Independent Variable Definition and Examples

Understand the Independent Variable in an Experiment

  • Chemical Laws
  • Periodic Table
  • Projects & Experiments
  • Scientific Method
  • Biochemistry
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

The two main variables in a science experiment are the independent variable and the dependent variable . Here's the definition on independent variable and a look at how it's used:

Key Takeaways: Independent Variable

  • The independent variable is the factor that you purposely change or control in order to see what effect it has.
  • The variable that responds to the change in the independent variable is called the dependent variable. It depends on the independent variable.
  • The independent variable is graphed on the x-axis.

Independent Variable Definition

An independent variable is defines as the variable that is changed or controlled in a scientific experiment. It represents the cause or reason for an outcome. Independent variables are the variables that the experimenter changes to test their dependent variable . A change in the independent variable directly causes a change in the dependent variable. The effect on the dependent variable is measured and recorded.

Common Misspellings: independant variable

Independent Variable Examples

  • A scientist is testing the effect of light and dark on the behavior of moths by turning a light on and off. The independent variable is the amount of light and the moth's reaction is the dependent variable .
  • In a study to determine the effect of temperature on plant pigmentation, the independent variable (cause) is the temperature, while the amount of pigment or color is the dependent variable (the effect).

Graphing the Independent Variable

When graphing data for an experiment, the independent variable is plotted on the x-axis, while the dependent variable is recorded on the y-axis. An easy way to keep the two variables straight is to use the acronym DRY MIX , which stands for:

  • Dependent variable that Responds to change goes on the Y axis
  • Manipulated or Independent variable goes on the X axis

Practice Identifying the Independent Variable

Students are often asked to identify the independent and dependent variable in an experiment. The difficulty is that the value of both of these variables can change. It's even possible for the dependent variable to remain unchanged in response to controlling the independent variable.

Example : You're asked to identify the independent and dependent variable in an experiment looking to see if there is a relationship between hours of sleep and student test scores.

There are two ways to identify the independent variable. The first is to write the hypothesis and see if it makes sense:

  • Student test scores have no effect on the number of hours the students sleeps.
  • The number of hours students sleep have no effect on their test scores.

Only one of these statements makes sense. This type of hypothesis is constructed to state the independent variable followed by the predicted impact on the dependent variable. So, the number of hours of sleep is the independent variable.

The other way to identify the independent variable is more intuitive. Remember, the independent variable is the one the experimenter controls to measures its effect on the dependent variable. A researcher can control the number of hours a student sleeps. On the other hand, the scientist has no control on the students' test scores.

The independent variable always changes in an experiment, even if there is just a control and an experimental group. The dependent variable may or may not change in response to the independent variable. In the example regarding sleep and student test scores, it's possible the data might show no change in test scores, no matter how much sleep students get (although this outcome seems unlikely). The point is that a researcher knows the values of the independent variable. The value of the dependent variable is measured .

  • Babbie, Earl R. (2009). The Practice of Social Research (12th ed.). Wadsworth Publishing. ISBN 0-495-59841-0.
  • Dodge, Y. (2003). The Oxford Dictionary of Statistical Terms . OUP. ISBN 0-19-920613-9.
  • Everitt, B. S. (2002). The Cambridge Dictionary of Statistics (2nd ed.). Cambridge UP. ISBN 0-521-81099-X.
  • Gujarati, Damodar N.; Porter, Dawn C. (2009). "Terminology and Notation". Basic Econometrics (5th international ed.). New York: McGraw-Hill. p. 21. ISBN 978-007-127625-2.
  • Shadish, William R.; Cook, Thomas D.; Campbell, Donald T. (2002). Experimental and quasi-experimental designs for generalized causal inference . (Nachdr. ed.). Boston: Houghton Mifflin. ISBN 0-395-61556-9.
  • Examples of Independent and Dependent Variables
  • Difference Between Independent and Dependent Variables
  • Null Hypothesis Examples
  • Popular Math Terms and Definitions
  • Dependent Variable Definition and Examples
  • What Is a Dependent Variable?
  • Scientific Variable
  • What Is an Experiment? Definition and Design
  • What Is a Hypothesis? (Science)
  • Scientific Method Vocabulary Terms
  • The Differences Between Explanatory and Response Variables
  • Scientific Method Flow Chart
  • DRY MIX Experiment Variables Acronym
  • What Are the Elements of a Good Hypothesis?
  • What Is a Variable in Science?
  • Understanding Experimental Groups

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Independent vs. Dependent Variables | Definition & Examples

Independent vs. Dependent Variables | Definition & Examples

Published on February 3, 2022 by Pritha Bhandari . Revised on June 22, 2023.

In research, variables are any characteristics that can take on different values, such as height, age, temperature, or test scores.

Researchers often manipulate or measure independent and dependent variables in studies to test cause-and-effect relationships.

  • The independent variable is the cause. Its value is independent of other variables in your study.
  • The dependent variable is the effect. Its value depends on changes in the independent variable.

Your independent variable is the temperature of the room. You vary the room temperature by making it cooler for half the participants, and warmer for the other half.

Table of contents

What is an independent variable, types of independent variables, what is a dependent variable, identifying independent vs. dependent variables, independent and dependent variables in research, visualizing independent and dependent variables, other interesting articles, frequently asked questions about independent and dependent variables.

An independent variable is the variable you manipulate or vary in an experimental study to explore its effects. It’s called “independent” because it’s not influenced by any other variables in the study.

Independent variables are also called:

  • Explanatory variables (they explain an event or outcome)
  • Predictor variables (they can be used to predict the value of a dependent variable)
  • Right-hand-side variables (they appear on the right-hand side of a regression equation).

These terms are especially used in statistics , where you estimate the extent to which an independent variable change can explain or predict changes in the dependent variable.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

an experiment the independent variable is always

There are two main types of independent variables.

  • Experimental independent variables can be directly manipulated by researchers.
  • Subject variables cannot be manipulated by researchers, but they can be used to group research subjects categorically.

Experimental variables

In experiments, you manipulate independent variables directly to see how they affect your dependent variable. The independent variable is usually applied at different levels to see how the outcomes differ.

You can apply just two levels in order to find out if an independent variable has an effect at all.

You can also apply multiple levels to find out how the independent variable affects the dependent variable.

You have three independent variable levels, and each group gets a different level of treatment.

You randomly assign your patients to one of the three groups:

  • A low-dose experimental group
  • A high-dose experimental group
  • A placebo group (to research a possible placebo effect )

Independent and dependent variables

A true experiment requires you to randomly assign different levels of an independent variable to your participants.

