Back Home

  • Science Notes Posts
  • Contact Science Notes
  • Todd Helmenstine Biography
  • Anne Helmenstine Biography
  • Free Printable Periodic Tables (PDF and PNG)
  • Periodic Table Wallpapers
  • Interactive Periodic Table
  • Periodic Table Posters
  • Science Experiments for Kids
  • How to Grow Crystals
  • Chemistry Projects
  • Fire and Flames Projects
  • Holiday Science
  • Chemistry Problems With Answers
  • Physics Problems
  • Unit Conversion Example Problems
  • Chemistry Worksheets
  • Biology Worksheets
  • Periodic Table Worksheets
  • Physical Science Worksheets
  • Science Lab Worksheets
  • My Amazon Books

What Is a Control Variable? Definition and Examples

A control variable is any factor that is controlled or held constant in an experiment.

A control variable is any factor that is controlled or held constant during an experiment . For this reason, it’s also known as a controlled variable or a constant variable. A single experiment may contain many control variables . Unlike the independent and dependent variables , control variables aren’t a part of the experiment, but they are important because they could affect the outcome. Take a look at the difference between a control variable and control group and see examples of control variables.

Importance of Control Variables

Remember, the independent variable is the one you change, the dependent variable is the one you measure in response to this change, and the control variables are any other factors you control or hold constant so that they can’t influence the experiment. Control variables are important because:

  • They make it easier to reproduce the experiment.
  • The increase confidence in the outcome of the experiment.

For example, if you conducted an experiment examining the effect of the color of light on plant growth, but you didn’t control temperature, it might affect the outcome. One light source might be hotter than the other, affecting plant growth. This could lead you to incorrectly accept or reject your hypothesis. As another example, say you did control the temperature. If you did not report this temperature in your “methods” section, another researcher might have trouble reproducing your results. What if you conducted your experiment at 15 °C. Would you expect the same results at 5 °C or 35 5 °C? Sometimes the potential effect of a control variable can lead to a new experiment!

Sometimes you think you have controlled everything except the independent variable, but still get strange results. This could be due to what is called a “ confounding variable .” Examples of confounding variables could be humidity, magnetism, and vibration. Sometimes you can identify a confounding variable and turn it into a control variable. Other times, confounding variables cannot be detected or controlled.

Control Variable vs Control Group

A control group is different from a control variable. You expose a control group to all the same conditions as the experimental group, except you change the independent variable in the experimental group. Both the control group and experimental group should have the same control variables.

Control Variable Examples

Anything you can measure or control that is not the independent variable or dependent variable has potential to be a control variable. Examples of common control variables include:

  • Duration of the experiment
  • Size and composition of containers
  • Temperature
  • Sample volume
  • Experimental technique
  • Chemical purity or manufacturer
  • Species (in biological experiments)

For example, consider an experiment testing whether a certain supplement affects cattle weight gain. The independent variable is the supplement, while the dependent variable is cattle weight. A typical control group would consist of cattle not given the supplement, while the cattle in the experimental group would receive the supplement. Examples of control variables in this experiment could include the age of the cattle, their breed, whether they are male or female, the amount of supplement, the way the supplement is administered, how often the supplement is administered, the type of feed given to the cattle, the temperature, the water supply, the time of year, and the method used to record weight. There may be other control variables, too. Sometimes you can’t actually control a control variable, but conditions should be the same for both the control and experimental groups. For example, if the cattle are free-range, weather might change from day to day, but both groups have the same experience. When you take data, be sure to record control variables along with the independent and dependent variable.

  • Box, George E.P.; Hunter, William G.; Hunter, J. Stuart (1978). Statistics for Experimenters : An Introduction to Design, Data Analysis, and Model Building . New York: Wiley. ISBN 978-0-471-09315-2.
  • Giri, Narayan C.; Das, M. N. (1979). Design and Analysis of Experiments . New York, N.Y: Wiley. ISBN 9780852269145.
  • Stigler, Stephen M. (November 1992). “A Historical View of Statistical Concepts in Psychology and Educational Research”. American Journal of Education . 101 (1): 60–70. doi: 10.1086/444032

Related Posts

logo

Home » experimental control important

What An Experimental Control Is And Why It’s So Important

' src=

Daniel Nelson

the primary rationale for controlling variables in an experiment

An experimental control is used in scientific experiments to minimize the effect of variables which are not the interest of the study. The control can be an object, population, or any other variable which a scientist would like to “control.”

