Study Mind logo

Personalised lessons and regular feedback to ensure you ace your exams! Book a free consultation today

100+ Video Tutorials, Flashcards and Weekly Seminars

Gain hands-on experience of how physics is used in different fields. Experience life as a uni student and boost your university application with our summer programme!

  • Revision notes >
  • A-Level Biology Revision Notes >
  • CIE A-level Biology Revision Notes

Experiments to Show Phototropism (A-level Biology)

Experiments to show phototropism, investigating plant responses, phototropism experiment.

We can investigate phototropism in plants using the following method. This will allow us to see the response of plants to light.

Table of Contents

  • Use 9 plant shoots. Plant all the shoots in individual plant pots, with the same soil type in each pot. Ensure that all the shoots are roughly the same height.
  • Wrap some of the shoots in foil. Now, wrap the tips of 3 shoots in foil. For another 3 shoots, wrap the base of the shoots in foil. Leave the final 3 shoots without foil.
  • Place the shoots under a light source. Place all 9 shoots under a light source for 2 days. Ensure that the shoots are equally exposed to the light source. Control the temperature and moisture over the course of the experiment.
  • Interpret the results after 2 days. After the shoots have been exposed to the light source for 2 days, interpret the results. The shoots with covered tips will not grow towards the light source, but the other 6 shoots will.
  • Record the amount of growth. To get accurate, quantitative results, you can measure the growth of each shoot and write down the direction of growth.

Phototropism is the growth response of a plant towards or away from light.

There are several experiments that can be done to demonstrate phototropism in plants, including: The experiment with potted plants, where a plant is grown in a pot and then covered on one side with a black paper. The plant will grow towards the light source The experiment with grass seedlings, where grass seedlings are grown in a tray and exposed to light from one side. The seedlings will grow towards the light source The experiment with Avena seedlings, where Avena seedlings are grown in a test tube and exposed to light from one side. The seedlings will bend towards the light source The experiment with coleoptiles, which are the protective sheaths surrounding grass shoots. Coleoptiles are placed in a darkened room and exposed to light from one side. The coleoptiles will bend towards the light source

Phototropism works in plants through the unequal distribution of auxin, a hormone responsible for promoting growth in plants. When light is shone on one side of the plant, it stimulates the cells on that side to produce more auxin. This causes the cells on that side to grow faster, bending the plant in the direction of the light.

The knowledge of phototropism has practical implications for agriculture and horticulture, as it can be used to increase crop yields and improve the growth of ornamental plants. By manipulating the light exposure of plants, farmers and horticulturists can encourage the growth of plants in a desired direction, leading to more efficient use of space and resources.

The study of phototropism is important for future careers in Biology because it provides a fundamental understanding of plant growth and development. This knowledge is essential for careers in areas such as botany, plant sciences, agriculture, horticulture, and other related fields, where an understanding of plant growth is crucial.

The study of phototropism is approached in A-level Biology through a combination of theoretical and practical work. Students learn about the mechanisms of phototropism, the role of hormones in plant growth, and the factors that affect the direction of growth. They also conduct practical experiments to demonstrate phototropism in plants and gain hands-on experience in plant growth and development.

Some of the factors that can affect the direction of phototropism in plants include: The intensity of the light The duration of the light exposure The wavelength of the light The age of the plant The species of the plant

Phototropism can be used to grow plants in space as it provides a way to orient the plants towards a light source, even in a low-gravity environment. This can be important for growing food crops or for conducting experiments on plant growth in space.

Still got a question? Leave a comment

Leave a comment, cancel reply.

Save my name, email, and website in this browser for the next time I comment.