Random assignment helps you control participant characteristics, so that they don’t affect your experimental results. This helps you to have confidence that your dependent variable results come solely from the independent variable manipulation.

Subject variables

Subject variables are characteristics that vary across participants, and they can’t be manipulated by researchers. For example, gender identity, ethnicity, race, income, and education are all important subject variables that social researchers treat as independent variables.

It’s not possible to randomly assign these to participants, since these are characteristics of already existing groups. Instead, you can create a research design where you compare the outcomes of groups of participants with characteristics. This is a quasi-experimental design because there’s no random assignment. Note that any research methods that use non-random assignment are at risk for research biases like selection bias and sampling bias .

Your independent variable is a subject variable, namely the gender identity of the participants. You have three groups: men, women and other.

Your dependent variable is the brain activity response to hearing infant cries. You record brain activity with fMRI scans when participants hear infant cries without their awareness.

A dependent variable is the variable that changes as a result of the independent variable manipulation. It’s the outcome you’re interested in measuring, and it “depends” on your independent variable.

In statistics , dependent variables are also called:

  • Response variables (they respond to a change in another variable)
  • Outcome variables (they represent the outcome you want to measure)
  • Left-hand-side variables (they appear on the left-hand side of a regression equation)

The dependent variable is what you record after you’ve manipulated the independent variable. You use this measurement data to check whether and to what extent your independent variable influences the dependent variable by conducting statistical analyses.

Based on your findings, you can estimate the degree to which your independent variable variation drives changes in your dependent variable. You can also predict how much your dependent variable will change as a result of variation in the independent variable.

Distinguishing between independent and dependent variables can be tricky when designing a complex study or reading an academic research paper .

A dependent variable from one study can be the independent variable in another study, so it’s important to pay attention to research design .

Here are some tips for identifying each variable type.

Recognizing independent variables

Use this list of questions to check whether you’re dealing with an independent variable:

  • Is the variable manipulated, controlled, or used as a subject grouping method by the researcher?
  • Does this variable come before the other variable in time?
  • Is the researcher trying to understand whether or how this variable affects another variable?

Recognizing dependent variables

Check whether you’re dealing with a dependent variable:

  • Is this variable measured as an outcome of the study?
  • Is this variable dependent on another variable in the study?
  • Does this variable get measured only after other variables are altered?

Independent and dependent variables are generally used in experimental and quasi-experimental research.

Here are some examples of research questions and corresponding independent and dependent variables.

Research question Independent variable Dependent variable(s)
Do tomatoes grow fastest under fluorescent, incandescent, or natural light?
What is the effect of intermittent fasting on blood sugar levels?
Is medical marijuana effective for pain reduction in people with chronic pain?
To what extent does remote working increase job satisfaction?

For experimental data, you analyze your results by generating descriptive statistics and visualizing your findings. Then, you select an appropriate statistical test to test your hypothesis .

The type of test is determined by:

  • your variable types
  • level of measurement
  • number of independent variable levels.

You’ll often use t tests or ANOVAs to analyze your data and answer your research questions.

In quantitative research , it’s good practice to use charts or graphs to visualize the results of studies. Generally, the independent variable goes on the x -axis (horizontal) and the dependent variable on the y -axis (vertical).

The type of visualization you use depends on the variable types in your research questions:

  • A bar chart is ideal when you have a categorical independent variable.
  • A scatter plot or line graph is best when your independent and dependent variables are both quantitative.

To inspect your data, you place your independent variable of treatment level on the x -axis and the dependent variable of blood pressure on the y -axis.

You plot bars for each treatment group before and after the treatment to show the difference in blood pressure.

independent and dependent variables

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Degrees of freedom
  • Null hypothesis
  • Discourse analysis
  • Control groups
  • Mixed methods research
  • Non-probability sampling
  • Quantitative research
  • Ecological validity

Research bias

  • Rosenthal effect
  • Implicit bias
  • Cognitive bias
  • Selection bias
  • Negativity bias
  • Status quo bias

An independent variable is the variable you manipulate, control, or vary in an experimental study to explore its effects. It’s called “independent” because it’s not influenced by any other variables in the study.

A dependent variable is what changes as a result of the independent variable manipulation in experiments . It’s what you’re interested in measuring, and it “depends” on your independent variable.

In statistics, dependent variables are also called:

Determining cause and effect is one of the most important parts of scientific research. It’s essential to know which is the cause – the independent variable – and which is the effect – the dependent variable.

You want to find out how blood sugar levels are affected by drinking diet soda and regular soda, so you conduct an experiment .

  • The type of soda – diet or regular – is the independent variable .
  • The level of blood sugar that you measure is the dependent variable – it changes depending on the type of soda.

No. The value of a dependent variable depends on an independent variable, so a variable cannot be both independent and dependent at the same time. It must be either the cause or the effect, not both!

Yes, but including more than one of either type requires multiple research questions .

For example, if you are interested in the effect of a diet on health, you can use multiple measures of health: blood sugar, blood pressure, weight, pulse, and many more. Each of these is its own dependent variable with its own research question.

You could also choose to look at the effect of exercise levels as well as diet, or even the additional effect of the two combined. Each of these is a separate independent variable .

To ensure the internal validity of an experiment , you should only change one independent variable at a time.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bhandari, P. (2023, June 22). Independent vs. Dependent Variables | Definition & Examples. Scribbr. Retrieved June 13, 2024, from https://www.scribbr.com/methodology/independent-and-dependent-variables/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, guide to experimental design | overview, steps, & examples, explanatory and response variables | definitions & examples, confounding variables | definition, examples & controls, get unlimited documents corrected.

✔ Free APA citation check included ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

PrepScholar

Choose Your Test

Sat / act prep online guides and tips, independent and dependent variables: which is which.

author image

General Education

feature_variables.jpg

Independent and dependent variables are important for both math and science. If you don't understand what these two variables are and how they differ, you'll struggle to analyze an experiment or plot equations. Fortunately, we make learning these concepts easy!

In this guide, we break down what independent and dependent variables are , give examples of the variables in actual experiments, explain how to properly graph them, provide a quiz to test your skills, and discuss the one other important variable you need to know.

What Is an Independent Variable? What Is a Dependent Variable?

A variable is something you're trying to measure. It can be practically anything, such as objects, amounts of time, feelings, events, or ideas. If you're studying how people feel about different television shows, the variables in that experiment are television shows and feelings. If you're studying how different types of fertilizer affect how tall plants grow, the variables are type of fertilizer and plant height.

There are two key variables in every experiment: the independent variable and the dependent variable.

