Examples

Hypothesis If Then

Ai generator.

example of a hypothesis if then because

In the vast universe of scientific inquiries, the “if-then” hypothesis structure stands out as an essential tool, bridging observation and prediction. This format not only simplifies complex scientific theories but also provides clarity to young learners and budding scientists. Whether you’re experimenting in a professional lab or just in your backyard, understanding and crafting a Thesis statement succinct “if-then” hypothesis can be the key to unlocking the secrets of the world around us. Dive in to explore, write, and refine!

What is If Then Hypothesis?

The “If-Then” hypothesis is a predictive statement that sets up a cause-and-effect relationship between two variables. It’s structured such that the “If” portion introduces a condition or a cause, and the “Then” portion predicts the effect or outcome of that condition. This format helps in clearly establishing a link between the independent and dependent variables in an experiment.

What is an example of a Hypothesis If Then Statement?

For instance, let’s consider a basic experiment related to plant growth:

  • Hypothesis : If a plant is exposed to direct sunlight for at least 6 hours a day, then it will grow taller than a plant that is kept in the shade.

In this example, the exposure to sunlight (or the lack thereof) is the condition, while the growth of the plant is the predicted outcome. The statement concisely links the cause (sunlight exposure) to the effect (plant growth).

100 If Then Hypothesis Statement Examples

Hypothesis If Then Statement Examples

Size: 215 KB

The “If-Then” hypothesis elegantly captures a cause-and-effect relationship in scientific inquiries. This predictive format, with its concise clarity, bridges observation and anticipated outcome, guiding experiments in a myriad of domains.

  • Plant Growth : If a plant receives fertilizer, then it will grow faster than one without fertilizer.
  • Melting Points : If ice is exposed to temperatures above 0°C, then it will melt.
  • Battery Life : If a battery is used continuously, then it will drain faster than if used intermittently.
  • Sleep & Performance : If a person sleeps less than 6 hours a night, then their cognitive performance will decrease.
  • Diet & Weight : If an individual consumes more calories than they burn, then they will gain weight.
  • Hydration : If a person drinks less than 8 glasses of water daily, then they may experience dehydration.
  • Light & Vision : If a room is darkened, then the pupils of one’s eyes will dilate.
  • Sugar & Energy : If children consume sugary drinks, then they will show increased levels of energy.
  • Study Habits : If a student revises regularly, then they will retain more information than those who cram.
  • Exercise & Health : If a person exercises three times a week, then their cardiovascular health will improve.
  • Noise & Concentration : If a room is noisy, then people inside will find it harder to concentrate.
  • Medication & Pain : If an individual takes painkillers, then they will report reduced pain levels.
  • Soil Quality : If soil is rich in nutrients, then plants grown in it will be healthier.
  • Reading & Vocabulary : If a child reads daily, then their vocabulary will expand faster than a non-reading peer.
  • Social Media : If a teenager spends over 5 hours on social media, then they may experience decreased sleep quality.
  • Sunscreen : If sunscreen is applied, then the chances of getting sunburned decrease.
  • Coffee & Alertness : If an individual drinks coffee in the morning, then they will feel more alert.
  • Music & Productivity : If calming music is played in the workplace, then employees will be more productive.
  • Temperature & Metabolism : If the ambient temperature is cold, then a person’s metabolism will increase.
  • Pets & Stress : If an individual owns a pet, then their stress levels might decrease.
  • Vegetation & Air Quality : If trees are planted in an urban area, then air quality will improve.
  • Vaccination : If a child is vaccinated, then they will have a reduced risk of contracting certain diseases.
  • E-learning : If students use e-learning platforms, then they will have flexible study hours.
  • Recycling : If a community adopts recycling, then landfill waste will decrease.
  • Fast Food : If an individual eats fast food regularly, then their cholesterol levels might rise.
  • UV Light : If UV light is shone on a glow-in-the-dark material, then it will glow more brightly.
  • Brushing Teeth : If a child brushes their teeth twice daily, then they will have fewer cavities than those who don’t.
  • Bird Migration : If the climate becomes colder, then certain birds will migrate to warmer regions.
  • Space Exploration : If astronauts go without gravity for long periods, then their bone density will decrease.
  • Plastic Pollution : If we reduce single-use plastic consumption, then the amount of plastic in the ocean will decrease.
  • Books & Imagination : If a child reads fantasy novels, then their imaginative skills will be enhanced.
  • AI & Efficiency : If companies use artificial intelligence in operations, then their efficiency will improve.
  • Video Games : If children play violent video games, then they might exhibit aggressive behavior.
  • Healthy Diet : If someone consumes a balanced diet, then their overall health will benefit.
  • Deforestation : If forests are cleared at the current rate, then global temperatures will rise due to reduced carbon sequestration.
  • Renewable Energy : If a country invests in renewable energy, then its carbon footprint will decrease.
  • Exercise & Mood : If an individual engages in regular physical activity, then their mood will generally improve.
  • Microplastics : If microplastics enter the water system, then marine life will be at risk.
  • Language Learning : If a person practices a new language daily, then they will become fluent faster.
  • Organic Farming : If farmers use organic methods, then the pesticide residue in the food will decrease.
  • Remote Work : If employees work remotely, then office costs will reduce.
  • Yoga & Flexibility : If someone practices yoga regularly, then their flexibility will increase.
  • Public Transport : If a city improves its public transportation system, then traffic congestion will decrease.
  • Meditation & Stress : If an individual meditates daily, then their stress levels will be lower.
  • Fish & Omega-3 : If someone includes fish in their diet weekly, then their omega-3 fatty acid intake will be adequate.
  • Smartphones & Sleep : If a person uses their smartphone before bed, then their sleep quality might decrease.
  • Waste Segregation : If households segregate waste, then recycling processes will be more efficient.
  • E-Books : If students use e-books instead of paper ones, then paper consumption will decrease.
  • Carpooling : If more people adopt carpooling, then urban air quality will improve due to fewer car emissions.
  • Digital Payments : If digital payment systems are adopted widely, then cash handling costs will reduce.
  • Online Learning : If students engage in online learning platforms, then their access to diverse educational resources will increase.
  • Tree Planting : If a community plants more trees in urban areas, then the air quality will improve due to increased oxygen output.
  • Pet Ownership : If an individual adopts a pet, then they may experience reduced feelings of loneliness.
  • Recycling : If recycling is made mandatory in cities, then landfill waste will decrease significantly.
  • Natural Cleaners : If households use natural cleaning agents, then water pollution from residential areas will decrease.
  • Solar Panels : If a house installs solar panels, then its electricity bill will decrease.
  • Music & Productivity : If workers listen to instrumental music while working, then their productivity might increase.
  • Healthy Breakfast : If someone eats a nutritious breakfast daily, then their energy levels throughout the day will be higher.
  • Water Conservation : If individuals reduce their shower time by 5 minutes, then significant water conservation can be achieved annually.
  • Learning Instruments : If a child learns a musical instrument, then their cognitive and motor skills may improve.
  • Reusable Bags : If shoppers use reusable bags, then the demand for plastic bags will reduce.
  • Public Libraries : If a city invests in public libraries, then the literacy rate of its citizens may rise.
  • Organ Donation : If awareness about organ donation increases, then the waiting list for organ transplants will decrease.
  • Green Spaces : If urban areas increase green spaces, then residents’ mental well-being may improve.
  • Sleep & Memory : If a student gets at least 8 hours of sleep, then their memory retention might be better.
  • Digital Detox : If someone takes a weekly digital detox day, then their stress levels may decrease.
  • Composting : If households start composting kitchen waste, then the amount of organic waste in landfills will reduce.
  • Gardening & Health : If individuals engage in gardening activities, then they might experience improved mental health.
  • Flu Vaccination : If a person gets a flu shot annually, then their chances of getting influenza will reduce.
  • Hand Washing : If people wash their hands regularly, then the spread of common diseases may decrease.
  • Diverse Diet : If someone consumes a diverse range of vegetables, then they will have a better nutrient intake.
  • Physical Books : If a student reads from physical books instead of screens, then they might have better sleep patterns.
  • Mindfulness & Anxiety : If an individual practices mindfulness exercises, then their anxiety levels may decrease.
  • Green Vehicles : If a city promotes the use of electric vehicles, then air pollution levels will reduce.
  • Walking & Health : If someone walks 10,000 steps daily, then their cardiovascular health might improve.
  • Art & Creativity : If children are exposed to art classes from a young age, then their creative thinking skills may enhance.
  • Dark Chocolate : If someone consumes dark chocolate regularly, then their antioxidant intake may increase.
  • Yoga & Flexibility : If an individual practices yoga thrice a week, then their flexibility and posture may improve.
  • Cooking at Home : If families cook meals at home more frequently, then their intake of processed foods might decrease.
  • Local Tourism : If local tourism is promoted, then a region’s economy can benefit due to increased business opportunities.
  • Reading Aloud : If parents read aloud to their children every night, then the children’s vocabulary and comprehension skills might expand.
  • Public Transportation : If cities improve their public transportation system, then the number of cars on the road might decrease.
  • Indoor Plants : If a person keeps indoor plants in their workspace, then their concentration and productivity may enhance due to better air quality.
  • Bird Watching : If an individual engages in bird watching, then their patience and observation skills might develop.
  • Biking to Work : If employees bike to work, then their cardiovascular health can improve and their carbon footprint might reduce.
  • Aquariums & Stress : If someone spends time watching fish in an aquarium, then their stress levels may decrease.
  • Meditation & Focus : If an individual meditates daily, then their attention span and focus might increase.
  • Learning Languages : If a student learns a new language, then their cognitive flexibility and memory retention may improve.
  • Community Gardens : If neighborhoods establish community gardens, then residents may benefit from fresh produce and community bonding.
  • Journaling : If someone journals their thoughts regularly, then their self-awareness and emotional processing might improve.
  • Volunteering : If an individual volunteers once a month, then their sense of purpose and community connection may strengthen.
  • Eco-friendly Products : If consumers prefer eco-friendly products, then industries might adopt more sustainable manufacturing practices.
  • Limiting Screen Time : If children limit their screen time to an hour a day, then their physical activity levels and sleep patterns may benefit.
  • Outdoor Play : If kids play outdoors regularly, then their motor skills and social interactions might develop better.
  • Therapy & Mental Health : If someone attends therapy sessions, then they may experience improved mental well-being and coping strategies.
  • Natural Light : If workspaces are designed to allow more natural light, then employee morale and productivity might rise.
  • Water Intake : If a person drinks at least 8 glasses of water daily, then their hydration levels and skin health may improve.
  • Classical Music : If students listen to classical music while studying, then their concentration might increase.
  • Home Composting : If households adopt composting, then garden soil quality might improve and organic waste in landfills may reduce.
  • Green Roofs : If buildings adopt green roofs, then urban heat islands might decrease, and biodiversity may benefit.

Hypothesis If Then Statement Examples in Research

The crux of experimental research revolves around predicting an outcome. An ‘If-Then’ hypothesis format succinctly conveys anticipated cause-and-effect relationships, enabling clearer comprehension and assessment.

  • DNA Sequencing : If we utilize CRISPR technology for DNA sequencing, then the accuracy of detecting genetic mutations may increase.
  • Drug Efficiency : If a new drug compound is introduced to malignant cells in vitro, then the proliferation rate of these cells might decrease.
  • Digital Learning : If students are exposed to AI-driven educational tools, then their academic performance might significantly improve.
  • Nano-technology : If nanoparticles are used in drug delivery, then the targeting of specific cells may become more efficient.
  • Quantum Computing : If quantum bits replace traditional bits in computing, then the processing speed might witness a revolutionary acceleration.

Hypothesis If Then Statement Examples about Climate Change

Understanding climate change necessitates predicting outcomes based on varied actions or occurrences. These hypotheses present potential scenarios in the vast realm of climate studies.

  • Deforestation : If deforestation rates continue at the current pace, then global carbon dioxide levels will rise significantly.
  • Solar Energy : If solar energy adoption increases by 50% in the next decade, then global reliance on fossil fuels might decrease considerably.
  • Ocean Temperatures : If the world’s oceans warm by another degree Celsius, then coral bleaching events may become twice as frequent.
  • Carbon Taxation : If a global carbon tax is implemented, then emissions from industries might see a drastic reduction.
  • Melting Ice Caps : If polar ice caps continue to melt at the current rate, then sea levels might rise to submerge several coastal cities by 2100.

Hypothesis If Then Statement Examples in Psychology

Psychology delves into understanding behaviors and mental processes. Formulating hypotheses in an ‘If-Then’ structure can streamline experimental setups and interpretations.

  • Mindfulness Meditation : If individuals practice daily mindfulness meditation, then symptoms of anxiety and stress may decrease.
  • Social Media : If teenagers spend over five hours daily on social media, then their self-esteem levels might drop.
  • Cognitive Behavioral Therapy : If patients with depression undergo cognitive-behavioral therapy, then their coping mechanisms may strengthen.
  • Sleep and Memory : If adults get less than six hours of sleep nightly, then their memory retention might deteriorate faster.
  • Nature Exposure : If urban residents are exposed to natural settings weekly, then their mental well-being might improve.

Alternative If Then Hypothesis Statement Examples

Sometimes, researchers propose alternate scenarios to challenge or complement existing beliefs. These hypotheses capture such alternative insights.

  • Vitamin Intake : If individuals consume Vitamin C supplements daily, then their immunity might not necessarily strengthen, contradicting popular belief.
  • Digital Detox : If tech professionals take a monthly digital detox day, then their productivity may not diminish, countering the notion that constant connectivity boosts efficiency.
  • Organic Foods : If consumers solely eat organic foods, then their overall health markers might remain unchanged, challenging the health superiority of organic diets.
  • Exercise Routines : If gym-goers switch to calisthenics from weight training, then muscle mass gain might remain consistent, offering an alternative to traditional gym workouts.
  • E-learning : If students transition from classroom learning to e-learning platforms, then their academic performance may not necessarily drop, challenging the indispensability of physical classrooms.

Hypothesis If Then Statement Examples in Biology

In biology, the interaction of living organisms and their environments often leads to distinct outcomes. The ‘If-Then’ hypothesis structure can efficiently predict these outcomes based on varying factors.

  • Cell Division : If a cell is exposed to radiation, then the rate of its division might decrease significantly.
  • Plant Growth : If plants are provided with blue light, then their growth rate might be faster compared to those exposed to red light.
  • Enzyme Activity : If the temperature of a reaction involving enzymes rises by 10°C, then the activity of the enzymes might double.
  • Animal Behavior : If nocturnal animals are exposed to continuous artificial light, then their feeding and reproductive behaviors might be disrupted.
  • Genetic Modification : If crops are genetically modified for drought resistance, then their yield in arid regions might increase substantially.

Hypothesis If Then Statement Examples in Chemistry

The realm of chemistry is filled with reactions and interactions. Predicting outcomes based on specific conditions is crucial, and the ‘If-Then’ hypothesis structure provides clarity in such predictions.

