculator, Analysis & Examples
  • How to Find Degrees of Freedom | Definition & Formula
  • How to Find Interquartile Range (IQR) | Calculator & Examples
  • How to Find Outliers | 4 Ways with Examples & Explanation
  • How to Find the Geometric Mean | Calculator & Formula
  • How to Find the Mean | Definition, Examples & Calculator
  • How to Find the Median | Definition, Examples & Calculator
  • How to Find the Mode | Definition, Examples & Calculator
  • How to Find the Range of a Data Set | Calculator & Formula
  • Hypothesis Testing | A Step-by-Step Guide with Easy Examples
  • Interval Data and How to Analyze It | Definitions & Examples
  • Levels of Measurement | Nominal, Ordinal, Interval and Ratio
  • Linear Regression in R | A Step-by-Step Guide & Examples
  • Missing Data | Types, Explanation, & Imputation
  • Multiple Linear Regression | A Quick Guide (Examples)
  • Nominal Data | Definition, Examples, Data Collection & Analysis
  • Normal Distribution | Examples, Formulas, & Uses
  • Null and Alternative Hypotheses | Definitions & Examples
  • One-way ANOVA | When and How to Use It (With Examples)
  • Ordinal Data | Definition, Examples, Data Collection & Analysis
  • Parameter vs Statistic | Definitions, Differences & Examples
  • Pearson Correlation Coefficient (r) | Guide & Examples
  • Poisson Distributions | Definition, Formula & Examples
  • Probability Distribution | Formula, Types, & Examples
  • Quartiles & Quantiles | Calculation, Definition & Interpretation
  • Ratio Scales | Definition, Examples, & Data Analysis
  • Simple Linear Regression | An Easy Introduction & Examples
  • Skewness | Definition, Examples & Formula
  • Statistical Power and Why It Matters | A Simple Introduction
  • Student's t Table (Free Download) | Guide & Examples
  • T-distribution: What it is and how to use it
  • Test statistics | Definition, Interpretation, and Examples
  • The Standard Normal Distribution | Calculator, Examples & Uses
  • Two-Way ANOVA | Examples & When To Use It
  • Type I & Type II Errors | Differences, Examples, Visualizations
  • Understanding Confidence Intervals | Easy Examples & Formulas
  • Understanding P values | Definition and Examples
  • Variability | Calculating Range, IQR, Variance, Standard Deviation
  • What is Effect Size and Why Does It Matter? (Examples)
  • What Is Kurtosis? | Definition, Examples & Formula
  • What Is Standard Error? | How to Calculate (Guide with Examples)

What is your plagiarism score?

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts

Statistics articles within Scientific Reports

Article 29 August 2024 | Open Access

Effective weight optimization strategy for precise deep learning forecasting models using EvoLearn approach

  • , Ashima Anand
  •  &  Rajender Parsad

Article 26 August 2024 | Open Access

Quantification of the time-varying epidemic growth rate and of the delays between symptom onset and presenting to healthcare for the mpox epidemic in the UK in 2022

  • Robert Hinch
  • , Jasmina Panovska-Griffiths
  •  &  Christophe Fraser

Investigating the causal relationship between wealth index and ICT skills: a mediation analysis approach

  • Tarikul Islam
  •  &  Nabil Ahmed Uthso

Article 24 August 2024 | Open Access

Statistical analysis of the effect of socio-political factors on individual life satisfaction

  • , Isra Hasan
  •  &  Ayman Alzaatreh

Article 23 August 2024 | Open Access

Improving the explainability of autoencoder factors for commodities through forecast-based Shapley values

  • Roy Cerqueti
  • , Antonio Iovanella
  •  &  Saverio Storani

Article 20 August 2024 | Open Access

Defect detection of printed circuit board assembly based on YOLOv5

  • Minghui Shen
  • , Yujie Liu
  •  &  Ye Jiang

Breaking the silence: leveraging social interaction data to identify high-risk suicide users online using network analysis and machine learning

  • Damien Lekkas
  •  &  Nicholas C. Jacobson

Stochastic image spectroscopy: a discriminative generative approach to hyperspectral image modelling and classification

  • Alvaro F. Egaña
  • , Alejandro Ehrenfeld
  •  &  Jorge F. Silva

Article 15 August 2024 | Open Access

Data-driven risk analysis of nonlinear factor interactions in road safety using Bayesian networks

  • Cinzia Carrodano

Article 13 August 2024 | Open Access

Momentum prediction models of tennis match based on CatBoost regression and random forest algorithms

  • Xingchen Lv
  • , Dingyu Gu
  •  &  Yanfang li

Article 12 August 2024 | Open Access

Numerical and machine learning modeling of GFRP confined concrete-steel hollow elliptical columns

  • Haytham F. Isleem
  • , Tang Qiong
  •  &  Ali Jahami

Experimental investigation of the distribution patterns of micro-scratches in abrasive waterjet cutting surface

  •  &  Quan Wen

Article 07 August 2024 | Open Access

PMANet : a time series forecasting model for Chinese stock price prediction

  • , Weisi Dai
  •  &  Yunjing Zhao

Article 06 August 2024 | Open Access

Grasshopper platform-assisted design optimization of fujian rural earthen buildings considering low-carbon emissions reduction

  •  &  Yang Ding

Article 03 August 2024 | Open Access

Effects of dietary fish to rapeseed oil ratio on steatosis symptoms in Atlantic salmon ( Salmo salar L) of different sizes

  • D. Siciliani
  •  &  Å. Krogdahl

A model-free and distribution-free multi-omics integration approach for detecting novel lung adenocarcinoma genes

  • Shaofei Zhao
  •  &  Guifang Fu

Article 01 August 2024 | Open Access

Intrinsic dimension as a multi-scale summary statistics in network modeling

  • Iuri Macocco
  • , Antonietta Mira
  •  &  Alessandro Laio

A new possibilistic-based clustering method for probability density functions and its application to detecting abnormal elements

  • Hung Tran-Nam
  • , Thao Nguyen-Trang
  •  &  Ha Che-Ngoc

Article 30 July 2024 | Open Access

A dynamic customer segmentation approach by combining LRFMS and multivariate time series clustering

  • Shuhai Wang
  • , Linfu Sun
  •  &  Yang Yu

Article 29 July 2024 | Open Access

Field evaluation of a volatile pyrethroid spatial repellent and etofenprox treated clothing for outdoor protection against forest malaria vectors in Cambodia

  • Élodie A. Vajda
  • , Amanda Ross
  •  &  Neil F. Lobo

Study on crease recovery property of warp-knitted jacquard spacer shoe upper material

  •  &  Shiyu Peng

Article 27 July 2024 | Open Access

Calibration estimation of population total using multi-auxiliary information in the presence of non-response

  • , Anant Patel
  •  &  Menakshi Pachori

Simulation-based prior knowledge elicitation for parametric Bayesian models

  • Florence Bockting
  • , Stefan T. Radev
  •  &  Paul-Christian Bürkner

Article 26 July 2024 | Open Access

Modelling Salmonella Typhi in high-density urban Blantyre neighbourhood, Malawi, using point pattern methods

  • Jessie J. Khaki
  • , James E. Meiring
  •  &  Emanuele Giorgi

Exogenous variable driven deep learning models for improved price forecasting of TOP crops in India

  • G. H. Harish Nayak
  • , Md Wasi Alam
  •  &  Chandan Kumar Deb

Generalization of cut-in pre-crash scenarios for autonomous vehicles based on accident data

  • , Xinyu Zhu
  •  &  Chang Xu

Article 19 July 2024 | Open Access

Automated PD-L1 status prediction in lung cancer with multi-modal PET/CT fusion

  • Ronrick Da-ano
  • , Gustavo Andrade-Miranda
  •  &  Catherine Cheze Le Rest

Article 17 July 2024 | Open Access

Optimizing decision-making with aggregation operators for generalized intuitionistic fuzzy sets and their applications in the tech industry

  • Muhammad Wasim
  • , Awais Yousaf
  •  &  Hamiden Abd El-Wahed Khalifa

Article 15 July 2024 | Open Access

Putting ICAP to the test: how technology-enhanced learning activities are related to cognitive and affective-motivational learning outcomes in higher education

  • Christina Wekerle
  • , Martin Daumiller
  •  &  Ingo Kollar

The impact of national savings on economic development: a focused study on the ten poorest countries in Sub-Saharan Africa

Article 13 July 2024 | Open Access

Regularized ensemble learning for prediction and risk factors assessment of students at risk in the post-COVID era

  • Zardad Khan
  • , Amjad Ali
  •  &  Saeed Aldahmani

Article 12 July 2024 | Open Access

Eigen-entropy based time series signatures to support multivariate time series classification

  • Abhidnya Patharkar
  • , Jiajing Huang
  •  &  Naomi Gades

Article 11 July 2024 | Open Access

Exploring usage pattern variation of free-floating bike-sharing from a night travel perspective

  • , Xianke Han
  •  &  Lili Li

Early mutational signatures and transmissibility of SARS-CoV-2 Gamma and Lambda variants in Chile

  • Karen Y. Oróstica
  • , Sebastian B. Mohr
  •  &  Seba Contreras

Article 10 July 2024 | Open Access

Optimizing the location of vaccination sites to stop a zoonotic epidemic

  • Ricardo Castillo-Neyra
  • , Sherrie Xie
  •  &  Michael Z. Levy

Article 08 July 2024 | Open Access

Integrating socio-psychological factors in the SEIR model optimized by a genetic algorithm for COVID-19 trend analysis

  • Haonan Wang
  • , Danhong Wu
  •  &  Junhui Zhang

Article 05 July 2024 | Open Access

Research on bearing fault diagnosis based on improved genetic algorithm and BP neural network

  • Zenghua Chen
  • , Lingjian Zhu
  •  &  Gang Xiong

Article 04 July 2024 | Open Access

Employees’ pro-environmental behavior in an organization: a case study in the UAE

  • Nadin Alherimi
  • , Zeki Marva
  •  &  Ayman Alzaaterh

Article 03 July 2024 | Open Access

The predictive capability of several anthropometric indices for identifying the risk of metabolic syndrome and its components among industrial workers

  • Ekaterina D. Konstantinova
  • , Tatiana A. Maslakova
  •  &  Svetlana Yu. Ogorodnikova

Article 02 July 2024 | Open Access

A bayesian spatio-temporal dynamic analysis of food security in Africa

  • Adusei Bofa
  •  &  Temesgen Zewotir

Research on the influencing factors of promoting flipped classroom teaching based on the integrated UTAUT model and learning engagement theory

  •  &  Wang He

Article 28 June 2024 | Open Access

Peak response regularization for localization

  • , Jinzhen Yao
  •  &  Qintao Hu

Article 25 June 2024 | Open Access

Prediction and reliability analysis of shear strength of RC deep beams

  • Khaled Megahed

Multistage time-to-event models improve survival inference by partitioning mortality processes of tracked organisms

  • Suresh A. Sethi
  • , Alex L. Koeberle
  •  &  Kenneth Duren

Article 24 June 2024 | Open Access

Summarizing physical performance in professional soccer: development of a new composite index

  • José M. Oliva-Lozano
  • , Mattia Cefis
  •  &  Ricardo Resta

Finding multifaceted communities in multiplex networks

  • László Gadár
  •  &  János Abonyi

Article 22 June 2024 | Open Access

Utilizing Bayesian inference in accelerated testing models under constant stress via ordered ranked set sampling and hybrid censoring with practical validation

  • Atef F. Hashem
  • , Naif Alotaibi
  •  &  Alaa H. Abdel-Hamid

Predicting chronic wasting disease in white-tailed deer at the county scale using machine learning

  • Md Sohel Ahmed
  • , Brenda J. Hanley
  •  &  Krysten L. Schuler

Article 21 June 2024 | Open Access

Properties, quantile regression, and application of bounded exponentiated Weibull distribution to COVID-19 data of mortality and survival rates

  • Shakila Bashir
  • , Bushra Masood
  •  &  Iram Saleem

Article 20 June 2024 | Open Access

Cox proportional hazards regression in small studies of predictive biomarkers

  • , V. H. Nguyen
  •  &  M. Hauptmann

Advertisement

Browse broader subjects

  • Mathematics and computing

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

research topics with statistics

Department of Statistics

Research topics in probability and statistics, problem solving in mathematics and statistics is inspiring and enjoyable. but are achievements in mathematics and statistics any of use in the so-called real world , researchers in the department of statistics at warwick are developing and utilising modern statistics, mathematics, and computing to solve practical problems., examples of themes for undergraduate research projects:.