Independent variable: What the scientist changes or what changes on its own.

Dependent variable: What is being studied/measured.

The independent variable (sometimes known as the manipulated variable) is the variable whose change isn't affected by any other variable in the experiment. Either the scientist has to change the independent variable herself or it changes on its own; nothing else in the experiment affects or changes it. Two examples of common independent variables are age and time. There's nothing you or anything else can do to speed up or slow down time or increase or decrease age. They're independent of everything else.

The dependent variable (sometimes known as the responding variable) is what is being studied and measured in the experiment. It's what changes as a result of the changes to the independent variable. An example of a dependent variable is how tall you are at different ages. The dependent variable (height) depends on the independent variable (age).

An easy way to think of independent and dependent variables is, when you're conducting an experiment, the independent variable is what you change, and the dependent variable is what changes because of that. You can also think of the independent variable as the cause and the dependent variable as the effect.

It can be a lot easier to understand the differences between these two variables with examples, so let's look at some sample experiments below.

body_change-4.jpg

Examples of Independent and Dependent Variables in Experiments

Below are overviews of three experiments, each with their independent and dependent variables identified.

Experiment 1: You want to figure out which brand of microwave popcorn pops the most kernels so you can get the most value for your money. You test different brands of popcorn to see which bag pops the most popcorn kernels.

  • Independent Variable: Brand of popcorn bag (It's the independent variable because you are actually deciding the popcorn bag brands)
  • Dependent Variable: Number of kernels popped (This is the dependent variable because it's what you measure for each popcorn brand)

Experiment 2 : You want to see which type of fertilizer helps plants grow fastest, so you add a different brand of fertilizer to each plant and see how tall they grow.

  • Independent Variable: Type of fertilizer given to the plant
  • Dependent Variable: Plant height

Experiment 3: You're interested in how rising sea temperatures impact algae life, so you design an experiment that measures the number of algae in a sample of water taken from a specific ocean site under varying temperatures.

  • Independent Variable: Ocean temperature
  • Dependent Variable: The number of algae in the sample

For each of the independent variables above, it's clear that they can't be changed by other variables in the experiment. You have to be the one to change the popcorn and fertilizer brands in Experiments 1 and 2, and the ocean temperature in Experiment 3 cannot be significantly changed by other factors. Changes to each of these independent variables cause the dependent variables to change in the experiments.

Where Do You Put Independent and Dependent Variables on Graphs?

Independent and dependent variables always go on the same places in a graph. This makes it easy for you to quickly see which variable is independent and which is dependent when looking at a graph or chart. The independent variable always goes on the x-axis, or the horizontal axis. The dependent variable goes on the y-axis, or vertical axis.

Here's an example:

body_graph-3.jpg

As you can see, this is a graph showing how the number of hours a student studies affects the score she got on an exam. From the graph, it looks like studying up to six hours helped her raise her score, but as she studied more than that her score dropped slightly.

The amount of time studied is the independent variable, because it's what she changed, so it's on the x-axis. The score she got on the exam is the dependent variable, because it's what changed as a result of the independent variable, and it's on the y-axis. It's common to put the units in parentheses next to the axis titles, which this graph does.

There are different ways to title a graph, but a common way is "[Independent Variable] vs. [Dependent Variable]" like this graph. Using a standard title like that also makes it easy for others to see what your independent and dependent variables are.

Are There Other Important Variables to Know?

Independent and dependent variables are the two most important variables to know and understand when conducting or studying an experiment, but there is one other type of variable that you should be aware of: constant variables.

Constant variables (also known as "constants") are simple to understand: they're what stay the same during the experiment. Most experiments usually only have one independent variable and one dependent variable, but they will all have multiple constant variables.

For example, in Experiment 2 above, some of the constant variables would be the type of plant being grown, the amount of fertilizer each plant is given, the amount of water each plant is given, when each plant is given fertilizer and water, the amount of sunlight the plants receive, the size of the container each plant is grown in, and more. The scientist is changing the type of fertilizer each plant gets which in turn changes how much each plant grows, but every other part of the experiment stays the same.

In experiments, you have to test one independent variable at a time in order to accurately understand how it impacts the dependent variable. Constant variables are important because they ensure that the dependent variable is changing because, and only because, of the independent variable so you can accurately measure the relationship between the dependent and independent variables.

If you didn't have any constant variables, you wouldn't be able to tell if the independent variable was what was really affecting the dependent variable. For example, in the example above, if there were no constants and you used different amounts of water, different types of plants, different amounts of fertilizer and put the plants in windows that got different amounts of sun, you wouldn't be able to say how fertilizer type affected plant growth because there would be so many other factors potentially affecting how the plants grew.

body_plants.jpg

3 Experiments to Help You Understand Independent and Dependent Variables

If you're still having a hard time understanding the relationship between independent and dependent variable, it might help to see them in action. Here are three experiments you can try at home.

Experiment 1: Plant Growth Rates

One simple way to explore independent and dependent variables is to construct a biology experiment with seeds. Try growing some sunflowers and see how different factors affect their growth. For example, say you have ten sunflower seedlings, and you decide to give each a different amount of water each day to see if that affects their growth. The independent variable here would be the amount of water you give the plants, and the dependent variable is how tall the sunflowers grow.

Experiment 2: Chemical Reactions

Explore a wide range of chemical reactions with this chemistry kit . It includes 100+ ideas for experiments—pick one that interests you and analyze what the different variables are in the experiment!

Experiment 3: Simple Machines

Build and test a range of simple and complex machines with this K'nex kit . How does increasing a vehicle's mass affect its velocity? Can you lift more with a fixed or movable pulley? Remember, the independent variable is what you control/change, and the dependent variable is what changes because of that.

Quiz: Test Your Variable Knowledge

Can you identify the independent and dependent variables for each of the four scenarios below? The answers are at the bottom of the guide for you to check your work.

Scenario 1: You buy your dog multiple brands of food to see which one is her favorite.

Scenario 2: Your friends invite you to a party, and you decide to attend, but you're worried that staying out too long will affect how well you do on your geometry test tomorrow morning.

Scenario 3: Your dentist appointment will take 30 minutes from start to finish, but that doesn't include waiting in the lounge before you're called in. The total amount of time you spend in the dentist's office is the amount of time you wait before your appointment, plus the 30 minutes of the actual appointment

Scenario 4: You regularly babysit your little cousin who always throws a tantrum when he's asked to eat his vegetables. Over the course of the week, you ask him to eat vegetables four times.