CIE 1 Cell structure

Roles of atp (a-level biology), atp as an energy source (a-level biology), the synthesis and hydrolysis of atp (a-level biology), the structure of atp (a-level biology), magnification and resolution (a-level biology), calculating cell size (a-level biology), studying cells: confocal microscopes (a-level biology), studying cells: electron microscopes (a-level biology), studying cells: light microscopes (a-level biology), life cycle and replication of viruses (a-level biology), cie 10 infectious disease, bacteria, antibiotics, and other medicines (a-level biology), pathogens and infectious diseases (a-level biology), cie 11 immunity, types of immunity and vaccinations (a-level biology), structure and function of antibodies (a-level biology), the adaptive immune response (a-level biology), introduction to the immune system (a-level biology), primary defences against pathogens (a-level biology), cie 12 energy and respiration, anaerobic respiration in mammals, plants and fungi (a-level biology), anaerobic respiration (a-level biology), oxidative phosphorylation and chemiosmosis (a-level biology), oxidative phosphorylation and the electron transport chain (a-level biology), the krebs cycle (a-level biology), the link reaction (a-level biology), the stages and products of glycolysis (a-level biology), glycolysis (a-level biology), the structure of mitochondria (a-level biology), the need for cellular respiration (a-level biology), cie 13 photosynthesis, limiting factors of photosynthesis (a-level biology), cyclic and non-cyclic phosphorylation (a-level biology), the 2 stages of photosynthesis (a-level biology), photosystems and photosynthetic pigments (a-level biology), site of photosynthesis, overview of photosynthesis (a-level biology), cie 14 homeostasis, ectotherms and endotherms (a-level biology), thermoregulation (a-level biology), plant responses to changes in the environment (a-level biology), cie 15 control and co-ordination, the nervous system (a-level biology), sources of atp during contraction (a-level biology), the ultrastructure of the sarcomere during contraction (a-level biology), the role of troponin and tropomyosin (a-level biology), the structure of myofibrils (a-level biology), slow and fast twitch muscles (a-level biology), the structure of mammalian muscles (a-level biology), how muscles allow movement (a-level biology), the neuromuscular junction (a-level biology), features of synapses (a-level biology), cie 16 inherited change, calculating genetic diversity (a-level biology), how meiosis produces variation (a-level biology), cell division by meiosis (a-level biology), importance of meiosis (a-level biology), cie 17 selection and evolution, types of selection (a-level biology), mechanism of natural selection (a-level biology), types of variation (a-level biology), cie 18 biodiversity, classification and conservation, biodiversity and gene technology (a-level biology), factors affecting biodiversity (a-level biology), biodiversity calculations (a-level biology), introducing biodiversity (a-level biology), the three domain system (a-level biology), phylogeny and classification (a-level biology), classifying organisms (a-level biology), cie 19 genetic technology, cie 2 biological molecules, properties of water (a-level biology), structure of water (a-level biology), test for lipids and proteins (a-level biology), tests for carbohydrates (a-level biology), protein structures: globular and fibrous proteins (a-level biology), protein structures: tertiary and quaternary structures (a-level biology), protein structures: primary and secondary structures (a-level biology), protein formation (a-level biology), proteins and amino acids: an introduction (a-level biology), phospholipid bilayer (a-level biology), cie 3 enzymes, enzymes: inhibitors (a-level biology), enzymes: rates of reaction (a-level biology), enzymes: intracellular and extracellular forms (a-level biology), enzymes: mechanism of action (a-level biology), enzymes: key concepts (a-level biology), enzymes: introduction (a-level biology), cie 4 cell membranes and transport, transport across membranes: active transport (a-level biology), investigating transport across membranes (a-level biology), transport across membranes: osmosis (a-level biology), transport across membranes: diffusion (a-level biology), signalling across cell membranes (a-level biology), function of cell membrane (a-level biology), factors affecting cell membrane structure (a-level biology), structure of cell membranes (a-level biology), cie 5 the mitotic cell cycle, chromosome mutations (a-level biology), cell division: checkpoints and mutations (a-level biology), cell division: phases of mitosis (a-level biology), cell division: the cell cycle (a-level biology), cell division: chromosomes (a-level biology), cie 6 nucleic acids and protein synthesis, transfer rna (a-level biology), transcription (a-level biology), messenger rna (a-level biology), introducing the genetic code (a-level biology), genes and protein synthesis (a-level biology), synthesising proteins from dna (a-level biology), structure of rna (a-level biology), dna replication (a-level biology), dna structure and the double helix (a-level biology), polynucleotides (a-level biology), cie 7 transport in plants, translocation and evidence of the mass flow hypothesis (a-level biology), the phloem (a-level biology), importance of and evidence for transpiration (a-level biology), introduction to transpiration (a-level biology), the pathway and movement of water into the roots and xylem (a-level biology), the xylem (a-level biology), cie 8 transport in mammals, controlling heart rate (a-level biology), structure of the heart (a-level biology), transport of carbon dioxide (a-level biology), transport of oxygen (a-level biology), exchange in capillaries (a-level biology), structure and function of blood vessels (a-level biology), cie 9 gas exchange and smoking, lung disease (a-level biology), pulmonary ventilation rate (a-level biology), ventilation (a-level biology), structure of the lungs (a-level biology), general features of exchange surfaces (a-level biology), understanding surface area to volume ratio (a-level biology), the need for exchange surfaces (a-level biology), edexcel a 1: lifestyle, health and risk, phospholipids – introduction (a-level biology), edexcel a 2: genes and health, features of the genetic code (a-level biology), gas exchange in plants (a-level biology), gas exchange in insects (a-level biology), edexcel a 3: voice of the genome, edexcel a 4: biodiversity and natural resources, edexcel a 5: on the wild side, reducing biomass loss (a-level biology), sources of biomass loss (a-level biology), transfer of biomass (a-level biology), measuring biomass (a-level biology), net primary production (a-level biology), gross primary production (a-level biology), trophic levels (a-level biology), edexcel a 6: immunity, infection & forensics, microbial techniques (a-level biology), the innate immune response (a-level biology), edexcel a 7: run for your life, edexcel a 8: grey matter, inhibitory synapses (a-level biology), synaptic transmission (a-level biology), the structure of the synapse (a-level biology), factors affecting the speed of transmission (a-level biology), myelination (a-level biology), the refractory period (a-level biology), all or nothing principle (a-level biology), edexcel b 1: biological molecules, inorganic ions (a-level biology), edexcel b 10: ecosystems, nitrogen cycle: nitrification and denitrification (a-level biology), the phosphorus cycle (a-level biology), nitrogen cycle: fixation and ammonification (a-level biology), introduction to nutrient cycles (a-level biology), edexcel b 2: cells, viruses, reproduction, edexcel b 3: classification & biodiversity, edexcel b 4: exchange and transport, edexcel b 5: energy for biological processes, edexcel b 6: microbiology and pathogens, edexcel b 7: modern genetics, edexcel b 8: origins of genetic variation, edexcel b 9: control systems, ocr 2.1.1 cell structure, structure of prokaryotic cells (a-level biology), eukaryotic cells: comparing plant and animal cells (a-level biology), eukaryotic cells: plant cell organelles (a-level biology), eukaryotic cells: the endoplasmic reticulum (a-level biology), eukaryotic cells: the golgi apparatus and lysosomes (a-level biology), ocr 2.1.2 biological molecules, introduction to eukaryotic cells and organelles (a-level biology), ocr 2.1.3 nucleotides and nucleic acids, ocr 2.1.4 enzymes, ocr 2.1.5 biological membranes, ocr 2.1.6 cell division, diversity & organisation, ocr 3.1.1 exchange surfaces, ocr 3.1.2 transport in animals, ocr 3.1.3 transport in plants, examples of xerophytes (a-level biology), introduction to xerophytes (a-level biology), ocr 4.1.1 communicable diseases, structure of viruses (a-level biology), ocr 4.2.1 biodiversity, ocr 4.2.2 classification and evolution, ocr 5.1.1 communication and homeostasis, the resting potential (a-level biology), ocr 5.1.2 excretion, ocr 5.1.3 neuronal communication, hyperpolarisation and transmission of the action potential (a-level biology), depolarisation and repolarisation in the action potential (a-level biology), ocr 5.1.4 hormonal communication, ocr 5.1.5 plant and animal responses, ocr 5.2.1 photosynthesis, ocr 5.2.2 respiration, ocr 6.1.1 cellular control, ocr 6.1.2 patterns of inheritance, ocr 6.1.3 manipulating genomes, ocr 6.2.1 cloning and biotechnology, ocr 6.3.1 ecosystems, ocr 6.3.2 populations and sustainability, related links.

