Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Guide to Experimental Design | Overview, Steps, & Examples

Guide to Experimental Design | Overview, 5 steps & Examples

Published on December 3, 2019 by Rebecca Bevans . Revised on June 21, 2023.

Experiments are used to study causal relationships . You manipulate one or more independent variables and measure their effect on one or more dependent variables.

Experimental design create a set of procedures to systematically test a hypothesis . A good experimental design requires a strong understanding of the system you are studying.

There are five key steps in designing an experiment:

  • Consider your variables and how they are related
  • Write a specific, testable hypothesis
  • Design experimental treatments to manipulate your independent variable
  • Assign subjects to groups, either between-subjects or within-subjects
  • Plan how you will measure your dependent variable

For valid conclusions, you also need to select a representative sample and control any  extraneous variables that might influence your results. If random assignment of participants to control and treatment groups is impossible, unethical, or highly difficult, consider an observational study instead. This minimizes several types of research bias, particularly sampling bias , survivorship bias , and attrition bias as time passes.

Table of contents

Step 1: define your variables, step 2: write your hypothesis, step 3: design your experimental treatments, step 4: assign your subjects to treatment groups, step 5: measure your dependent variable, other interesting articles, frequently asked questions about experiments.

You should begin with a specific research question . We will work with two research question examples, one from health sciences and one from ecology:

To translate your research question into an experimental hypothesis, you need to define the main variables and make predictions about how they are related.

Start by simply listing the independent and dependent variables .

Research question Independent variable Dependent variable
Phone use and sleep Minutes of phone use before sleep Hours of sleep per night
Temperature and soil respiration Air temperature just above the soil surface CO2 respired from soil

Then you need to think about possible extraneous and confounding variables and consider how you might control  them in your experiment.

Extraneous variable How to control
Phone use and sleep in sleep patterns among individuals. measure the average difference between sleep with phone use and sleep without phone use rather than the average amount of sleep per treatment group.
Temperature and soil respiration also affects respiration, and moisture can decrease with increasing temperature. monitor soil moisture and add water to make sure that soil moisture is consistent across all treatment plots.

Finally, you can put these variables together into a diagram. Use arrows to show the possible relationships between variables and include signs to show the expected direction of the relationships.

Diagram of the relationship between variables in a sleep experiment

Here we predict that increasing temperature will increase soil respiration and decrease soil moisture, while decreasing soil moisture will lead to decreased soil respiration.

Prevent plagiarism. Run a free check.

Now that you have a strong conceptual understanding of the system you are studying, you should be able to write a specific, testable hypothesis that addresses your research question.

Null hypothesis (H ) Alternate hypothesis (H )
Phone use and sleep Phone use before sleep does not correlate with the amount of sleep a person gets. Increasing phone use before sleep leads to a decrease in sleep.
Temperature and soil respiration Air temperature does not correlate with soil respiration. Increased air temperature leads to increased soil respiration.

The next steps will describe how to design a controlled experiment . In a controlled experiment, you must be able to:

  • Systematically and precisely manipulate the independent variable(s).
  • Precisely measure the dependent variable(s).
  • Control any potential confounding variables.

If your study system doesn’t match these criteria, there are other types of research you can use to answer your research question.

How you manipulate the independent variable can affect the experiment’s external validity – that is, the extent to which the results can be generalized and applied to the broader world.

First, you may need to decide how widely to vary your independent variable.

  • just slightly above the natural range for your study region.
  • over a wider range of temperatures to mimic future warming.
  • over an extreme range that is beyond any possible natural variation.

Second, you may need to choose how finely to vary your independent variable. Sometimes this choice is made for you by your experimental system, but often you will need to decide, and this will affect how much you can infer from your results.

  • a categorical variable : either as binary (yes/no) or as levels of a factor (no phone use, low phone use, high phone use).
  • a continuous variable (minutes of phone use measured every night).

How you apply your experimental treatments to your test subjects is crucial for obtaining valid and reliable results.

First, you need to consider the study size : how many individuals will be included in the experiment? In general, the more subjects you include, the greater your experiment’s statistical power , which determines how much confidence you can have in your results.

Then you need to randomly assign your subjects to treatment groups . Each group receives a different level of the treatment (e.g. no phone use, low phone use, high phone use).

You should also include a control group , which receives no treatment. The control group tells us what would have happened to your test subjects without any experimental intervention.

When assigning your subjects to groups, there are two main choices you need to make:

  • A completely randomized design vs a randomized block design .
  • A between-subjects design vs a within-subjects design .

Randomization

An experiment can be completely randomized or randomized within blocks (aka strata):

  • In a completely randomized design , every subject is assigned to a treatment group at random.
  • In a randomized block design (aka stratified random design), subjects are first grouped according to a characteristic they share, and then randomly assigned to treatments within those groups.
Completely randomized design Randomized block design
Phone use and sleep Subjects are all randomly assigned a level of phone use using a random number generator. Subjects are first grouped by age, and then phone use treatments are randomly assigned within these groups.
Temperature and soil respiration Warming treatments are assigned to soil plots at random by using a number generator to generate map coordinates within the study area. Soils are first grouped by average rainfall, and then treatment plots are randomly assigned within these groups.

Sometimes randomization isn’t practical or ethical , so researchers create partially-random or even non-random designs. An experimental design where treatments aren’t randomly assigned is called a quasi-experimental design .

Between-subjects vs. within-subjects

In a between-subjects design (also known as an independent measures design or classic ANOVA design), individuals receive only one of the possible levels of an experimental treatment.

In medical or social research, you might also use matched pairs within your between-subjects design to make sure that each treatment group contains the same variety of test subjects in the same proportions.

In a within-subjects design (also known as a repeated measures design), every individual receives each of the experimental treatments consecutively, and their responses to each treatment are measured.

Within-subjects or repeated measures can also refer to an experimental design where an effect emerges over time, and individual responses are measured over time in order to measure this effect as it emerges.

Counterbalancing (randomizing or reversing the order of treatments among subjects) is often used in within-subjects designs to ensure that the order of treatment application doesn’t influence the results of the experiment.

Between-subjects (independent measures) design Within-subjects (repeated measures) design
Phone use and sleep Subjects are randomly assigned a level of phone use (none, low, or high) and follow that level of phone use throughout the experiment. Subjects are assigned consecutively to zero, low, and high levels of phone use throughout the experiment, and the order in which they follow these treatments is randomized.
Temperature and soil respiration Warming treatments are assigned to soil plots at random and the soils are kept at this temperature throughout the experiment. Every plot receives each warming treatment (1, 3, 5, 8, and 10C above ambient temperatures) consecutively over the course of the experiment, and the order in which they receive these treatments is randomized.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

Finally, you need to decide how you’ll collect data on your dependent variable outcomes. You should aim for reliable and valid measurements that minimize research bias or error.