Summary: Independent vs Dependent Variable

Knowing the independent variable definition and dependent variable definition is key to understanding how experiments work. The independent variable is what you change, and the dependent variable is what changes as a result of that. You can also think of the independent variable as the cause and the dependent variable as the effect.

When graphing these variables, the independent variable should go on the x-axis (the horizontal axis), and the dependent variable goes on the y-axis (vertical axis).

Constant variables are also important to understand. They are what stay the same throughout the experiment so you can accurately measure the impact of the independent variable on the dependent variable.

What's Next?

Independent and dependent variables are commonly taught in high school science classes. Read our guide to learn which science classes high school students should be taking.

Scoring well on standardized tests is an important part of having a strong college application. Check out our guides on the best study tips for the SAT and ACT.

Interested in science? Science Olympiad is a great extracurricular to include on your college applications, and it can help you win big scholarships. Check out our complete guide to winning Science Olympiad competitions.

Quiz Answers

1: Independent: dog food brands; Dependent: how much you dog eats

2: Independent: how long you spend at the party; Dependent: your exam score

3: Independent: Amount of time you spend waiting; Dependent: Total time you're at the dentist (the 30 minutes of appointment time is the constant)

4: Independent: Number of times your cousin is asked to eat vegetables; Dependent: number of tantrums

Want to improve your SAT score by 160 points or your ACT score by 4 points?   We've written a guide for each test about the top 5 strategies you must be using to have a shot at improving your score. Download them for free now:

These recommendations are based solely on our knowledge and experience. If you purchase an item through one of our links, PrepScholar may receive a commission.

author image

Christine graduated from Michigan State University with degrees in Environmental Biology and Geography and received her Master's from Duke University. In high school she scored in the 99th percentile on the SAT and was named a National Merit Finalist. She has taught English and biology in several countries.

Ask a Question Below

Have any questions about this article or other topics? Ask below and we'll reply!

Improve With Our Famous Guides

  • For All Students

The 5 Strategies You Must Be Using to Improve 160+ SAT Points

How to Get a Perfect 1600, by a Perfect Scorer

Series: How to Get 800 on Each SAT Section:

Score 800 on SAT Math

Score 800 on SAT Reading

Score 800 on SAT Writing

Series: How to Get to 600 on Each SAT Section:

Score 600 on SAT Math

Score 600 on SAT Reading

Score 600 on SAT Writing

Free Complete Official SAT Practice Tests

What SAT Target Score Should You Be Aiming For?

15 Strategies to Improve Your SAT Essay

The 5 Strategies You Must Be Using to Improve 4+ ACT Points

How to Get a Perfect 36 ACT, by a Perfect Scorer

Series: How to Get 36 on Each ACT Section:

36 on ACT English

36 on ACT Math

36 on ACT Reading

36 on ACT Science

Series: How to Get to 24 on Each ACT Section:

24 on ACT English

24 on ACT Math

24 on ACT Reading

24 on ACT Science

What ACT target score should you be aiming for?

ACT Vocabulary You Must Know

ACT Writing: 15 Tips to Raise Your Essay Score

How to Get Into Harvard and the Ivy League

How to Get a Perfect 4.0 GPA

How to Write an Amazing College Essay

What Exactly Are Colleges Looking For?

Is the ACT easier than the SAT? A Comprehensive Guide

Should you retake your SAT or ACT?

When should you take the SAT or ACT?

Stay Informed

Follow us on Facebook (icon)

Get the latest articles and test prep tips!

Looking for Graduate School Test Prep?

Check out our top-rated graduate blogs here:

GRE Online Prep Blog

GMAT Online Prep Blog

TOEFL Online Prep Blog

Holly R. "I am absolutely overjoyed and cannot thank you enough for helping me!”

Independent and Dependent Variables

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

In research, a variable is any characteristic, number, or quantity that can be measured or counted in experimental investigations . One is called the dependent variable, and the other is the independent variable.

In research, the independent variable is manipulated to observe its effect, while the dependent variable is the measured outcome. Essentially, the independent variable is the presumed cause, and the dependent variable is the observed effect.

Variables provide the foundation for examining relationships, drawing conclusions, and making predictions in research studies.

variables2

Independent Variable

In psychology, the independent variable is the variable the experimenter manipulates or changes and is assumed to directly affect the dependent variable.

It’s considered the cause or factor that drives change, allowing psychologists to observe how it influences behavior, emotions, or other dependent variables in an experimental setting. Essentially, it’s the presumed cause in cause-and-effect relationships being studied.

For example, allocating participants to drug or placebo conditions (independent variable) to measure any changes in the intensity of their anxiety (dependent variable).

In a well-designed experimental study , the independent variable is the only important difference between the experimental (e.g., treatment) and control (e.g., placebo) groups.

By changing the independent variable and holding other factors constant, psychologists aim to determine if it causes a change in another variable, called the dependent variable.

For example, in a study investigating the effects of sleep on memory, the amount of sleep (e.g., 4 hours, 8 hours, 12 hours) would be the independent variable, as the researcher might manipulate or categorize it to see its impact on memory recall, which would be the dependent variable.

Dependent Variable

In psychology, the dependent variable is the variable being tested and measured in an experiment and is “dependent” on the independent variable.

In psychology, a dependent variable represents the outcome or results and can change based on the manipulations of the independent variable. Essentially, it’s the presumed effect in a cause-and-effect relationship being studied.

An example of a dependent variable is depression symptoms, which depend on the independent variable (type of therapy).

In an experiment, the researcher looks for the possible effect on the dependent variable that might be caused by changing the independent variable.

For instance, in a study examining the effects of a new study technique on exam performance, the technique would be the independent variable (as it is being introduced or manipulated), while the exam scores would be the dependent variable (as they represent the outcome of interest that’s being measured).

Examples in Research Studies

For example, we might change the type of information (e.g., organized or random) given to participants to see how this might affect the amount of information remembered.

In this example, the type of information is the independent variable (because it changes), and the amount of information remembered is the dependent variable (because this is being measured).

Independent and Dependent Variables Examples

For the following hypotheses, name the IV and the DV.

1. Lack of sleep significantly affects learning in 10-year-old boys.

IV……………………………………………………

DV…………………………………………………..

2. Social class has a significant effect on IQ scores.

DV……………………………………………….…

3. Stressful experiences significantly increase the likelihood of headaches.

4. Time of day has a significant effect on alertness.

Operationalizing Variables

To ensure cause and effect are established, it is important that we identify exactly how the independent and dependent variables will be measured; this is known as operationalizing the variables.

Operational variables (or operationalizing definitions) refer to how you will define and measure a specific variable as it is used in your study. This enables another psychologist to replicate your research and is essential in establishing reliability (achieving consistency in the results).