  • Acid-Base Reactions : If a solution has a pH below 7, then it might turn blue litmus paper red, indicating its acidic nature.
  • Temperature and Reaction Rate : If the temperature of a chemical reaction is increased, then the rate of that reaction might speed up.
  • Metal Reactivity : If zinc metal is placed in copper sulfate solution, then it might displace the copper, indicating its higher reactivity.
  • Organic Synthesis : If an alkene is treated with bromine water, then the solution might decolorize, suggesting the presence of a double bond.
  • Electrolysis : If an aqueous solution of sodium chloride undergoes electrolysis, then chlorine gas might be released at the anode.

Hypothesis If Then Statement Examples in Physics

Physics examines the fundamental principles governing our universe. ‘If-Then’ hypotheses help in determining cause-and-effect relationships amidst complex physical phenomena.

  • Gravity : If an object is dropped from a certain height in a vacuum, then it might accelerate at 9.81 m/s^2, irrespective of its mass.
  • Refraction : If light travels from air into water, then it might bend towards the normal due to the change in speed.
  • Magnetism : If a magnetic field is applied to a moving charged particle, then the particle might experience a force perpendicular to its direction of motion.
  • Thermal Expansion : If a metal rod is heated, then it might expand due to the increased kinetic energy of its atoms.
  • Quantum Mechanics : If an electron is observed in a quantum system, then its wave function might collapse, determining its position.

What is an if-then because hypothesis?

An “if-then-because” hypothesis is a structured statement that predicts the outcome of an experiment based on a proposed cause and effect scenario. The structure usually goes as follows: “If [I do this specific action], then [this particular result will occur] because [of this scientific reason].”

For example: “If I water plants with sugar water, then they will grow taller than the ones watered with plain water because sugar provides additional nutrients to the plants.”

This type of simple hypothesis statement not only predicts the outcome but also provides a reasoning for the expected outcome, thereby setting the groundwork for the experimental procedure and its subsequent analysis.

Is a hypothesis typically an if-then statement?

Yes, a hypothesis is often framed as an “if-then” statement, especially in experimental studies. This format succinctly presents a proposed cause and its expected effect. By specifying a relationship between two variables, it offers clarity to the hypothesis and makes the intended testing straightforward. However, while common, not all hypotheses are written in the “if-then” format.

Is an if-then statement a hypothesis or prediction?

An “if-then” statement can be both a hypothesis and a prediction. However, their contexts differ:

  • Hypothesis: It is a tentative explanation for an observation or phenomenon that can be tested experimentally. When written in the “if-then” format, it usually predicts a relationship between variables based on theoretical understanding.Example: “If a plant is given caffeine, then it will grow faster.”
  • Prediction: It is a specific, testable statement about what will happen under particular conditions. It is based on the hypothesis and narrows down the expected outcomes of an experiment.Example: “If a bean plant is watered with a 1% caffeine solution daily, then after one month, it will be 10% taller than plants watered with plain water.”

How do you write an If Then Hypothesis Statement? – A Step by Step Guide

  • Identify the Variables: Determine the independent variable (the factor you’ll change) and the dependent variable (the factor you’ll measure).
  • Frame the Relationship: Using your understanding of the topic, establish a potential relationship between the identified variables.
  • Start with “If”: Begin your hypothesis with “If” followed by your independent variable.
  • Follow with “Then”: After stating your independent variable, include “then” followed by the potential outcome or change in the dependent variable you expect.
  • Review for Clarity: Ensure your hypothesis is clear, concise, and testable. It should state a specific relationship between the variables.

Tips for Writing If Then Hypothesis

  • Be Specific: Ensure your variables are clearly defined. Instead of “If I water plants more,” use “If I water plants twice daily.”
  • Ensure Testability: Your hypothesis should propose a relationship that can be tested through an experiment.
  • Avoid Conclusions: A hypothesis is a prediction, not a conclusion. It shouldn’t state a known fact but should be based on prior knowledge.
  • Use Simple Language: Especially when the audience might not have a deep understanding of the topic. Keeping it straightforward ensures comprehension.
  • Revise and Refine: After drafting your hypothesis, revisit it to check for clarity, specificity, and relevance to the research question at hand.

Twitter

Text prompt

  • Instructive
  • Professional

10 Examples of Public speaking

20 Examples of Gas lighting

See all schools »

Make the most of their potential.

Touchstone School provides outstanding preschool education from infants through pre-kindergarten in the Portland, OR area.  Classes are led by dedicated, caring teachers who value open communication with parents. You’ll find NAEYC-accredited Touchstone schools in Hillsboro and the  Tigard  area of Portland.

example of a hypothesis if then because

Join us for our next Open House

Locate the school nearest you to learn more or schedule a private tour.

example of a hypothesis if then because

Top reasons why families choose our school:

  • 93% parent satisfaction
  • Well-rounded, research based curriculum
  • Parent communication that exceeds expectations

example of a hypothesis if then because

Locate the school nearest you to join us for our next Open House

AdvancedED Accreditation

  • Employer Partnerships
  • Privacy Policy
  • Terms of Use

© 2024 All Rights Reserved Spring Education Group

Spring Education Group is controlled by Primavera Holdings Limited, an investment firm (together with its affiliates) principally based in Hong Kong with operations in China, Singapore, and the United States, that is itself owned by Chinese persons residing in Hong Kong.

  • 866-834-0250

Back Home

  • Science Notes Posts
  • Contact Science Notes
  • Todd Helmenstine Biography
  • Anne Helmenstine Biography
  • Free Printable Periodic Tables (PDF and PNG)
  • Periodic Table Wallpapers
  • Interactive Periodic Table
  • Periodic Table Posters
  • Science Experiments for Kids
  • How to Grow Crystals
  • Chemistry Projects
  • Fire and Flames Projects
  • Holiday Science
  • Chemistry Problems With Answers
  • Physics Problems
  • Unit Conversion Example Problems
  • Chemistry Worksheets
  • Biology Worksheets
  • Periodic Table Worksheets
  • Physical Science Worksheets
  • Science Lab Worksheets
  • My Amazon Books

Hypothesis Examples

Hypothesis Examples

A hypothesis is a prediction of the outcome of a test. It forms the basis for designing an experiment in the scientific method . A good hypothesis is testable, meaning it makes a prediction you can check with observation or experimentation. Here are different hypothesis examples.

Null Hypothesis Examples

The null hypothesis (H 0 ) is also known as the zero-difference or no-difference hypothesis. It predicts that changing one variable ( independent variable ) will have no effect on the variable being measured ( dependent variable ). Here are null hypothesis examples:

  • Plant growth is unaffected by temperature.
  • If you increase temperature, then solubility of salt will increase.
  • Incidence of skin cancer is unrelated to ultraviolet light exposure.
  • All brands of light bulb last equally long.
  • Cats have no preference for the color of cat food.
  • All daisies have the same number of petals.

Sometimes the null hypothesis shows there is a suspected correlation between two variables. For example, if you think plant growth is affected by temperature, you state the null hypothesis: “Plant growth is not affected by temperature.” Why do you do this, rather than say “If you change temperature, plant growth will be affected”? The answer is because it’s easier applying a statistical test that shows, with a high level of confidence, a null hypothesis is correct or incorrect.

Research Hypothesis Examples

A research hypothesis (H 1 ) is a type of hypothesis used to design an experiment. This type of hypothesis is often written as an if-then statement because it’s easy identifying the independent and dependent variables and seeing how one affects the other. If-then statements explore cause and effect. In other cases, the hypothesis shows a correlation between two variables. Here are some research hypothesis examples:

  • If you leave the lights on, then it takes longer for people to fall asleep.
  • If you refrigerate apples, they last longer before going bad.
  • If you keep the curtains closed, then you need less electricity to heat or cool the house (the electric bill is lower).
  • If you leave a bucket of water uncovered, then it evaporates more quickly.
  • Goldfish lose their color if they are not exposed to light.
  • Workers who take vacations are more productive than those who never take time off.

Is It Okay to Disprove a Hypothesis?

Yes! You may even choose to write your hypothesis in such a way that it can be disproved because it’s easier to prove a statement is wrong than to prove it is right. In other cases, if your prediction is incorrect, that doesn’t mean the science is bad. Revising a hypothesis is common. It demonstrates you learned something you did not know before you conducted the experiment.

Test yourself with a Scientific Method Quiz .

  • Mellenbergh, G.J. (2008). Chapter 8: Research designs: Testing of research hypotheses. In H.J. Adèr & G.J. Mellenbergh (eds.), Advising on Research Methods: A Consultant’s Companion . Huizen, The Netherlands: Johannes van Kessel Publishing.
  • Popper, Karl R. (1959). The Logic of Scientific Discovery . Hutchinson & Co. ISBN 3-1614-8410-X.
  • Schick, Theodore; Vaughn, Lewis (2002). How to think about weird things: critical thinking for a New Age . Boston: McGraw-Hill Higher Education. ISBN 0-7674-2048-9.
  • Tobi, Hilde; Kampen, Jarl K. (2018). “Research design: the methodology for interdisciplinary research framework”. Quality & Quantity . 52 (3): 1209–1225. doi: 10.1007/s11135-017-0513-8

Related Posts

Banner

Scientific Method: Step 3: HYPOTHESIS

  • Step 1: QUESTION
  • Step 2: RESEARCH
  • Step 3: HYPOTHESIS
  • Step 4: EXPERIMENT
  • Step 5: DATA
  • Step 6: CONCLUSION

Step 3: State your hypothesis

Now it's time to state your hypothesis . The hypothesis is an educated guess as to what will happen during your experiment. 

The hypothesis is often written using the words "IF" and "THEN." For example, " If I do not study, then I will fail the test." The "if' and "then" statements reflect your independent and dependent variables . 

The hypothesis should relate back to your original question and must be testable .

A word about variables...

Your experiment will include variables to measure and to explain any cause and effect. Below you will find some useful links describing the different types of variables.

  • "What are independent and dependent variables" NCES
  • [VIDEO] Biology: Independent vs. Dependent Variables (Nucleus Medical Media) Video explaining independent and dependent variables, with examples.

Resource Links

  • What is and How to Write a Good Hypothesis in Research? (Elsevier)
  • Hypothesis brochure from Penn State/Berks

  • << Previous: Step 2: RESEARCH
  • Next: Step 4: EXPERIMENT >>
  • Last Updated: Aug 2, 2024 3:45 PM
  • URL: https://harford.libguides.com/scientific_method

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • How to Write a Strong Hypothesis | Steps & Examples

How to Write a Strong Hypothesis | Steps & Examples

Published on May 6, 2022 by Shona McCombes . Revised on November 20, 2023.

A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection .

Example: Hypothesis

Daily apple consumption leads to fewer doctor’s visits.

Table of contents

What is a hypothesis, developing a hypothesis (with example), hypothesis examples, other interesting articles, frequently asked questions about writing hypotheses.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Variables in hypotheses

Hypotheses propose a relationship between two or more types of variables .

  • An independent variable is something the researcher changes or controls.
  • A dependent variable is something the researcher observes and measures.

If there are any control variables , extraneous variables , or confounding variables , be sure to jot those down as you go to minimize the chances that research bias  will affect your results.

In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

Step 1. Ask a question

Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.

Step 2. Do some preliminary research

Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.

At this stage, you might construct a conceptual framework to ensure that you’re embarking on a relevant topic . This can also help you identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalize more complex constructs.

Step 3. Formulate your hypothesis

Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

4. Refine your hypothesis

You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:

  • The relevant variables
  • The specific group being studied
  • The predicted outcome of the experiment or analysis

5. Phrase your hypothesis in three ways

To identify the variables, you can write a simple prediction in  if…then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.

If you are comparing two groups, the hypothesis can state what difference you expect to find between them.

6. Write a null hypothesis

If your research involves statistical hypothesis testing , you will also have to write a null hypothesis . The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .

  • H 0 : The number of lectures attended by first-year students has no effect on their final exam scores.
  • H 1 : The number of lectures attended by first-year students has a positive effect on their final exam scores.
Research question Hypothesis Null hypothesis
What are the health benefits of eating an apple a day? Increasing apple consumption in over-60s will result in decreasing frequency of doctor’s visits. Increasing apple consumption in over-60s will have no effect on frequency of doctor’s visits.
Which airlines have the most delays? Low-cost airlines are more likely to have delays than premium airlines. Low-cost and premium airlines are equally likely to have delays.
Can flexible work arrangements improve job satisfaction? Employees who have flexible working hours will report greater job satisfaction than employees who work fixed hours. There is no relationship between working hour flexibility and job satisfaction.
How effective is high school sex education at reducing teen pregnancies? Teenagers who received sex education lessons throughout high school will have lower rates of unplanned pregnancy teenagers who did not receive any sex education. High school sex education has no effect on teen pregnancy rates.
What effect does daily use of social media have on the attention span of under-16s? There is a negative between time spent on social media and attention span in under-16s. There is no relationship between social media use and attention span in under-16s.

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

  • Sampling methods
  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

Prevent plagiarism. Run a free check.

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, November 20). How to Write a Strong Hypothesis | Steps & Examples. Scribbr. Retrieved August 21, 2024, from https://www.scribbr.com/methodology/hypothesis/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, construct validity | definition, types, & examples, what is a conceptual framework | tips & examples, operationalization | a guide with examples, pros & cons, what is your plagiarism score.

example of a hypothesis if then because

How to Write a Hypothesis? Types and Examples 

how to write a hypothesis for research

All research studies involve the use of the scientific method, which is a mathematical and experimental technique used to conduct experiments by developing and testing a hypothesis or a prediction about an outcome. Simply put, a hypothesis is a suggested solution to a problem. It includes elements that are expressed in terms of relationships with each other to explain a condition or an assumption that hasn’t been verified using facts. 1 The typical steps in a scientific method include developing such a hypothesis, testing it through various methods, and then modifying it based on the outcomes of the experiments.  

A research hypothesis can be defined as a specific, testable prediction about the anticipated results of a study. 2 Hypotheses help guide the research process and supplement the aim of the study. After several rounds of testing, hypotheses can help develop scientific theories. 3 Hypotheses are often written as if-then statements. 

Here are two hypothesis examples: 

Dandelions growing in nitrogen-rich soils for two weeks develop larger leaves than those in nitrogen-poor soils because nitrogen stimulates vegetative growth. 4  

If a company offers flexible work hours, then their employees will be happier at work. 5  

Table of Contents

  • What is a hypothesis? 
  • Types of hypotheses 
  • Characteristics of a hypothesis 
  • Functions of a hypothesis 
  • How to write a hypothesis 
  • Hypothesis examples 
  • Frequently asked questions 

What is a hypothesis?

Figure 1. Steps in research design

A hypothesis expresses an expected relationship between variables in a study and is developed before conducting any research. Hypotheses are not opinions but rather are expected relationships based on facts and observations. They help support scientific research and expand existing knowledge. An incorrectly formulated hypothesis can affect the entire experiment leading to errors in the results so it’s important to know how to formulate a hypothesis and develop it carefully.

A few sources of a hypothesis include observations from prior studies, current research and experiences, competitors, scientific theories, and general conditions that can influence people. Figure 1 depicts the different steps in a research design and shows where exactly in the process a hypothesis is developed. 4  

There are seven different types of hypotheses—simple, complex, directional, nondirectional, associative and causal, null, and alternative. 