Some variables, like temperature, can be objectively measured with scientific instruments. Others may need to be operationalized to turn them into measurable observations.

  • Ask participants to record what time they go to sleep and get up each day.
  • Ask participants to wear a sleep tracker.

How precisely you measure your dependent variable also affects the kinds of statistical analysis you can use on your data.

Experiments are always context-dependent, and a good experimental design will take into account all of the unique considerations of your study system to produce information that is both valid and relevant to your research question.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Student’s  t -distribution
  • Normal distribution
  • Null and Alternative Hypotheses
  • Chi square tests
  • Confidence interval
  • Cluster sampling
  • Stratified sampling
  • Data cleansing
  • Reproducibility vs Replicability
  • Peer review
  • Likert scale

Research bias

  • Implicit bias
  • Framing effect
  • Cognitive bias
  • Placebo effect
  • Hawthorne effect
  • Hindsight bias
  • Affect heuristic

Experimental design means planning a set of procedures to investigate a relationship between variables . To design a controlled experiment, you need:

  • A testable hypothesis
  • At least one independent variable that can be precisely manipulated
  • At least one dependent variable that can be precisely measured

When designing the experiment, you decide:

  • How you will manipulate the variable(s)
  • How you will control for any potential confounding variables
  • How many subjects or samples will be included in the study
  • How subjects will be assigned to treatment levels

Experimental design is essential to the internal and external validity of your experiment.

The key difference between observational studies and experimental designs is that a well-done observational study does not influence the responses of participants, while experiments do have some sort of treatment condition applied to at least some participants by random assignment .

A confounding variable , also called a confounder or confounding factor, is a third variable in a study examining a potential cause-and-effect relationship.

A confounding variable is related to both the supposed cause and the supposed effect of the study. It can be difficult to separate the true effect of the independent variable from the effect of the confounding variable.

In your research design , it’s important to identify potential confounding variables and plan how you will reduce their impact.

In a between-subjects design , every participant experiences only one condition, and researchers assess group differences between participants in various conditions.

In a within-subjects design , each participant experiences all conditions, and researchers test the same participants repeatedly for differences between conditions.

The word “between” means that you’re comparing different conditions between groups, while the word “within” means you’re comparing different conditions within the same group.

An experimental group, also known as a treatment group, receives the treatment whose effect researchers wish to study, whereas a control group does not. They should be identical in all other ways.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bevans, R. (2023, June 21). Guide to Experimental Design | Overview, 5 steps & Examples. Scribbr. Retrieved August 3, 2024, from https://www.scribbr.com/methodology/experimental-design/

Is this article helpful?

Rebecca Bevans

Rebecca Bevans

Other students also liked, random assignment in experiments | introduction & examples, quasi-experimental design | definition, types & examples, how to write a lab report, what is your plagiarism score.

Storyboard That

  • My Storyboards

Exploring the Art of Experimental Design: A Step-by-Step Guide for Students and Educators

Experimental design for students.

Experimental design is a key method used in subjects like biology, chemistry, physics, psychology, and social sciences. It helps us figure out how different factors affect what we're studying, whether it's plants, chemicals, physical laws, human behavior, or how society works. Basically, it's a way to set up experiments so we can test ideas, see what happens, and make sense of our results. It's super important for students and researchers who want to answer big questions in science and understand the world better. Experimental design skills can be applied in situations ranging from problem solving to data analysis; they are wide reaching and can frequently be applied outside the classroom. The teaching of these skills is a very important part of science education, but is often overlooked when focused on teaching the content. As science educators, we have all seen the benefits practical work has for student engagement and understanding. However, with the time constraints placed on the curriculum, the time needed for students to develop these experimental research design and investigative skills can get squeezed out. Too often they get a ‘recipe’ to follow, which doesn’t allow them to take ownership of their practical work. From a very young age, they start to think about the world around them. They ask questions then use observations and evidence to answer them. Students tend to have intelligent, interesting, and testable questions that they love to ask. As educators, we should be working towards encouraging these questions and in turn, nurturing this natural curiosity in the world around them.

Teaching the design of experiments and letting students develop their own questions and hypotheses takes time. These materials have been created to scaffold and structure the process to allow teachers to focus on improving the key ideas in experimental design. Allowing students to ask their own questions, write their own hypotheses, and plan and carry out their own investigations is a valuable experience for them. This will lead to students having more ownership of their work. When students carry out the experimental method for their own questions, they reflect on how scientists have historically come to understand how the universe works.

Experimental Design

Take a look at the printer-friendly pages and worksheet templates below!

What are the Steps of Experimental Design?

Embarking on the journey of scientific discovery begins with mastering experimental design steps. This foundational process is essential for formulating experiments that yield reliable and insightful results, guiding researchers and students alike through the detailed planning, experimental research design, and execution of their studies. By leveraging an experimental design template, participants can ensure the integrity and validity of their findings. Whether it's through designing a scientific experiment or engaging in experimental design activities, the aim is to foster a deep understanding of the fundamentals: How should experiments be designed? What are the 7 experimental design steps? How can you design your own experiment?

This is an exploration of the seven key experimental method steps, experimental design ideas, and ways to integrate design of experiments. Student projects can benefit greatly from supplemental worksheets and we will also provide resources such as worksheets aimed at teaching experimental design effectively. Let’s dive into the essential stages that underpin the process of designing an experiment, equipping learners with the tools to explore their scientific curiosity.

1. Question

This is a key part of the scientific method and the experimental design process. Students enjoy coming up with questions. Formulating questions is a deep and meaningful activity that can give students ownership over their work. A great way of getting students to think of how to visualize their research question is using a mind map storyboard.

Free Customizable Experimental Design in Science Questions Spider Map

Ask students to think of any questions they want to answer about the universe or get them to think about questions they have about a particular topic. All questions are good questions, but some are easier to test than others.

2. Hypothesis

A hypothesis is known as an educated guess. A hypothesis should be a statement that can be tested scientifically. At the end of the experiment, look back to see whether the conclusion supports the hypothesis or not.

Forming good hypotheses can be challenging for students to grasp. It is important to remember that the hypothesis is not a research question, it is a testable statement . One way of forming a hypothesis is to form it as an “if... then...” statement. This certainly isn't the only or best way to form a hypothesis, but can be a very easy formula for students to use when first starting out.

An “if... then...” statement requires students to identify the variables first, and that may change the order in which they complete the stages of the visual organizer. After identifying the dependent and independent variables, the hypothesis then takes the form if [change in independent variable], then [change in dependent variable].

For example, if an experiment were looking for the effect of caffeine on reaction time, the independent variable would be amount of caffeine and the dependent variable would be reaction time. The “if, then” hypothesis could be: If you increase the amount of caffeine taken, then the reaction time will decrease.