For example, if we are concerned with the effect of media violence on aggression, then we need to be very clear about what we mean by the different terms. In this case, we must state what we mean by the terms “media violence” and “aggression” as we will study them.

Therefore, you could state that “media violence” is operationally defined (in your experiment) as ‘exposure to a 15-minute film showing scenes of physical assault’; “aggression” is operationally defined as ‘levels of electrical shocks administered to a second ‘participant’ in another room.

In another example, the hypothesis “Young participants will have significantly better memories than older participants” is not operationalized. How do we define “young,” “old,” or “memory”? “Participants aged between 16 – 30 will recall significantly more nouns from a list of twenty than participants aged between 55 – 70” is operationalized.

The key point here is that we have clarified what we mean by the terms as they were studied and measured in our experiment.

If we didn’t do this, it would be very difficult (if not impossible) to compare the findings of different studies to the same behavior.

Operationalization has the advantage of generally providing a clear and objective definition of even complex variables. It also makes it easier for other researchers to replicate a study and check for reliability .

For the following hypotheses, name the IV and the DV and operationalize both variables.

1. Women are more attracted to men without earrings than men with earrings.

I.V._____________________________________________________________

D.V. ____________________________________________________________

Operational definitions:

I.V. ____________________________________________________________

2. People learn more when they study in a quiet versus noisy place.

I.V. _________________________________________________________

D.V. ___________________________________________________________

3. People who exercise regularly sleep better at night.

Can there be more than one independent or dependent variable in a study?

Yes, it is possible to have more than one independent or dependent variable in a study.

In some studies, researchers may want to explore how multiple factors affect the outcome, so they include more than one independent variable.

Similarly, they may measure multiple things to see how they are influenced, resulting in multiple dependent variables. This allows for a more comprehensive understanding of the topic being studied.

What are some ethical considerations related to independent and dependent variables?

Ethical considerations related to independent and dependent variables involve treating participants fairly and protecting their rights.

Researchers must ensure that participants provide informed consent and that their privacy and confidentiality are respected. Additionally, it is important to avoid manipulating independent variables in ways that could cause harm or discomfort to participants.

Researchers should also consider the potential impact of their study on vulnerable populations and ensure that their methods are unbiased and free from discrimination.

Ethical guidelines help ensure that research is conducted responsibly and with respect for the well-being of the participants involved.

Can qualitative data have independent and dependent variables?

Yes, both quantitative and qualitative data can have independent and dependent variables.

In quantitative research, independent variables are usually measured numerically and manipulated to understand their impact on the dependent variable. In qualitative research, independent variables can be qualitative in nature, such as individual experiences, cultural factors, or social contexts, influencing the phenomenon of interest.

The dependent variable, in both cases, is what is being observed or studied to see how it changes in response to the independent variable.

So, regardless of the type of data, researchers analyze the relationship between independent and dependent variables to gain insights into their research questions.

Can the same variable be independent in one study and dependent in another?

Yes, the same variable can be independent in one study and dependent in another.

The classification of a variable as independent or dependent depends on how it is used within a specific study. In one study, a variable might be manipulated or controlled to see its effect on another variable, making it independent.

However, in a different study, that same variable might be the one being measured or observed to understand its relationship with another variable, making it dependent.

The role of a variable as independent or dependent can vary depending on the research question and study design.

Print Friendly, PDF & Email

Related Articles

Metasynthesis Of Qualitative Research

Research Methodology

Metasynthesis Of Qualitative Research

Grounded Theory In Qualitative Research: A Practical Guide

Grounded Theory In Qualitative Research: A Practical Guide

Qualitative Data Coding

Qualitative Data Coding

What Is a Focus Group?

What Is a Focus Group?

Cross-Cultural Research Methodology In Psychology

Cross-Cultural Research Methodology In Psychology

What Is Internal Validity In Research?

What Is Internal Validity In Research?

  • Skip to secondary menu
  • Skip to main content
  • Skip to primary sidebar

Statistics By Jim

Making statistics intuitive

Independent and Dependent Variables: Differences & Examples

By Jim Frost 15 Comments

Scientist at work on an experiment consider independent and dependent variables.

In this post, learn the definitions of independent and dependent variables, how to identify each type, how they differ between different types of studies, and see examples of them in use.

What is an Independent Variable?

Independent variables (IVs) are the ones that you include in the model to explain or predict changes in the dependent variable. The name helps you understand their role in statistical analysis. These variables are independent . In this context, independent indicates that they stand alone and other variables in the model do not influence them. The researchers are not seeking to understand what causes the independent variables to change.

Independent variables are also known as predictors, factors , treatment variables, explanatory variables, input variables, x-variables, and right-hand variables—because they appear on the right side of the equals sign in a regression equation. In notation, statisticians commonly denote them using Xs. On graphs, analysts place independent variables on the horizontal, or X, axis.

In machine learning, independent variables are known as features.

For example, in a plant growth study, the independent variables might be soil moisture (continuous) and type of fertilizer (categorical).

Statistical models will estimate effect sizes for the independent variables.

Relate post : Effect Sizes in Statistics

Including independent variables in studies

The nature of independent variables changes based on the type of experiment or study:

Controlled experiments : Researchers systematically control and set the values of the independent variables. In randomized experiments, relationships between independent and dependent variables tend to be causal. The independent variables cause changes in the dependent variable.

Observational studies : Researchers do not set the values of the explanatory variables but instead observe them in their natural environment. When the independent and dependent variables are correlated, those relationships might not be causal.

When you include one independent variable in a regression model, you are performing simple regression. For more than one independent variable, it is multiple regression. Despite the different names, it’s really the same analysis with the same interpretations and assumptions.

Determining which IVs to include in a statistical model is known as model specification. That process involves in-depth research and many subject-area, theoretical, and statistical considerations. At its most basic level, you’ll want to include the predictors you are specifically assessing in your study and confounding variables that will bias your results if you don’t add them—particularly for observational studies.

For more information about choosing independent variables, read my post about Specifying the Correct Regression Model .

Related posts : Randomized Experiments , Observational Studies , Covariates , and Confounding Variables

What is a Dependent Variable?

The dependent variable (DV) is what you want to use the model to explain or predict. The values of this variable depend on other variables. It is the outcome that you’re studying. It’s also known as the response variable, outcome variable, and left-hand variable. Statisticians commonly denote them using a Y. Traditionally, graphs place dependent variables on the vertical, or Y, axis.