Types of hypotheses

The seven types of hypotheses are listed below: 5 , 6,7  

  • Simple : Predicts the relationship between a single dependent variable and a single independent variable. 

Example: Exercising in the morning every day will increase your productivity.  

  • Complex : Predicts the relationship between two or more variables. 

Example: Spending three hours or more on social media daily will negatively affect children’s mental health and productivity, more than that of adults.  

  • Directional : Specifies the expected direction to be followed and uses terms like increase, decrease, positive, negative, more, or less. 

Example: The inclusion of intervention X decreases infant mortality compared to the original treatment.  

  • Non-directional : Does not predict the exact direction, nature, or magnitude of the relationship between two variables but rather states the existence of a relationship. This hypothesis may be used when there is no underlying theory or if findings contradict prior research. 

Example: Cats and dogs differ in the amount of affection they express.  

  • Associative and causal : An associative hypothesis suggests an interdependency between variables, that is, how a change in one variable changes the other.  

Example: There is a positive association between physical activity levels and overall health.  

A causal hypothesis, on the other hand, expresses a cause-and-effect association between variables. 

Example: Long-term alcohol use causes liver damage.  

  • Null : Claims that the original hypothesis is false by showing that there is no relationship between the variables. 

Example: Sleep duration does not have any effect on productivity.  

  • Alternative : States the opposite of the null hypothesis, that is, a relationship exists between two variables. 

Example: Sleep duration affects productivity.  

example of a hypothesis if then because

Characteristics of a hypothesis

So, what makes a good hypothesis? Here are some important characteristics of a hypothesis. 8,9  

  • Testable : You must be able to test the hypothesis using scientific methods to either accept or reject the prediction. 
  • Falsifiable : It should be possible to collect data that reject rather than support the hypothesis. 
  • Logical : Hypotheses shouldn’t be a random guess but rather should be based on previous theories, observations, prior research, and logical reasoning. 
  • Positive : The hypothesis statement about the existence of an association should be positive, that is, it should not suggest that an association does not exist. Therefore, the language used and knowing how to phrase a hypothesis is very important. 
  • Clear and accurate : The language used should be easily comprehensible and use correct terminology. 
  • Relevant : The hypothesis should be relevant and specific to the research question. 
  • Structure : Should include all the elements that make a good hypothesis: variables, relationship, and outcome. 

Functions of a hypothesis

The following list mentions some important functions of a hypothesis: 1  

  • Maintains the direction and progress of the research. 
  • Expresses the important assumptions underlying the proposition in a single statement. 
  • Establishes a suitable context for researchers to begin their investigation and for readers who are referring to the final report. 
  • Provides an explanation for the occurrence of a specific phenomenon. 
  • Ensures selection of appropriate and accurate facts necessary and relevant to the research subject. 

To summarize, a hypothesis provides the conceptual elements that complete the known data, conceptual relationships that systematize unordered elements, and conceptual meanings and interpretations that explain the unknown phenomena. 1  

example of a hypothesis if then because

How to write a hypothesis

Listed below are the main steps explaining how to write a hypothesis. 2,4,5  

  • Make an observation and identify variables : Observe the subject in question and try to recognize a pattern or a relationship between the variables involved. This step provides essential background information to begin your research.  

For example, if you notice that an office’s vending machine frequently runs out of a specific snack, you may predict that more people in the office choose that snack over another. 

  • Identify the main research question : After identifying a subject and recognizing a pattern, the next step is to ask a question that your hypothesis will answer.  

For example, after observing employees’ break times at work, you could ask “why do more employees take breaks in the morning rather than in the afternoon?” 

  • Conduct some preliminary research to ensure originality and novelty : Your initial answer, which is your hypothesis, to the question is based on some pre-existing information about the subject. However, to ensure that your hypothesis has not been asked before or that it has been asked but rejected by other researchers you would need to gather additional information.  

For example, based on your observations you might state a hypothesis that employees work more efficiently when the air conditioning in the office is set at a lower temperature. However, during your preliminary research you find that this hypothesis was proven incorrect by a prior study. 

  • Develop a general statement : After your preliminary research has confirmed the originality of your proposed answer, draft a general statement that includes all variables, subjects, and predicted outcome. The statement could be if/then or declarative.  
  • Finalize the hypothesis statement : Use the PICOT model, which clarifies how to word a hypothesis effectively, when finalizing the statement. This model lists the important components required to write a hypothesis. 

P opulation: The specific group or individual who is the main subject of the research 

I nterest: The main concern of the study/research question 

C omparison: The main alternative group 

O utcome: The expected results  

T ime: Duration of the experiment 

Once you’ve finalized your hypothesis statement you would need to conduct experiments to test whether the hypothesis is true or false. 

Hypothesis examples

The following table provides examples of different types of hypotheses. 10 ,11  

   
Null Hyperactivity is not related to eating sugar. 
There is no relationship between height and shoe size. 
Alternative Hyperactivity is positively related to eating sugar. 
There is a positive association between height and shoe size. 
Simple Students who eat breakfast perform better in exams than students who don’t eat breakfast. 
Reduced screen time improves sleep quality. 
Complex People with high-sugar diet and sedentary activity levels are more likely to develop depression. 
Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone. 
Directional As job satisfaction increases, the rate of employee turnover decreases. 
Increase in sun exposure increases the risk of skin cancer. 
Non-directional College students will perform differently from elementary school students on a memory task. 
Advertising exposure correlates with variations in purchase decisions among consumers. 
Associative Hospitals have more sick people in them than other institutions in society. 
Watching TV is related to increased snacking. 
Causal Inadequate sleep decreases memory retention. 
Recreational drugs cause psychosis. 

example of a hypothesis if then because

Key takeaways  

Here’s a summary of all the key points discussed in this article about how to write a hypothesis. 

  • A hypothesis is an assumption about an association between variables made based on limited evidence, which should be tested. 
  • A hypothesis has four parts—the research question, independent variable, dependent variable, and the proposed relationship between the variables.   
  • The statement should be clear, concise, testable, logical, and falsifiable. 
  • There are seven types of hypotheses—simple, complex, directional, non-directional, associative and causal, null, and alternative. 
  • A hypothesis provides a focus and direction for the research to progress. 
  • A hypothesis plays an important role in the scientific method by helping to create an appropriate experimental design. 

Frequently asked questions

Hypotheses and research questions have different objectives and structure. The following table lists some major differences between the two. 9  

   
Includes a prediction based on the proposed research No prediction is made  
Designed to forecast the relationship of and between two or more variables Variables may be explored 
Closed ended Open ended, invites discussion 
Used if the research topic is well established and there is certainty about the relationship between the variables Used for new topics that haven’t been researched extensively. The relationship between different variables is less known 

Here are a few examples to differentiate between a research question and hypothesis. 

   
What is the effect of eating an apple a day by adults aged over 60 years on the frequency of physician visits?  Eating an apple each day, after the age of 60, will result in a reduction of frequency of physician visits 
What is the effect of flexible or fixed working hours on employee job satisfaction? Workplaces that offer flexible working hours report higher levels of employee job satisfaction than workplaces with fixed hours. 
Does drinking coffee in the morning affect employees’ productivity? Drinking coffee in the morning improves employees’ productivity. 

Yes, here’s a simple checklist to help you gauge the effectiveness of your hypothesis. 9   1. When writing a hypothesis statement, check if it:  2. Predicts the relationship between the stated variables and the expected outcome.  3. Uses simple and concise language and is not wordy.  4. Does not assume readers’ knowledge about the subject.  5. Has observable, falsifiable, and testable results. 

As mentioned earlier in this article, a hypothesis is an assumption or prediction about an association between variables based on observations and simple evidence. These statements are usually generic. Research objectives, on the other hand, are more specific and dictated by hypotheses. The same hypothesis can be tested using different methods and the research objectives could be different in each case.     For example, Louis Pasteur observed that food lasts longer at higher altitudes, reasoned that it could be because the air at higher altitudes is cleaner (with fewer or no germs), and tested the hypothesis by exposing food to air cleaned in the laboratory. 12 Thus, a hypothesis is predictive—if the reasoning is correct, X will lead to Y—and research objectives are developed to test these predictions. 

Null hypothesis testing is a method to decide between two assumptions or predictions between variables (null and alternative hypotheses) in a statistical relationship in a sample. The null hypothesis, denoted as H 0 , claims that no relationship exists between variables in a population and any relationship in the sample reflects a sampling error or occurrence by chance. The alternative hypothesis, denoted as H 1 , claims that there is a relationship in the population. In every study, researchers need to decide whether the relationship in a sample occurred by chance or reflects a relationship in the population. This is done by hypothesis testing using the following steps: 13   1. Assume that the null hypothesis is true.  2. Determine how likely the sample relationship would be if the null hypothesis were true. This probability is called the p value.  3. If the sample relationship would be extremely unlikely, reject the null hypothesis and accept the alternative hypothesis. If the relationship would not be unlikely, accept the null hypothesis. 

example of a hypothesis if then because

To summarize, researchers should know how to write a good hypothesis to ensure that their research progresses in the required direction. A hypothesis is a testable prediction about any behavior or relationship between variables, usually based on facts and observation, and states an expected outcome.  

We hope this article has provided you with essential insight into the different types of hypotheses and their functions so that you can use them appropriately in your next research project. 

References  

  • Dalen, DVV. The function of hypotheses in research. Proquest website. Accessed April 8, 2024. https://www.proquest.com/docview/1437933010?pq-origsite=gscholar&fromopenview=true&sourcetype=Scholarly%20Journals&imgSeq=1  
  • McLeod S. Research hypothesis in psychology: Types & examples. SimplyPsychology website. Updated December 13, 2023. Accessed April 9, 2024. https://www.simplypsychology.org/what-is-a-hypotheses.html  
  • Scientific method. Britannica website. Updated March 14, 2024. Accessed April 9, 2024. https://www.britannica.com/science/scientific-method  
  • The hypothesis in science writing. Accessed April 10, 2024. https://berks.psu.edu/sites/berks/files/campus/HypothesisHandout_Final.pdf  
  • How to develop a hypothesis (with elements, types, and examples). Indeed.com website. Updated February 3, 2023. Accessed April 10, 2024. https://www.indeed.com/career-advice/career-development/how-to-write-a-hypothesis  
  • Types of research hypotheses. Excelsior online writing lab. Accessed April 11, 2024. https://owl.excelsior.edu/research/research-hypotheses/types-of-research-hypotheses/  
  • What is a research hypothesis: how to write it, types, and examples. Researcher.life website. Published February 8, 2023. Accessed April 11, 2024. https://researcher.life/blog/article/how-to-write-a-research-hypothesis-definition-types-examples/  
  • Developing a hypothesis. Pressbooks website. Accessed April 12, 2024. https://opentext.wsu.edu/carriecuttler/chapter/developing-a-hypothesis/  
  • What is and how to write a good hypothesis in research. Elsevier author services website. Accessed April 12, 2024. https://scientific-publishing.webshop.elsevier.com/manuscript-preparation/what-how-write-good-hypothesis-research/  
  • How to write a great hypothesis. Verywellmind website. Updated March 12, 2023. Accessed April 13, 2024. https://www.verywellmind.com/what-is-a-hypothesis-2795239  
  • 15 Hypothesis examples. Helpfulprofessor.com Published September 8, 2023. Accessed March 14, 2024. https://helpfulprofessor.com/hypothesis-examples/ 
  • Editage insights. What is the interconnectivity between research objectives and hypothesis? Published February 24, 2021. Accessed April 13, 2024. https://www.editage.com/insights/what-is-the-interconnectivity-between-research-objectives-and-hypothesis  
  • Understanding null hypothesis testing. BCCampus open publishing. Accessed April 16, 2024. https://opentextbc.ca/researchmethods/chapter/understanding-null-hypothesis-testing/#:~:text=In%20null%20hypothesis%20testing%2C%20this,said%20to%20be%20statistically%20significant  

Paperpal is a comprehensive AI writing toolkit that helps students and researchers achieve 2x the writing in half the time. It leverages 21+ years of STM experience and insights from millions of research articles to provide in-depth academic writing, language editing, and submission readiness support to help you write better, faster.  

Get accurate academic translations, rewriting support, grammar checks, vocabulary suggestions, and generative AI assistance that delivers human precision at machine speed. Try for free or upgrade to Paperpal Prime starting at US$19 a month to access premium features, including consistency, plagiarism, and 30+ submission readiness checks to help you succeed.  

Experience the future of academic writing – Sign up to Paperpal and start writing for free!  

Related Reads:

  • What is an Argumentative Essay? How to Write It (With Examples)
  • Empirical Research: A Comprehensive Guide for Academics 
  • How to Write a Scientific Paper in 10 Steps 
  • What is a Literature Review? How to Write It (with Examples)

Measuring Academic Success: Definition & Strategies for Excellence

What are scholarly sources and where can you find them , you may also like, dissertation printing and binding | types & comparison , what is a dissertation preface definition and examples , how to write a research proposal: (with examples..., how to write your research paper in apa..., how to choose a dissertation topic, how to write a phd research proposal, how to write an academic paragraph (step-by-step guide), maintaining academic integrity with paperpal’s generative ai writing..., research funding basics: what should a grant proposal..., how to write an abstract in research papers....

PrepScholar

Choose Your Test

  • Search Blogs By Category
  • College Admissions
  • AP and IB Exams
  • GPA and Coursework

What Is a Hypothesis and How Do I Write One?

author image

General Education

body-glowing-question-mark

Think about something strange and unexplainable in your life. Maybe you get a headache right before it rains, or maybe you think your favorite sports team wins when you wear a certain color. If you wanted to see whether these are just coincidences or scientific fact, you would form a hypothesis, then create an experiment to see whether that hypothesis is true or not.

But what is a hypothesis, anyway? If you’re not sure about what a hypothesis is--or how to test for one!--you’re in the right place. This article will teach you everything you need to know about hypotheses, including: 

  • Defining the term “hypothesis” 
  • Providing hypothesis examples 
  • Giving you tips for how to write your own hypothesis

So let’s get started!

body-picture-ask-sign

What Is a Hypothesis?

Merriam Webster defines a hypothesis as “an assumption or concession made for the sake of argument.” In other words, a hypothesis is an educated guess . Scientists make a reasonable assumption--or a hypothesis--then design an experiment to test whether it’s true or not. Keep in mind that in science, a hypothesis should be testable. You have to be able to design an experiment that tests your hypothesis in order for it to be valid. 

As you could assume from that statement, it’s easy to make a bad hypothesis. But when you’re holding an experiment, it’s even more important that your guesses be good...after all, you’re spending time (and maybe money!) to figure out more about your observation. That’s why we refer to a hypothesis as an educated guess--good hypotheses are based on existing data and research to make them as sound as possible.