3. Explanation of Hypothesis

What led you to this hypothesis? What is the scientific background behind your hypothesis? Depending on age and ability, students use their prior knowledge to explain why they have chosen their hypotheses, or alternatively, research using books or the internet. This could also be a good time to discuss with students what a reliable source is.

For example, students may reference previous studies showing the alertness effects of caffeine to explain why they hypothesize caffeine intake will reduce reaction time.

4. Prediction

The prediction is slightly different to the hypothesis. A hypothesis is a testable statement, whereas the prediction is more specific to the experiment. In the discovery of the structure of DNA, the hypothesis proposed that DNA has a helical structure. The prediction was that the X-ray diffraction pattern of DNA would be an X shape.

Students should formulate a prediction that is a specific, measurable outcome based on their hypothesis. Rather than just stating "caffeine will decrease reaction time," students could predict that "drinking 2 cans of soda (90mg caffeine) will reduce average reaction time by 50 milliseconds compared to drinking no caffeine."

5. Identification of Variables

Below is an example of a Discussion Storyboard that can be used to get your students talking about variables in experimental design.

Experimental Design in Science Discussion Storyboard with Students

The three types of variables you will need to discuss with your students are dependent, independent, and controlled variables. To keep this simple, refer to these as "what you are going to measure", "what you are going to change", and "what you are going to keep the same". With more advanced students, you should encourage them to use the correct vocabulary.

Dependent variables are what is measured or observed by the scientist. These measurements will often be repeated because repeated measurements makes your data more reliable.

The independent variables are variables that scientists decide to change to see what effect it has on the dependent variable. Only one is chosen because it would be difficult to figure out which variable is causing any change you observe.

Controlled variables are quantities or factors that scientists want to remain the same throughout the experiment. They are controlled to remain constant, so as to not affect the dependent variable. Controlling these allows scientists to see how the independent variable affects the dependent variable within the experimental group.

Use this example below in your lessons, or delete the answers and set it as an activity for students to complete on Storyboard That.

How temperature affects the amount of sugar able to be dissolved in water
Independent VariableWater Temperature
(Range 5 different samples at 10°C, 20°C, 30°C, 40°C and 50°C)
Dependent VariableThe amount of sugar that can be dissolved in the water, measured in teaspoons.
Controlled Variables

Identifying Variables Storyboard with Pictures | Experimental Design Process St

6. Risk Assessment

Ultimately this must be signed off on by a responsible adult, but it is important to get students to think about how they will keep themselves safe. In this part, students should identify potential risks and then explain how they are going to minimize risk. An activity to help students develop these skills is to get them to identify and manage risks in different situations. Using the storyboard below, get students to complete the second column of the T-chart by saying, "What is risk?", then explaining how they could manage that risk. This storyboard could also be projected for a class discussion.

Risk Assessment Storyboard for Experimental Design in Science

7. Materials

In this section, students will list the materials they need for the experiments, including any safety equipment that they have highlighted as needing in the risk assessment section. This is a great time to talk to students about choosing tools that are suitable for the job. You are going to use a different tool to measure the width of a hair than to measure the width of a football field!

8. General Plan and Diagram

It is important to talk to students about reproducibility. They should write a procedure that would allow their experimental method to be reproduced easily by another scientist. The easiest and most concise way for students to do this is by making a numbered list of instructions. A useful activity here could be getting students to explain how to make a cup of tea or a sandwich. Act out the process, pointing out any steps they’ve missed.

For English Language Learners and students who struggle with written English, students can describe the steps in their experiment visually using Storyboard That.

Not every experiment will need a diagram, but some plans will be greatly improved by including one. Have students focus on producing clear and easy-to-understand diagrams that illustrate the experimental group.

For example, a procedure to test the effect of sunlight on plant growth utilizing completely randomized design could detail:

  • Select 10 similar seedlings of the same age and variety
  • Prepare 2 identical trays with the same soil mixture
  • Place 5 plants in each tray; label one set "sunlight" and one set "shade"
  • Position sunlight tray by a south-facing window, and shade tray in a dark closet
  • Water both trays with 50 mL water every 2 days
  • After 3 weeks, remove plants and measure heights in cm

9. Carry Out Experiment

Once their procedure is approved, students should carefully carry out their planned experiment, following their written instructions. As data is collected, students should organize the raw results in tables, graphs, photos or drawings. This creates clear documentation for analyzing trends.

Some best practices for data collection include:

  • Record quantitative data numerically with units
  • Note qualitative observations with detailed descriptions
  • Capture set up through illustrations or photos
  • Write observations of unexpected events
  • Identify data outliers and sources of error

For example, in the plant growth experiment, students could record:

GroupSunlightSunlightSunlightShadeShade
Plant ID12312
Start Height5 cm4 cm5 cm6 cm4 cm
End Height18 cm17 cm19 cm9 cm8 cm

They would also describe observations like leaf color change or directional bending visually or in writing.

It is crucial that students practice safe science procedures. Adult supervision is required for experimentation, along with proper risk assessment.

Well-documented data collection allows for deeper analysis after experiment completion to determine whether hypotheses and predictions were supported.

Completed Examples

Editable Scientific Investigation Design Example: Moldy Bread

Resources and Experimental Design Examples

Using visual organizers is an effective way to get your students working as scientists in the classroom.

There are many ways to use these investigation planning tools to scaffold and structure students' work while they are working as scientists. Students can complete the planning stage on Storyboard That using the text boxes and diagrams, or you could print them off and have students complete them by hand. Another great way to use them is to project the planning sheet onto an interactive whiteboard and work through how to complete the planning materials as a group. Project it onto a screen and have students write their answers on sticky notes and put their ideas in the correct section of the planning document.

Very young learners can still start to think as scientists! They have loads of questions about the world around them and you can start to make a note of these in a mind map. Sometimes you can even start to ‘investigate’ these questions through play.

The foundation resource is intended for elementary students or students who need more support. It is designed to follow exactly the same process as the higher resources, but made slightly easier. The key difference between the two resources are the details that students are required to think about and the technical vocabulary used. For example, it is important that students identify variables when they are designing their investigations. In the higher version, students not only have to identify the variables, but make other comments, such as how they are going to measure the dependent variable or utilizing completely randomized design. As well as the difference in scaffolding between the two levels of resources, you may want to further differentiate by how the learners are supported by teachers and assistants in the room.

Students could also be encouraged to make their experimental plan easier to understand by using graphics, and this could also be used to support ELLs.

Customizable Foundation Experimental Design Steps T Chart Template

Students need to be assessed on their science inquiry skills alongside the assessment of their knowledge. Not only will that let students focus on developing their skills, but will also allow them to use their assessment information in a way that will help them improve their science skills. Using Quick Rubric , you can create a quick and easy assessment framework and share it with students so they know how to succeed at every stage. As well as providing formative assessment which will drive learning, this can also be used to assess student work at the end of an investigation and set targets for when they next attempt to plan their own investigation. The rubrics have been written in a way to allow students to access them easily. This way they can be shared with students as they are working through the planning process so students know what a good experimental design looks like.