You may have heard of experimental control, but what is it? Why is an experimental control important? The function of an experimental control is to hold constant the variables that an experimenter isn’t interested in measuring.

This helps scientists ensure that there have been no deviations in the environment of the experiment that could end up influencing the outcome of the experiment, besides the variable they are investigating. Let’s take a closer look at what this means.

You may have ended up here to understand why a control is important in an experiment. A control is important for an experiment because it allows the experiment to minimize the changes in all other variables except the one being tested.

To start with, it is important to define some terminology.

Terminology Of A Scientific Experiment

Randomization is important as it allows for more non-biased results in experiments. Random numbers generators are often used both in scientific studies as well as on 지노 사이트 to make outcomes fairer.

Scientists use the scientific method to ask questions and come to conclusions about the nature of the world. After making an observation about some sort of phenomena they would like to investigate, a scientist asks what the cause of that phenomena could be. The scientist creates a hypothesis, a proposed explanation that answers the question they asked. A hypothesis doesn’t need to be correct, it just has to be testable.

The hypothesis is a prediction about what will happen during the experiment, and if the hypothesis is correct then the results of the experiment should align with the scientist’s prediction. If the results of the experiment do not align with the hypothesis, then a good scientist will take this data into consideration and form a new hypothesis that can better explain the phenomenon in question.

Independent and Dependent Variables

In order to form an effective hypothesis and do meaningful research, the researcher must define the experiment’s independent and dependent variables . The independent variable is the variable which the experimenter either manipulates or controls in an experiment to test the effects of this manipulation on the dependent variable. A dependent variable is a variable being measured to see if the manipulation has any effect.

the primary rationale for controlling variables in an experiment

Photo: frolicsomepl via Pixabay, CC0

For instance, if a researcher wanted to see how temperature impacts the behavior of a certain gas, the temperature they adjust would be the independent variable and the behavior of the gas the dependent variable.

Control Groups and Experimental Groups

There will frequently be two groups under observation in an experiment, the experimental group, and the control group . The control group is used to establish a baseline that the behavior of the experimental group can be compared to. If two groups of people were receiving an experimental treatment for a medical condition, one would be given the actual treatment (the experimental group) and one would typically be given a placebo or sugar pill (the control group).

Without an experimental control group, it is difficult to determine the effects of the independent variable on the dependent variable in an experiment. This is because there can always be outside factors that are influencing the behavior of the experimental group. The function of a control group is to act as a point of comparison, by attempting to ensure that the variable under examination (the impact of the medicine) is the thing responsible for creating the results of an experiment. The control group is holding other possible variables constant, such as the act of seeing a doctor and taking a pill, so only the medicine itself is being tested.

Why Are Experimental Controls So Important?

Experimental controls allow scientists to eliminate varying amounts of uncertainty in their experiments. Whenever a researcher does an experiment and wants to ensure that only the variable they are interested in changing is changing, they need to utilize experimental controls.

Experimental controls have been dubbed “controls” precisely because they allow researchers to control the variables they think might have an impact on the results of the study. If a researcher believes that some outside variables could influence the results of their research, they’ll use a control group to try and hold that thing constant and measure any possible influence it has on the results. It is important to note that there may be many different controls for an experiment, and the more complex a phenomenon under investigation is, the more controls it is likely to have.

Not only do controls establish a baseline that the results of an experiment can be compared to, they also allow researchers to correct for possible errors. If something goes wrong in the experiment, a scientist can check on the controls of the experiment to see if the error had to do with the controls. If so, they can correct this next time the experiment is done.

A Practical Example

Let’s take a look at a concrete example of experimental control. If an experimenter wanted to determine how different soil types impacted the germination period of seeds , they could set up four different pots. Each pot would be filled with a different soil type, planted with seeds, then watered and exposed to sunlight. Measurements would be taken regarding how long it took for the seeds to sprout in the different soil types.

the primary rationale for controlling variables in an experiment

Photo: Kaz via Pixabay, CC0

A control for this experiment might be to fill more pots with just the different types of soil and no seeds or to set aside some seeds in a pot with no soil. The goal is to try and determine that it isn’t something else other than the soil, like the nature of the seeds themselves, the amount of sun they were exposed to, or how much water they are given, that affected how quickly the seeds sprouted. The more variables a researcher controlled for, the surer they could be that it was the type of soil having an impact on the germination period.