For example, in the plant growth study example, a measure of plant growth is the dependent variable. That is the outcome of the experiment, and we want to determine what affects it.

How to Identify Independent and Dependent Variables

If you’re reading a study’s write-up, how do you distinguish independent variables from dependent variables? Here are some tips!

Identifying IVs

How statisticians discuss independent variables changes depending on the field of study and type of experiment.

In randomized experiments, look for the following descriptions to identify the independent variables:

  • Independent variables cause changes in another variable.
  • The researchers control the values of the independent variables. They are controlled or manipulated variables.
  • Experiments often refer to them as factors or experimental factors. In areas such as medicine, they might be risk factors.
  • Treatment and control groups are always independent variables. In this case, the independent variable is a categorical grouping variable that defines the experimental groups to which participants belong. Each group is a level of that variable.

In observational studies, independent variables are a bit different. While the researchers likely want to establish causation, that’s harder to do with this type of study, so they often won’t use the word “cause.” They also don’t set the values of the predictors. Some independent variables are the experiment’s focus, while others help keep the experimental results valid.

Here’s how to recognize independent variables in observational studies:

  • IVs explain the variability, predict, or correlate with changes in the dependent variable.
  • Researchers in observational studies must include confounding variables (i.e., confounders) to keep the statistical results valid even if they are not the primary interest of the study. For example, these might include the participants’ socio-economic status or other background information that the researchers aren’t focused on but can explain some of the dependent variable’s variability.
  • The results are adjusted or controlled for by a variable.

Regardless of the study type, if you see an estimated effect size, it is an independent variable.

Identifying DVs

Dependent variables are the outcome. The IVs explain the variability or causes changes in the DV. Focus on the “depends” aspect. The value of the dependent variable depends on the IVs. If Y depends on X, then Y is the dependent variable. This aspect applies to both randomized experiments and observational studies.

In an observational study about the effects of smoking, the researchers observe the subjects’ smoking status (smoker/non-smoker) and their lung cancer rates. It’s an observational study because they cannot randomly assign subjects to either the smoking or non-smoking group. In this study, the researchers want to know whether lung cancer rates depend on smoking status. Therefore, the lung cancer rate is the dependent variable.

In a randomized COVID-19 vaccine experiment , the researchers randomly assign subjects to the treatment or control group. They want to determine whether COVID-19 infection rates depend on vaccination status. Hence, the infection rate is the DV.

Note that a variable can be an independent variable in one study but a dependent variable in another. It depends on the context.

For example, one study might assess how the amount of exercise (IV) affects health (DV). However, another study might study the factors (IVs) that influence how much someone exercises (DV). The amount of exercise is an independent variable in one study but a dependent variable in the other!

How Analyses Use IVs and DVs

Regression analysis and ANOVA mathematically describe the relationships between each independent variable and the dependent variable. Typically, you want to determine how changes in one or more predictors associate with changes in the dependent variable. These analyses estimate an effect size for each independent variable.

Suppose researchers study the relationship between wattage, several types of filaments, and the output from a light bulb. In this study, light output is the dependent variable because it depends on the other two variables. Wattage (continuous) and filament type (categorical) are the independent variables.

After performing the regression analysis, the researchers will understand the nature of the relationship between these variables. How much does the light output increase on average for each additional watt? Does the mean light output differ by filament types? They will also learn whether these effects are statistically significant.

Related post : When to Use Regression Analysis

Graphing Independent and Dependent Variables

As I mentioned earlier, graphs traditionally display the independent variables on the horizontal X-axis and the dependent variable on the vertical Y-axis. The type of graph depends on the nature of the variables. Here are a couple of examples.

Suppose you experiment to determine whether various teaching methods affect learning outcomes. Teaching method is a categorical predictor that defines the experimental groups. To display this type of data, you can use a boxplot, as shown below.

Example boxplot that illustrates independent and dependent variables.

The groups are along the horizontal axis, while the dependent variable, learning outcomes, is on the vertical. From the graph, method 4 has the best results. A one-way ANOVA will tell you whether these results are statistically significant. Learn more about interpreting boxplots .

Now, imagine that you are studying people’s height and weight. Specifically, do height increases cause weight to increase? Consequently, height is the independent variable on the horizontal axis, and weight is the dependent variable on the vertical axis. You can use a scatterplot to display this type of data.

Example scatterplot that illustrates independent and dependent variables.

It appears that as height increases, weight tends to increase. Regression analysis will tell you if these results are statistically significant. Learn more about interpreting scatterplots .

Share this:

an experiment the independent variable is always

Reader Interactions

' src=

April 2, 2024 at 2:05 am

Hi again Jim

Thanks so much for taking an interest in New Zealand’s Equity Index.

Rather than me trying to explain what our Ministry of Education has done, here is a link to a fairly short paper. Scroll down to page 4 of this (if you have the inclination) – https://fyi.org.nz/request/21253/response/80708/attach/4/1301098%20Response%20and%20Appendix.pdf

The Equity Index is used to allocate only 4% of total school funding. The most advantaged 5% of schools get no “equity funding” and the other 95% get a share of the equity funding pool based on their index score. We are talking a maximum of around $1,000NZD per child per year for the most disadvantaged schools. The average amount is around $200-$300 per child per year.

My concern is that I thought the dependent variable is the thing you want to explain or predict using one or more independent variables. Choosing the form of dependent variable that gets a good fit seems to be answering the question “what can we predict well?” rather than “how do we best predict the factor of interest?” The factor is educational achievement and I think this should have been decided upon using theory rather than experimentation with the data.

As it turns out, the Ministry has chosen a measure of educational achievement that puts a heavy weight on achieving an “excellence” rating on a qualification and a much lower weight on simply gaining a qualification. My reading is that they have taken what our universities do when looking at which students to admit.

It doesn’t seem likely to me that a heavy weighting on excellent achievement is appropriate for targeting extra funding to schools with a lot of under-achieving students.

However, my stats knowledge isn’t extensive and it’s definitely rusty, so your thoughts are most helpful.

Regards Kathy Spencer

April 1, 2024 at 4:08 pm

Hi Jim, Great website, thank you.

I have been looking at New Zealand’s Equity Index which is used to allocate a small amount of extra funding to schools attended by children from disadvantaged backgrounds. The Index uses 37 socioeconomic measures relating to a child’s and their parents’ backgrounds that are found to be associated with educational achievement.

I was a bit surprised to read how they had decided on the dependent variable to be used as the measure of educational achievement, or dependent variable. Part of the process was as follows- “Each measure was tested to see the degree to which it could be predicted by the socioeconomic factors selected for the Equity Index.”

Any comment?