Hypotheses are one part of what’s called the scientific method .  Every (good) experiment or study is based in the scientific method. The scientific method gives order and structure to experiments and ensures that interference from scientists or outside influences does not skew the results. It’s important that you understand the concepts of the scientific method before holding your own experiment. Though it may vary among scientists, the scientific method is generally made up of six steps (in order):

  • Observation
  • Asking questions
  • Forming a hypothesis
  • Analyze the data
  • Communicate your results

You’ll notice that the hypothesis comes pretty early on when conducting an experiment. That’s because experiments work best when they’re trying to answer one specific question. And you can’t conduct an experiment until you know what you’re trying to prove!

Independent and Dependent Variables 

After doing your research, you’re ready for another important step in forming your hypothesis: identifying variables. Variables are basically any factor that could influence the outcome of your experiment . Variables have to be measurable and related to the topic being studied.

There are two types of variables:  independent variables and dependent variables. I ndependent variables remain constant . For example, age is an independent variable; it will stay the same, and researchers can look at different ages to see if it has an effect on the dependent variable. 

Speaking of dependent variables... dependent variables are subject to the influence of the independent variable , meaning that they are not constant. Let’s say you want to test whether a person’s age affects how much sleep they need. In that case, the independent variable is age (like we mentioned above), and the dependent variable is how much sleep a person gets. 

Variables will be crucial in writing your hypothesis. You need to be able to identify which variable is which, as both the independent and dependent variables will be written into your hypothesis. For instance, in a study about exercise, the independent variable might be the speed at which the respondents walk for thirty minutes, and the dependent variable would be their heart rate. In your study and in your hypothesis, you’re trying to understand the relationship between the two variables.

Elements of a Good Hypothesis

The best hypotheses start by asking the right questions . For instance, if you’ve observed that the grass is greener when it rains twice a week, you could ask what kind of grass it is, what elevation it’s at, and if the grass across the street responds to rain in the same way. Any of these questions could become the backbone of experiments to test why the grass gets greener when it rains fairly frequently.

As you’re asking more questions about your first observation, make sure you’re also making more observations . If it doesn’t rain for two weeks and the grass still looks green, that’s an important observation that could influence your hypothesis. You'll continue observing all throughout your experiment, but until the hypothesis is finalized, every observation should be noted.

Finally, you should consult secondary research before writing your hypothesis . Secondary research is comprised of results found and published by other people. You can usually find this information online or at your library. Additionally, m ake sure the research you find is credible and related to your topic. If you’re studying the correlation between rain and grass growth, it would help you to research rain patterns over the past twenty years for your county, published by a local agricultural association. You should also research the types of grass common in your area, the type of grass in your lawn, and whether anyone else has conducted experiments about your hypothesis. Also be sure you’re checking the quality of your research . Research done by a middle school student about what minerals can be found in rainwater would be less useful than an article published by a local university.

body-pencil-notebook-writing

Writing Your Hypothesis

Once you’ve considered all of the factors above, you’re ready to start writing your hypothesis. Hypotheses usually take a certain form when they’re written out in a research report.

When you boil down your hypothesis statement, you are writing down your best guess and not the question at hand . This means that your statement should be written as if it is fact already, even though you are simply testing it.

The reason for this is that, after you have completed your study, you'll either accept or reject your if-then or your null hypothesis. All hypothesis testing examples should be measurable and able to be confirmed or denied. You cannot confirm a question, only a statement! 

In fact, you come up with hypothesis examples all the time! For instance, when you guess on the outcome of a basketball game, you don’t say, “Will the Miami Heat beat the Boston Celtics?” but instead, “I think the Miami Heat will beat the Boston Celtics.” You state it as if it is already true, even if it turns out you’re wrong. You do the same thing when writing your hypothesis.

Additionally, keep in mind that hypotheses can range from very specific to very broad.  These hypotheses can be specific, but if your hypothesis testing examples involve a broad range of causes and effects, your hypothesis can also be broad.  

body-hand-number-two

The Two Types of Hypotheses

Now that you understand what goes into a hypothesis, it’s time to look more closely at the two most common types of hypothesis: the if-then hypothesis and the null hypothesis.

#1: If-Then Hypotheses

First of all, if-then hypotheses typically follow this formula:

If ____ happens, then ____ will happen.

The goal of this type of hypothesis is to test the causal relationship between the independent and dependent variable. It’s fairly simple, and each hypothesis can vary in how detailed it can be. We create if-then hypotheses all the time with our daily predictions. Here are some examples of hypotheses that use an if-then structure from daily life: 

  • If I get enough sleep, I’ll be able to get more work done tomorrow.
  • If the bus is on time, I can make it to my friend’s birthday party. 
  • If I study every night this week, I’ll get a better grade on my exam. 

In each of these situations, you’re making a guess on how an independent variable (sleep, time, or studying) will affect a dependent variable (the amount of work you can do, making it to a party on time, or getting better grades). 

You may still be asking, “What is an example of a hypothesis used in scientific research?” Take one of the hypothesis examples from a real-world study on whether using technology before bed affects children’s sleep patterns. The hypothesis read s:

“We hypothesized that increased hours of tablet- and phone-based screen time at bedtime would be inversely correlated with sleep quality and child attention.”

It might not look like it, but this is an if-then statement. The researchers basically said, “If children have more screen usage at bedtime, then their quality of sleep and attention will be worse.” The sleep quality and attention are the dependent variables and the screen usage is the independent variable. (Usually, the independent variable comes after the “if” and the dependent variable comes after the “then,” as it is the independent variable that affects the dependent variable.) This is an excellent example of how flexible hypothesis statements can be, as long as the general idea of “if-then” and the independent and dependent variables are present.

#2: Null Hypotheses

Your if-then hypothesis is not the only one needed to complete a successful experiment, however. You also need a null hypothesis to test it against. In its most basic form, the null hypothesis is the opposite of your if-then hypothesis . When you write your null hypothesis, you are writing a hypothesis that suggests that your guess is not true, and that the independent and dependent variables have no relationship .

One null hypothesis for the cell phone and sleep study from the last section might say: 

“If children have more screen usage at bedtime, their quality of sleep and attention will not be worse.” 

In this case, this is a null hypothesis because it’s asking the opposite of the original thesis! 

Conversely, if your if-then hypothesis suggests that your two variables have no relationship, then your null hypothesis would suggest that there is one. So, pretend that there is a study that is asking the question, “Does the amount of followers on Instagram influence how long people spend on the app?” The independent variable is the amount of followers, and the dependent variable is the time spent. But if you, as the researcher, don’t think there is a relationship between the number of followers and time spent, you might write an if-then hypothesis that reads:

“If people have many followers on Instagram, they will not spend more time on the app than people who have less.”

In this case, the if-then suggests there isn’t a relationship between the variables. In that case, one of the null hypothesis examples might say:

“If people have many followers on Instagram, they will spend more time on the app than people who have less.”

You then test both the if-then and the null hypothesis to gauge if there is a relationship between the variables, and if so, how much of a relationship. 

feature_tips

4 Tips to Write the Best Hypothesis

If you’re going to take the time to hold an experiment, whether in school or by yourself, you’re also going to want to take the time to make sure your hypothesis is a good one. The best hypotheses have four major elements in common: plausibility, defined concepts, observability, and general explanation.

#1: Plausibility

At first glance, this quality of a hypothesis might seem obvious. When your hypothesis is plausible, that means it’s possible given what we know about science and general common sense. However, improbable hypotheses are more common than you might think. 

Imagine you’re studying weight gain and television watching habits. If you hypothesize that people who watch more than  twenty hours of television a week will gain two hundred pounds or more over the course of a year, this might be improbable (though it’s potentially possible). Consequently, c ommon sense can tell us the results of the study before the study even begins.

Improbable hypotheses generally go against  science, as well. Take this hypothesis example: 

“If a person smokes one cigarette a day, then they will have lungs just as healthy as the average person’s.” 

This hypothesis is obviously untrue, as studies have shown again and again that cigarettes negatively affect lung health. You must be careful that your hypotheses do not reflect your own personal opinion more than they do scientifically-supported findings. This plausibility points to the necessity of research before the hypothesis is written to make sure that your hypothesis has not already been disproven.

#2: Defined Concepts

The more advanced you are in your studies, the more likely that the terms you’re using in your hypothesis are specific to a limited set of knowledge. One of the hypothesis testing examples might include the readability of printed text in newspapers, where you might use words like “kerning” and “x-height.” Unless your readers have a background in graphic design, it’s likely that they won’t know what you mean by these terms. Thus, it’s important to either write what they mean in the hypothesis itself or in the report before the hypothesis.

Here’s what we mean. Which of the following sentences makes more sense to the common person?

If the kerning is greater than average, more words will be read per minute.

If the space between letters is greater than average, more words will be read per minute.

For people reading your report that are not experts in typography, simply adding a few more words will be helpful in clarifying exactly what the experiment is all about. It’s always a good idea to make your research and findings as accessible as possible. 

body-blue-eye

Good hypotheses ensure that you can observe the results. 

#3: Observability

In order to measure the truth or falsity of your hypothesis, you must be able to see your variables and the way they interact. For instance, if your hypothesis is that the flight patterns of satellites affect the strength of certain television signals, yet you don’t have a telescope to view the satellites or a television to monitor the signal strength, you cannot properly observe your hypothesis and thus cannot continue your study.

Some variables may seem easy to observe, but if you do not have a system of measurement in place, you cannot observe your hypothesis properly. Here’s an example: if you’re experimenting on the effect of healthy food on overall happiness, but you don’t have a way to monitor and measure what “overall happiness” means, your results will not reflect the truth. Monitoring how often someone smiles for a whole day is not reasonably observable, but having the participants state how happy they feel on a scale of one to ten is more observable. 

In writing your hypothesis, always keep in mind how you'll execute the experiment.

#4: Generalizability 

Perhaps you’d like to study what color your best friend wears the most often by observing and documenting the colors she wears each day of the week. This might be fun information for her and you to know, but beyond you two, there aren’t many people who could benefit from this experiment. When you start an experiment, you should note how generalizable your findings may be if they are confirmed. Generalizability is basically how common a particular phenomenon is to other people’s everyday life.

Let’s say you’re asking a question about the health benefits of eating an apple for one day only, you need to realize that the experiment may be too specific to be helpful. It does not help to explain a phenomenon that many people experience. If you find yourself with too specific of a hypothesis, go back to asking the big question: what is it that you want to know, and what do you think will happen between your two variables?

body-experiment-chemistry

Hypothesis Testing Examples

We know it can be hard to write a good hypothesis unless you’ve seen some good hypothesis examples. We’ve included four hypothesis examples based on some made-up experiments. Use these as templates or launch pads for coming up with your own hypotheses.

Experiment #1: Students Studying Outside (Writing a Hypothesis)

You are a student at PrepScholar University. When you walk around campus, you notice that, when the temperature is above 60 degrees, more students study in the quad. You want to know when your fellow students are more likely to study outside. With this information, how do you make the best hypothesis possible?

You must remember to make additional observations and do secondary research before writing your hypothesis. In doing so, you notice that no one studies outside when it’s 75 degrees and raining, so this should be included in your experiment. Also, studies done on the topic beforehand suggested that students are more likely to study in temperatures less than 85 degrees. With this in mind, you feel confident that you can identify your variables and write your hypotheses:

If-then: “If the temperature in Fahrenheit is less than 60 degrees, significantly fewer students will study outside.”

Null: “If the temperature in Fahrenheit is less than 60 degrees, the same number of students will study outside as when it is more than 60 degrees.”

These hypotheses are plausible, as the temperatures are reasonably within the bounds of what is possible. The number of people in the quad is also easily observable. It is also not a phenomenon specific to only one person or at one time, but instead can explain a phenomenon for a broader group of people.

To complete this experiment, you pick the month of October to observe the quad. Every day (except on the days where it’s raining)from 3 to 4 PM, when most classes have released for the day, you observe how many people are on the quad. You measure how many people come  and how many leave. You also write down the temperature on the hour. 

After writing down all of your observations and putting them on a graph, you find that the most students study on the quad when it is 70 degrees outside, and that the number of students drops a lot once the temperature reaches 60 degrees or below. In this case, your research report would state that you accept or “failed to reject” your first hypothesis with your findings.

Experiment #2: The Cupcake Store (Forming a Simple Experiment)

Let’s say that you work at a bakery. You specialize in cupcakes, and you make only two colors of frosting: yellow and purple. You want to know what kind of customers are more likely to buy what kind of cupcake, so you set up an experiment. Your independent variable is the customer’s gender, and the dependent variable is the color of the frosting. What is an example of a hypothesis that might answer the question of this study?

Here’s what your hypotheses might look like: 

If-then: “If customers’ gender is female, then they will buy more yellow cupcakes than purple cupcakes.”

Null: “If customers’ gender is female, then they will be just as likely to buy purple cupcakes as yellow cupcakes.”

This is a pretty simple experiment! It passes the test of plausibility (there could easily be a difference), defined concepts (there’s nothing complicated about cupcakes!), observability (both color and gender can be easily observed), and general explanation ( this would potentially help you make better business decisions ).

body-bird-feeder

Experiment #3: Backyard Bird Feeders (Integrating Multiple Variables and Rejecting the If-Then Hypothesis)

While watching your backyard bird feeder, you realized that different birds come on the days when you change the types of seeds. You decide that you want to see more cardinals in your backyard, so you decide to see what type of food they like the best and set up an experiment. 

However, one morning, you notice that, while some cardinals are present, blue jays are eating out of your backyard feeder filled with millet. You decide that, of all of the other birds, you would like to see the blue jays the least. This means you'll have more than one variable in your hypothesis. Your new hypotheses might look like this: 

If-then: “If sunflower seeds are placed in the bird feeders, then more cardinals will come than blue jays. If millet is placed in the bird feeders, then more blue jays will come than cardinals.”

Null: “If either sunflower seeds or millet are placed in the bird, equal numbers of cardinals and blue jays will come.”

Through simple observation, you actually find that cardinals come as often as blue jays when sunflower seeds or millet is in the bird feeder. In this case, you would reject your “if-then” hypothesis and “fail to reject” your null hypothesis . You cannot accept your first hypothesis, because it’s clearly not true. Instead you found that there was actually no relation between your different variables. Consequently, you would need to run more experiments with different variables to see if the new variables impact the results.

Experiment #4: In-Class Survey (Including an Alternative Hypothesis)

You’re about to give a speech in one of your classes about the importance of paying attention. You want to take this opportunity to test a hypothesis you’ve had for a while: 

If-then: If students sit in the first two rows of the classroom, then they will listen better than students who do not.

Null: If students sit in the first two rows of the classroom, then they will not listen better or worse than students who do not.

You give your speech and then ask your teacher if you can hand out a short survey to the class. On the survey, you’ve included questions about some of the topics you talked about. When you get back the results, you’re surprised to see that not only do the students in the first two rows not pay better attention, but they also scored worse than students in other parts of the classroom! Here, both your if-then and your null hypotheses are not representative of your findings. What do you do?

This is when you reject both your if-then and null hypotheses and instead create an alternative hypothesis . This type of hypothesis is used in the rare circumstance that neither of your hypotheses is able to capture your findings . Now you can use what you’ve learned to draft new hypotheses and test again! 