  • A-Level Biology Past Papers

Boost your A-Level Biology Performance

Get a 9 in A-Level Biology with our Trusted 1-1 Tutors. Enquire now.

100+ Video Tutorials, Flashcards and Weekly Seminars. 100% Money Back Guarantee

Gain hands-on experience of how physics is used in different fields. Boost your university application with our summer programme!

Learn live with other students and gain expert tips and advice to boost your score.

Let's get acquainted ? What is your name?

Nice to meet you, {{name}} what is your preferred e-mail address, nice to meet you, {{name}} what is your preferred phone number, what is your preferred phone number, just to check, what are you interested in, when should we call you.

It would be great to have a 15m chat to discuss a personalised plan and answer any questions

What time works best for you? (UK Time)

Pick a time-slot that works best for you ?

How many hours of 1-1 tutoring are you looking for?

My whatsapp number is..., for our safeguarding policy, please confirm....

Please provide the mobile number of a guardian/parent

Which online course are you interested in?

What is your query, you can apply for a bursary by clicking this link, sure, what is your query, thank you for your response. we will aim to get back to you within 12-24 hours., lock in a 2 hour 1-1 tutoring lesson now.

If you're ready and keen to get started click the button below to book your first 2 hour 1-1 tutoring lesson with us. Connect with a tutor from a university of your choice in minutes. (Use FAST5 to get 5% Off!)