Proficient
13 Points
Emerging
7 Points
Beginning
0 Points
Proficient
11 Points
Emerging
5 Points
Beginning
0 Points

Printable Resources

Return to top

Print Ready Experimental Design Idea Sheet

Related Activities

Chemical Reactions Experiment Worksheet

Additional Worksheets

If you're looking to add additional projects or continue to customize worksheets, take a look at several template pages we've compiled for you below. Each worksheet can be copied and tailored to your projects or students! Students can also be encouraged to create their own if they want to try organizing information in an easy to understand way.

  • Lab Worksheets
  • Discussion Worksheets
  • Checklist Worksheets

Related Resources

  • Scientific Method Steps
  • Science Discussion Storyboards
  • Developing Critical Thinking Skills

How to Teach Students the Design of Experiments

Encourage questioning and curiosity.

Foster a culture of inquiry by encouraging students to ask questions about the world around them.

Formulate testable hypotheses

Teach students how to develop hypotheses that can be scientifically tested. Help them understand the difference between a hypothesis and a question.

Provide scientific background

Help students understand the scientific principles and concepts relevant to their hypotheses. Encourage them to draw on prior knowledge or conduct research to support their hypotheses.

Identify variables

Teach students about the three types of variables (dependent, independent, and controlled) and how they relate to experimental design. Emphasize the importance of controlling variables and measuring the dependent variable accurately.

Plan and diagram the experiment

Guide students in developing a clear and reproducible experimental procedure. Encourage them to create a step-by-step plan or use visual diagrams to illustrate the process.

Carry out the experiment and analyze data

Support students as they conduct the experiment according to their plan. Guide them in collecting data in a meaningful and organized manner. Assist them in analyzing the data and drawing conclusions based on their findings.

Frequently Asked Questions about Experimental Design for Students

What are some common experimental design tools and techniques that students can use.

Common experimental design tools and techniques that students can use include random assignment, control groups, blinding, replication, and statistical analysis. Students can also use observational studies, surveys, and experiments with natural or quasi-experimental designs. They can also use data visualization tools to analyze and present their results.

How can experimental design help students develop critical thinking skills?

Experimental design helps students develop critical thinking skills by encouraging them to think systematically and logically about scientific problems. It requires students to analyze data, identify patterns, and draw conclusions based on evidence. It also helps students to develop problem-solving skills by providing opportunities to design and conduct experiments to test hypotheses.

How can experimental design be used to address real-world problems?

Experimental design can be used to address real-world problems by identifying variables that contribute to a particular problem and testing interventions to see if they are effective in addressing the problem. For example, experimental design can be used to test the effectiveness of new medical treatments or to evaluate the impact of social interventions on reducing poverty or improving educational outcomes.

What are some common experimental design pitfalls that students should avoid?

Common experimental design pitfalls that students should avoid include failing to control variables, using biased samples, relying on anecdotal evidence, and failing to measure dependent variables accurately. Students should also be aware of ethical considerations when conducting experiments, such as obtaining informed consent and protecting the privacy of research subjects.

  • 353/365 ~ Second Fall #running #injury • Ray Bouknight • License Attribution (http://creativecommons.org/licenses/by/2.0/)
  • Always Writing • mrsdkrebs • License Attribution (http://creativecommons.org/licenses/by/2.0/)
  • Batteries • Razor512 • License Attribution (http://creativecommons.org/licenses/by/2.0/)
  • Bleed for It • zerojay • License Attribution (http://creativecommons.org/licenses/by/2.0/)
  • Bulbs • Roo Reynolds • License Attribution, Non Commercial (http://creativecommons.org/licenses/by-nc/2.0/)
  • Change • dominiccampbell • License Attribution (http://creativecommons.org/licenses/by/2.0/)
  • Children • Quang Minh (YILKA) • License Attribution, Non Commercial (http://creativecommons.org/licenses/by-nc/2.0/)
  • Danger • KatJaTo • License Attribution (http://creativecommons.org/licenses/by/2.0/)
  • draw • Asja. • License Attribution (http://creativecommons.org/licenses/by/2.0/)
  • Epic Fireworks Safety Goggles • EpicFireworks • License Attribution (http://creativecommons.org/licenses/by/2.0/)
  • GERMAN BUNSEN • jasonwoodhead23 • License Attribution (http://creativecommons.org/licenses/by/2.0/)
  • Heart Dissection • tjmwatson • License Attribution (http://creativecommons.org/licenses/by/2.0/)
  • ISST 2014 Munich • romanboed • License Attribution (http://creativecommons.org/licenses/by/2.0/)
  • Lightbulb! • Matthew Wynn • License Attribution (http://creativecommons.org/licenses/by/2.0/)
  • Mini magnifying glass • SkintDad.co.uk • License Attribution, Non Commercial (http://creativecommons.org/licenses/by-nc/2.0/)
  • Plants • henna lion • License Attribution, Non Commercial (http://creativecommons.org/licenses/by-nc/2.0/)
  • Plants • Graham S Dean Photography • License Attribution (http://creativecommons.org/licenses/by/2.0/)
  • Pré Treino.... São Carlos está foda com essa queimada toda #asma #athsma #ashmatt #asthma • .v1ctor Casale. • License Attribution (http://creativecommons.org/licenses/by/2.0/)
  • puzzle • olgaberrios • License Attribution (http://creativecommons.org/licenses/by/2.0/)
  • Puzzled • Brad Montgomery • License Attribution (http://creativecommons.org/licenses/by/2.0/)
  • Question Mark • ryanmilani • License Attribution (http://creativecommons.org/licenses/by/2.0/)
  • Radiator • Conal Gallagher • License Attribution (http://creativecommons.org/licenses/by/2.0/)
  • Red Tool Box • marinetank0 • License Attribution (http://creativecommons.org/licenses/by/2.0/)
  • Remote Control • Sean MacEntee • License Attribution (http://creativecommons.org/licenses/by/2.0/)
  • stopwatch • Search Engine People Blog • License Attribution (http://creativecommons.org/licenses/by/2.0/)
  • Thinking • Caramdir • License Attribution, Non Commercial (http://creativecommons.org/licenses/by-nc/2.0/)
  • Thumb Update: The hot-glue induced burn now has a purple blister. Purple is my favorite color. (September 26, 2012 at 04:16PM) • elisharene • License Attribution, Non Commercial (http://creativecommons.org/licenses/by-nc/2.0/)
  • Washing my Hands 2 • AlishaV • License Attribution (http://creativecommons.org/licenses/by/2.0/)
  • Windows • Stanley Zimny (Thank You for 18 Million views) • License Attribution, Non Commercial (http://creativecommons.org/licenses/by-nc/2.0/)
  • wire • Dyroc • License Attribution (http://creativecommons.org/licenses/by/2.0/)

Pricing for Schools & Districts

Limited Time

  • 10 Teachers for One Year
  • 2 Hours of Virtual PD

30 Day Money Back Guarantee • New Customers Only • Full Price After Introductory Offer

  • 30 Day Money Back Guarantee
  • New Customers Only
  • Full Price After Introductory Offer

Limited Time. New Customers Only

Back to school special!