Key Takeaways: Hypothesis Writing

The more comfortable you become with writing hypotheses, the better they will become. The structure of hypotheses is flexible and may need to be changed depending on what topic you are studying. The most important thing to remember is the purpose of your hypothesis and the difference between the if-then and the null . From there, in forming your hypothesis, you should constantly be asking questions, making observations, doing secondary research, and considering your variables. After you have written your hypothesis, be sure to edit it so that it is plausible, clearly defined, observable, and helpful in explaining a general phenomenon.

Writing a hypothesis is something that everyone, from elementary school children competing in a science fair to professional scientists in a lab, needs to know how to do. Hypotheses are vital in experiments and in properly executing the scientific method . When done correctly, hypotheses will set up your studies for success and help you to understand the world a little better, one experiment at a time.

body-whats-next-post-it-note

What’s Next?

If you’re studying for the science portion of the ACT, there’s definitely a lot you need to know. We’ve got the tools to help, though! Start by checking out our ultimate study guide for the ACT Science subject test. Once you read through that, be sure to download our recommended ACT Science practice tests , since they’re one of the most foolproof ways to improve your score. (And don’t forget to check out our expert guide book , too.)

If you love science and want to major in a scientific field, you should start preparing in high school . Here are the science classes you should take to set yourself up for success.

If you’re trying to think of science experiments you can do for class (or for a science fair!), here’s a list of 37 awesome science experiments you can do at home

Trending Now

How to Get Into Harvard and the Ivy League

How to Get a Perfect 4.0 GPA

How to Write an Amazing College Essay

What Exactly Are Colleges Looking For?

ACT vs. SAT: Which Test Should You Take?

When should you take the SAT or ACT?

Get Your Free

PrepScholar

Find Your Target SAT Score

Free Complete Official SAT Practice Tests

How to Get a Perfect SAT Score, by an Expert Full Scorer

Score 800 on SAT Math

Score 800 on SAT Reading and Writing

How to Improve Your Low SAT Score

Score 600 on SAT Math

Score 600 on SAT Reading and Writing

Find Your Target ACT Score

Complete Official Free ACT Practice Tests

How to Get a Perfect ACT Score, by a 36 Full Scorer

Get a 36 on ACT English

Get a 36 on ACT Math

Get a 36 on ACT Reading

Get a 36 on ACT Science

How to Improve Your Low ACT Score

Get a 24 on ACT English

Get a 24 on ACT Math

Get a 24 on ACT Reading

Get a 24 on ACT Science

Stay Informed

Get the latest articles and test prep tips!

Follow us on Facebook (icon)

Ashley Sufflé Robinson has a Ph.D. in 19th Century English Literature. As a content writer for PrepScholar, Ashley is passionate about giving college-bound students the in-depth information they need to get into the school of their dreams.

Ask a Question Below

Have any questions about this article or other topics? Ask below and we'll reply!

Educational resources and simple solutions for your research journey

Research hypothesis: What it is, how to write it, types, and examples

What is a Research Hypothesis: How to Write it, Types, and Examples

example of a hypothesis if then because

Any research begins with a research question and a research hypothesis . A research question alone may not suffice to design the experiment(s) needed to answer it. A hypothesis is central to the scientific method. But what is a hypothesis ? A hypothesis is a testable statement that proposes a possible explanation to a phenomenon, and it may include a prediction. Next, you may ask what is a research hypothesis ? Simply put, a research hypothesis is a prediction or educated guess about the relationship between the variables that you want to investigate.  

It is important to be thorough when developing your research hypothesis. Shortcomings in the framing of a hypothesis can affect the study design and the results. A better understanding of the research hypothesis definition and characteristics of a good hypothesis will make it easier for you to develop your own hypothesis for your research. Let’s dive in to know more about the types of research hypothesis , how to write a research hypothesis , and some research hypothesis examples .  

Table of Contents

What is a hypothesis ?  

A hypothesis is based on the existing body of knowledge in a study area. Framed before the data are collected, a hypothesis states the tentative relationship between independent and dependent variables, along with a prediction of the outcome.  

What is a research hypothesis ?  

Young researchers starting out their journey are usually brimming with questions like “ What is a hypothesis ?” “ What is a research hypothesis ?” “How can I write a good research hypothesis ?”   

A research hypothesis is a statement that proposes a possible explanation for an observable phenomenon or pattern. It guides the direction of a study and predicts the outcome of the investigation. A research hypothesis is testable, i.e., it can be supported or disproven through experimentation or observation.     

example of a hypothesis if then because

Characteristics of a good hypothesis  

Here are the characteristics of a good hypothesis :  

  • Clearly formulated and free of language errors and ambiguity  
  • Concise and not unnecessarily verbose  
  • Has clearly defined variables  
  • Testable and stated in a way that allows for it to be disproven  
  • Can be tested using a research design that is feasible, ethical, and practical   
  • Specific and relevant to the research problem  
  • Rooted in a thorough literature search  
  • Can generate new knowledge or understanding.  

How to create an effective research hypothesis  

A study begins with the formulation of a research question. A researcher then performs background research. This background information forms the basis for building a good research hypothesis . The researcher then performs experiments, collects, and analyzes the data, interprets the findings, and ultimately, determines if the findings support or negate the original hypothesis.  

Let’s look at each step for creating an effective, testable, and good research hypothesis :  

  • Identify a research problem or question: Start by identifying a specific research problem.   
  • Review the literature: Conduct an in-depth review of the existing literature related to the research problem to grasp the current knowledge and gaps in the field.   
  • Formulate a clear and testable hypothesis : Based on the research question, use existing knowledge to form a clear and testable hypothesis . The hypothesis should state a predicted relationship between two or more variables that can be measured and manipulated. Improve the original draft till it is clear and meaningful.  
  • State the null hypothesis: The null hypothesis is a statement that there is no relationship between the variables you are studying.   
  • Define the population and sample: Clearly define the population you are studying and the sample you will be using for your research.  
  • Select appropriate methods for testing the hypothesis: Select appropriate research methods, such as experiments, surveys, or observational studies, which will allow you to test your research hypothesis .  

Remember that creating a research hypothesis is an iterative process, i.e., you might have to revise it based on the data you collect. You may need to test and reject several hypotheses before answering the research problem.  

How to write a research hypothesis  

When you start writing a research hypothesis , you use an “if–then” statement format, which states the predicted relationship between two or more variables. Clearly identify the independent variables (the variables being changed) and the dependent variables (the variables being measured), as well as the population you are studying. Review and revise your hypothesis as needed.  

An example of a research hypothesis in this format is as follows:  

“ If [athletes] follow [cold water showers daily], then their [endurance] increases.”  

Population: athletes  

Independent variable: daily cold water showers  

Dependent variable: endurance  

You may have understood the characteristics of a good hypothesis . But note that a research hypothesis is not always confirmed; a researcher should be prepared to accept or reject the hypothesis based on the study findings.  

example of a hypothesis if then because

Research hypothesis checklist  

Following from above, here is a 10-point checklist for a good research hypothesis :  

  • Testable: A research hypothesis should be able to be tested via experimentation or observation.  
  • Specific: A research hypothesis should clearly state the relationship between the variables being studied.  
  • Based on prior research: A research hypothesis should be based on existing knowledge and previous research in the field.  
  • Falsifiable: A research hypothesis should be able to be disproven through testing.  
  • Clear and concise: A research hypothesis should be stated in a clear and concise manner.  
  • Logical: A research hypothesis should be logical and consistent with current understanding of the subject.  
  • Relevant: A research hypothesis should be relevant to the research question and objectives.  
  • Feasible: A research hypothesis should be feasible to test within the scope of the study.  
  • Reflects the population: A research hypothesis should consider the population or sample being studied.  
  • Uncomplicated: A good research hypothesis is written in a way that is easy for the target audience to understand.  

By following this research hypothesis checklist , you will be able to create a research hypothesis that is strong, well-constructed, and more likely to yield meaningful results.  

Research hypothesis: What it is, how to write it, types, and examples

Types of research hypothesis  

Different types of research hypothesis are used in scientific research:  

1. Null hypothesis:

A null hypothesis states that there is no change in the dependent variable due to changes to the independent variable. This means that the results are due to chance and are not significant. A null hypothesis is denoted as H0 and is stated as the opposite of what the alternative hypothesis states.   

Example: “ The newly identified virus is not zoonotic .”  

2. Alternative hypothesis:

This states that there is a significant difference or relationship between the variables being studied. It is denoted as H1 or Ha and is usually accepted or rejected in favor of the null hypothesis.  

Example: “ The newly identified virus is zoonotic .”  

3. Directional hypothesis :

This specifies the direction of the relationship or difference between variables; therefore, it tends to use terms like increase, decrease, positive, negative, more, or less.   

Example: “ The inclusion of intervention X decreases infant mortality compared to the original treatment .”   

4. Non-directional hypothesis:

While it does not predict the exact direction or nature of the relationship between the two variables, a non-directional hypothesis states the existence of a relationship or difference between variables but not the direction, nature, or magnitude of the relationship. A non-directional hypothesis may be used when there is no underlying theory or when findings contradict previous research.  

Example, “ Cats and dogs differ in the amount of affection they express .”  

5. Simple hypothesis :

A simple hypothesis only predicts the relationship between one independent and another independent variable.  

Example: “ Applying sunscreen every day slows skin aging .”  

6 . Complex hypothesis :

A complex hypothesis states the relationship or difference between two or more independent and dependent variables.   

Example: “ Applying sunscreen every day slows skin aging, reduces sun burn, and reduces the chances of skin cancer .” (Here, the three dependent variables are slowing skin aging, reducing sun burn, and reducing the chances of skin cancer.)  

7. Associative hypothesis:  

An associative hypothesis states that a change in one variable results in the change of the other variable. The associative hypothesis defines interdependency between variables.  

Example: “ There is a positive association between physical activity levels and overall health .”  

8 . Causal hypothesis:

A causal hypothesis proposes a cause-and-effect interaction between variables.  

Example: “ Long-term alcohol use causes liver damage .”  

Note that some of the types of research hypothesis mentioned above might overlap. The types of hypothesis chosen will depend on the research question and the objective of the study.  

example of a hypothesis if then because

Research hypothesis examples  

Here are some good research hypothesis examples :  

“The use of a specific type of therapy will lead to a reduction in symptoms of depression in individuals with a history of major depressive disorder.”  

“Providing educational interventions on healthy eating habits will result in weight loss in overweight individuals.”  

“Plants that are exposed to certain types of music will grow taller than those that are not exposed to music.”  

“The use of the plant growth regulator X will lead to an increase in the number of flowers produced by plants.”  

Characteristics that make a research hypothesis weak are unclear variables, unoriginality, being too general or too vague, and being untestable. A weak hypothesis leads to weak research and improper methods.   

Some bad research hypothesis examples (and the reasons why they are “bad”) are as follows:  

“This study will show that treatment X is better than any other treatment . ” (This statement is not testable, too broad, and does not consider other treatments that may be effective.)  

“This study will prove that this type of therapy is effective for all mental disorders . ” (This statement is too broad and not testable as mental disorders are complex and different disorders may respond differently to different types of therapy.)  

“Plants can communicate with each other through telepathy . ” (This statement is not testable and lacks a scientific basis.)  

Importance of testable hypothesis  

If a research hypothesis is not testable, the results will not prove or disprove anything meaningful. The conclusions will be vague at best. A testable hypothesis helps a researcher focus on the study outcome and understand the implication of the question and the different variables involved. A testable hypothesis helps a researcher make precise predictions based on prior research.  

To be considered testable, there must be a way to prove that the hypothesis is true or false; further, the results of the hypothesis must be reproducible.  

Research hypothesis: What it is, how to write it, types, and examples

Frequently Asked Questions (FAQs) on research hypothesis  

1. What is the difference between research question and research hypothesis ?  

A research question defines the problem and helps outline the study objective(s). It is an open-ended statement that is exploratory or probing in nature. Therefore, it does not make predictions or assumptions. It helps a researcher identify what information to collect. A research hypothesis , however, is a specific, testable prediction about the relationship between variables. Accordingly, it guides the study design and data analysis approach.

2. When to reject null hypothesis ?

A null hypothesis should be rejected when the evidence from a statistical test shows that it is unlikely to be true. This happens when the test statistic (e.g., p -value) is less than the defined significance level (e.g., 0.05). Rejecting the null hypothesis does not necessarily mean that the alternative hypothesis is true; it simply means that the evidence found is not compatible with the null hypothesis.  

3. How can I be sure my hypothesis is testable?  

A testable hypothesis should be specific and measurable, and it should state a clear relationship between variables that can be tested with data. To ensure that your hypothesis is testable, consider the following:  

  • Clearly define the key variables in your hypothesis. You should be able to measure and manipulate these variables in a way that allows you to test the hypothesis.  
  • The hypothesis should predict a specific outcome or relationship between variables that can be measured or quantified.   
  • You should be able to collect the necessary data within the constraints of your study.  
  • It should be possible for other researchers to replicate your study, using the same methods and variables.   
  • Your hypothesis should be testable by using appropriate statistical analysis techniques, so you can draw conclusions, and make inferences about the population from the sample data.  
  • The hypothesis should be able to be disproven or rejected through the collection of data.  

4. How do I revise my research hypothesis if my data does not support it?  

If your data does not support your research hypothesis , you will need to revise it or develop a new one. You should examine your data carefully and identify any patterns or anomalies, re-examine your research question, and/or revisit your theory to look for any alternative explanations for your results. Based on your review of the data, literature, and theories, modify your research hypothesis to better align it with the results you obtained. Use your revised hypothesis to guide your research design and data collection. It is important to remain objective throughout the process.  

5. I am performing exploratory research. Do I need to formulate a research hypothesis?  

As opposed to “confirmatory” research, where a researcher has some idea about the relationship between the variables under investigation, exploratory research (or hypothesis-generating research) looks into a completely new topic about which limited information is available. Therefore, the researcher will not have any prior hypotheses. In such cases, a researcher will need to develop a post-hoc hypothesis. A post-hoc research hypothesis is generated after these results are known.  

6. How is a research hypothesis different from a research question?

A research question is an inquiry about a specific topic or phenomenon, typically expressed as a question. It seeks to explore and understand a particular aspect of the research subject. In contrast, a research hypothesis is a specific statement or prediction that suggests an expected relationship between variables. It is formulated based on existing knowledge or theories and guides the research design and data analysis.

7. Can a research hypothesis change during the research process?

Yes, research hypotheses can change during the research process. As researchers collect and analyze data, new insights and information may emerge that require modification or refinement of the initial hypotheses. This can be due to unexpected findings, limitations in the original hypotheses, or the need to explore additional dimensions of the research topic. Flexibility is crucial in research, allowing for adaptation and adjustment of hypotheses to align with the evolving understanding of the subject matter.

8. How many hypotheses should be included in a research study?

The number of research hypotheses in a research study varies depending on the nature and scope of the research. It is not necessary to have multiple hypotheses in every study. Some studies may have only one primary hypothesis, while others may have several related hypotheses. The number of hypotheses should be determined based on the research objectives, research questions, and the complexity of the research topic. It is important to ensure that the hypotheses are focused, testable, and directly related to the research aims.