  • Discovering which genes can discriminate between diseased and healthy patients
  • Modelling and detecting asset price bubbles while they are happening and before they burst
  • Modelling infectious diseases and identifying localized outbreaks
  • Developing a fast algorithm through probabilistic modeling for compression of sound data
  • Automatically diagnosing diseases with large-scale image data utilizing crime data for crime prevention and optimal allocation of police resources
  • Predicting the outcome of elections based on exit poll data
  • Computed Tomography validation of complex structures in Additive Layer Manufacturing

Probability of containment for multitype branching process models for emerging epidemics

Non-stationary statistical modeling and inference for circadian oscillations for research in cancer chronotherapy

Bayesian Models of Category-Specific Emotional Brain Responses

Decision focused inference on Networked Proabilistic Systems: with applications to food security

Rotationally invariant statistics for examining the evidence from the pores in fingerprints

Dynamic Uncertainty Handling for Coherent Decision Making in Nuclear Emergency Response

Study of Key Interventions into Terrorism using Bayesian Networks

Assessing the risk of subsequent tonic-clonic seizures in patients with a history of simple or complex partial seizures

Multidimensional Markov-functional Interest Rate Models

Prospect Theory, Liquidation and the Disposition Effect

Dynamic Bradley-Terry modelling of sports tournaments

Further information on the wide range of research opportunities open to you as an Undergraduate or Postgraduate Taught student in the Department of Statistics can be found on at our Student Research Opportunities webpage.

More information about research in the Department of Statistics, both applied and theoretical, can be found at the departmental research pages .

Mathematics as bridge

The work of mathematicians and statisticians often turns out useful and essential, but typically in a less concrete manner than say the work of a scientists or a physician. David Hilbert, in his now historical address to scientists and physicians, put it this way:

"The instrument that mediates between theory and practice, between thought and observation, is mathematics; it builds the connecting bridge and makes it stronger and stronger. Thus it happens that our entire present-day culture, insofar as it rests on intellectual insight into and harnessing of nature, is founded on mathematics"

Probability and Statistics in the 21st century

Almost a century after Hilbert's words, the mathematical fundations of sciences and social sciences, and the evidence based approach in medicine are often being taken for granted. In the 21st century we are facing complex big data sets with unknown structures from manifold aspecs of the 'real world' as well as fascinating discourses about objective and subjective notions of risk and uncertainty.

Probability and statistics are mathematical disciplines for modelling and analysing theoretical and practical aspects of these burning questions.

research topics with statistics

Recent Dissertation Topics

Marty Wells and a student look over papers

Kerstin Emily Frailey - “PRACTICAL DATA QUALITY FOR MODERN DATA & MODERN USES, WITH APPLICATIONS TO AMERICA’S COVID-19 DATA"

Dissertation Advisor: Martin Wells

Initial job placement: Co-Founder & CEO

David Kent - “Smoothness-Penalized Deconvolution: Rates of Convergence, Choice of Tuning Parameter, and Inference"

Dissertation Advisor: David Ruppert

Initial job placement: VISITING ASSISTANT PROFESSOR - Cornell University

Yuchen Xu - “Dynamic Atomic Column Detection in Transmission Electron Microscopy Videos via Ridge Estimation”

Dissertation Advisor: David Matteson

Initial job placement: Postdoctoral Fellow - UCLA

Siyi Deng - “Optimal and Safe Semi-supervised Estimation and Inference for High-dimensional Linear Regression"

Dissertation Advisor: Yang Ning

Initial job placement: Data Scientist - TikTok

Peter (Haoxuan) Wu - “Advances in adaptive and deep Bayesian state-space models”

Initial job placement: Quantitative Researcher - DRW

Grace Deng - “Generative models and Bayesian spillover graphs for dynamic networks”

Initial job placement: Data Scientist - Research at Google

Samriddha Lahiry - “Some problems of asymptotic quantum statistical inference”

Dissertation Advisor: Michael Nussbaum

Initial job placement: Postdoctoral Fellow - Harvard University

Yaosheng Xu - “WWTA load-balancing for parallel-server systems with heterogeneous servers and multi-scale heavy traffic limits for generalized Jackson networks”

Dissertation Advisor: Jim Dai

Initial job placement: Applied Scientist - Amazon

Seth Strimas-Mackey - “Latent structure in linear prediction and corpora comparison”

Dissertation Advisor: Marten Wegkamp and Florentina Bunea

Initial job placement: Data Scientist at Google

Tao Zhang - “Topics in modern regression modeling”

Dissertation Advisor: David Ruppert and Kengo Kato

Initial job placement: Quantitative Researcher - Point72

Wentian Huang - “Nonparametric and semiparametric approaches to functional data modeling”

Initial job placement: Ernst & Young

Binh Tang - “Deep probabilistic models for sequential prediction”

Initial job placement: Amazon

Yi Su - “Off-policy evaluation and learning for interactive systems"

Dissertation Advisor: Thorsten Joachims

Initial job placement: Berkeley (postdoc)

Ruqi Zhang - “Scalable and reliable inference for probabilistic modeling”

Dissertation Advisor: Christopher De Sa

Jason Sun - “Recent developments on Matrix Completion"

Initial job placement: LinkedIn

Indrayudh Ghosal - “Model combinations and the Infinitesimal Jackknife : how to refine models with boosting and quantify uncertainty”

Dissertation Advisor: Giles Hooker

Benjamin Ryan Baer - “Contributions to fairness and transparency”

Initial job placement: Rochester (postdoc)

Megan Lynne Gelsinger - “Spatial and temporal approaches to analyzing big data”

Dissertation Advisor: David Matteson and Joe Guinness

Initial job placement: Institute for Defense Analysis

Zhengze Zhou - “Statistical inference for machine learning : feature importance, uncertainty quantification and interpretation stability”

Initial job placement: Facebook

Huijie Feng - “Estimation and inference of high-dimensional individualized threshold with binary responses”

Initial job placement: Microsoft

Xiaojie Mao - “Machine learning methods for data-driven decision making : contextual optimization, causal inference, and algorithmic fairness”

Dissertation Advisor: Nathan Kallus and Madeleine Udell

Initial job placement: Tsinghua University, China

Xin Bing - “Structured latent factor models : Identifiability, estimation, inference and prediction”

Initial job placement: Cambridge (postdoc), University of Toronto

Yang Liu - “Nonparametric regression and density estimation on a network"

Dissertation Advisor: David Ruppert and Peter Frazier

Initial job placement: Research Analyst - Cubist Systematic Strategies

Skyler Seto - “Learning from less : improving and understanding model selection in penalized machine learning problems”

Initial job placement: Machine Learning Researcher - Apple

Jiekun Feng - “Markov chain, Markov decision process, and deep reinforcement learning with applications to hospital management and real-time ride-hailing”

Initial job placement:

Wenyu Zhang - “Methods for change point detection in sequential data”

Initial job placement: Research Scientist - Institute for Infocomm Research

Liao Zhu - “The adaptive multi-factor model and the financial market"

Initial job placement: Quantitative Researcher - Two Sigma

Xiaoyun Quan - “Latent Gaussian copula model for high dimensional mixed data, and its applications”

Dissertation Advisor: James Booth and Martin Wells

Praphruetpong (Ben) Athiwaratkun - "Density representations for words and hierarchical data"

Dissertation Advisor: Andrew Wilson

Initial job placement: AI Scientist - AWS AI Labs

Yiming Sun - “High dimensional data analysis with dependency and under limited memory”

Dissertation Advisor: Sumanta Basu and Madeleine Udell

Zi Ye - “Functional single index model and jensen effect"

Dissertation Advisor: Giles Hooker 

Initial job placement: Data & Applied Scientist - Microsoft

Hui Fen (Sarah) Tan - “Interpretable approaches to opening up black-box models”

Dissertation Advisor: Giles Hooker and Martin Wells

Daniel E. Gilbert - “Luck, fairness and Bayesian tensor completion”

Yichen zhou - “asymptotics and interpretability of decision trees and decision tree ensemblesg”.

Initial job placement: Data Scientist - Google

Ze Jin - “Measuring statistical dependence and its applications in machine learning”  

Initial job placement: Research Scientist, Facebook Integrity Ranking & ML - Facebook

Xiaohan Yan - “Statistical learning for structural patterns with trees”

Dissertation Advisor: Jacob Bien

Initial job placement: Senior Data Scientist - Microsoft

Guo Yu - “High-dimensional structured regression using convex optimization”

Dan kowal - "bayesian methods for functional and time series data".

Dissertation Advisor: David Matteson and David Ruppert

Initial job placement: assistant professor, Department of Statistics, Rice University

Keegan Kang - "Data Dependent Random Projections"

David sinclair - "model selection results for high dimensional graphical models on binary and count data with applications to fmri and genomics", liu, yanning – "statistical issues in the design and analysis of clinical trials".

Dissertation Advisor: Bruce Turnbull

Nicholson, William Bertil – "Tools for Modeling Sparse Vector Autoregressions"

Tupper, laura lindley – "topics in classification and clustering of high-dimensional data", chetelat, didier – "high-dimensional inference by unbiased risk estimation".