  Not All Experiments Are Controlled

“It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you are. If it doesn’t agree with experiment, it’s wrong.” — Richard P. Feynman

While experimental controls are important , it is also important to remember that not all experiments are controlled. In the real world, there are going to be limitations on what variables a researcher can control for, and scientists often try to record as much data as they can during an experiment so they can compare factors and variables with one another to see if any variables they didn’t control for might have influenced the outcome. It’s still possible to draw useful data from experiments that don’t have controls, but it is much more difficult to draw meaningful conclusions based on uncontrolled data.

Though it is often impossible in the real world to control for every possible variable, experimental controls are an invaluable part of the scientific process and the more controls an experiment has the better off it is.

← Previous post

Next post →

Related Posts

the primary rationale for controlling variables in an experiment

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • What Are Control Variables | Definition & Examples

What Are Control Variables? | Definition & Examples

Published on 4 May 2022 by Pritha Bhandari . Revised on 16 June 2023.

A control variable is anything that is held constant or limited in a research study. It’s a variable that is not of interest to the study’s aims but is controlled because it could influence the outcomes.

Variables may be controlled directly by holding them constant throughout a study (e.g., by controlling the room temperature in an experiment), or they may be controlled indirectly through methods like randomisation or statistical control (e.g., to account for participant characteristics like age in statistical tests).

Control variables

Table of contents

Why do control variables matter, how do you control a variable, control variable vs control group, frequently asked questions about control variables.

Control variables enhance the internal validity of a study by limiting the influence of confounding and other extraneous variables . This helps you establish a correlational or causal relationship between your variables of interest.

Aside from the independent and dependent variables , all variables that can impact the results should be controlled. If you don’t control relevant variables, you may not be able to demonstrate that they didn’t influence your results. Uncontrolled variables are alternative explanations for your results.

Control variables in experiments

In an experiment , a researcher is interested in understanding the effect of an independent variable on a dependent variable. Control variables help you ensure that your results are solely caused by your experimental manipulation.

The independent variable is whether the vitamin D supplement is added to a diet, and the dependent variable is the level of alertness.

To make sure any change in alertness is caused by the vitamin D supplement and not by other factors, you control these variables that might affect alertness:

  • Timing of meals
  • Caffeine intake
  • Screen time

Control variables in non-experimental research

In an observational study or other types of non-experimental research, a researcher can’t manipulate the independent variable (often due to practical or ethical considerations ). Instead, control variables are measured and taken into account to infer relationships between the main variables of interest.

To account for other factors that are likely to influence the results, you also measure these control variables:

  • Marital status

Prevent plagiarism, run a free check.

There are several ways to control extraneous variables in experimental designs, and some of these can also be used in observational or quasi-experimental designs.

Random assignment

In experimental studies with multiple groups, participants should be randomly assigned to the different conditions. Random assignment helps you balance the characteristics of groups so that there are no systematic differences between them.

This method of assignment controls participant variables that might otherwise differ between groups and skew your results.

It’s possible that the participants who found the study through Facebook have more screen time during the day, and this might influence how alert they are in your study.

Standardised procedures

It’s important to use the same procedures across all groups in an experiment. The groups should only differ in the independent variable manipulation so that you can isolate its effect on the dependent variable (the results).

To control variables, you can hold them constant at a fixed level using a protocol that you design and use for all participant sessions. For example, the instructions and time spent on an experimental task should be the same for all participants in a laboratory setting.

  • To control for diet, fresh and frozen meals are delivered to participants three times a day.
  • To control meal timings, participants are instructed to eat breakfast at 9:30, lunch at 13:00, and dinner at 18:30.
  • To control caffeine intake, participants are asked to consume a maximum of one cup of coffee a day.

Statistical controls

You can measure and control for extraneous variables statistically to remove their effects on other variables.

“Controlling for a variable” means modelling control variable data along with independent and dependent variable data in regression analyses and ANCOVAs . That way, you can isolate the control variable’s effects from the relationship between the variables of interest.

A control variable isn’t the same as a control group . Control variables are held constant or measured throughout a study for both control and experimental groups, while an independent variable varies between control and experimental groups.

A control group doesn’t undergo the experimental treatment of interest, and its outcomes are compared with those of the experimental group. A control group usually has either no treatment, a standard treatment that’s already widely used, or a placebo (a fake treatment).

Aside from the experimental treatment, everything else in an experimental procedure should be the same between an experimental and control group.