9. Can research hypotheses be used in qualitative research?

Yes, research hypotheses can be used in qualitative research, although they are more commonly associated with quantitative research. In qualitative research, hypotheses may be formulated as tentative or exploratory statements that guide the investigation. Instead of testing hypotheses through statistical analysis, qualitative researchers may use the hypotheses to guide data collection and analysis, seeking to uncover patterns, themes, or relationships within the qualitative data. The emphasis in qualitative research is often on generating insights and understanding rather than confirming or rejecting specific research hypotheses through statistical testing.

Editage All Access is a subscription-based platform that unifies the best AI tools and services designed to speed up, simplify, and streamline every step of a researcher’s journey. The Editage All Access Pack is a one-of-a-kind subscription that unlocks full access to an AI writing assistant, literature recommender, journal finder, scientific illustration tool, and exclusive discounts on professional publication services from Editage.  

Based on 22+ years of experience in academia, Editage All Access empowers researchers to put their best research forward and move closer to success. Explore our top AI Tools pack, AI Tools + Publication Services pack, or Build Your Own Plan. Find everything a researcher needs to succeed, all in one place –  Get All Access now starting at just $14 a month !    

Related Posts

research funding sources

What are the Best Research Funding Sources

inductive research

Inductive vs. Deductive Research Approach

  • How It Works
  • PhD thesis writing
  • Master thesis writing
  • Bachelor thesis writing
  • Dissertation writing service
  • Dissertation abstract writing
  • Thesis proposal writing
  • Thesis editing service
  • Thesis proofreading service
  • Thesis formatting service
  • Coursework writing service
  • Research paper writing service
  • Architecture thesis writing
  • Computer science thesis writing
  • Engineering thesis writing
  • History thesis writing
  • MBA thesis writing
  • Nursing dissertation writing
  • Psychology dissertation writing
  • Sociology thesis writing
  • Statistics dissertation writing
  • Buy dissertation online
  • Write my dissertation
  • Cheap thesis
  • Cheap dissertation
  • Custom dissertation
  • Dissertation help
  • Pay for thesis
  • Pay for dissertation
  • Senior thesis
  • Write my thesis

How To Write A Hypothesis Guide And Detailed Instructions

how to write a hypothesis

Whether you’re studying for a college degree, MBA, or Ph.D., developing a hypothesis for your research is mandatory. You must know how to write a good hypothesis to impress your professors. Now, how should a hypothesis be written?

This is where some students get confused and exhausted. You already know that you’re to formulate a hypothesis around something testable. But you don’t know how to create hypotheses based on previous observations that you would later explain in your paper or journal.

In this article, you’ll learn what a hypothesis is, how to make a hypothesis, examples of how to write hypothesis statement, and how to go about yours.

What Is A Hypothesis?

A hypothesis is a statement that is not proven, and it’s an assumption that you’ll base your research on. They must be testable: they must have answers that can be checked with experiments and evidence.

The theory around your hypothesis becomes valid when it’s proven to be true through experiments. Scientists have rules for writing that make their chemistry, physics, and biology research reproducible.

An essential part is that they must understand the experiments of others so that they can build on them and improve them. These rules define how scientists write about science. This rule applies to hypotheses, too.

Why Do You Need A Hypothesis?

Writing a good hypothesis is a key part of any scientific exploration. It allows a broad and open-ended question that compels you to investigate. There are many other reasons, including:

It’s different from a theory because a theory is something like:

“The earth orbits around the sun.”

This is not testable because we know that it’s true. A theory is more like an explanation for why something happens, while a hypothesis is a guess about what will happen and why it would.

A hypothesis is a statement of the relationship you’ve observed in a pair of variables. The easiest way to think about it is that the hypothesis is your testable statement for your research project.

You would typically use your background knowledge and experience as a researcher to come up with this statement before you set out to collect data. A good hypothesis will give you insight into what kind of data you need to collect to answer the question (or provide evidence).

For example:

“People who live in cities have higher stress levels than those who live in rural areas because there are more people around them all day long!”

This hypothesis would then lead us to ask questions like “How do we measure stress?” or “What factors contribute to stress?” You’ll provide answers to these questions with the paper.

A hypothesis can be proven or disproven throughout an experiment. The most common way to disprove a hypothesis is through statistical significance testing. This entails using probability and data analysis to show that there’s no practical difference between the two compared groups.

The hypothesis is a testable statement about how the world works. It’s also a way to properly arrange and structure your data. Without a hypothesis, you won’t even know what to set your scientific experiment on. A hypothesis is what you’ll use to predict what will happen in the future, and the data you collect during the research will help validate or disprove this.

In science, you’re always trying to figure out why things happen the way they do and what factors affect them. When you know how something works, “why do some people get sick while others don’t?” You might make up a hypothesis to test your idea: “People who are exposed to germs get flu symptoms.” Here’s how to start a hypothesis as the answer lets you determine whether your idea is right or wrong; an experiment then validates (or disproves) it.

Now that you know why you need to formulate a testable hypothesis, learn how to write a research hypothesis with tangible examples.

How To Write A Hypothesis

Before you start your experiments in the lab, it’s important to take some time to think about what you’re trying to achieve. After all, you can’t know your research destination until you plan it beforehand. This is why mastering how to state a hypothesis gives room for healthy predictions. Here’s how you formulate hypothesis:

Your first step is to determine what you want to investigate. You can start with a question you’d like to answer or a problem that needs solving.For example, if you’re a teacher trying to improve your students’ reading skills, you might ask:

“What techniques can I use for my students to boost reading comprehension scores on their standardized tests?”

This could also be stated as “Do test-taking strategies lead to improved standardized test scores?”

Once your question pops in your mind, especially while reflecting on a scientific paper you’ve read or a documentary you saw, write it down and commence research.

You need some facts to state a hypothesis and prove it. It might be tricky to get these facts, and you’ll want to look for relevant and irrelevant information.

Relevant information is directly related to your hypothesis. For example, your relevant sources would be academic, examination, and psychology journals, quantitative data or news outlets for the above statement.

Irrelevant information is any other kind of data, and this could be random news outlets or interviews that could help bolster what your assumptions are.

Use the word “because” to indicate that your variable causes or explains another variable. For example: If we are testing whether exercise leads to weight loss, our sentence might look like this:

“Consistent gym practice causes weight loss because it burns calories and gets the body in shape.”

You need to identify if your hypothesis is testable or if it’s an opinion you can’t prove. You can’t test what you don’t know or can’t prove. So you’d need to rewrite your hypothesis if you think it’s not testable.

Your hypothesis should be clear, concise, testable, specific, and relevant. The best way to do this is to write a brief summary of your hypothesis in the form: “If X happens, then Y will happen.”

Here’s a sample hypothesis:

“If I add 15 minutes to my sitting time everyday, then my body mass index (BMI) will reduce by 5 points in three months.”

Now that you’ve defined your idea, it’s time for the actual experiment to determine whether it’ll work.

How To Write A Hypothesis Statement: Example Of A Hypothesis

There are numerous examples of a hypothesis statement you can take a clue from. A scientific hypothesis examines two variables that need evidence-based research to be considered valid. For example:

“If I increase the amount of water applied to a plant garden, then it will make it grow faster.”

You have identified the independent and dependent variables in this statement. The independent variable is “amount of water applied,” and the dependent variable is “grow faster.” You also included a control group, which is important in scientific experiments to eliminate bias from other factors that could influence your results.

In this case, you are comparing how much growth there would be if you increase the amount of water versus how much growth there would be if you do not increase it.

You then need to research the topic in detail and design an experiment before you can write your report. The first step is to decide what you’re going to measure, how you’ll measure it, and how many times you’ll do this so that it’s accurate.

Once you’ve measured your experiment, interpreting the results can be challenging. You should look at graphs or charts of your data to see if any patterns or trends might indicate a cause-and-effect relationship between two things (like applying more water to the plant garden and faster growth).

After looking at the results of your experiment and deciding whether or not they support your original hypothesis, use this new knowledge in your conclusion. Write up something like:

“Based on my findings, it’s clear that applying more water to any plant garden would make the plant garden grow faster and greener.”

Then, write an introduction section where you can explain why this project interests/matters/is relevant to your reader. At this point, your hypothesis is no longer an educated guess. It started as one (with the observation or thoughts/idea) and ended as verifiable.

Format For Hypothesis: How Should A Hypothesis Be Written?

The usual format of a hypothesis is If – (then) – because.

Because we have the idea that if a hypothesis is formatted as an if-then statement, it’s clear what the hypothesis is about. This can be helpful for your readers and yourself if you ever need to come back and look at your work.

So, now that you know how to format it correctly (and why) let’s look at some hypothesis examples.

“If snow falls, then I’ll catch a cold when I get outside because cold can be a result of heavy snow.”
“If anyone in my family eats cake, then we will feel sick because the cake contains ingredients we are allergic to.”
“Some grasses never grow because they’re stumped every day.”

All these show that two variables must come together in the sentence. The variables must also be a probability the research attempts to solve to make them valid statements.

How To Know Your Hypothesis Is Good

Now that you know how to create a hypothesis, you need to know if it’s good through these pointers:

State a Hypothesis as Clearly as Possible You can choose precise words that are neither ambiguous nor too technical. You should also avoid jargon and words with multiple meanings to keep your language simple and clear. Don’t use fancy or pretentious words unless they’re absolutely necessary for the meaning you want to convey, and make sure you’ve used them in their correct context. In addition, use a tone of voice appropriate to the audience. A scientific paper may need more formal language than an article for popular consumption. A Good Hypothesis Should Explain the Bond Between Multiple Variables The main purpose of forming a hypothesis is to explain the relationship between multiple variables clearly. The relationship should be testable for it to be proven. This is, why if X leads to Y, what is in between that connects X and Y? This must reflect in the hypothesis as it’s the factor that’ll be experimented. A Hypothesis should Be Testable This means that your hypothesis should be a statement that can be proven or disproven with an experiment. You want to make sure your hypothesis is specific enough to guide you towards the right experiment but not so specific that it eliminates any other possible outcomes of your experiment. Also, a hypothesis should not make claims about unobservable things (like feelings or thoughts). Instead, focus on observable results (things we can see) like measurements and observations from experiments conducted by scientists over time.If your hypothesis isn’t testable, then it needs to be reformulated.

What Should You Do If Your Hypothesis Is Incorrect?

You need to reformulate your thesis if it’s incorrect. You may have to reevaluate the problem or look at it differently. It’s also possible that you need to test your hypothesis with a different method of experimentation.

Here are some ideas from the best scientific thesis writing help experts:

Try Another Approach: Try looking at your hypothesis from a different angle, or consider changing up your methods entirely (for example, instead of asking people what they think will happen in the future and then testing their opinions against reality, you could run an experiment where participants predict events and then actually follow up on those predictions). Share Your Idea with a Third Party: Your hypothesis can be tested by allowing a third party to observe the results of your attempt to prove or disprove the statement. For example, if you’re testing whether peanuts can be made into peanut butter using only as few steps as possible, have someone else make it for you or observe them make it.

Document how you made your product and recorded any necessary changes along the way. This will help you know what works and doesn’t so that you’ll make changes to the whole idea.

Get Hypothesis Writing Help

Writing a hypothesis is smart work. You need professionals who know how to write a scientific hypothesis and journal that reflect the experiment supporting the hypothesis. You need professionals who are also expert writers and can offer writing help online.

We offer some of the best writing helpers online, with fast with turnovers. Our writers create the best hypothesis scenario with the possibility to ace any experiment at a cheap price. They will offer writing help if you need these professionals to help write a good hypothesis for you. After all, you need to complete your degrees stronger than you started. A great paper by professionals can seal that deal, and our master thesis writing service is here to help.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Comment * Error message

Name * Error message

Email * Error message

Save my name, email, and website in this browser for the next time I comment.

As Putin continues killing civilians, bombing kindergartens, and threatening WWIII, Ukraine fights for the world's peaceful future.

Ukraine Live Updates

What Are Examples of a Hypothesis?

  • Scientific Method
  • Chemical Laws
  • Periodic Table
  • Projects & Experiments
  • Biochemistry
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

A hypothesis is an explanation for a set of observations. Hypothesis examples can help you understand how this scientific method works.

Although you could state a scientific hypothesis in various ways, most hypotheses are either "If, then" statements or forms of the null hypothesis. The null hypothesis is sometimes called the "no difference" hypothesis. The null hypothesis is good for experimentation because it's simple to disprove. If you disprove a null hypothesis, that is evidence for a relationship between the variables you are examining.

Hypotheses Examples: Null

  • All daisies have the same number of petals.
  • Hyperactivity is unrelated to eating sugar.
  • The number of pets in a household is unrelated to the number of people living in it.
  • A person's preference for a shirt is unrelated to its color.

Hypotheses Examples: If, Then

  • If you get at least 6 hours of sleep, you will do better on tests than if you get less sleep.
  • If you drop a ball, it will fall toward the ground.
  • If you drink coffee before going to bed, then it will take longer to fall asleep.
  • If you cover a wound with a bandage, then it will heal with less scarring.

What is a scientific hypothesis?

It's the initial building block in the scientific method.

A girl looks at plants in a test tube for a science experiment. What&#039;s her scientific hypothesis?

Hypothesis basics

What makes a hypothesis testable.

  • Types of hypotheses
  • Hypothesis versus theory

Additional resources

Bibliography.

A scientific hypothesis is a tentative, testable explanation for a phenomenon in the natural world. It's the initial building block in the scientific method . Many describe it as an "educated guess" based on prior knowledge and observation. While this is true, a hypothesis is more informed than a guess. While an "educated guess" suggests a random prediction based on a person's expertise, developing a hypothesis requires active observation and background research. 

The basic idea of a hypothesis is that there is no predetermined outcome. For a solution to be termed a scientific hypothesis, it has to be an idea that can be supported or refuted through carefully crafted experimentation or observation. This concept, called falsifiability and testability, was advanced in the mid-20th century by Austrian-British philosopher Karl Popper in his famous book "The Logic of Scientific Discovery" (Routledge, 1959).

A key function of a hypothesis is to derive predictions about the results of future experiments and then perform those experiments to see whether they support the predictions.

A hypothesis is usually written in the form of an if-then statement, which gives a possibility (if) and explains what may happen because of the possibility (then). The statement could also include "may," according to California State University, Bakersfield .

Here are some examples of hypothesis statements:

  • If garlic repels fleas, then a dog that is given garlic every day will not get fleas.
  • If sugar causes cavities, then people who eat a lot of candy may be more prone to cavities.
  • If ultraviolet light can damage the eyes, then maybe this light can cause blindness.

A useful hypothesis should be testable and falsifiable. That means that it should be possible to prove it wrong. A theory that can't be proved wrong is nonscientific, according to Karl Popper's 1963 book " Conjectures and Refutations ."

An example of an untestable statement is, "Dogs are better than cats." That's because the definition of "better" is vague and subjective. However, an untestable statement can be reworded to make it testable. For example, the previous statement could be changed to this: "Owning a dog is associated with higher levels of physical fitness than owning a cat." With this statement, the researcher can take measures of physical fitness from dog and cat owners and compare the two.