Initial Job Placement: Assistant Professor Universite de Montreal, Montreal, Canada

Gaynanova, Irina – "Estimation Of Sparse Low-Dimensional Linear Projections"

Dissertation Advisor: James Booth

Initial Job Placement: Assistant Professor, Texas A&M, College Station, TX

Mentch, Lucas – "Ensemble Trees and CLTS: Statistical Inference in Machine Learning"

Initial Job Placement: Assistant Professor, University of Pittsburgh, Pittsburgh, PA

Risk, Ben – "Topics in Independent Component Analysis, Likelihood Component Analysis, and Spatiotemporal Mixed Modeling"

Dissertation Advisors: David Matteson and David Ruppert

Initial Job Placement: Postdoctoral Fellow, University of North Carolina, Chapel Hill, NC

Zhao, Yue – "Contributions to the Statistical Inference for the Semiparametric Elliptical Copula Model"

Disseration Advisor: Marten Wegkamp 

Initial Job Placement: Postoctoral Fellow, McGill University, Montreal, Canada

Chen, Maximillian Gene – "Dimension Reduction and Inferential Procedures for Images"

Dissertation Advisor: Martin Wells 

Earls, Cecelia – Bayesian hierarchical Gaussian process models for functional data analysis

Dissertation Advisor: Giles Hooker

Initial Job Placement: Lecturer, Cornell University, Ithaca, NY

Li, James Yi-Wei – "Tensor (Multidimensional Array) Decomposition, Regression, and Software for Statistics and Machine Learning"

Initial Job Placement: Research Scientist, Yahoo Labs

Schneider, Matthew John – "Three Papers on Time Series Forecasting and Data Privacy"

Dissertation Advisor: John Abowd

Initial Job Placement: Assistant Professor, Northwestern University, Evanston, IL

Thorbergsson, Leifur – "Experimental design for partially observed Markov decision processes"

Initial Job Placement: Data Scientist, Memorial Sloan Kettering Cancer Center, New York, NY

Wan, Muting – "Model-Based Classification with Applications to High-Dimensional Data in Bioinformatics"

Initial Job Placement: Senior Associate, 1010 Data, New York, NY

Johnson, Lynn Marie – "Topics in Linear Models: Methods for Clustered, Censored Data and Two-Stage Sampling Designs"

Dissertation Advisor: Robert Strawderman

Initial Job Placement: Statistical Consultant, Cornell, Statistical Consulting Unit, Ithaca, NY

Tecuapetla Gomez, Inder Rafael –  "Asymptotic Inference for Locally Stationary Processes"

Initial Job Placement: Postdoctoral Fellow, Georg-August-Universitat Gottigen, Gottigen, Germany. 

Bar, Haim – "Parallel Testing, and Variable Selection -- a Mixture-Model Approach with Applications in Biostatistics" 

Dissertation Advisor: James Booth

Initial Job Placement: Postdoc, Department of Medicine, Weill Medical Center, New York, NY

Cunningham, Caitlin –  "Markov Methods for Identifying ChIP-seq Peaks" 

Initial Job Placement: Assistant Professor, Le Moyne College, Syracuse, NY

Ji, Pengsheng – "Selected Topics in Nonparametric Testing and Variable Selection for High Dimensional Data" 

Dissertation Advisor: Michael Nussbaum 

Initial Job Placement: Assistant Professor, University of Georgia, Athens, GA

Morris, Darcy Steeg – "Methods for Multivariate Longitudinal Count and Duration Models with Applications in Economics" 

Dissertation Advisor: Francesca Molinari 

Initial Job Placement: Research Mathematical Statistician, Center for Statistical Research and Methodology, U.S. Census Bureau, Washington DC

Narayanan, Rajendran – "Shrinkage Estimation for Penalised Regression, Loss Estimation and Topics on Largest Eigenvalue Distributions" 

Initial Job Placement: Visiting Scientist, Indian Statistical Institute, Kolkata, India

Xiao, Luo – "Topics in Bivariate Spline Smoothing" 

Dissertation Advisor: David Ruppert 

Initial Job Placement: Postdoc, Johns Hopkins University, Baltimore, MD

Zeber, David – "Extremal Properties of Markov Chains and the Conditional Extreme Value Model" 

Dissertation Advisor: Sidney Resnick 

Initial Job Placement: Data Analyst, Mozilla, San Francisco, CA

Clement, David – "Estimating equation methods for longitudinal and survival data" 

Dissertation Advisor: Robert Strawderman 

Initial Job Placement: Quantitative Analyst, Smartodds, London UK

Eilertson, Kirsten – "Estimation and inference of random effect models with applications to population genetics and proteomics" 

Dissertation Advisor: Carlos Bustamante 

Initial Job Placement: Biostatistician, The J. David Gladstone Institutes, San Francisco CA

Grabchak, Michael – "Tempered stable distributions: properties and extensions" 

Dissertation Advisor: Gennady Samorodnitsky 

Initial Job Placement: Assistant Professor, UNC Charlotte, Charlotte NC

Li, Yingxing – "Aspects of penalized splines" 

Initial Job Placement: Assistant Professor, The Wang Yanan Institute for Studies in Economics, Xiamen University

Lopez Oliveros, Luis – "Modeling end-user behavior in data networks" 

Dissertation Advisor: Sidney Resnick  

Initial Job Placement: Consultant, Murex North America, New York NY

Ma, Xin – "Statistical Methods for Genome Variant Calling and Population Genetic Inference from Next-Generation Sequencing Data" 

Initial Job Placement: Postdoc, Stanford University, Stanford CA

Kormaksson, Matthias – "Dynamic path analysis and model based clustering of microarray data" 

Dissertation Advisor: James Booth 

Initial Job Placement: Postdoc, Department of Public Health, Weill Cornell Medical College, New York NY

Schifano, Elizabeth – "Topics in penalized estimation" 

Initial Job Placement: Postdoc, Department of Biostatistics, Harvard University, Boston MA

Hanlon, Bret – "High-dimensional data analysis" 

Dissertation Advisor: Anand Vidyashankar 

Shaby, Benjamin – "Tools for hard bayesian computations" 

Initial Job Placement: Postdoc, SAMSI, Durham NC

Zipunnikov, Vadim – "Topics on generalized linear mixed models" 

Initial Job Placement: Postdoc, Department of Biostatistics, Johns Hopkins University, Baltimore MD

Barger, Kathryn Jo-Anne – "Objective bayesian estimation for the number of classes in a population using Jeffreys and reference priors" 

Dissertation Advisor: John Bunge 

Initial Job Placement: Pfizer Incorporated

Chan, Serena Suewei – "Robust and efficient inference for linear mixed models using skew-normal distributions" 

Initial Job Placement: Statistician, Takeda Pharmaceuticles, Deerfield IL

Lin, Haizhi – "Distressed debt prices and recovery rate estimation" 

Dissertation Advisor: Martin Wells  

Initial Job Placement: Associate, Fixed Income Department, Credit Suisse Securities (USA), New York, NY

research topics with statistics

Statistical Papers

Statistical Papers is a forum for presentation and critical assessment of statistical methods encouraging the discussion of methodological foundations and potential applications.

  • The Journal stresses statistical methods that have broad applications, giving special attention to those relevant to the economic and social sciences.
  • Covers all topics of modern data science, such as frequentist and Bayesian design and inference as well as statistical learning.
  • Contains original research papers (regular articles), survey articles, short communications, reports on statistical software, and book reviews.
  • High author satisfaction with 90% likely to publish in the journal again.
  • Werner G. Müller,
  • Carsten Jentsch,
  • Shuangzhe Liu,
  • Ulrike Schneider

research topics with statistics

Latest issue

Volume 65, Issue 6

Latest articles

Confidence intervals for overall response rate difference in the sequential parallel comparison design.

  • Guogen Shan
  • Samuel S. Wu

research topics with statistics

Bayesian and frequentist inference derived from the maximum entropy principle with applications to propagating uncertainty about statistical methods

  • David R. Bickel

research topics with statistics

Reduced bias estimation of the log odds ratio

research topics with statistics

A critical note on the exponentiated EWMA chart

  • William H. Woodall

research topics with statistics

Hadamard matrices, quaternions, and the Pearson chi-square statistic

  • Abbas Alhakim

research topics with statistics

Journal updates

Write & submit: overleaf latex template.

Overleaf LaTeX Template

Journal information

  • Australian Business Deans Council (ABDC) Journal Quality List
  • Current Index to Statistics
  • Google Scholar
  • Japanese Science and Technology Agency (JST)
  • Mathematical Reviews
  • Norwegian Register for Scientific Journals and Series
  • OCLC WorldCat Discovery Service
  • Research Papers in Economics (RePEc)
  • Science Citation Index Expanded (SCIE)
  • TD Net Discovery Service
  • UGC-CARE List (India)

Rights and permissions

Editorial policies

© Springer-Verlag GmbH Germany, part of Springer Nature

  • Find a journal
  • Publish with us
  • Track your research

PrepScholar

Choose Your Test

  • Search Blogs By Category
  • College Admissions
  • AP and IB Exams
  • GPA and Coursework

113 Great Research Paper Topics

author image

General Education

feature_pencilpaper

One of the hardest parts of writing a research paper can be just finding a good topic to write about. Fortunately we've done the hard work for you and have compiled a list of 113 interesting research paper topics. They've been organized into ten categories and cover a wide range of subjects so you can easily find the best topic for you.

In addition to the list of good research topics, we've included advice on what makes a good research paper topic and how you can use your topic to start writing a great paper.

What Makes a Good Research Paper Topic?

Not all research paper topics are created equal, and you want to make sure you choose a great topic before you start writing. Below are the three most important factors to consider to make sure you choose the best research paper topics.

#1: It's Something You're Interested In

A paper is always easier to write if you're interested in the topic, and you'll be more motivated to do in-depth research and write a paper that really covers the entire subject. Even if a certain research paper topic is getting a lot of buzz right now or other people seem interested in writing about it, don't feel tempted to make it your topic unless you genuinely have some sort of interest in it as well.

#2: There's Enough Information to Write a Paper

Even if you come up with the absolute best research paper topic and you're so excited to write about it, you won't be able to produce a good paper if there isn't enough research about the topic. This can happen for very specific or specialized topics, as well as topics that are too new to have enough research done on them at the moment. Easy research paper topics will always be topics with enough information to write a full-length paper.

Trying to write a research paper on a topic that doesn't have much research on it is incredibly hard, so before you decide on a topic, do a bit of preliminary searching and make sure you'll have all the information you need to write your paper.

#3: It Fits Your Teacher's Guidelines

Don't get so carried away looking at lists of research paper topics that you forget any requirements or restrictions your teacher may have put on research topic ideas. If you're writing a research paper on a health-related topic, deciding to write about the impact of rap on the music scene probably won't be allowed, but there may be some sort of leeway. For example, if you're really interested in current events but your teacher wants you to write a research paper on a history topic, you may be able to choose a topic that fits both categories, like exploring the relationship between the US and North Korea. No matter what, always get your research paper topic approved by your teacher first before you begin writing.

113 Good Research Paper Topics

Below are 113 good research topics to help you get you started on your paper. We've organized them into ten categories to make it easier to find the type of research paper topics you're looking for.