Purchase orders must be received by 9/6/24.

30 Day Money Back Guarantee. New Customers Only. Full Price After Introductory Offer. Access is for 1 Calendar Year

Generating a Quote

This is usually pretty quick :)

Quote Sent!

Email Sent to

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • A Quick Guide to Experimental Design | 5 Steps & Examples

A Quick Guide to Experimental Design | 5 Steps & Examples

Published on 11 April 2022 by Rebecca Bevans . Revised on 5 December 2022.

Experiments are used to study causal relationships . You manipulate one or more independent variables and measure their effect on one or more dependent variables.

Experimental design means creating a set of procedures to systematically test a hypothesis . A good experimental design requires a strong understanding of the system you are studying. 

There are five key steps in designing an experiment:

  • Consider your variables and how they are related
  • Write a specific, testable hypothesis
  • Design experimental treatments to manipulate your independent variable
  • Assign subjects to groups, either between-subjects or within-subjects
  • Plan how you will measure your dependent variable

For valid conclusions, you also need to select a representative sample and control any  extraneous variables that might influence your results. If if random assignment of participants to control and treatment groups is impossible, unethical, or highly difficult, consider an observational study instead.

Table of contents

Step 1: define your variables, step 2: write your hypothesis, step 3: design your experimental treatments, step 4: assign your subjects to treatment groups, step 5: measure your dependent variable, frequently asked questions about experimental design.

You should begin with a specific research question . We will work with two research question examples, one from health sciences and one from ecology:

To translate your research question into an experimental hypothesis, you need to define the main variables and make predictions about how they are related.

Start by simply listing the independent and dependent variables .

Research question Independent variable Dependent variable
Phone use and sleep Minutes of phone use before sleep Hours of sleep per night
Temperature and soil respiration Air temperature just above the soil surface CO2 respired from soil

Then you need to think about possible extraneous and confounding variables and consider how you might control  them in your experiment.

Extraneous variable How to control
Phone use and sleep in sleep patterns among individuals. measure the average difference between sleep with phone use and sleep without phone use rather than the average amount of sleep per treatment group.
Temperature and soil respiration also affects respiration, and moisture can decrease with increasing temperature. monitor soil moisture and add water to make sure that soil moisture is consistent across all treatment plots.

Finally, you can put these variables together into a diagram. Use arrows to show the possible relationships between variables and include signs to show the expected direction of the relationships.

Diagram of the relationship between variables in a sleep experiment

Here we predict that increasing temperature will increase soil respiration and decrease soil moisture, while decreasing soil moisture will lead to decreased soil respiration.

Prevent plagiarism, run a free check.

Now that you have a strong conceptual understanding of the system you are studying, you should be able to write a specific, testable hypothesis that addresses your research question.

Null hypothesis (H ) Alternate hypothesis (H )
Phone use and sleep Phone use before sleep does not correlate with the amount of sleep a person gets. Increasing phone use before sleep leads to a decrease in sleep.
Temperature and soil respiration Air temperature does not correlate with soil respiration. Increased air temperature leads to increased soil respiration.

The next steps will describe how to design a controlled experiment . In a controlled experiment, you must be able to:

  • Systematically and precisely manipulate the independent variable(s).
  • Precisely measure the dependent variable(s).
  • Control any potential confounding variables.

If your study system doesn’t match these criteria, there are other types of research you can use to answer your research question.

How you manipulate the independent variable can affect the experiment’s external validity – that is, the extent to which the results can be generalised and applied to the broader world.

First, you may need to decide how widely to vary your independent variable.

  • just slightly above the natural range for your study region.
  • over a wider range of temperatures to mimic future warming.
  • over an extreme range that is beyond any possible natural variation.

Second, you may need to choose how finely to vary your independent variable. Sometimes this choice is made for you by your experimental system, but often you will need to decide, and this will affect how much you can infer from your results.

  • a categorical variable : either as binary (yes/no) or as levels of a factor (no phone use, low phone use, high phone use).
  • a continuous variable (minutes of phone use measured every night).

How you apply your experimental treatments to your test subjects is crucial for obtaining valid and reliable results.

First, you need to consider the study size : how many individuals will be included in the experiment? In general, the more subjects you include, the greater your experiment’s statistical power , which determines how much confidence you can have in your results.

Then you need to randomly assign your subjects to treatment groups . Each group receives a different level of the treatment (e.g. no phone use, low phone use, high phone use).

You should also include a control group , which receives no treatment. The control group tells us what would have happened to your test subjects without any experimental intervention.

When assigning your subjects to groups, there are two main choices you need to make:

  • A completely randomised design vs a randomised block design .
  • A between-subjects design vs a within-subjects design .

Randomisation

An experiment can be completely randomised or randomised within blocks (aka strata):

  • In a completely randomised design , every subject is assigned to a treatment group at random.
  • In a randomised block design (aka stratified random design), subjects are first grouped according to a characteristic they share, and then randomly assigned to treatments within those groups.
Completely randomised design Randomised block design
Phone use and sleep Subjects are all randomly assigned a level of phone use using a random number generator. Subjects are first grouped by age, and then phone use treatments are randomly assigned within these groups.
Temperature and soil respiration Warming treatments are assigned to soil plots at random by using a number generator to generate map coordinates within the study area. Soils are first grouped by average rainfall, and then treatment plots are randomly assigned within these groups.

Sometimes randomisation isn’t practical or ethical , so researchers create partially-random or even non-random designs. An experimental design where treatments aren’t randomly assigned is called a quasi-experimental design .

Between-subjects vs within-subjects

In a between-subjects design (also known as an independent measures design or classic ANOVA design), individuals receive only one of the possible levels of an experimental treatment.

In medical or social research, you might also use matched pairs within your between-subjects design to make sure that each treatment group contains the same variety of test subjects in the same proportions.

In a within-subjects design (also known as a repeated measures design), every individual receives each of the experimental treatments consecutively, and their responses to each treatment are measured.

Within-subjects or repeated measures can also refer to an experimental design where an effect emerges over time, and individual responses are measured over time in order to measure this effect as it emerges.

Counterbalancing (randomising or reversing the order of treatments among subjects) is often used in within-subjects designs to ensure that the order of treatment application doesn’t influence the results of the experiment.