Types of scientific hypotheses

Elementary-age students study alternative energy using homemade windmills during public school science class.

In an experiment, researchers generally state their hypotheses in two ways. The null hypothesis predicts that there will be no relationship between the variables tested, or no difference between the experimental groups. The alternative hypothesis predicts the opposite: that there will be a difference between the experimental groups. This is usually the hypothesis scientists are most interested in, according to the University of Miami .

For example, a null hypothesis might state, "There will be no difference in the rate of muscle growth between people who take a protein supplement and people who don't." The alternative hypothesis would state, "There will be a difference in the rate of muscle growth between people who take a protein supplement and people who don't."

If the results of the experiment show a relationship between the variables, then the null hypothesis has been rejected in favor of the alternative hypothesis, according to the book " Research Methods in Psychology " (​​BCcampus, 2015). 

There are other ways to describe an alternative hypothesis. The alternative hypothesis above does not specify a direction of the effect, only that there will be a difference between the two groups. That type of prediction is called a two-tailed hypothesis. If a hypothesis specifies a certain direction — for example, that people who take a protein supplement will gain more muscle than people who don't — it is called a one-tailed hypothesis, according to William M. K. Trochim , a professor of Policy Analysis and Management at Cornell University.

Sometimes, errors take place during an experiment. These errors can happen in one of two ways. A type I error is when the null hypothesis is rejected when it is true. This is also known as a false positive. A type II error occurs when the null hypothesis is not rejected when it is false. This is also known as a false negative, according to the University of California, Berkeley . 

A hypothesis can be rejected or modified, but it can never be proved correct 100% of the time. For example, a scientist can form a hypothesis stating that if a certain type of tomato has a gene for red pigment, that type of tomato will be red. During research, the scientist then finds that each tomato of this type is red. Though the findings confirm the hypothesis, there may be a tomato of that type somewhere in the world that isn't red. Thus, the hypothesis is true, but it may not be true 100% of the time.

Scientific theory vs. scientific hypothesis

The best hypotheses are simple. They deal with a relatively narrow set of phenomena. But theories are broader; they generally combine multiple hypotheses into a general explanation for a wide range of phenomena, according to the University of California, Berkeley . For example, a hypothesis might state, "If animals adapt to suit their environments, then birds that live on islands with lots of seeds to eat will have differently shaped beaks than birds that live on islands with lots of insects to eat." After testing many hypotheses like these, Charles Darwin formulated an overarching theory: the theory of evolution by natural selection.

"Theories are the ways that we make sense of what we observe in the natural world," Tanner said. "Theories are structures of ideas that explain and interpret facts." 

  • Read more about writing a hypothesis, from the American Medical Writers Association.
  • Find out why a hypothesis isn't always necessary in science, from The American Biology Teacher.
  • Learn about null and alternative hypotheses, from Prof. Essa on YouTube .

Encyclopedia Britannica. Scientific Hypothesis. Jan. 13, 2022. https://www.britannica.com/science/scientific-hypothesis

Karl Popper, "The Logic of Scientific Discovery," Routledge, 1959.

California State University, Bakersfield, "Formatting a testable hypothesis." https://www.csub.edu/~ddodenhoff/Bio100/Bio100sp04/formattingahypothesis.htm  

Karl Popper, "Conjectures and Refutations," Routledge, 1963.

Price, P., Jhangiani, R., & Chiang, I., "Research Methods of Psychology — 2nd Canadian Edition," BCcampus, 2015.‌

University of Miami, "The Scientific Method" http://www.bio.miami.edu/dana/161/evolution/161app1_scimethod.pdf  

William M.K. Trochim, "Research Methods Knowledge Base," https://conjointly.com/kb/hypotheses-explained/  

University of California, Berkeley, "Multiple Hypothesis Testing and False Discovery Rate" https://www.stat.berkeley.edu/~hhuang/STAT141/Lecture-FDR.pdf  

University of California, Berkeley, "Science at multiple levels" https://undsci.berkeley.edu/article/0_0_0/howscienceworks_19

Sign up for the Live Science daily newsletter now

Get the world’s most fascinating discoveries delivered straight to your inbox.

Weird mystery waves that baffle scientists may be 'everywhere' inside Earth's mantle

Rare 'moonbows' light up night sky across US as blue supermoon rises — and you could still spot another one

'A single magma ocean' once covered the moon, data from India's Chandrayaan-3 mission suggests

Most Popular

  • 2 Chlamydia may hide in the gut and cause repeated infections
  • 3 Rare 'doomsday fish' said to bring earthquakes spotted in California days before LA quake
  • 4 Some black holes have a 'heartbeat' — and astronomers may finally know why
  • 5 The brain stores at least 3 copies of every memory

example of a hypothesis if then because

  • 2018/03/28/How-to-write-a-hypothesis

How to write a hypothesis

This is a sticking point for many students. We are used to using and writing questions and statements in day to day communications, as well as reading popular media. But hypotheses (the plural of hypothesis) only rarely float across our desks. So how do we write one, and how do we know if our hypothesis is good?

Although I’m going to write about what I think, there is already some good information out there on the web, and it’s worth looking at this too: (e.g. Wikihow , Wikipedia , etc.). There’s also some dodgy stuff, so read critically.

What is a hypothesis?

A hypothesis is a statement of your research intent. It tells the reader (because just like all of your other written work, it has an audience who reads it), what you planned to do in your research. But there’s a little more to it than this. The hypothesis becomes a part of the scientific method if it is testable, and informed from previous published work on the subject.

Yes, your hypothesis must  be informed by the literature, which is why you spent so much time and effort crafting your introduction to inform your reader of the same. This is also why your hypothesis usually comes at the end of your introduction, because you spend all of the introduction telling your reader about it (see blog entry here ). There’s not much point in writing more after the hypothesis, because once your reader has read that, they are ready to learn about how you went about testing it (in the Materials & Methods). The other important point to make is that the literature should dictate how you write your hypothesis, and the variables that you include. If, for example, you know that temperature is the most important variable but all of the literature suggests that it is oxygen, you can’t ignore oxygen and you should also frame your hypothesis using this variable (you can have more than one hypothesis after all!). In this case, you will also need to provide a sufficient introduction to temperature as a variable to justify its inclusion in your hypothesis. Perversely, your aim is not to prove that your idea is right, but to show that the hypothesis is wrong.

We usually try to write a hypothesis that is falsifiable: i.e. you can prove (usually using statistical tests) that it is not correct (or at least show that the likelihood that it is correct is very low). That’s why it is conventional to provide the ‘Null hypothesis’ that is the falsified version of the statement, suggesting that there is no relationship between the variables you have proposed to measure. The convention is to label this H 0 , while the ‘alternative hypothesis’ (the one that says your variables are related as you suggested) is written as H 1 . You can write you alternative hypothesis to show the directionality of your tested variables, or simply that there is a relationship.

Most importantly, your hypothesis must come first, before you do the experiment or study! Setting the hypothesis after the work is already done is fraudulent, and goes against the scientific method. Obviously, it isn’t fair to pose the hypothesis once you already know the answer. This is why there is so much emphasis put on formulating your hypothesis during your research proposal. Getting it right will determine what you do and how you test it. If you think of an extra hypothesis that would be really useful to test once you’ve already done your study, you can conduct a post hoc test, but this should have more stringent levels of statistical assessment.

Writing a hypothesis isn’t easy, but it is essential and once you’ve understood what to do, most of the rest of what you are writing for should make sense.

What a hypothesis isn’t

It is not a question and so should never have a question mark after it.

It isn’t really a simple prediction: if this then that. You will see many times on the internet that hypotheses are explained in this simple predictive framework. I say that it isn't ' really ' a simple prediction because these are not good hypotheses. They lack the mechanistic and scholarly aspect of a good hypothesis, which is what we want to achieve.

A formulaic way to start writing your hypothesis: “ If… then… because… ”

Above, I emphasised that you must have introduced all the variables that you plan to use to test your hypothesis in your introduction. This usually comes in the second paragraph ( see blog entry here ), where you emphasise the utility of the dependent variable/s (what you are planning to measure) and your independent variable (what you will manipulate). Both of these variables should then feature in your hypothesis. Next, by paragraph four you will have identified the problem that you are interested in tackling. In addition, your introduction will provide all of the pertinent literature that has relevance to this hypothesis, giving the all important context.

A simple way to consider making your hypothesis is to adopt an “ If… then… because… ” construction where you add in your problem statement using your independent variable after ‘ if ’ and your prediction using your dependent variable after ‘ then ’, and finally the expected mechanism after ‘ because ’. Using our example above with the “If… then… because…” construction, we would say: “ If environmental temperatures in which tadpoles develop are increased then tadpole development rate is faster because they follow the classic metabolism of ectotherms”. Both independent variable (temperature) and dependent variable (tadpole development rate) are present in this hypothesis, and the predicted relationship between them is clear. In addition, the causal mechanism is stated. You can watch a video about using the “If… then… because…” construction here , or read more here . I say that this is a formulaic way to start writing your hypothesis, because it usually ends up as an inelegant statement, which can be better refined for a reader. A citation for your stated mechanism might also help clarify exactly where the justification for this comes from.

A good hypothesis will often take an existing hypothesis further, to try to better refine the knowledge on a subject. Hence, it is perfectly acceptable to state that you are building on existing hypotheses (and giving the appropriate statement) when making your own.

How to evaluate your hypothesis

Once you’ve written your hypothesis, how do you decide whether or not it is good? To do this, you might think that you need plenty of experience (and yes, that does help). But really, you just need to look for the elements that are discussed above. So once you’ve written your hypothesis, try to objectively answer the questions below (for more see Bartos 1992 and here ):

  • Is there a clear prediction (if… then… statement)?
  • Does the prediction use independent and dependent variables correctly?
  • Is the mechanism supported by the literature?
  • Is the hypothesis testable/falsifiable?
  • Does the hypothesis use concise wording and precise terminology?

If your hypothesis meets all of the criteria above, then you’ve done a good job!

Creative Commons Licence

  • Science & Math
  • Sociology & Philosophy
  • Law & Politics

How to Write Hypothesis for Lab Report

  • How to Write Hypothesis for…

What Is a Real Hypothesis?

A hypothesis is a tentative statement that proposes a possible explanation for some phenomenon or event. A useful hypothesis is a testable statement that may include a prediction.

When Are Hypotheses Used?

The keyword is testable. That is, you will perform a test of how two variables might be related. This is when you are doing a real experiment. You are testing variables. Usually, a hypothesis is based on some previous observations such as noticing that in November many trees undergo color changes in their leaves and the average daily temperatures are dropping. Are these two events connected? How?

Any laboratory procedure you follow without a hypothesis is really not an experiment. It is just an exercise or demonstration of what is already known.

How Are Hypotheses Written?

  • Chocolate may cause pimples.
  • Salt in soil may affect plant growth.
  • Plant growth may be affected by the color of the light.
  • Bacterial growth may be affected by temperature.
  • Ultraviolet light may cause skin cancer.
  • The temperature may cause leaves to change color.

All of these are examples of hypotheses because they use the tentative word “may.”. However, their form is not particularly useful. Using the word may do not suggest how you would go about proving it. If these statements had not been written carefully, they may not have even been hypotheses at all. For example, if we say “Trees will change color when it gets cold.” we are making a prediction. Or if we write, “Ultraviolet light causes skin cancer.” could be a conclusion. One way to prevent making such easy mistakes is to formalize the form of the hypothesis.

Formalized Hypotheses example: If the incidence of skin cancer is related to exposure levels of ultraviolet light , then people with a high exposure to uv light will have a higher frequency of skin cancer.

If leaf color change is related to temperature , then exposing plants to low temperatures will result in changes in leaf color .

Notice that these statements contain the words, if and then. They are necessary for a formalized hypothesis. But not all if-then statements are hypotheses. For example, “If I play the lottery, then I will get rich.” This is a simple prediction. In a formalized hypothesis, a tentative relationship is stated. For example, if the frequency of winning is related to the frequency of buying lottery tickets . “Then” is followed by a prediction of what will happen if you increase or decrease the frequency of buying lottery tickets. If you always ask yourself that if one thing is related to another, then you should be able to test it.

Formalized hypotheses contain two variables. One is “independent” and the other is “dependent.” The independent variable is the one you, the “scientist” control, and the dependent variable is the one that you observe and/or measure the results. In the statements above the dependent variable is underlined and the independent variable is underlined and italicized .

The ultimate value of a formalized hypothesis is it forces us to think about what results we should look for in an experiment.

For the “ If, Then, Because ” hypothesis…you would use: “ IF pigs and humans share the same nutritional behaviors, THEN their internal organs should look relatively the same BECAUSE of similar function and composure.” That is an example. For the “If, Then, Because” you should follow this guideline:

IF X and Y both do or share this, THEN this should be found/confirmed, BECAUSE of this fact or logical assumption.

Example Question : How does the type of liquid (water, milk, or orange juice) given to a plant affect how tall the plant will grow? Hypothesis : If the plant is given water then the plant will grow the tallest because water helps the plant absorb the nutrients that the plant needs to survive.

Related Posts

  • Energy Content of Food Lab Report Answers
  • Phet Projectile Motion Lab: Lab Answers
  • Magnesium Oxide: Percent Yield Lab Report
  • How to Write a Formal Laboratory Report
  • Physics: Lab Report Style

16 Comments

How would I write a hypothesis about a flying pig lab?

your lab hypothesis should have been written before the experiment. The purpose of the hypothesis was to create a testable statement in which your experimental data would either support or reject. Having a hypothesis based on a logical assumption (regardless of whether your data supports it) is still correct. If there is a disagreement between your hypothesis and experimental data it should be addressed in the discussion.

So you can go ahead an choose a hypothesis for either increase or decrease of adipogenesis after the inducement of insulin and not be wrong….as long as it is correctly formatted (see examples above).

Hey, I am having trouble writing my hypothesis.. I am supposed to write a hypothesis about how much adipogenesis was produced after the inducement of insulin. However, after proceeding with the experiments the results were On/Off .. meaning it will increase, decrease, increase, etc.. so it wasnt a constant result. It was supposed to be increasing.

please help!!!

this is very helpful but i don’t know how i would structure my hypothesis. i’m supposed to come up with a hypothesis related to the topic ‘how does mass effect the stopping distance of a cart?’. Could you help?

Thank you so much, it really help alot.:)

This is a rather difficult usage of this construct. It would most likely follow

“If the empirical formula of (enter compound’s name) is (enter compound’s formula) then it would be expected that combustion of _________ would yield _________, because (enter your rationale)

Need more background info.

For the “If, then, because” hypothesis I am doing an experiment to determine the empirical formula by using combustion but I am unsure on how to formulate the hypothesis using this structure.

For the “If, Then, Because” hypothesis…you would use: “IF pigs and humans share the same nutritional behaviors, THEN their internal organs should look relatively the same BECAUSE of similar function and composure.” That is an example. For the “If, Then, Because” you should follow this guideline:

Thanks, really helpful. Just one question, what about the ‘because’ part? right after the ‘if’ and ‘then’ parts?

I really need help for onion skin lab hypothesis for class

@Lauren An if/and statement is not usually apart of the convention. What exactly do you need help with?