Arts/Culture

  • Discuss the main differences in art from the Italian Renaissance and the Northern Renaissance .
  • Analyze the impact a famous artist had on the world.
  • How is sexism portrayed in different types of media (music, film, video games, etc.)? Has the amount/type of sexism changed over the years?
  • How has the music of slaves brought over from Africa shaped modern American music?
  • How has rap music evolved in the past decade?
  • How has the portrayal of minorities in the media changed?

music-277279_640

Current Events

  • What have been the impacts of China's one child policy?
  • How have the goals of feminists changed over the decades?
  • How has the Trump presidency changed international relations?
  • Analyze the history of the relationship between the United States and North Korea.
  • What factors contributed to the current decline in the rate of unemployment?
  • What have been the impacts of states which have increased their minimum wage?
  • How do US immigration laws compare to immigration laws of other countries?
  • How have the US's immigration laws changed in the past few years/decades?
  • How has the Black Lives Matter movement affected discussions and view about racism in the US?
  • What impact has the Affordable Care Act had on healthcare in the US?
  • What factors contributed to the UK deciding to leave the EU (Brexit)?
  • What factors contributed to China becoming an economic power?
  • Discuss the history of Bitcoin or other cryptocurrencies  (some of which tokenize the S&P 500 Index on the blockchain) .
  • Do students in schools that eliminate grades do better in college and their careers?
  • Do students from wealthier backgrounds score higher on standardized tests?
  • Do students who receive free meals at school get higher grades compared to when they weren't receiving a free meal?
  • Do students who attend charter schools score higher on standardized tests than students in public schools?
  • Do students learn better in same-sex classrooms?
  • How does giving each student access to an iPad or laptop affect their studies?
  • What are the benefits and drawbacks of the Montessori Method ?
  • Do children who attend preschool do better in school later on?
  • What was the impact of the No Child Left Behind act?
  • How does the US education system compare to education systems in other countries?
  • What impact does mandatory physical education classes have on students' health?
  • Which methods are most effective at reducing bullying in schools?
  • Do homeschoolers who attend college do as well as students who attended traditional schools?
  • Does offering tenure increase or decrease quality of teaching?
  • How does college debt affect future life choices of students?
  • Should graduate students be able to form unions?

body_highschoolsc

  • What are different ways to lower gun-related deaths in the US?
  • How and why have divorce rates changed over time?
  • Is affirmative action still necessary in education and/or the workplace?
  • Should physician-assisted suicide be legal?
  • How has stem cell research impacted the medical field?
  • How can human trafficking be reduced in the United States/world?
  • Should people be able to donate organs in exchange for money?
  • Which types of juvenile punishment have proven most effective at preventing future crimes?
  • Has the increase in US airport security made passengers safer?
  • Analyze the immigration policies of certain countries and how they are similar and different from one another.
  • Several states have legalized recreational marijuana. What positive and negative impacts have they experienced as a result?
  • Do tariffs increase the number of domestic jobs?
  • Which prison reforms have proven most effective?
  • Should governments be able to censor certain information on the internet?
  • Which methods/programs have been most effective at reducing teen pregnancy?
  • What are the benefits and drawbacks of the Keto diet?
  • How effective are different exercise regimes for losing weight and maintaining weight loss?
  • How do the healthcare plans of various countries differ from each other?
  • What are the most effective ways to treat depression ?
  • What are the pros and cons of genetically modified foods?
  • Which methods are most effective for improving memory?
  • What can be done to lower healthcare costs in the US?
  • What factors contributed to the current opioid crisis?
  • Analyze the history and impact of the HIV/AIDS epidemic .
  • Are low-carbohydrate or low-fat diets more effective for weight loss?
  • How much exercise should the average adult be getting each week?
  • Which methods are most effective to get parents to vaccinate their children?
  • What are the pros and cons of clean needle programs?
  • How does stress affect the body?
  • Discuss the history of the conflict between Israel and the Palestinians.
  • What were the causes and effects of the Salem Witch Trials?
  • Who was responsible for the Iran-Contra situation?
  • How has New Orleans and the government's response to natural disasters changed since Hurricane Katrina?
  • What events led to the fall of the Roman Empire?
  • What were the impacts of British rule in India ?
  • Was the atomic bombing of Hiroshima and Nagasaki necessary?
  • What were the successes and failures of the women's suffrage movement in the United States?
  • What were the causes of the Civil War?
  • How did Abraham Lincoln's assassination impact the country and reconstruction after the Civil War?
  • Which factors contributed to the colonies winning the American Revolution?
  • What caused Hitler's rise to power?
  • Discuss how a specific invention impacted history.
  • What led to Cleopatra's fall as ruler of Egypt?
  • How has Japan changed and evolved over the centuries?
  • What were the causes of the Rwandan genocide ?

main_lincoln

  • Why did Martin Luther decide to split with the Catholic Church?
  • Analyze the history and impact of a well-known cult (Jonestown, Manson family, etc.)
  • How did the sexual abuse scandal impact how people view the Catholic Church?
  • How has the Catholic church's power changed over the past decades/centuries?
  • What are the causes behind the rise in atheism/ agnosticism in the United States?
  • What were the influences in Siddhartha's life resulted in him becoming the Buddha?
  • How has media portrayal of Islam/Muslims changed since September 11th?

Science/Environment

  • How has the earth's climate changed in the past few decades?
  • How has the use and elimination of DDT affected bird populations in the US?
  • Analyze how the number and severity of natural disasters have increased in the past few decades.
  • Analyze deforestation rates in a certain area or globally over a period of time.
  • How have past oil spills changed regulations and cleanup methods?
  • How has the Flint water crisis changed water regulation safety?
  • What are the pros and cons of fracking?
  • What impact has the Paris Climate Agreement had so far?
  • What have NASA's biggest successes and failures been?
  • How can we improve access to clean water around the world?
  • Does ecotourism actually have a positive impact on the environment?
  • Should the US rely on nuclear energy more?
  • What can be done to save amphibian species currently at risk of extinction?
  • What impact has climate change had on coral reefs?
  • How are black holes created?
  • Are teens who spend more time on social media more likely to suffer anxiety and/or depression?
  • How will the loss of net neutrality affect internet users?
  • Analyze the history and progress of self-driving vehicles.
  • How has the use of drones changed surveillance and warfare methods?
  • Has social media made people more or less connected?
  • What progress has currently been made with artificial intelligence ?
  • Do smartphones increase or decrease workplace productivity?
  • What are the most effective ways to use technology in the classroom?
  • How is Google search affecting our intelligence?
  • When is the best age for a child to begin owning a smartphone?
  • Has frequent texting reduced teen literacy rates?

body_iphone2

How to Write a Great Research Paper

Even great research paper topics won't give you a great research paper if you don't hone your topic before and during the writing process. Follow these three tips to turn good research paper topics into great papers.

#1: Figure Out Your Thesis Early

Before you start writing a single word of your paper, you first need to know what your thesis will be. Your thesis is a statement that explains what you intend to prove/show in your paper. Every sentence in your research paper will relate back to your thesis, so you don't want to start writing without it!

As some examples, if you're writing a research paper on if students learn better in same-sex classrooms, your thesis might be "Research has shown that elementary-age students in same-sex classrooms score higher on standardized tests and report feeling more comfortable in the classroom."

If you're writing a paper on the causes of the Civil War, your thesis might be "While the dispute between the North and South over slavery is the most well-known cause of the Civil War, other key causes include differences in the economies of the North and South, states' rights, and territorial expansion."

#2: Back Every Statement Up With Research

Remember, this is a research paper you're writing, so you'll need to use lots of research to make your points. Every statement you give must be backed up with research, properly cited the way your teacher requested. You're allowed to include opinions of your own, but they must also be supported by the research you give.

#3: Do Your Research Before You Begin Writing

You don't want to start writing your research paper and then learn that there isn't enough research to back up the points you're making, or, even worse, that the research contradicts the points you're trying to make!

Get most of your research on your good research topics done before you begin writing. Then use the research you've collected to create a rough outline of what your paper will cover and the key points you're going to make. This will help keep your paper clear and organized, and it'll ensure you have enough research to produce a strong paper.

What's Next?

Are you also learning about dynamic equilibrium in your science class? We break this sometimes tricky concept down so it's easy to understand in our complete guide to dynamic equilibrium .

Thinking about becoming a nurse practitioner? Nurse practitioners have one of the fastest growing careers in the country, and we have all the information you need to know about what to expect from nurse practitioner school .

Want to know the fastest and easiest ways to convert between Fahrenheit and Celsius? We've got you covered! Check out our guide to the best ways to convert Celsius to Fahrenheit (or vice versa).

These recommendations are based solely on our knowledge and experience. If you purchase an item through one of our links, PrepScholar may receive a commission.

Trending Now

How to Get Into Harvard and the Ivy League

How to Get a Perfect 4.0 GPA

How to Write an Amazing College Essay

What Exactly Are Colleges Looking For?

ACT vs. SAT: Which Test Should You Take?

When should you take the SAT or ACT?

Get Your Free

PrepScholar

Find Your Target SAT Score

Free Complete Official SAT Practice Tests

How to Get a Perfect SAT Score, by an Expert Full Scorer

Score 800 on SAT Math

Score 800 on SAT Reading and Writing

How to Improve Your Low SAT Score

Score 600 on SAT Math

Score 600 on SAT Reading and Writing

Find Your Target ACT Score

Complete Official Free ACT Practice Tests

How to Get a Perfect ACT Score, by a 36 Full Scorer

Get a 36 on ACT English

Get a 36 on ACT Math

Get a 36 on ACT Reading

Get a 36 on ACT Science

How to Improve Your Low ACT Score

Get a 24 on ACT English

Get a 24 on ACT Math

Get a 24 on ACT Reading

Get a 24 on ACT Science

Stay Informed

Get the latest articles and test prep tips!

Follow us on Facebook (icon)

Christine graduated from Michigan State University with degrees in Environmental Biology and Geography and received her Master's from Duke University. In high school she scored in the 99th percentile on the SAT and was named a National Merit Finalist. She has taught English and biology in several countries.

Ask a Question Below

Have any questions about this article or other topics? Ask below and we'll reply!

  • Frontiers in Veterinary Science
  • Animal Nutrition and Metabolism
  • Research Topics

Pet Obesity: Health Impacts and Innovations in Weight Management

Total Downloads

Total Views and Downloads

About this Research Topic

Pet obesity, recognized as a critical nutritional disease, affects a staggering 60% of dogs and cats globally. This prevalent issue is closely associated with several severe health complications such as orthopedic problems, insulin resistance, diabetes mellitus in cats, low-grade inflammation, and even cancer. Notably, these health risks are exacerbated by concurrent issues like low muscle mass, leading to a shortened lifespan. Despite the acknowledgment of weight loss as the primary remedy, attaining substantial results is frequently complicated by the significant role of appetite and adherence challenges influenced by family lifestyle. Additionally, the intricacies of managing weight loss intensify with the presence of other concurrent diseases or in aging pets. Furthermore, critical areas such as the impact of protein intake, accuracy in body composition assessments, and the effectiveness of nutraceuticals for controlling appetite and inflammation remain insufficiently explored. This Research Topic aims to delve into the obesity-related consequences and variables that exacerbate this condition, including the influence of the gut microbiota. The goal is to refine and suggest novel nutritional tools and protocols to enhance weight management, catering specifically to the needs of both healthy and diseased animals. To gather further insights in addressing these comprehensive challenges, we welcome articles addressing, but not limited to, the following themes: - Systematic reviews, with or without meta-analysis - Prospective randomized controlled trials - Retrospective research approaches - Utilization of nutraceuticals or drugs for managing appetite - Innovations in nutritional substances to optimize energy expenditure - Tailored weight loss rates for elderly or ill pets - Broader impacts of obesity on pet health. Andressa Rodrigues Amaral and Pedro Marchi work in a research group that has a partnership with a pet food company. All other Topic Editors declare no competing interests with regard to the Research Topic subject.

Keywords : Appetite control, Inflammation, Insulin Resistance, Obesity, Osteoarthritis, Weight Management

Important Note : All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Topic Editors

Topic coordinators, submission deadlines.