Between-subjects (independent measures) design Within-subjects (repeated measures) design
Phone use and sleep Subjects are randomly assigned a level of phone use (none, low, or high) and follow that level of phone use throughout the experiment. Subjects are assigned consecutively to zero, low, and high levels of phone use throughout the experiment, and the order in which they follow these treatments is randomised.
Temperature and soil respiration Warming treatments are assigned to soil plots at random and the soils are kept at this temperature throughout the experiment. Every plot receives each warming treatment (1, 3, 5, 8, and 10C above ambient temperatures) consecutively over the course of the experiment, and the order in which they receive these treatments is randomised.

Finally, you need to decide how you’ll collect data on your dependent variable outcomes. You should aim for reliable and valid measurements that minimise bias or error.

Some variables, like temperature, can be objectively measured with scientific instruments. Others may need to be operationalised to turn them into measurable observations.

  • Ask participants to record what time they go to sleep and get up each day.
  • Ask participants to wear a sleep tracker.

How precisely you measure your dependent variable also affects the kinds of statistical analysis you can use on your data.

Experiments are always context-dependent, and a good experimental design will take into account all of the unique considerations of your study system to produce information that is both valid and relevant to your research question.

Experimental designs are a set of procedures that you plan in order to examine the relationship between variables that interest you.

To design a successful experiment, first identify:

  • A testable hypothesis
  • One or more independent variables that you will manipulate
  • One or more dependent variables that you will measure

When designing the experiment, first decide:

  • How your variable(s) will be manipulated
  • How you will control for any potential confounding or lurking variables
  • How many subjects you will include
  • How you will assign treatments to your subjects

The key difference between observational studies and experiments is that, done correctly, an observational study will never influence the responses or behaviours of participants. Experimental designs will have a treatment condition applied to at least a portion of participants.

A confounding variable , also called a confounder or confounding factor, is a third variable in a study examining a potential cause-and-effect relationship.

A confounding variable is related to both the supposed cause and the supposed effect of the study. It can be difficult to separate the true effect of the independent variable from the effect of the confounding variable.

In your research design , it’s important to identify potential confounding variables and plan how you will reduce their impact.

In a between-subjects design , every participant experiences only one condition, and researchers assess group differences between participants in various conditions.

In a within-subjects design , each participant experiences all conditions, and researchers test the same participants repeatedly for differences between conditions.

The word ‘between’ means that you’re comparing different conditions between groups, while the word ‘within’ means you’re comparing different conditions within the same group.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Bevans, R. (2022, December 05). A Quick Guide to Experimental Design | 5 Steps & Examples. Scribbr. Retrieved 30 July 2024, from https://www.scribbr.co.uk/research-methods/guide-to-experimental-design/

Is this article helpful?

Rebecca Bevans

Rebecca Bevans

Critical Thinking in Science

Author: Daniell DiFrancesca
Level: Middle School
Content Area: General Science

Part 1: Introduction to Experimental Design

  • Part 2: The Story of Pi
  • Part 3: Experimenting with pH
  • Part 4: Water Quality
  • Part 5: Change Over Time
  • Part 6: Cells
  • Part 7: Microbiology and Infectious Disease
  • About the Author

experimental design examples worksheet

Introduction:

Students will learn and implement experimental design vocabulary while practicing their critical thinking skills in an inquiry based experiment. This lesson is written using the 5E Learning Model.

Learning Outcomes:

  • Students will define and apply the experimental design vocabulary.
  • Students will use the experimental design graphic organizer to plan an investigation.
  • Students will design and complete their own scientific experiment.

Curriculum Alignment:


1.01 Identify and create questions and hypotheses that can be answered through scientific investigations.

1.02 Develop appropriate experimental procedures for:

  • Given questions.
  • Student generated questions.

1.04 Analyze variables in scientific investigations:

  • Identify dependent and independent.
  • Use of a control.
  • Manipulate.
  • Describe relationships between.
  • Define operationally.

1.05 Analyze evidence to:

  • Explain observations.
  • Make inferences and predictions.
  • Develop the relationship between evidence and explanation.

1.06 Use mathematics to gather, organize, and present quantitative data resulting from scientific investigations:

  • Measurement.
  • Analysis of data.
  • Prediction models.

1.08 Use oral and written language to:

  • Communicate findings.
  • Defend conclusions of scientific investigations.
  • Describe strengths and weaknesses of claims, arguments, and/or data

Classroom Time Required:

Approximately 6 class periods (~50 minutes each) are needed, however, some things can be assigned as homework to decrease the time spent in class.

Materials Needed:

  • Overhead transparency of Experimental Design Graphic Organizer
  • Student copies of: Experimental Design Graphic Organizer, Vocabulary Graphic Organizer, Explore worksheet, Explain worksheet
  • Supplies for experiment: Dixie drinking cups, Pepsi and Coke (~1.5 to 2 ounces per student) Possibly ice to keep soda cold
  • Copies of worksheet, Overhead, Small drinking cups (2 per student), Pepsi and Coke
  • Dictionaries or definition sheets for the vocabulary words

Technology Resources:

  • Overhead Projector

Pre-Activities/ Activities:

  • What are the “rules” for designing an experiment?
  • Teacher and class will discuss the following questions:
  • Is there a specific way to design an experiment? (Try to get them to mention the scientific method and discuss any “holes” in this.
  • Are their rules scientists follow when designing an experiment?
  • Are all experiments designed the same?
  • What kinds of experiments have you done on your own? (Good things to discuss are cooking, testing sports techniques, trying to fix things, etc….. Try to relate experimentation to their everyday life.)
  • Review an experiment and answer questions.
  • Students will read a description of an experiment and answer questions about the design of the experiment without using the vocabulary. (See Worksheet 1)
  • Vocabulary introduction and application
  • Students will define the experimental design vocabulary using the graphic organizer (See Worksheet 2).
  • Independent variable, Dependent variable, Control, Constant, Hypothesis, Qualitative observation, Quantitative observation, Inference (Definitions available)
  • Students will review the worksheet from the explore section and match the vocabulary to the pieces of the experiment. Review answers with the class.
  • Students will read a second experiment description and identify the pieces of the experiment using their vocabulary definitions (See Worksheet 3).
  • Introduce Experimental Design Graphic Organizer (EDGO) and complete class designed experiment.
  • The teacher should review the EXAMPLE PEPSI VS COKE EDGO for any ideas or questions
  • Use overhead projector to review the blank EDGO and complete as a class (See Worksheet 4)
  • Tell the class that you are going to do the Pepsi Coke Challenge. The question they need to answer is: Can girls taste the difference between Pepsi and Coke better than the boys?
  • As a class, plan the Pepsi verses Coke experiment. This is a good time to discuss double blind studies and why it is important to make this a double blind study. Students can look at the results within their own class as well as the whole team.
  • This is a good chance to also test multiple variables. You do not need to let students know this, but if the data chart also records things like age, frequency of drinking soda (daily, weekly, monthly, rarely), ability to roll tongue, or anything else they think might be interested in, the results can be analyzed for each variable.
  • I removed labels from the bottles and labeled them A and B. I used a different labeling system for under the cups so the students did not see a pattern (numbered cups were Pepsi, lettered cups were Coke).
  • I recorded the data and organized the tasting while students completed other work in their seats. Two students at a time tasted the soda and I recorded data. You could also have a volunteer who is not participating help with this.
  • Check for students who do not want to drink soda as well as any dietary needs such as diet soda.
  • Do not verify guesses until all of the classes have completed the experiment.
  • How can you accurately remember the pieces of an experiment?
  • Write a poem about four of the vocabulary words.
  • Write a song about four of the vocabulary words.
  • Create a memorization tool for four of the vocabulary words.
  • Make a poster about four of the vocabulary words.