Is there such thing as a if/and statement? I am in 8th grade science an I need to know for my lab report due tomorrow.HELP!!!!

Would have been better if more examples were given

If the purpose of your lab is “To obtain dissecting skills in an observational lab,” you can’t really formulate a testable hypothesis for that. I’ll assume you are doing some kind of pig or frog dissection. Often teachers give general outlines of skills that students are meant to ascertain from an experiment which aren’t necessarily what the actual experiment is directly testing. Obviously to do the dissection lab you need to obtain dissection skills but testing that would be rather subjective unless the teacher provided you with standards or operationally defined “dissecting skills”. If I were you, I would obviously mention it in the introduction of your lab but I am not sure if your teacher wants you to actually format it as a hypothesis; you can ask your teacher for clarification. If making a hypothesis from each purpose was some arbitrary exercise assigned to you then, it could look like this:

“If a student has successful acquired dissection skills, then they will be able to complete this observational lab with satisfactory competence because they utilized these newly acquired skills.”

For the “If, Then, Because” hypothesis…you pretty much have it. You would modify what you posted: “IF pigs and humans share the same nutritional behaviors, THEN their internal organs should look relatively the same BECAUSE of similar function and composure.” That is an example. For the “If, Then, Because” you should follow this guideline:

Thanks for this, it proved to be helpful. However, I do have a few questions. Obviously different teachers or instructors have their own requirements for their classes. How would you write an appropriate Question to follow each purpose in your lab report? For example: If the purpose was, “To obtain dissecting skills in an observational lab,” what question could you formulate with the purpose? (which is answered in the hypothesis)

And if a teacher requires the hypothesis to be in the format “If, Then, Because” how should this be written? I can actively complete the if and then, but I’m unsure how to incorporate the “because’ statement. For example, “If pigs and humans share the same nutritional behaviors, then their internal organs should function comparably and look relatively the same.” (how do i incorporate because?)

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Post comment

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Sweepstakes
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How to Write a Great Hypothesis

Hypothesis Definition, Format, Examples, and Tips

Verywell / Alex Dos Diaz

  • The Scientific Method

Hypothesis Format

Falsifiability of a hypothesis.

  • Operationalization

Hypothesis Types

Hypotheses examples.

  • Collecting Data

A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process.

Consider a study designed to examine the relationship between sleep deprivation and test performance. The hypothesis might be: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."

At a Glance

A hypothesis is crucial to scientific research because it offers a clear direction for what the researchers are looking to find. This allows them to design experiments to test their predictions and add to our scientific knowledge about the world. This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.

The Hypothesis in the Scientific Method

In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:

  • Forming a question
  • Performing background research
  • Creating a hypothesis
  • Designing an experiment
  • Collecting data
  • Analyzing the results
  • Drawing conclusions
  • Communicating the results

The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. At this point, researchers then begin to develop a testable hypothesis.

Unless you are creating an exploratory study, your hypothesis should always explain what you  expect  to happen.

In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.

Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore numerous factors to determine which ones might contribute to the ultimate outcome.

In many cases, researchers may find that the results of an experiment  do not  support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.

In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."

In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk adage that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."

Elements of a Good Hypothesis

So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:

  • Is your hypothesis based on your research on a topic?
  • Can your hypothesis be tested?
  • Does your hypothesis include independent and dependent variables?

Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the  journal articles you read . Many authors will suggest questions that still need to be explored.

How to Formulate a Good Hypothesis

To form a hypothesis, you should take these steps:

  • Collect as many observations about a topic or problem as you can.
  • Evaluate these observations and look for possible causes of the problem.
  • Create a list of possible explanations that you might want to explore.
  • After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.

In the scientific method ,  falsifiability is an important part of any valid hypothesis. In order to test a claim scientifically, it must be possible that the claim could be proven false.

Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that  if  something was false, then it is possible to demonstrate that it is false.

One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.

The Importance of Operational Definitions

A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.

Operational definitions are specific definitions for all relevant factors in a study. This process helps make vague or ambiguous concepts detailed and measurable.

For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.

These precise descriptions are important because many things can be measured in various ways. Clearly defining these variables and how they are measured helps ensure that other researchers can replicate your results.

Replicability

One of the basic principles of any type of scientific research is that the results must be replicable.

Replication means repeating an experiment in the same way to produce the same results. By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.

Some variables are more difficult than others to define. For example, how would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.

To measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming others. The researcher might utilize a simulated task to measure aggressiveness in this situation.

Hypothesis Checklist

  • Does your hypothesis focus on something that you can actually test?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate the variables?
  • Can your hypothesis be tested without violating ethical standards?

The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:

  • Simple hypothesis : This type of hypothesis suggests there is a relationship between one independent variable and one dependent variable.
  • Complex hypothesis : This type suggests a relationship between three or more variables, such as two independent and dependent variables.
  • Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
  • Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
  • Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative population sample and then generalizes the findings to the larger group.
  • Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.

A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the  dependent variable  if you change the  independent variable .

The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."

A few examples of simple hypotheses:

  • "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
  • "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."​
  • "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."
  • "Children who receive a new reading intervention will have higher reading scores than students who do not receive the intervention."

Examples of a complex hypothesis include:

  • "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
  • "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."

Examples of a null hypothesis include:

  • "There is no difference in anxiety levels between people who take St. John's wort supplements and those who do not."
  • "There is no difference in scores on a memory recall task between children and adults."
  • "There is no difference in aggression levels between children who play first-person shooter games and those who do not."

Examples of an alternative hypothesis:

  • "People who take St. John's wort supplements will have less anxiety than those who do not."
  • "Adults will perform better on a memory task than children."
  • "Children who play first-person shooter games will show higher levels of aggression than children who do not." 

Collecting Data on Your Hypothesis

Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.

Descriptive Research Methods

Descriptive research such as  case studies ,  naturalistic observations , and surveys are often used when  conducting an experiment is difficult or impossible. These methods are best used to describe different aspects of a behavior or psychological phenomenon.

Once a researcher has collected data using descriptive methods, a  correlational study  can examine how the variables are related. This research method might be used to investigate a hypothesis that is difficult to test experimentally.

Experimental Research Methods

Experimental methods  are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).

Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually  cause  another to change.

The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.

Thompson WH, Skau S. On the scope of scientific hypotheses .  R Soc Open Sci . 2023;10(8):230607. doi:10.1098/rsos.230607

Taran S, Adhikari NKJ, Fan E. Falsifiability in medicine: what clinicians can learn from Karl Popper [published correction appears in Intensive Care Med. 2021 Jun 17;:].  Intensive Care Med . 2021;47(9):1054-1056. doi:10.1007/s00134-021-06432-z

Eyler AA. Research Methods for Public Health . 1st ed. Springer Publishing Company; 2020. doi:10.1891/9780826182067.0004

Nosek BA, Errington TM. What is replication ?  PLoS Biol . 2020;18(3):e3000691. doi:10.1371/journal.pbio.3000691

Aggarwal R, Ranganathan P. Study designs: Part 2 - Descriptive studies .  Perspect Clin Res . 2019;10(1):34-36. doi:10.4103/picr.PICR_154_18

Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

How to Write a Good Hypothesis Using IF...THEN...BECAUSE...

Show preview image 1

  • PDF Frequently assigned in Easel

What educators are saying

Description.

This is a worksheet to use as an intro to writing a hypothesis (as opposed to just a prediction) using the If, then, because format. It give definitions of manipulated and responding variables, lists examples of three different hypotheses, and then gives five situations. In each situation, students need to identify both the manipulated and responding variable, and then create a hypothesis.

Answer key of possible responses is included.

Related to: Washington State Science Standards, EALR 2 Big Idea: Inquiry, 4-5 and 6-8 INQA and INQB

Questions & Answers

  • We're hiring
  • Help & FAQ
  • Privacy policy
  • Student privacy
  • Terms of service
  • Tell us what you think

IMAGES

  1. If Then Hypothesis Examples

    example of a hypothesis if then because

  2. PPT

    example of a hypothesis if then because

  3. How to write an If...Then...Because hypothesis statement

    example of a hypothesis if then because

  4. Properly writing a hypothesis with if and then

    example of a hypothesis if then because

  5. hypothesis with if and then

    example of a hypothesis if then because

  6. PPT

    example of a hypothesis if then because

COMMENTS

  1. PDF How to Write a Good Hypothesis Using "If… Then… Because…"

    Examples: If 7th graders and 8th graders complete the same math problems, then the 8th graders will have more answers correct, because they have studied math for one year longer than the 7th graders. If dry bread and moist bread are left in bags for two weeks, then the moist bread will grow mold more quickly than the dry bread, because mold is ...

  2. Hypothesis If Then

    The "If-Then" hypothesis is a predictive statement that sets up a cause-and-effect relationship between two variables. It's structured such that the "If" portion introduces a condition or a cause, and the "Then" portion predicts the effect or outcome of that condition. This format helps in clearly establishing a link between the ...

  3. PDF Writing an if, then, because statement Red = Independent variable Blue

    Hypothesis: If I increase the amount of fertilizer on grass plants, then the grass plants will grow taller, because the fertilizer will provide more nutrients which plants need to grow. Examples: If 7th graders and 8th graders complete the same math problems, then the 8th graders will have more answers correct, because they

  4. Hypothesis Examples

    Research Hypothesis Examples. A research hypothesis (H 1) is a type of hypothesis used to design an experiment. This type of hypothesis is often written as an if-then statement because it's easy identifying the independent and dependent variables and seeing how one affects the other. If-then statements explore cause and effect.

  5. Subject Guides: Scientific Method: Step 3: HYPOTHESIS

    The hypothesis is often written using the words "IF" and "THEN." For example, "If I do not study, then I will fail the test." The "if' and "then" statements reflect your independent and dependent variables. The hypothesis should relate back to your original question and must be testable.

  6. How to Write a Strong Hypothesis

    Developing a hypothesis (with example) Step 1. Ask a question. Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project. Example: Research question.

  7. How to Write a Hypothesis in 6 Steps, With Examples

    7 Statistical hypothesis. A statistical hypothesis is when you test only a sample of a population and then apply statistical evidence to the results to draw a conclusion about the entire population. Instead of testing everything, you test only a portion and generalize the rest based on preexisting data. Examples:

  8. How to Write a Hypothesis? Types and Examples

    Here are two hypothesis examples: Dandelions growing in nitrogen-rich soils for two weeks develop larger leaves than those in nitrogen-poor soils because nitrogen stimulates vegetative growth. 4 . If a company offers flexible work hours, then their employees will be happier at work. 5 . Table of Contents. What is a hypothesis? Types of hypotheses

  9. Developing a Hypothesis

    Hypothesis is a statement that correctly follows the format: "If _____ then _____ because _____ Hypothesis relates to the Testable Question. Hypothesis makes sense (based on observations and/or research) Hypothesis can be falsified. Hypothesis includes a cause and effect relationship. Hypothesis could be tested with measurements

  10. What Is a Hypothesis and How Do I Write One? · PrepScholar

    Merriam Webster defines a hypothesis as "an assumption or concession made for the sake of argument.". In other words, a hypothesis is an educated guess. Scientists make a reasonable assumption--or a hypothesis--then design an experiment to test whether it's true or not.

  11. What is a Research Hypothesis: How to Write it, Types, and Examples

    It seeks to explore and understand a particular aspect of the research subject. In contrast, a research hypothesis is a specific statement or prediction that suggests an expected relationship between variables. It is formulated based on existing knowledge or theories and guides the research design and data analysis. 7.

  12. What Is a Hypothesis? The Scientific Method

    In science, a hypothesis is part of the scientific method. It is a prediction or explanation that is tested by an experiment. Observations and experiments may disprove a scientific hypothesis, but can never entirely prove one. In the study of logic, a hypothesis is an if-then proposition, typically written in the form, "If X, then Y ."

  13. How To Write A Hypothesis That Will Benefit Your Thesis

    Here's a sample hypothesis: "If I add 15 minutes to my sitting time everyday, then my body mass index (BMI) will reduce by 5 points in three months." Now that you've defined your idea, it's time for the actual experiment to determine whether it'll work. How To Write A Hypothesis Statement: Example Of A Hypothesis. There are numerous ...

  14. DOC How to Write a Good Hypothesis Using "If… Then… Because…"

    Then use the variables to make a good hypothesis. Melissa raises crickets at her pet store that she sells for reptile food. She thinks that crickets chirp more often when the temperature gets warmer.

  15. What Are Effective Hypothesis Examples?

    Hypotheses Examples: If, Then. If you get at least 6 hours of sleep, you will do better on tests than if you get less sleep. If you drop a ball, it will fall toward the ground. If you drink coffee before going to bed, then it will take longer to fall asleep.

  16. Writing a Hypothesis for Your Science Fair Project

    A hypothesis is a tentative, testable answer to a scientific question. Once a scientist has a scientific question she is interested in, the scientist reads up to find out what is already known on the topic. Then she uses that information to form a tentative answer to her scientific question. Sometimes people refer to the tentative answer as "an ...

  17. What is a scientific hypothesis?

    A hypothesis is usually written in the form of an if-then statement, which gives a possibility (if) and explains what may happen because of the possibility (then).

  18. How to write a hypothesis

    The convention is to label this H 0, while the 'alternative hypothesis' (the one that says your variables are related as you suggested) is written as H 1. You can write you alternative hypothesis to show the directionality of your tested variables, or simply that there is a relationship. Most importantly, your hypothesis must come first ...

  19. How to Write Hypothesis for Lab Report

    For the " If, Then, Because " hypothesis…you would use: "IF pigs and humans share the same nutritional behaviors, THEN their internal organs should look relatively the same BECAUSE of similar function and composure." That is an example. For the "If, Then, Because" you should follow this guideline: IF X and Y both do or share this, THEN this should be found/confirmed, BECAUSE of ...

  20. 6.3: Introduction to Hypothesis Testing

    A P-value is the probability of observing a sample statistic that is at least as extreme as the one we observed, assuming the null hypothesis is true. If our sample proportion differs significantly from the assumed population proportion, then it likely did not occur just by chance. Step 4. State a Conclusion

  21. How to write an If...Then...Because hypothesis statement

    About Press Copyright Contact us Creators Advertise Developers Terms Privacy Policy & Safety How YouTube works Test new features NFL Sunday Ticket Press Copyright ...

  22. 2.11: If Then Statements

    The conclusion is the result of a hypothesis. Figure 2.11.1 2.11. 1. If-then statements might not always be written in the "if-then" form. Here are some examples of conditional statements: Statement 1: If you work overtime, then you'll be paid time-and-a-half. Statement 2: I'll wash the car if the weather is nice.

  23. Hypothesis: Definition, Examples, and Types

    A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process. Consider a study designed to examine the relationship between sleep deprivation and test ...

  24. How to Write a Good Hypothesis Using IF...THEN...BECAUSE

    This is a worksheet to use as an intro to writing a hypothesis (as opposed to just a prediction) using the If, then, because format. It give definitions of manipulated and responding variables, lists examples of three different hypotheses, and then gives five situations. In each situation, students need to identify both the manipulated and ...