Manuscript Summary
Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

total views

  • Demographics

No records found

total views article views downloads topic views

Top countries

Top referring sites, about frontiers research topics.

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

  • Travel, Tourism & Hospitality ›
  • Leisure Travel

Industry-specific and extensively researched technical data (partially from exclusive partnerships). A paid subscription is required for full access.

Main challenges for travel payments leaders worldwide 2023

A 2023 global survey asked payments leaders about the most significant challenges faced by the travel industry. Overall, the cost of payments ranked as the greatest challenge for the travel market, as indicated by 55 percent of respondents. Meanwhile, 53 percent of the sample mentioned cybersecurity and fraud.

Main challenges in the travel industry according to payments leaders worldwide as of 4th quarter 2023

CharacteristicShare of respondents
--
--
--
--
--

To access all Premium Statistics, you need a paid Statista Account

  • Immediate access to all statistics
  • Incl. source references
  • Download as PDF, XLS, PNG and PPT

Additional Information

Show sources information Show publisher information Use Ask Statista Research Service

52 respondents

senior payments leaders from airlines, travel agencies, and hospitality companies

Online survey

The survey respondents were from the following countries: Brazil, China, France, Germany, India, Mexico, South Korea, United Arab Emirates, the United Kingdom, and the United States.

Other statistics on the topic

Financial Services

  • Most popular e-commerce payment methods in Turkey 2016-2023, with 2027 forecast

Biggest international and domestic payment card schemes in Turkey 2017-2023

Number of active mobile banking customers in Turkey 2014-2023

  • Most used in-store (POS) payment methods in Turkey 2017-2023, with 2027 forecast

To download this statistic in XLS format you need a Statista Account

To download this statistic in PNG format you need a Statista Account

To download this statistic in PDF format you need a Statista Account

To download this statistic in PPT format you need a Statista Account

As a Premium user you get access to the detailed source references and background information about this statistic.

As a Premium user you get access to background information and details about the release of this statistic.

As soon as this statistic is updated, you will immediately be notified via e-mail.

… to incorporate the statistic into your presentation at any time.

You need at least a Starter Account to use this feature.

  • Immediate access to statistics, forecasts & reports
  • Usage and publication rights
  • Download in various formats

* For commercial use only

Basic Account

  • Free Statistics

Starter Account

  • Premium Statistics

The statistic on this page is a Premium Statistic and is included in this account.

Professional Account

  • Free + Premium Statistics
  • Market Insights

1 All prices do not include sales tax. The account requires an annual contract and will renew after one year to the regular list price.

Statistics on " Digital payments in Turkey "

  • Digital payment transaction value in Turkey 2018-2028, by segment
  • Digital payments average transaction value in Turkey 2018-2028
  • Annual adoption of cash by consumers, online or offline, in Turkey 2018-2023
  • Number of fintech startups in Turkey 2023, by activity
  • Number of e-money and payment institutions in Turkey 2017-2023
  • Number of e-commerce transactions in Turkey 2015-2023, by quarter
  • Penetration rate of online banking in Turkey 2014-2029
  • Number of active digital banking customers in Turkey Q1 2017-Q4 2023
  • Number of digital banking customers in Turkey 2017-2023, by segment
  • Number of active internet banking customers in Turkey 2014-2023
  • Quarterly value of online banking transactions in Turkey 2016-2023
  • Quarterly volume of online banking transactions in Turkey 2016-2023
  • Quarterly value of online banking payments in Turkey 2016-2023
  • Quarterly volume of online banking payments in Turkey 2016-2023
  • Penetration rate of credit cards in Turkey 2014-2029
  • Penetration rate of debit cards in Turkey 2014-2029

StatAnalytica

251+ Math Research Topics [2024 Updated]

Math research topics

Mathematics, often dubbed as the language of the universe, holds immense significance in shaping our understanding of the world around us. It’s not just about crunching numbers or solving equations; it’s about unraveling mysteries, making predictions, and creating innovative solutions to complex problems. In this blog, we embark on a journey into the realm of math research topics, exploring various branches of mathematics and their real-world applications.

How Do You Write A Math Research Topic?

Writing a math research topic involves several steps to ensure clarity, relevance, and feasibility. Here’s a guide to help you craft a compelling math research topic:

  • Identify Your Interests: Start by exploring areas of mathematics that interest you. Whether it’s pure mathematics, applied mathematics, or interdisciplinary topics, choose a field that aligns with your passion and expertise.
  • Narrow Down Your Focus: Mathematics is a broad field, so it’s essential to narrow down your focus to a specific area or problem. Consider the scope of your research and choose a topic that is manageable within your resources and time frame.
  • Review Existing Literature: Conduct a thorough literature review to understand the current state of research in your chosen area. Identify gaps, controversies, or unanswered questions that could form the basis of your research topic.
  • Formulate a Research Question: Based on your exploration and literature review, formulate a clear and concise research question. Your research question should be specific, measurable, achievable, relevant, and time-bound (SMART).
  • Consider Feasibility: Assess the feasibility of your research topic in terms of available resources, data availability, and research methodologies. Ensure that your topic is realistic and achievable within the constraints of your project.
  • Consult with Experts: Seek feedback from mentors, advisors, or experts in the field to validate your research topic and refine your ideas. Their insights can help you identify potential challenges and opportunities for improvement.
  • Refine and Iterate: Refine your research topic based on feedback and further reflection. Iterate on your ideas to ensure clarity, coherence, and relevance to the broader context of mathematics research.
  • Craft a Title: Once you have finalized your research topic, craft a compelling title that succinctly summarizes the essence of your research. Your title should be descriptive, engaging, and reflective of the key themes of your study.
  • Write a Research Proposal: Develop a comprehensive research proposal outlining the background, objectives, methodology, and expected outcomes of your research. Your research proposal should provide a clear roadmap for your study and justify the significance of your research topic.

By following these steps, you can effectively write a math research topic that is well-defined, relevant, and poised to make a meaningful contribution to the field of mathematics.

“Exploring the Dynamics of Chaos: A Study of Fractal Patterns and Nonlinear Systems”