A control variable is any variable that’s held constant in a research study. It’s not a variable of interest in the study, but it’s controlled because it could influence the outcomes.

Control variables help you establish a correlational or causal relationship between variables by enhancing internal validity .

If you don’t control relevant extraneous variables , they may influence the outcomes of your study, and you may not be able to demonstrate that your results are really an effect of your independent variable .

‘Controlling for a variable’ means measuring extraneous variables and accounting for them statistically to remove their effects on other variables.

Researchers often model control variable data along with independent and dependent variable data in regression analyses and ANCOVAs . That way, you can isolate the control variable’s effects from the relationship between the variables of interest.

Internal validity is the extent to which you can be confident that a cause-and-effect relationship established in a study cannot be explained by other factors.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Bhandari, P. (2023, June 16). What Are Control Variables? | Definition & Examples. Scribbr. Retrieved 2 December 2024, from https://www.scribbr.co.uk/research-methods/control-variables/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, types of variables in research | definitions & examples, controlled experiments | methods & examples of control, a quick guide to experimental design | 5 steps & examples.

IMAGES

  1. What Is a Control Variable? Definition and Examples

    the primary rationale for controlling variables in an experiment

  2. PPT

    the primary rationale for controlling variables in an experiment

  3. PPT

    the primary rationale for controlling variables in an experiment

  4. PPT

    the primary rationale for controlling variables in an experiment

  5. PPT

    the primary rationale for controlling variables in an experiment

  6. Controlled Experiment

    the primary rationale for controlling variables in an experiment

COMMENTS

  1. ch 1 BIO 1406 Flashcards

    Which of the following reasons is the primary rationale for controlling variables in an experiment? A. To eliminate alternative explanations for the results of an experiment B. To enable investigators to repeat the test C. To create a control group, Which of the following statements could not be supported or rejected by a scientific experiment? A.

  2. MB-CH 1 HW Flashcards

    Which of the following reasons is the primary rationale for controlling variables in an experiment? and more. Study with Quizlet and memorize flashcards containing terms like Pasteur's experiment provided conclusive evidence to reject the spontaneous generation hypothesis, which states that cells arise from nonliving material.

  3. Masteringbio chapter 1 study Flashcards

    In an experiment, investigators try to control all of the variables except one—the one that tests the hypothesis. Which of the following reasons is the primary rationale for controlling variables in an experiment? a. To eliminate alternative explanations for the results of an experiment b. To enable investigators to repeat the test c. To ...

  4. Control Variables

    Variables may be controlled directly by holding them constant throughout a study (e.g., by controlling the room temperature in an experiment), or they may be controlled indirectly through methods like randomization or statistical control (e.g., to account for participant characteristics like age in statistical tests).

  5. What Is a Control Variable? Definition and Examples

    A single experiment may contain many control variables. Unlike the independent and dependent variables, control variables aren't a part of the experiment, but they are important because they could affect the outcome. Take a look at the difference between a control variable and control group and see examples of control variables.

  6. Understanding dependent, independent, and control variables in

    Dependent variables are the core of the experiment, providing tangible results and data for analysis. The significance of control variables. Control variables, sometimes referred to as "constant variables," are the unsung heroes of scientific research. They remain unaltered throughout the experiment, serving to maintain consistency.

  7. What Is a Controlled Experiment?

    In a controlled experiment, all variables other than the independent variable are controlled or held constant so they don't influence the dependent variable. Controlling variables can involve: holding variables at a constant or restricted level (e.g., keeping room temperature fixed). measuring variables to statistically control for them in ...

  8. What An Experimental Control Is And Why It's So Important

    The function of an experimental control is to hold constant the variables that an experimenter isn't interested in measuring. This helps scientists ensure that there have been no deviations in the environment of the experiment that could end up influencing the outcome of the experiment, besides the variable they are investigating.

  9. Controlled Experiments

    In a controlled experiment, all variables other than the independent variable are controlled or held constant so they don't influence the dependent variable. Controlling variables can involve: Holding variables at a constant or restricted level (e.g., keeping room temperature fixed) Measuring variables to statistically control for them in ...

  10. What Are Control Variables?

    Variables may be controlled directly by holding them constant throughout a study (e.g., by controlling the room temperature in an experiment), or they may be controlled indirectly through methods like randomisation or statistical control (e.g., to account for participant characteristics like age in statistical tests).