Teachers should evaluate these choices to ensure they show an understanding of the vocabulary.

Assessment:

See Evaluate piece of Activities Section.

Modifications:

  • A different experiment can be designed in the Elaborate section.
  • EDGO can be edited for any motor skill deficiencies by making it larger, or making it available to be typed on.
  • All basic modifications can be used for these activities.

Alternative Assessments:

  • Make necessary adjustments for different experiments.

Critical Vocabulary

  • Independent Variable- the part of the experiment that is controlled or changed by the experimenter
  • Dependent Variable- the part of the experiment that is observed or measured to gather data; changes because of the independent variable
  • Control- standard of comparison in the experiment; level of the independent variable that is left in the natural state, unchanged
  • Constant- part of the experiment that is kept the same to avoid affecting the independent variable
  • Hypothesis- educated guess or prediction about the experimental results
  • Qualitative observation- word observations such as color or texture
  • Quantitative observation- number observations or measurements
  • Inference- attempt to explain the observations

This is the first lesson in the Critical Thinking in Science Unit. The other lessons continue using the vocabulary and Experimental Design Graphic Organizer while teaching the 8th grade content. Students are designing their own experiments to improve their ability to approach problems and questions scientifically. By developing their ability to reason through problems they are becoming critical thinkers.

Supplemental Files: 

application/pdf icon

Address: Campus Box 7006. Raleigh, NC 27695 Telephone: 919.515.5118 Fax: 919.515.5831 E-Mail: [email protected]

Powered by Drupal, an open source content management system

  • Rating Count
  • Price (Ascending)
  • Price (Descending)
  • Most Recent

Experimental design worksheets

Resource type.

Preview of Scientific Method Worksheets with Experimental Design Data Analysis and Graphing

Scientific Method Worksheets with Experimental Design Data Analysis and Graphing

experimental design examples worksheet

Experimental Design - Color by Number - Fun Worksheet

experimental design examples worksheet

Experimental Design Worksheet Independent Dependent Variables Controls (Crabs)

Preview of Experimental Design & Parts of an Experiment Worksheet with Reading and Review

Experimental Design & Parts of an Experiment Worksheet with Reading and Review

experimental design examples worksheet

Experimental Design Worksheet

experimental design examples worksheet

Experimental Design Worksheet Independent Dependent Variables Controls (Slugs)

Preview of Experimental Design Worksheet BUNDLE Independent Dependent Variables Controls

Experimental Design Worksheet BUNDLE Independent Dependent Variables Controls

Preview of Parts of the Scientific Method Worksheet with Experimental Design

Parts of the Scientific Method Worksheet with Experimental Design

experimental design examples worksheet

AP Biology worksheet SPs 1-4 | Models, Experimental Design , Graphing | with key

experimental design examples worksheet

Design Your Own Experiment. Guided Workbook/ Worksheets on Experimental Design

experimental design examples worksheet

Experimental Design Unit Bundle (8 worksheets that INCREASE PERFORMANCE!)

experimental design examples worksheet

Experimental Design , Assessing Reliable Sources WebQuest Student Worksheet

Preview of Bio: Experimental Design Worksheet

Bio: Experimental Design Worksheet

experimental design examples worksheet

Bio: Enzyme Experimental Design Worksheet

Preview of Experimental Design Multiple Choice Worksheet | Editable with Answer Key

Experimental Design Multiple Choice Worksheet | Editable with Answer Key

experimental design examples worksheet

Data Collection and Experimental Design - Introduction to Statistics Worksheet

experimental design examples worksheet

Experimental Design Worksheet Independent Dependent Variables Controls (Germs)

Preview of Experimental Design Worksheet #2

Experimental Design Worksheet #2

Preview of AP Statistics Design Unit: Experimental Design Worksheet #1

AP Statistics Design Unit: Experimental Design Worksheet #1

experimental design examples worksheet

AP Statistics Design Unit Experimental Design Worksheet #2

Preview of Experimental Design Worksheet

  • We're hiring
  • Help & FAQ
  • Privacy policy
  • Student privacy
  • Terms of service
  • Tell us what you think

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

To log in and use all the features of Khan Academy, please enable JavaScript in your browser.

Biology archive

Course: biology archive   >   unit 1.

  • The scientific method
  • Controlled experiments

The scientific method and experimental design

experimental design examples worksheet

  • (Choice A)   The facts collected from an experiment are written in the form of a hypothesis. A The facts collected from an experiment are written in the form of a hypothesis.
  • (Choice B)   A hypothesis is the correct answer to a scientific question. B A hypothesis is the correct answer to a scientific question.
  • (Choice C)   A hypothesis is a possible, testable explanation for a scientific question. C A hypothesis is a possible, testable explanation for a scientific question.
  • (Choice D)   A hypothesis is the process of making careful observations. D A hypothesis is the process of making careful observations.

turtle

The Biology Corner

Biology Teaching Resources

two turtles

Experimental Design

cheatsheet

Students in most science classes start with an overview of scientific processes. For advanced students, I use this cheat sheet to remind them of the major features of the scientific method, such as a control group, dependent and independent variables .

AP Bio students are also introduced to the concept of the null and alternative hypotheses as well as how to statistically analyze data. Though this was made for AP Biology, you could make a copy of it (google docs) and then edit it to work other groups.

This guide can be used with introductory lessons like “ The Fortune Telling Fish ” where students can be asked to describe each feature of the design they used to determine what was causing the fish’s movements.

My anatomy and physiology classes and AP Bio classes do an investigation where they determine trends of lung capacity and physical features like height and sex.

This guide also clearly describes the difference between a hypothesis and a prediction. Many biology books describe them as being the same thing, but they are not. “ Teaching the Hypothesis ” is a great article on why the difference matters.