251+ Math Research Topics: Beginners To Advanced

  • Prime Number Distribution in Arithmetic Progressions
  • Diophantine Equations and their Solutions
  • Applications of Modular Arithmetic in Cryptography
  • The Riemann Hypothesis and its Implications
  • Graph Theory: Exploring Connectivity and Coloring Problems
  • Knot Theory: Unraveling the Mathematics of Knots and Links
  • Fractal Geometry: Understanding Self-Similarity and Dimensionality
  • Differential Equations: Modeling Physical Phenomena and Dynamical Systems
  • Chaos Theory: Investigating Deterministic Chaos and Strange Attractors
  • Combinatorial Optimization: Algorithms for Solving Optimization Problems
  • Computational Complexity: Analyzing the Complexity of Algorithms
  • Game Theory: Mathematical Models of Strategic Interactions
  • Number Theory: Exploring Properties of Integers and Primes
  • Algebraic Topology: Studying Topological Invariants and Homotopy Theory
  • Analytic Number Theory: Investigating Properties of Prime Numbers
  • Algebraic Geometry: Geometry Arising from Algebraic Equations
  • Galois Theory: Understanding Field Extensions and Solvability of Equations
  • Representation Theory: Studying Symmetry in Linear Spaces
  • Harmonic Analysis: Analyzing Functions on Groups and Manifolds
  • Mathematical Logic: Foundations of Mathematics and Formal Systems
  • Set Theory: Exploring Infinite Sets and Cardinal Numbers
  • Real Analysis: Rigorous Study of Real Numbers and Functions
  • Complex Analysis: Analytic Functions and Complex Integration
  • Measure Theory: Foundations of Lebesgue Integration and Probability
  • Topological Groups: Investigating Topological Structures on Groups
  • Lie Groups and Lie Algebras: Geometry of Continuous Symmetry
  • Differential Geometry: Curvature and Topology of Smooth Manifolds
  • Algebraic Combinatorics: Enumerative and Algebraic Aspects of Combinatorics
  • Ramsey Theory: Investigating Structure in Large Discrete Structures
  • Analytic Geometry: Studying Geometry Using Analytic Methods
  • Hyperbolic Geometry: Non-Euclidean Geometry of Curved Spaces
  • Nonlinear Dynamics: Chaos, Bifurcations, and Strange Attractors
  • Homological Algebra: Studying Homology and Cohomology of Algebraic Structures
  • Topological Vector Spaces: Vector Spaces with Topological Structure
  • Representation Theory of Finite Groups: Decomposition of Group Representations
  • Category Theory: Abstract Structures and Universal Properties
  • Operator Theory: Spectral Theory and Functional Analysis of Operators
  • Algebraic Number Theory: Study of Algebraic Structures in Number Fields
  • Cryptanalysis: Breaking Cryptographic Systems Using Mathematical Methods
  • Discrete Mathematics: Combinatorics, Graph Theory, and Number Theory
  • Mathematical Biology: Modeling Biological Systems Using Mathematical Tools
  • Population Dynamics: Mathematical Models of Population Growth and Interaction
  • Epidemiology: Mathematical Modeling of Disease Spread and Control
  • Mathematical Ecology: Dynamics of Ecological Systems and Food Webs
  • Evolutionary Game Theory: Evolutionary Dynamics and Strategic Behavior
  • Mathematical Neuroscience: Modeling Brain Dynamics and Neural Networks
  • Mathematical Physics: Mathematical Models in Physical Sciences
  • Quantum Mechanics: Foundations and Applications of Quantum Theory
  • Statistical Mechanics: Statistical Methods in Physics and Thermodynamics
  • Fluid Dynamics: Modeling Flow of Fluids Using Partial Differential Equations
  • Mathematical Finance: Stochastic Models in Finance and Risk Management
  • Option Pricing Models: Black-Scholes Model and Beyond
  • Portfolio Optimization: Maximizing Returns and Minimizing Risk
  • Stochastic Calculus: Calculus of Stochastic Processes and Itô Calculus
  • Financial Time Series Analysis: Modeling and Forecasting Financial Data
  • Operations Research: Optimization of Decision-Making Processes
  • Linear Programming: Optimization Problems with Linear Constraints
  • Integer Programming: Optimization Problems with Integer Solutions
  • Network Flow Optimization: Modeling and Solving Flow Network Problems
  • Combinatorial Game Theory: Analysis of Games with Perfect Information
  • Algorithmic Game Theory: Computational Aspects of Game-Theoretic Problems
  • Fair Division: Methods for Fairly Allocating Resources Among Parties
  • Auction Theory: Modeling Auction Mechanisms and Bidding Strategies
  • Voting Theory: Mathematical Models of Voting Systems and Social Choice
  • Social Network Analysis: Mathematical Analysis of Social Networks
  • Algorithm Analysis: Complexity Analysis of Algorithms and Data Structures
  • Machine Learning: Statistical Learning Algorithms and Data Mining
  • Deep Learning: Neural Network Models with Multiple Layers
  • Reinforcement Learning: Learning by Interaction and Feedback
  • Natural Language Processing: Statistical and Computational Analysis of Language
  • Computer Vision: Mathematical Models for Image Analysis and Recognition
  • Computational Geometry: Algorithms for Geometric Problems
  • Symbolic Computation: Manipulation of Mathematical Expressions
  • Numerical Analysis: Algorithms for Solving Numerical Problems
  • Finite Element Method: Numerical Solution of Partial Differential Equations
  • Monte Carlo Methods: Statistical Simulation Techniques
  • High-Performance Computing: Parallel and Distributed Computing Techniques
  • Quantum Computing: Quantum Algorithms and Quantum Information Theory
  • Quantum Information Theory: Study of Quantum Communication and Computation
  • Quantum Error Correction: Methods for Protecting Quantum Information from Errors
  • Topological Quantum Computing: Using Topological Properties for Quantum Computation
  • Quantum Algorithms: Efficient Algorithms for Quantum Computers
  • Quantum Cryptography: Secure Communication Using Quantum Key Distribution
  • Topological Data Analysis: Analyzing Shape and Structure of Data Sets
  • Persistent Homology: Topological Invariants for Data Analysis
  • Mapper Algorithm: Method for Visualization and Analysis of High-Dimensional Data
  • Algebraic Statistics: Statistical Methods Based on Algebraic Geometry
  • Tropical Geometry: Geometric Methods for Studying Polynomial Equations
  • Model Theory: Study of Mathematical Structures and Their Interpretations
  • Descriptive Set Theory: Study of Borel and Analytic Sets
  • Ergodic Theory: Study of Measure-Preserving Transformations
  • Combinatorial Number Theory: Intersection of Combinatorics and Number Theory
  • Additive Combinatorics: Study of Additive Properties of Sets
  • Arithmetic Geometry: Interplay Between Number Theory and Algebraic Geometry
  • Proof Theory: Study of Formal Proofs and Logical Inference
  • Reverse Mathematics: Study of Logical Strength of Mathematical Theorems
  • Nonstandard Analysis: Alternative Approach to Analysis Using Infinitesimals
  • Computable Analysis: Study of Computable Functions and Real Numbers
  • Graph Theory: Study of Graphs and Networks
  • Random Graphs: Probabilistic Models of Graphs and Connectivity
  • Spectral Graph Theory: Analysis of Graphs Using Eigenvalues and Eigenvectors
  • Algebraic Graph Theory: Study of Algebraic Structures in Graphs
  • Metric Geometry: Study of Geometric Structures Using Metrics
  • Geometric Measure Theory: Study of Measures on Geometric Spaces
  • Discrete Differential Geometry: Study of Differential Geometry on Discrete Spaces
  • Algebraic Coding Theory: Study of Error-Correcting Codes
  • Information Theory: Study of Information and Communication
  • Coding Theory: Study of Error-Correcting Codes
  • Cryptography: Study of Secure Communication and Encryption
  • Finite Fields: Study of Fields with Finite Number of Elements
  • Elliptic Curves: Study of Curves Defined by Cubic Equations
  • Hyperelliptic Curves: Study of Curves Defined by Higher-Degree Equations
  • Modular Forms: Analytic Functions with Certain Transformation Properties
  • L-functions: Analytic Functions Associated with Number Theory
  • Zeta Functions: Analytic Functions with Special Properties
  • Analytic Number Theory: Study of Number Theoretic Functions Using Analysis
  • Dirichlet Series: Analytic Functions Represented by Infinite Series
  • Euler Products: Product Representations of Analytic Functions
  • Arithmetic Dynamics: Study of Iterative Processes on Algebraic Structures
  • Dynamics of Rational Maps: Study of Dynamical Systems Defined by Rational Functions
  • Julia Sets: Fractal Sets Associated with Dynamical Systems
  • Mandelbrot Set: Fractal Set Associated with Iterations of Complex Quadratic Polynomials
  • Arithmetic Geometry: Study of Algebraic Geometry Over Number Fields
  • Diophantine Geometry: Study of Solutions of Diophantine Equations Using Geometry
  • Arithmetic of Elliptic Curves: Study of Elliptic Curves Over Number Fields
  • Rational Points on Curves: Study of Rational Solutions of Algebraic Equations
  • Galois Representations: Study of Representations of Galois Groups
  • Automorphic Forms: Analytic Functions with Certain Transformation Properties
  • L-functions: Analytic Functions Associated with Automorphic Forms
  • Selberg Trace Formula: Tool for Studying Spectral Theory and Automorphic Forms
  • Langlands Program: Program to Unify Number Theory and Representation Theory
  • Hodge Theory: Study of Harmonic Forms on Complex Manifolds
  • Riemann Surfaces: One-dimensional Complex Manifolds
  • Shimura Varieties: Algebraic Varieties Associated with Automorphic Forms
  • Modular Curves: Algebraic Curves Associated with Modular Forms
  • Hyperbolic Manifolds: Manifolds with Constant Negative Curvature
  • Teichmüller Theory: Study of Moduli Spaces of Riemann Surfaces
  • Mirror Symmetry: Duality Between Calabi-Yau Manifolds
  • Kähler Geometry: Study of Hermitian Manifolds with Special Symmetries
  • Algebraic Groups: Linear Algebraic Groups and Their Representations
  • Lie Algebras: Study of Algebraic Structures Arising from Lie Groups
  • Representation Theory of Lie Algebras: Study of Representations of Lie Algebras
  • Quantum Groups: Deformation of Lie Groups and Lie Algebras
  • Algebraic Topology: Study of Topological Spaces Using Algebraic Methods
  • Homotopy Theory: Study of Continuous Deformations of Spaces
  • Homology Theory: Study of Algebraic Invariants of Topological Spaces
  • Cohomology Theory: Study of Dual Concepts to Homology Theory
  • Singular Homology: Homology Theory Defined Using Simplicial Complexes
  • Sheaf Theory: Study of Sheaves and Their Cohomology
  • Differential Forms: Study of Multilinear Differential Forms
  • De Rham Cohomology: Cohomology Theory Defined Using Differential Forms
  • Morse Theory: Study of Critical Points of Smooth Functions
  • Symplectic Geometry: Study of Symplectic Manifolds and Their Geometry
  • Floer Homology: Study of Symplectic Manifolds Using Pseudoholomorphic Curves
  • Gromov-Witten Invariants: Invariants of Symplectic Manifolds Associated with Pseudoholomorphic Curves
  • Mirror Symmetry: Duality Between Symplectic and Complex Geometry
  • Calabi-Yau Manifolds: Ricci-Flat Complex Manifolds
  • Moduli Spaces: Spaces Parameterizing Geometric Objects
  • Donaldson-Thomas Invariants: Invariants Counting Sheaves on Calabi-Yau Manifolds
  • Algebraic K-Theory: Study of Algebraic Invariants of Rings and Modules
  • Homological Algebra: Study of Homology and Cohomology of Algebraic Structures
  • Derived Categories: Categories Arising from Homological Algebra
  • Stable Homotopy Theory: Homotopy Theory with Stable Homotopy Groups
  • Model Categories: Categories with Certain Homotopical Properties
  • Higher Category Theory: Study of Higher Categories and Homotopy Theory
  • Higher Topos Theory: Study of Higher Categorical Structures
  • Higher Algebra: Study of Higher Categorical Structures in Algebra
  • Higher Algebraic Geometry: Study of Higher Categorical Structures in Algebraic Geometry
  • Higher Representation Theory: Study of Higher Categorical Structures in Representation Theory
  • Higher Category Theory: Study of Higher Categorical Structures
  • Homotopical Algebra: Study of Algebraic Structures in Homotopy Theory
  • Homotopical Groups: Study of Groups with Homotopical Structure
  • Homotopical Categories: Study of Categories with Homotopical Structure
  • Homotopy Groups: Algebraic Invariants of Topological Spaces
  • Homotopy Type Theory: Study of Foundations of Mathematics Using Homotopy Theory

In conclusion, the world of mathematics is vast and multifaceted, offering endless opportunities for exploration and discovery. Whether delving into the abstract realms of pure mathematics or applying mathematical principles to solve real-world problems, mathematicians play a vital role in advancing human knowledge and shaping the future of our world.

By embracing diverse math research topics and interdisciplinary collaborations, we can unlock new possibilities and harness the power of mathematics to address the challenges of today and tomorrow. So, let’s embark on this journey together as we unravel the mysteries of numbers and explore the boundless horizons of mathematical inquiry.

Related Posts

best way to finance car

Step by Step Guide on The Best Way to Finance Car

how to get fund for business

The Best Way on How to Get Fund For Business to Grow it Efficiently

Suggestions or feedback?

MIT News | Massachusetts Institute of Technology

  • Machine learning
  • Sustainability
  • Black holes
  • Classes and programs

Departments

  • Aeronautics and Astronautics
  • Brain and Cognitive Sciences
  • Architecture
  • Political Science
  • Mechanical Engineering

Centers, Labs, & Programs

  • Abdul Latif Jameel Poverty Action Lab (J-PAL)
  • Picower Institute for Learning and Memory
  • Lincoln Laboratory
  • School of Architecture + Planning
  • School of Engineering
  • School of Humanities, Arts, and Social Sciences
  • Sloan School of Management
  • School of Science
  • MIT Schwarzman College of Computing

Study: Transparency is often lacking in datasets used to train large language models

Press contact :, media download.

Five square slices show glimpse of LLMs, and the final one is green with a thumbs up.

*Terms of Use:

Images for download on the MIT News office website are made available to non-commercial entities, press and the general public under a Creative Commons Attribution Non-Commercial No Derivatives license . You may not alter the images provided, other than to crop them to size. A credit line must be used when reproducing images; if one is not provided below, credit the images to "MIT."

Five square slices show glimpse of LLMs, and the final one is green with a thumbs up.

Previous image Next image

In order to train more powerful large language models, researchers use vast dataset collections that blend diverse data from thousands of web sources.

But as these datasets are combined and recombined into multiple collections, important information about their origins and restrictions on how they can be used are often lost or confounded in the shuffle.

Not only does this raise legal and ethical concerns, it can also damage a model’s performance. For instance, if a dataset is miscategorized, someone training a machine-learning model for a certain task may end up unwittingly using data that are not designed for that task.

In addition, data from unknown sources could contain biases that cause a model to make unfair predictions when deployed.

To improve data transparency, a team of multidisciplinary researchers from MIT and elsewhere launched a systematic audit of more than 1,800 text datasets on popular hosting sites. They found that more than 70 percent of these datasets omitted some licensing information, while about 50 percent had information that contained errors.

Building off these insights, they developed a user-friendly tool called the  Data Provenance Explorer that automatically generates easy-to-read summaries of a dataset’s creators, sources, licenses, and allowable uses.

“These types of tools can help regulators and practitioners make informed decisions about AI deployment, and further the responsible development of AI,” says Alex “Sandy” Pentland, an MIT professor, leader of the Human Dynamics Group in the MIT Media Lab, and co-author of a new open-access paper about the project .

The Data Provenance Explorer could help AI practitioners build more effective models by enabling them to select training datasets that fit their model’s intended purpose. In the long run, this could improve the accuracy of AI models in real-world situations, such as those used to evaluate loan applications or respond to customer queries.

“One of the best ways to understand the capabilities and limitations of an AI model is understanding what data it was trained on. When you have misattribution and confusion about where data came from, you have a serious transparency issue,” says Robert Mahari, a graduate student in the MIT Human Dynamics Group, a JD candidate at Harvard Law School, and co-lead author on the paper.