Many thanks Kathy Spencer

' src=

April 1, 2024 at 9:20 pm

That’s a very complex study and I don’t know much about it. So, that limits what I can say about it. But I’ll give you a few thoughts that come to mind.

This method is common in educational and social research, particularly when the goal is to understand or mitigate the impact of socioeconomic disparities on educational outcomes.

There are the usual concerns about not confusing correlation with causation. However, because this program seems to quantify barriers and then provide extra funding based on the index, I don’t think that’s a problem. They’re not attempting to adjust the socioeconomic measures so no worries about whether they’re directly causal or not.

I might have a small concern about cherry picking the model that happens to maximize the R-squared. Chasing the R-squared rather than having theory drive model selecting is often problematic. Chasing the best fit increases the likelihood that the model fits this specific dataset best by random chance rather than being truly the best. If so, it won’t perform as well outside the dataset used to fit the model. Hopefully, they validated the predicted ability of the model using other data.

However, I’m not sure if the extra funding is determined by the model? I don’t know if the index value is calculated separately outside the candidate models and then fed into the various models. Or does the choice of model affect how the index value is calculated? If it’s the former, then the funding doesn’t depend on a potentially cherry picked model. If the latter, it does.

So, I’m not really clear on the purpose of the model. I’m guessing they just want to validate their Equity Index. And maximizing the R-squared doesn’t really say it’s the best Index but it does at least show that it likely has some merit. I’d be curious how the took the 37 measures and combined them to one index. So, I have more questions than answers. I don’t mean that in a critical sense. Just that I know almost nothing about this program.

I’m curious, what was the outcome they picked? How high was the R-squared? And what were your concerns?

' src=

February 6, 2024 at 6:57 pm

Excellent explanation, thank you.

February 5, 2024 at 5:04 pm

Thank you for this insightful blog. Is it valid to use a dependent variable delivered from the mean of independent variables in multiple regression if you want to evaluate the influence of each unique independent variable on the dependent variables?

February 5, 2024 at 11:11 pm

It’s difficult to answer your question because I’m not sure what you mean that the DV is “delivered from the mean of IVs.” If you mean that multiple IVs explain changes in the DV’s mean, yes, that’s the standard use for multiple regression.

If you mean something else, please explain in further detail. Thanks!

February 6, 2024 at 6:32 am

What I meant is; the DV values used as parameters for multiple regression is basically calculated as the average of the IVs. For instance:

From 3 IVs (X1, X2, X3), Y is delivered as :

Y = (Sum of all IVs) / (3)

Then the resulting Y is used as the DV along with the initial IVs to compute the multiple regression.

February 6, 2024 at 2:17 pm

There are a couple of reasons why you shouldn’t do that.

For starters, Y-hat (the predicted value of the regression equation) is the mean of the DV given specific values of the IV. However, that mean is calculated by using the regression coefficients and constant in the regression equation. You don’t calculate the DV mean as the sum of the IVs divided by the number of IVs. Perhaps given a very specific subject-area context, using this approach might seem to make sense but there are other problems.

A critical problem is that the Y is now calculated using the IVs. Instead, the DVs should be measured outcomes and not calculated from IVs. This violates regression assumptions and produces questionable results.

Additionally, it complicates the interpretation. Because the DV is calculated from the IV, you know the regression analysis will find a relationship between them. But you have no idea if that relationship exists in the real world. This complication occurs because your results are based on forcing the DV to equal a function of the IVs and do not reflect real-world outcomes.

In short, DVs should be real-world outcomes that you measure! And be sure to keep your IVs and DV independent. Let the regression analysis estimate the regression equation from your data that contains measured DVs. Don’t use a function to force the DV to equal some function of the IVs because that’s the opposite direction of how regression works!

I hope that helps!

' src=

September 6, 2022 at 7:43 pm

Thank you for sharing.

' src=

March 3, 2022 at 1:59 am

Excellent explanation.

' src=

February 13, 2022 at 12:31 pm

Thanks a lot for creating this excellent blog. This is my go-to resource for Statistics.

I had been pondering over a question for sometime, it would be great if you could shed some light on this.

In linear and non-linear regression, should the distribution of independent and dependent variables be unskewed? When is there a need to transform the data (say, Box-Cox transformation), and do we transform the independent variables as well?

' src=

October 28, 2021 at 12:55 pm

If I use a independent variable (X) and it displays a low p-value <.05, why is it if I introduce another independent variable to regression the coefficient and p-value of Y that I used in first regression changes to look insignificant? The second variable that I introduced has a low p-value in regression.

October 29, 2021 at 11:22 pm

Keep in mind that the significance of each IV is calculated after accounting for the variance of all the other variables in the model, assuming you’re using the standard adjusted sums of squares rather than sequential sums of squares. The sums of squares (SS) is a measure of how much dependent variable variability that each IV accounts for. In the illustration below, I’ll assume you’re using the standard of adjusted SS.

So, let’s say that originally you have X1 in the model along with some other IVs. Your model estimates the significance of X1 after assessing the variability that the other IVs account for and finds that X1 is significant. Now, you add X2 to the model in addition to X1 and the other IVs. Now, when assessing X1, the model accounts for the variability of the IVs including the newly added X2. And apparently X2 explains a good portion of the variability. X1 is no longer able to account for that variability, which causes it to not be statistically significant.

In other words, X2 explains some of the variability that X1 previously explained. Because X1 no longer explains it, it is no longer significant.

Additionally, the significance of IVs is more likely to change when you add or remove IVs that are correlated. Correlated IVs is known as multicollinearity. Multicollinearity can be a problem when you have too much. Given the change in significance, I’d check your model for multicollinearity just to be safe! Click the link to read a post that wrote about that!

' src=

September 6, 2021 at 8:35 am

nice explanation

' src=

August 25, 2021 at 3:09 am

it is excellent explanation

Comments and Questions Cancel reply

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Independent Variables in Psychology

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

an experiment the independent variable is always

Amanda Tust is a fact-checker, researcher, and writer with a Master of Science in Journalism from Northwestern University's Medill School of Journalism.

an experiment the independent variable is always

Adam Berry / Getty Images

  • Identifying

Potential Pitfalls

The independent variable (IV) in psychology is the characteristic of an experiment that is manipulated or changed by researchers, not by other variables in the experiment.

For example, in an experiment looking at the effects of studying on test scores, studying would be the independent variable. Researchers are trying to determine if changes to the independent variable (studying) result in significant changes to the dependent variable (the test results).

In general, experiments have these three types of variables: independent, dependent, and controlled.