Shannan Muskopf

IMAGES

  1. Experimental Design Practice Worksheet

    experimental design examples worksheet

  2. Experimental Design Worksheet

    experimental design examples worksheet

  3. Experimental Design Worksheet Scientific Method

    experimental design examples worksheet

  4. Experimental Design Worksheet Answers

    experimental design examples worksheet

  5. Experimental Design Worksheet by Elizabeth Nichols

    experimental design examples worksheet

  6. Experimental Design Worksheet by Erica Seidell

    experimental design examples worksheet

VIDEO

  1. Examples worksheet 2 //Ch 3 //Class 7 DAV school

  2. Lec-1: Introduction to experimental design

  3. Experimental Design Examples M1-05b

  4. Example on One Way Anova#ModelQuestionPaper 22scheme#BMATCS301

  5. Egg Vs 10000 Matchstick||Egg Experiment #shorts#eggpoach#viral#trending#eggvsmatch

  6. Optimizing the Experimental Procedures

COMMENTS

  1. PDF Scientific Method Worksheet

    an observation. A good scientist will design a controlled experiment to test their hypothesis. In a controlled experiment, only one variable is tested at a time. It is called the manipulated or independent variable. The experimental group will test the independent variable. The control group will be left alone, so you have something

  2. Guide to Experimental Design

    Table of contents. Step 1: Define your variables. Step 2: Write your hypothesis. Step 3: Design your experimental treatments. Step 4: Assign your subjects to treatment groups. Step 5: Measure your dependent variable. Other interesting articles. Frequently asked questions about experiments.

  3. PDF Experimental Design Worksheet

    Practice: Write a hypothesis for each of the statements and identify the variables, control group, and experimental group. 1. Cigarette smoking increases the risk of lung cancer. Hypothesis: If If you smoke cigarettes_, then _your chances of getting cancer increases_.

  4. DOC Experimental Design Worksheet

    EXPERIMENTAL DESIGN. Directions. : Read the following experiments and fill in the blanks that follow. For 3 and 4 answers, there is not a control group listed in the example. 1. A study was created to test the effects of jazz on people's sleep patterns.

  5. Experimental Design Steps & Activities

    This is an exploration of the seven key experimental method steps, experimental design ideas, and ways to integrate design of experiments. Student projects can benefit greatly from supplemental worksheets and we will also provide resources such as worksheets aimed at teaching experimental design effectively.

  6. PDF Principles of Experimental Design

    Identify the experimental units, response variable, factor(s), levels of each factor and treatments in this example. 3.4. Problem. Suppose that the wine producer from the previous problem is interested in statistically comparing the e ects of the treatments we identi ed in the previous problem. Design a completely randomized design for this ...

  7. PDF Experimental Design Worksheet

    Step 1: Identify Problem. Write the problem you are investigating in the form of question. Step 2: Write a Hypothesis. Remember, a hypothesis is a proposed outcome or answer to your scientific problem. Write your group's hypothesis for your experiment. A common way of stating the hypothesis is in the form of an "If , then AND because ...

  8. A Quick Guide to Experimental Design

    Step 1: Define your variables. You should begin with a specific research question. We will work with two research question examples, one from health sciences and one from ecology: Example question 1: Phone use and sleep. You want to know how phone use before bedtime affects sleep patterns.

  9. PDF Experimental Design Worksheet

    Experimental Design Worksheet Question What is the research question? What outcome construct(s) is/are being examined? ... Design What is the experimental design? (Number of conditions, factorial design, control group, etc.) Data Collection When, where, and how are data collected? What is the unit of analysis?

  10. Part 1: Introduction to Experimental Design

    Introduce Experimental Design Graphic Organizer (EDGO) and complete class designed experiment. The teacher should review the EXAMPLE PEPSI VS COKE EDGO for any ideas or questions Use overhead projector to review the blank EDGO and complete as a class (See Worksheet 4) Tell the class that you are going to do the Pepsi Coke Challenge.

  11. PDF Experimental Design-Using the Scientific Method Experimental Design

    1. Go over the Experimental Design PowerPoint. Students can complete the guided notes PPT outline or hand write the notes into their notebooks. 2. When students have completed the notes they can practice applying the vocabulary terms using the experimental design scenarios worksheet. Day 3 1. Complete the 3-hole bottle activity. 2.

  12. PDF Microsoft Word

    Part II: For each of the statements identify the variables, control group, and experimental group. In the experimental group, make sure to identify the constants. 1. Eating breakfast increases performance in school. Independent Variable: Dependent Variable: Control Group: Experimental Group w/ Constants: 2. Salt in soil affects plant growth.

  13. Experimental Design Worksheets Teaching Resources

    The first worksheets help students brainstorm and form their hypothesis. The experimental design sheets help students design their experiment: test group and control group. The data collection sheets help students organize the quantitative and qualitative data they gather. These worksheets will work will all sciences.

  14. PDF Design Your Own Experiment!

    YOUR TASK: Design an experiment that you can complete with items found in your house. Start with a simple question that you can run some tests to try to figure out. See below for some examples. Then you will complete the following worksheet (or answer the questions on a separate sheet of paper) outlining your experiment and discussing your results.

  15. PDF Experimental Design Tests & Tips

    Experimental Design Tests & Tips This guide is intended to help first-time Experimental Design competitors succeed at the event. It contains a list of helpful tips, along with 5 sample prompts with 5 sample experiments each. I would encourage new competitors to look at the lists of materials and attempt to brainstorm

  16. PDF SOnerd's Experimental Design Tips, Tests, and Sample Write-Up Created

    SOnerd's SSSS Experimental Design | Page 4 Test 1 (including sample write-up) Topic: Oil Spill Cleanup Background: With the increase of petroleum exploitation in the ocean, oil spills ("The leakage of petroleum onto the surface of a large body of water" (Source: Encyclopedia Britannica)) are becoming a growing problem.

  17. PDF Design an experiment worksheet

    Design an Experiment Worksheet. Directions: Working with your group create a hypothesis, design your experimental set-up, and identify the different groups in the experiment. Then share your work with your mixed group. 1. You are a doctor working at Kaiser. You want to test a new drug for cancer patients who are being treated in your hospital.

  18. The scientific method and experimental design

    A. The facts collected from an experiment are written in the form of a hypothesis. A hypothesis is the correct answer to a scientific question. B. A hypothesis is the correct answer to a scientific question. A hypothesis is a possible, testable explanation for a scientific question. C.

  19. Experimental Design

    Experimental Design. Students in most science classes start with an overview of scientific processes. For advanced students, I use this cheat sheet to remind them of the major features of the scientific method, such as a control group, dependent and independent variables. AP Bio students are also introduced to the concept of the null and ...

  20. Experimental design examples worksheet

    EXPERIMENTAL DESIGN Directions: Read the following experiments and fill in the blanks that follow. For 3 and 4 answers, there is not a control group listed in the example. A study was created to test the effects of jazz on people's sleep patterns.