Mahari and Pentland are joined on the paper by co-lead author Shayne Longpre, a graduate student in the Media Lab; Sara Hooker, who leads the research lab Cohere for AI; as well as others at MIT, the University of California at Irvine, the University of Lille in France, the University of Colorado at Boulder, Olin College, Carnegie Mellon University, Contextual AI, ML Commons, and Tidelift. The research is published today in Nature Machine Intelligence .

Focus on finetuning

Researchers often use a technique called fine-tuning to improve the capabilities of a large language model that will be deployed for a specific task, like question-answering. For finetuning, they carefully build curated datasets designed to boost a model’s performance for this one task.

The MIT researchers focused on these fine-tuning datasets, which are often developed by researchers, academic organizations, or companies and licensed for specific uses.

When crowdsourced platforms aggregate such datasets into larger collections for practitioners to use for fine-tuning, some of that original license information is often left behind.

“These licenses ought to matter, and they should be enforceable,” Mahari says.

For instance, if the licensing terms of a dataset are wrong or missing, someone could spend a great deal of money and time developing a model they might be forced to take down later because some training data contained private information.

“People can end up training models where they don’t even understand the capabilities, concerns, or risk of those models, which ultimately stem from the data,” Longpre adds.

To begin this study, the researchers formally defined data provenance as the combination of a dataset’s sourcing, creating, and licensing heritage, as well as its characteristics. From there, they developed a structured auditing procedure to trace the data provenance of more than 1,800 text dataset collections from popular online repositories.

After finding that more than 70 percent of these datasets contained “unspecified” licenses that omitted much information, the researchers worked backward to fill in the blanks. Through their efforts, they reduced the number of datasets with “unspecified” licenses to around 30 percent.

Their work also revealed that the correct licenses were often more restrictive than those assigned by the repositories.   

In addition, they found that nearly all dataset creators were concentrated in the global north, which could limit a model’s capabilities if it is trained for deployment in a different region. For instance, a Turkish language dataset created predominantly by people in the U.S. and China might not contain any culturally significant aspects, Mahari explains.

“We almost delude ourselves into thinking the datasets are more diverse than they actually are,” he says.

Interestingly, the researchers also saw a dramatic spike in restrictions placed on datasets created in 2023 and 2024, which might be driven by concerns from academics that their datasets could be used for unintended commercial purposes.

A user-friendly tool

To help others obtain this information without the need for a manual audit, the researchers built the Data Provenance Explorer. In addition to sorting and filtering datasets based on certain criteria, the tool allows users to download a data provenance card that provides a succinct, structured overview of dataset characteristics.

“We are hoping this is a step, not just to understand the landscape, but also help people going forward to make more informed choices about what data they are training on,” Mahari says.

In the future, the researchers want to expand their analysis to investigate data provenance for multimodal data, including video and speech. They also want to study how terms of service on websites that serve as data sources are echoed in datasets.

As they expand their research, they are also reaching out to regulators to discuss their findings and the unique copyright implications of fine-tuning data.

“We need data provenance and transparency from the outset, when people are creating and releasing these datasets, to make it easier for others to derive these insights,” Longpre says.

“Many proposed policy interventions assume that we can correctly assign and identify licenses associated with data, and this work first shows that this is not the case, and then significantly improves the provenance information available,” says Stella Biderman, executive director of EleutherAI, who was not involved with this work. “In addition, section 3 contains relevant legal discussion. This is very valuable to machine learning practitioners outside companies large enough to have dedicated legal teams. Many people who want to build AI systems for public good are currently quietly struggling to figure out how to handle data licensing, because the internet is not designed in a way that makes data provenance easy to figure out.”

Share this news article on:

Related links.

  • Data Provenance Initiative
  • Robert Mahari
  • Shayne Longpre
  • Alex “Sandy” Pentland
  • School of Architecture and Planning

Related Topics

  • Computer science and technology
  • Artificial intelligence
  • Human-computer interaction
  • Technology and society

Related Articles

AI image shows a mix between swirling whirlpools, splashes of water, hints of human ears, and green grass.

If art is how we express our humanity, where does AI fit in?

A hand touches an array of lines and nodes, and a fizzle appears.

Large language models don’t behave like people, even though we may expect them to

Illustration of a blue robot-man absorbing and generating info. On left are research and graph icons going into his brain. On right are speech bubble icons, as if in conversation.

Large language models use a surprisingly simple mechanism to retrieve some stored knowledge

Previous item Next item

More MIT News

Charalampos Sampalis wears a headset while looking at the camera

How MIT’s online resources provide a “highly motivating, even transformative experience”

Read full story →

A small model shows a wooden man in a sparse room, with dramatic lighting from the windows.

Students learn theater design through the power of play

Illustration of 5 spheres with purple and brown swirls. Below that, a white koala with insets showing just its head. Each koala has one purple point on either the forehead, ears, and nose.

A framework for solving parabolic partial differential equations

Feyisayo Eweje wears lab coat and gloves while sitting in a lab.

Designing better delivery for medical therapies

Saeed Miganeh poses standing in a hallway. A street scene is visible through windows in the background

Making a measurable economic impact

Jessica Tam headshot

Faces of MIT: Jessica Tam

  • More news on MIT News homepage →

Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA, USA

  • Map (opens in new window)
  • Events (opens in new window)
  • People (opens in new window)
  • Careers (opens in new window)
  • Accessibility
  • Social Media Hub
  • MIT on Facebook
  • MIT on YouTube
  • MIT on Instagram

This site uses cookies to optimize functionality and give you the best possible experience. If you continue to navigate this website beyond this page, cookies will be placed on your browser. To learn more about cookies, click here .

Numbers, Facts and Trends Shaping Your World

Read our research on:

Full Topic List

Regions & Countries

  • Publications
  • Our Methods
  • Short Reads
  • Tools & Resources

Read Our Research On:

Americans’ Experiences With Local Crime News

Methodology, table of contents.

  • What Americans see – and want to see – in local crime news
  • Sources of local crime news, and how local TV news consumers stand out
  • Americans’ varying perceptions of local crime news
  • How different demographic groups experience local crime news
  • Where Americans get news about local crime
  • Where Americans go first for information about a local crime
  • Americans’ interest in different aspects of crime news
  • Ease of finding local crime news
  • Perceptions of accuracy of local crime news
  • Are sources viewed as exaggerating or underplaying local crime?
  • Perceptions of fairness of local crime news depending on race
  • Which Americans are more likely to feel afraid after seeing crime news?
  • Americans’ responses to hearing news about local crime
  • Acknowledgments
  • The American Trends Panel survey methodology

The American Trends Panel (ATP), created by Pew Research Center, is a nationally representative panel of randomly selected U.S. adults. Panelists participate via self-administered web surveys. Panelists who do not have internet access at home are provided with a tablet and wireless internet connection. Interviews are conducted in both English and Spanish. The panel is being managed by Ipsos.

Data in this report is drawn from ATP Wave 141, conducted from Jan. 22 to 28, 2024, and includes an oversample of non-Hispanic Asian adults, non-Hispanic Black men and Hispanic men in order to provide more precise estimates of the opinions and experiences of these smaller demographic subgroups. These oversampled groups are weighted back to reflect their correct proportions in the population. A total of 5,146 panelists responded out of 5,604 who were sampled, for a response rate of 92%. The cumulative response rate accounting for nonresponse to the recruitment surveys and attrition is 3%. The break-off rate among panelists who logged on to the survey and completed at least one item is 1%. The margin of sampling error for the full sample of 5,146 respondents is plus or minus 1.7 percentage points.

This is a Pew Research Center report from the Pew-Knight Initiative, a research program funded jointly by The Pew Charitable Trusts and the John S. and James L. Knight Foundation. Find related reports online at https://www.pewresearch.org/pew-knight/ .

Panel recruitment

The ATP was created in 2014, with the first cohort of panelists invited to join the panel at the end of a large, national, landline and cellphone random-digit-dial survey that was conducted in both English and Spanish. Two additional recruitments were conducted using the same method in 2015 and 2017, respectively. Across these three surveys, a total of 19,718 adults were invited to join the ATP, of whom 9,942 (50%) agreed to participate.

In August 2018, the ATP switched from telephone to address-based sampling (ABS) recruitment. A study cover letter and a pre-incentive are mailed to a stratified, random sample of households selected from the U.S. Postal Service’s Delivery Sequence File. This Postal Service file has been estimated to cover as much as 98% of the population, although some studies suggest that the coverage could be in the low 90% range. 1

Within each sampled household, the adult with the next birthday is asked to participate. Other details of the ABS recruitment protocol have changed over time but are available upon request. 2

Table showing the American Trends Panel recruitment surveys

We have recruited a national sample of U.S. adults to the ATP approximately once per year since 2014. In some years, the recruitment has included additional efforts (known as an “oversample”) to boost sample size with underrepresented groups. For example, Hispanic adults, Black adults and Asian adults were oversampled in 2019, 2022 and 2023, respectively.

Across the six address-based recruitments, a total of 23,862 adults were invited to join the ATP, of whom 20,917 agreed to join the panel and completed an initial profile survey. Of the 30,859 individuals who have ever joined the ATP, 11,927 remained active panelists and continued to receive survey invitations at the time this survey was conducted.

The American Trends Panel never uses breakout routers or chains that direct respondents to additional surveys.

Sample design

The overall target population for this survey was noninstitutionalized persons ages 18 and older living in the U.S., including Alaska and Hawaii. It featured a stratified random sample from the ATP in which Hispanic men, non-Hispanic Black men and non-Hispanic Asian adults were selected with certainty. The remaining panelists were sampled at rates designed to ensure that the share of respondents in each stratum is proportional to its share of the U.S. adult population to the greatest extent possible. Respondent weights are adjusted to account for differential probabilities of selection as described in the Weighting section below.

Questionnaire development and testing

The questionnaire was developed by Pew Research Center in consultation with Ipsos. The web program was rigorously tested on both PC and mobile devices by the Ipsos project management team and Pew Research Center researchers. The Ipsos project management team also populated test data that was analyzed in SPSS to ensure the logic and randomizations were working as intended before launching the survey.

All respondents were offered a post-paid incentive for their participation. Respondents could choose to receive the post-paid incentive in the form of a check or a gift code to Amazon.com or could choose to decline the incentive. Incentive amounts ranged from $5 to $20 depending on whether the respondent belongs to a part of the population that is harder or easier to reach. Differential incentive amounts were designed to increase panel survey participation among groups that traditionally have low survey response propensities.

Data collection protocol

The data collection field period for this survey was Jan. 22 to Jan. 28, 2024. Postcard notifications were mailed to a subset of ATP panelists with a known residential address on Jan. 22. 3

Invitations were sent out in two separate launches: soft launch and full launch. Sixty panelists were included in the soft launch, which began with an initial invitation sent on Jan. 22. The ATP panelists chosen for the initial soft launch were known responders who had completed previous ATP surveys within one day of receiving their invitation. All remaining English- and Spanish-speaking sampled panelists were included in the full launch and were sent an invitation on Jan. 23.

All panelists with an email address received an email invitation and up to two email reminders if they did not respond to the survey. All ATP panelists who consented to SMS messages received an SMS invitation and up to two SMS reminders.