Identifying the Independent Variable

If you are having trouble identifying the independent variables of an experiment, there are some questions that may help:

  • Is the variable one that is being manipulated by the experimenters?
  • Are researchers trying to identify how the variable influences another variable?
  • Is the variable something that cannot be changed but that is not dependent on other variables in the experiment?

Researchers are interested in investigating the effects of the independent variable on other variables, which are known as dependent variables (DV). The independent variable is one that the researchers either manipulate (such as the amount of something) or that already exists but is not dependent upon other variables (such as the age of the participants).

Below are the key differences when looking at an independent variable vs. dependent variable.

Expected to influence the dependent variable

Doesn't change as a result of the experiment

Can be manipulated by researchers in order to study the dependent variable

Expected to be affected by the independent variable

Expected to change as a result of the experiment

Not manipulated by researchers; its changes occur as a result of the independent variable

There can be all different types of independent variables. The independent variables in a particular experiment all depend on the hypothesis and what the experimenters are investigating.

Independent variables also have different levels. In some experiments, there may only be one level of an IV. In other cases, multiple levels of the IV may be used to look at the range of effects that the variable may have.

In an experiment on the effects of the type of diet on weight loss, for example, researchers might look at several different types of diet. Each type of diet that the experimenters look at would be a different level of the independent variable while weight loss would always be the dependent variable.

To understand this concept, it's helpful to take a look at the independent variable in research examples.

In Organizations

A researcher wants to determine if the color of an office has any effect on worker productivity. In an experiment, one group of workers performs a task in a yellow room while another performs the same task in a blue room. In this example, the color of the office is the independent variable.

In the Workplace

A business wants to determine if giving employees more control over how to do their work leads to increased job satisfaction. In an experiment, one group of workers is given a great deal of input in how they perform their work, while the other group is not. The amount of input the workers have over their work is the independent variable in this example.

In Educational Research

Educators are interested in whether participating in after-school math tutoring can increase scores on standardized math exams. In an experiment, one group of students attends an after-school tutoring session twice a week while another group of students does not receive this additional assistance. In this case, participation in after-school math tutoring is the independent variable.

In Mental Health Research

Researchers want to determine if a new type of treatment will lead to a reduction in anxiety for patients living with social phobia. In an experiment, some volunteers receive the new treatment, another group receives a different treatment, and a third group receives no treatment. The independent variable in this example is the type of therapy .

Sometimes varying the independent variables will result in changes in the dependent variables. In other cases, researchers might find that changes in the independent variables have no effect on the variables that are being measured.

At the outset of an experiment, it is important for researchers to operationally define the independent variable. An operational definition describes exactly what the independent variable is and how it is measured. Doing this helps ensure that the experiments know exactly what they are looking at or manipulating, allowing them to measure it and determine if it is the IV that is causing changes in the DV.

Choosing an Independent Variable

If you are designing an experiment, here are a few tips for choosing an independent variable (or variables):

  • Select independent variables that you think will cause changes in another variable. Come up with a hypothesis for what you expect to happen.
  • Look at other experiments for examples and identify different types of independent variables.
  • Keep your control group and experimental groups similar in other characteristics, but vary only the treatment they receive in terms of the independent variable.   For example, your control group will receive either no treatment or no changes in the independent variable while your experimental group will receive the treatment or a different level of the independent variable.

It is also important to be aware that there may be other variables that might influence the results of an experiment. Two other kinds of variables that might influence the outcome include:

  • Extraneous variables : These are variables that might affect the relationships between the independent variable and the dependent variable; experimenters usually try to identify and control for these variables. 
  • Confounding variables : When an extraneous variable cannot be controlled for in an experiment, it is known as a confounding variable . 

Extraneous variables can also include demand characteristics (which are clues about how the participants should respond) and experimenter effects (which is when the researchers accidentally provide clues about how a participant will respond).

Kaliyadan F, Kulkarni V. Types of variables, descriptive statistics, and sample size .  Indian Dermatol Online J . 2019;10(1):82-86. doi:10.4103/idoj.IDOJ_468_18

Weiten, W. Psychology: Themes and Variations, 10th ed . Boston, MA: Cengage Learning; 2017.

National Library of Medicine. Dependent and independent variables .

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

COMMENTS

  1. Independent Variable Definition and Examples - ThoughtCo

    The independent variable always changes in an experiment, even if there is just a control and an experimental group. The dependent variable may or may not change in response to the independent variable.

  2. What Is an Independent Variable? Definition and Examples

    The independent variable is the variable that is controlled or changed in a scientific experiment to test its effect on the dependent variable. It doesn’t depend on another variable and isn’t changed by any factors an experimenter is trying to measure.

  3. Independent and Dependent Variables Examples

    The independent variable is the factor the researcher changes or controls in an experiment. It is called independent because it does not depend on any other variable. The independent variable may be called the “controlled variable” because it is the one that is changed or controlled.

  4. Independent vs. Dependent Variables | Definition & Examples

    An independent variable is the variable you manipulate or vary in an experimental study to explore its effects. It’s called “independent” because it’s not influenced by any other variables in the study. Independent variables are also called: Explanatory variables (they explain an event or outcome)

  5. Independent and Dependent Variables: Which Is Which?

    Independent variable: What the scientist changes or what changes on its own. Dependent variable: What is being studied/measured. The independent variable (sometimes known as the manipulated variable) is the variable whose change isn't affected by any other variable in the experiment.

  6. Independent and Dependent Variables - Simply Psychology

    Essentially, the independent variable is the presumed cause, and the dependent variable is the observed effect. In research, the independent variable is manipulated to observe its effect, while the dependent variable is the measured outcome.

  7. Independent and Dependent Variables: Differences & Examples

    Treatment and control groups are always independent variables. In this case, the independent variable is a categorical grouping variable that defines the experimental groups to which participants belong.

  8. Independent Variable in Psychology: Examples and Importance

    The independent variable (IV) in psychology is the characteristic of an experiment that is manipulated or changed by researchers, not by other variables in the experiment. For example, in an experiment looking at the effects of studying on test scores, studying would be the independent variable.

  9. Independent Variable – Definition, Types and Examples

    Independent variable is a variable that is manipulated or changed by the researcher to observe its effect on the dependent variable. It is also known as the predictor variable or explanatory variable. The independent variable is the presumed cause in an experiment or study, while the dependent variable is the presumed effect or outcome.

  10. Dependent and independent variables - Wikipedia

    In an experiment, any variable that can be attributed a value without attributing a value to any other variable is called an independent variable. Models and experiments test the effects that the independent variables have on the dependent variables.