Table showing the invitation and reminder dates, ATP Wave 141

Data quality checks

To ensure high-quality data, the Center’s researchers performed data quality checks to identify any respondents showing clear patterns of satisficing. This includes checking for whether respondents left questions blank at very high rates or always selected the first or last answer presented. As a result of this checking, three ATP respondents were removed from the survey dataset prior to weighting and analysis.

The ATP data is weighted in a multistep process that accounts for multiple stages of sampling and nonresponse that occur at different points in the survey process. First, each panelist begins with a base weight that reflects their probability of selection for their initial recruitment survey. These weights are then rescaled and adjusted to account for changes in the design of ATP recruitment surveys from year to year. Finally, the weights are calibrated to align with the population benchmarks in the accompanying table to correct for nonresponse to recruitment surveys and panel attrition. If only a subsample of panelists was invited to participate in the wave, this weight is adjusted to account for any differential probabilities of selection.

Table showing the American Trends Panel weighting dimensions

Among the panelists who completed the survey, this weight is then calibrated again to align with the population benchmarks identified in the accompanying table and trimmed at the 2nd and 98th percentiles to reduce the loss in precision stemming from variance in the weights. This trimming is performed separately among non-Hispanic Black, non-Hispanic Asian, Hispanic and all other respondents. Sampling errors and tests of statistical significance take into account the effect of weighting.

The following table shows the unweighted sample sizes and the error attributable to sampling that would be expected at the 95% level of confidence for different groups in the survey.

Table showing the sample sizes and margins of error, ATP Wave 141

Sample sizes and sampling errors for other subgroups are available upon request. In addition to sampling error, one should bear in mind that question wording and practical difficulties in conducting surveys can introduce error or bias into the findings of opinion polls.

Dispositions and response rates

Table showing the final dispositions, ATP Wave 141

  • AAPOR Task Force on Address-based Sampling. 2016. “ AAPOR Report: Address-based Sampling .” ↩
  • Email [email protected] . ↩
  • Postcard notifications are sent to 1) panelists who have been provided with a tablet to take ATP surveys, 2) panelists who were recruited within the last two years, and 3) panelists recruited prior to the last two years who opt to continue receiving postcard notifications. ↩

Sign up for our weekly newsletter

Fresh data delivery Saturday mornings

Sign up for The Briefing

Weekly updates on the world of news & information

  • Disasters & Accidents

The link between local news coverage and Americans’ perceptions of crime

Americans’ changing relationship with local news, how americans get local political news, introducing the pew-knight initiative, audiences are declining for traditional news media in the u.s. – with some exceptions, most popular, report materials.

901 E St. NW, Suite 300 Washington, DC 20004 USA (+1) 202-419-4300 | Main (+1) 202-857-8562 | Fax (+1) 202-419-4372 |  Media Inquiries

Research Topics

  • Email Newsletters

ABOUT PEW RESEARCH CENTER  Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of  The Pew Charitable Trusts .

© 2024 Pew Research Center

IMAGES

  1. 500+ Statistics Research Topics

    research topics with statistics

  2. Top 99+ Trending Statistics Research Topics for Students

    research topics with statistics

  3. Top 100 Statistical Research Topics & Writing Recommendations

    research topics with statistics

  4. Explore 50+ Best Survey Topics for Statistics Project

    research topics with statistics

  5. Best Ever Statistics Research Topics for In-Depth Analysis

    research topics with statistics

  6. PPT

    research topics with statistics

VIDEO

  1. Statistics

  2. Statistics for #Research

  3. Types of statistical studies

  4. Statistics And Probability Tutorial

  5. Statistics for Data Science

  6. Introduction to Statistics..What are they? And, How Do I Know Which One to Choose?

COMMENTS

  1. 500+ Statistics Research Topics

    500+ Statistics Research Topics. March 25, 2024. by Muhammad Hassan. Statistics is a branch of mathematics that deals with the collection, analysis, interpretation, presentation, and organization of data. It is a fundamental tool used in various fields such as business, social sciences, engineering, healthcare, and many more.

  2. Top 99+ Trending Statistics Research Topics for Students

    If we talk about the interesting research topics in statistics, it can vary from student to student. But here are the key topics that are quite interesting for almost every student:-. Literacy rate in a city. Abortion and pregnancy rate in the USA. Eating disorders in the citizens.

  3. 120 Statistical Research Topics: Latest Trends & Techniques

    Researchers and statistics teachers are often tasked with writing an article or paper on a given stats project idea. One of the most crucial things in writing an outstanding and well-composed statistics research project, paper, or essay is to come up with a very interesting topic that will captivate your reader's minds and provoke their thoughts.

  4. 100 Statistics Research Topics

    Statistics Research Topics in Business. Understanding the factors that influence consumer purchase decisions in the technology industry. Advertising and sales revenue: a time-series analysis. The effectiveness of customer loyalty programs in increasing customer retention and revenue.

  5. Statistics Project Topics: From Data to Discovery

    1.2 Statistics Project Topics for High School Students. 1.3 Statistical Survey Topics. 1.4 Statistical Experiment Ideas. 1.5 Easy Stats Project Ideas. 1.6 Business Ideas for Statistics Project. 1.7 Socio-Economic Easy Statistics Project Ideas. 1.8 Experiment Ideas for Statistics and Analysis. 2 Conclusion: Navigating the World of Data Through ...

  6. Research Topics & Ideas: Data Science

    Data Science-Related Research Topics. Developing machine learning models for real-time fraud detection in online transactions. The use of big data analytics in predicting and managing urban traffic flow. Investigating the effectiveness of data mining techniques in identifying early signs of mental health issues from social media usage.

  7. 155 Best Statistics Project Topics for College Students

    Some common statistics topics include data analysis, hypothesis testing, regression analysis, predictive modeling, and more. These topics are applied in various fields such as finance, healthcare, sports, psychology, and environmental science, to name a few. Statistics project topics for college students help researchers and analysts make ...

  8. Top 50 Statistics Project Ideas [Revised]

    Step 7: Create Visualizations. Charts and Graphs: Create visual representations of your data. Bar charts, scatter plots, histograms, etc., can help convey your findings. Narrate Your Story: Explain what each visualization means in relation to your research question.

  9. Statistics

    Statistics is the application of mathematical concepts to understanding and analysing large collections of data. A central tenet of statistics is to describe the variations in a data set or ...

  10. Statistics for Research Students

    The textbook covers all necessary areas and topics for students who want to conduct research in statistics. It includes foundational concepts, application methods, and advanced statistical techniques relevant to research methodologies. ... He currently teaches four courses in research methods and statistics. His research involves leadership, ...

  11. Top 10 Essential Data Science Topics to Real-World Application From the

    1. Introduction. Statistics and data science are more popular than ever in this era of data explosion and technological advances. Decades ago, John Tukey (Brillinger, 2014) said, "The best thing about being a statistician is that you get to play in everyone's backyard."More recently, Xiao-Li Meng (2009) said, "We no longer simply enjoy the privilege of playing in or cleaning up everyone ...

  12. 75+ Realistic Statistics Project Ideas To Score A+

    Statistics Project Ideas for High School. Let's find out the best statistics project ideas for high school that will help you to score good grades and showcase your skills:-. Evaluate the published reports and graphs based on the analyzed data and conclude. Use dice to evaluate the bias and effect of completing data.

  13. 301+ Research Topic Examples For Students [Updated 2024]

    301+ Research Topic Examples For Students [Updated 2024] General / By StatAnalytica / 12th January 2024. Embarking on a research journey is a crucial aspect of academic growth for students. Selecting the right research topic is like choosing the key that unlocks the door to a world of academic exploration and discovery.

  14. The Beginner's Guide to Statistical Analysis

    Table of contents. Step 1: Write your hypotheses and plan your research design. Step 2: Collect data from a sample. Step 3: Summarize your data with descriptive statistics. Step 4: Test hypotheses or make estimates with inferential statistics.

  15. Frontiers in Applied Mathematics and Statistics

    Explores how the application of mathematics and statistics can drive scientific developments across data science, engineering, finance, physics, biology, ecology, business, medicine, and beyond ... 120 Research Topics Guest edit your own article collection Suggest a topic. Submission. null. Submission

  16. Statistics

    Read the latest Research articles in Statistics from Scientific Reports ... Research on the influencing factors of promoting flipped classroom teaching based on the integrated UTAUT model and ...

  17. Research Topics

    ABOUT PEW RESEARCH CENTER Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions.

  18. Research topics in Probability and Statistics

    Examples of themes for undergraduate research projects: Discovering which genes can discriminate between diseased and healthy patients. Modelling and detecting asset price bubbles while they are happening and before they burst. Modelling infectious diseases and identifying localized outbreaks. Developing a fast algorithm through probabilistic ...

  19. Recent Dissertation Topics

    Dissertation Advisor: Marten Wegkamp and Florentina Bunea. 2021. - "Nonparametric and semiparametric approaches to functional data modeling". - "Deep probabilistic models for sequential prediction". - "Off-policy evaluation and learning for interactive systems". - "Scalable and reliable inference for probabilistic modeling".

  20. Home

    Covers all topics of modern data science, such as frequentist and Bayesian design and inference as well as statistical learning. Contains original research papers (regular articles), survey articles, short communications, reports on statistical software, and book reviews. High author satisfaction with 90% likely to publish in the journal again.

  21. Introduction to Statistics I Stanford Online

    Click "ENROLL NOW" to visit Coursera and get more information on course details and enrollment. Stanford's "Introduction to Statistics" teaches you statistical thinking concepts that are essential for learning from data and communicating insights. By the end of the course, you will be able to perform exploratory data analysis, understand ...

  22. 113 Great Research Paper Topics · PrepScholar

    113 Great Research Paper Topics. One of the hardest parts of writing a research paper can be just finding a good topic to write about. Fortunately we've done the hard work for you and have compiled a list of 113 interesting research paper topics. They've been organized into ten categories and cover a wide range of subjects so you can easily ...

  23. Pet Obesity: Health Impacts and Innovations in Weight Management

    This Research Topic aims to delve into the obesity-related consequences and variables that exacerbate this condition, including the influence of the gut microbiota. The goal is to refine and suggest novel nutritional tools and protocols to enhance weight management, catering specifically to the needs of both healthy and diseased animals. ...

  24. Main challenges for travel payments worldwide 2023

    As your partner for data-driven success, we combine expertise in research, strategy, and marketing communications to deliver comprehensive solutions. ... Other statistics on the topic + Financial ...

  25. 251+ Math Research Topics [2024 Updated]

    251+ Math Research Topics: Beginners To Advanced. Prime Number Distribution in Arithmetic Progressions. Diophantine Equations and their Solutions. Applications of Modular Arithmetic in Cryptography. The Riemann Hypothesis and its Implications. Graph Theory: Exploring Connectivity and Coloring Problems.

  26. Study: Transparency is often lacking in datasets used to train large

    The research is published today in Nature Machine Intelligence. Focus on finetuning. Researchers often use a technique called fine-tuning to improve the capabilities of a large language model that will be deployed for a specific task, like question-answering.

  27. Environmental and Social Review Summary

    Global data and statistics, research and publications, and topics in poverty and development

  28. Methodology

    ABOUT PEW RESEARCH CENTER Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions.