- Skip to main content
- Skip to primary sidebar
- Skip to footer
- QuestionPro
- Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case AskWhy Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
- Resources Blog eBooks Survey Templates Case Studies Training Help center
Home Market Research
Data Analysis in Research: Types & Methods
What is data analysis in research?
Definition of research in data analysis: According to LeCompte and Schensul, research data analysis is a process used by researchers to reduce data to a story and interpret it to derive insights. The data analysis process helps reduce a large chunk of data into smaller fragments, which makes sense.
Three essential things occur during the data analysis process — the first is data organization . Summarization and categorization together contribute to becoming the second known method used for data reduction. It helps find patterns and themes in the data for easy identification and linking. The third and last way is data analysis – researchers do it in both top-down and bottom-up fashion.
On the other hand, Marshall and Rossman describe data analysis as a messy, ambiguous, and time-consuming but creative and fascinating process through which a mass of collected data is brought to order, structure and meaning.
We can say that “the data analysis and data interpretation is a process representing the application of deductive and inductive logic to the research and data analysis.”
Why analyze data in research?
Researchers rely heavily on data as they have a story to tell or research problems to solve. It starts with a question, and data is nothing but an answer to that question. But, what if there is no question to ask? Well! It is possible to explore data even without a problem – we call it ‘Data Mining’, which often reveals some interesting patterns within the data that are worth exploring.
Irrelevant to the type of data researchers explore, their mission and audiences’ vision guide them to find the patterns to shape the story they want to tell. One of the essential things expected from researchers while analyzing data is to stay open and remain unbiased toward unexpected patterns, expressions, and results. Remember, sometimes, data analysis tells the most unforeseen yet exciting stories that were not expected when initiating data analysis. Therefore, rely on the data you have at hand and enjoy the journey of exploratory research.
Create a Free Account
Types of data in research
Every kind of data has a rare quality of describing things after assigning a specific value to it. For analysis, you need to organize these values, processed and presented in a given context, to make it useful. Data can be in different forms; here are the primary data types.
- Qualitative data: When the data presented has words and descriptions, then we call it qualitative data . Although you can observe this data, it is subjective and harder to analyze data in research, especially for comparison. Example: Quality data represents everything describing taste, experience, texture, or an opinion that is considered quality data. This type of data is usually collected through focus groups, personal qualitative interviews , qualitative observation or using open-ended questions in surveys.
- Quantitative data: Any data expressed in numbers of numerical figures are called quantitative data . This type of data can be distinguished into categories, grouped, measured, calculated, or ranked. Example: questions such as age, rank, cost, length, weight, scores, etc. everything comes under this type of data. You can present such data in graphical format, charts, or apply statistical analysis methods to this data. The (Outcomes Measurement Systems) OMS questionnaires in surveys are a significant source of collecting numeric data.
- Categorical data : It is data presented in groups. However, an item included in the categorical data cannot belong to more than one group. Example: A person responding to a survey by telling his living style, marital status, smoking habit, or drinking habit comes under the categorical data. A chi-square test is a standard method used to analyze this data.
Learn More : Examples of Qualitative Data in Education
Data analysis in qualitative research
Data analysis and qualitative data research work a little differently from the numerical data as the quality data is made up of words, descriptions, images, objects, and sometimes symbols. Getting insight from such complicated information is a complicated process. Hence it is typically used for exploratory research and data analysis .
Finding patterns in the qualitative data
Although there are several ways to find patterns in the textual information, a word-based method is the most relied and widely used global technique for research and data analysis. Notably, the data analysis process in qualitative research is manual. Here the researchers usually read the available data and find repetitive or commonly used words.
For example, while studying data collected from African countries to understand the most pressing issues people face, researchers might find “food” and “hunger” are the most commonly used words and will highlight them for further analysis.
The keyword context is another widely used word-based technique. In this method, the researcher tries to understand the concept by analyzing the context in which the participants use a particular keyword.
For example , researchers conducting research and data analysis for studying the concept of ‘diabetes’ amongst respondents might analyze the context of when and how the respondent has used or referred to the word ‘diabetes.’
The scrutiny-based technique is also one of the highly recommended text analysis methods used to identify a quality data pattern. Compare and contrast is the widely used method under this technique to differentiate how a specific text is similar or different from each other.
For example: To find out the “importance of resident doctor in a company,” the collected data is divided into people who think it is necessary to hire a resident doctor and those who think it is unnecessary. Compare and contrast is the best method that can be used to analyze the polls having single-answer questions types .
Metaphors can be used to reduce the data pile and find patterns in it so that it becomes easier to connect data with theory.
Variable Partitioning is another technique used to split variables so that researchers can find more coherent descriptions and explanations from the enormous data.
Methods used for data analysis in qualitative research
There are several techniques to analyze the data in qualitative research, but here are some commonly used methods,
- Content Analysis: It is widely accepted and the most frequently employed technique for data analysis in research methodology. It can be used to analyze the documented information from text, images, and sometimes from the physical items. It depends on the research questions to predict when and where to use this method.
- Narrative Analysis: This method is used to analyze content gathered from various sources such as personal interviews, field observation, and surveys . The majority of times, stories, or opinions shared by people are focused on finding answers to the research questions.
- Discourse Analysis: Similar to narrative analysis, discourse analysis is used to analyze the interactions with people. Nevertheless, this particular method considers the social context under which or within which the communication between the researcher and respondent takes place. In addition to that, discourse analysis also focuses on the lifestyle and day-to-day environment while deriving any conclusion.
- Grounded Theory: When you want to explain why a particular phenomenon happened, then using grounded theory for analyzing quality data is the best resort. Grounded theory is applied to study data about the host of similar cases occurring in different settings. When researchers are using this method, they might alter explanations or produce new ones until they arrive at some conclusion.
Choosing the right software can be tough. Whether you’re a researcher, business leader, or marketer, check out the top 10 qualitative data analysis software for analyzing qualitative data.
Data analysis in quantitative research
Preparing data for analysis.
The first stage in research and data analysis is to make it for the analysis so that the nominal data can be converted into something meaningful. Data preparation consists of the below phases.
Phase I: Data Validation
Data validation is done to understand if the collected data sample is per the pre-set standards, or it is a biased data sample again divided into four different stages
- Fraud: To ensure an actual human being records each response to the survey or the questionnaire
- Screening: To make sure each participant or respondent is selected or chosen in compliance with the research criteria
- Procedure: To ensure ethical standards were maintained while collecting the data sample
- Completeness: To ensure that the respondent has answered all the questions in an online survey. Else, the interviewer had asked all the questions devised in the questionnaire.
Phase II: Data Editing
More often, an extensive research data sample comes loaded with errors. Respondents sometimes fill in some fields incorrectly or sometimes skip them accidentally. Data editing is a process wherein the researchers have to confirm that the provided data is free of such errors. They need to conduct necessary checks and outlier checks to edit the raw edit and make it ready for analysis.
Phase III: Data Coding
Out of all three, this is the most critical phase of data preparation associated with grouping and assigning values to the survey responses . If a survey is completed with a 1000 sample size, the researcher will create an age bracket to distinguish the respondents based on their age. Thus, it becomes easier to analyze small data buckets rather than deal with the massive data pile.
LEARN ABOUT: Steps in Qualitative Research
Methods used for data analysis in quantitative research
After the data is prepared for analysis, researchers are open to using different research and data analysis methods to derive meaningful insights. For sure, statistical analysis plans are the most favored to analyze numerical data. In statistical analysis, distinguishing between categorical data and numerical data is essential, as categorical data involves distinct categories or labels, while numerical data consists of measurable quantities. The method is again classified into two groups. First, ‘Descriptive Statistics’ used to describe data. Second, ‘Inferential statistics’ that helps in comparing the data .
Descriptive statistics
This method is used to describe the basic features of versatile types of data in research. It presents the data in such a meaningful way that pattern in the data starts making sense. Nevertheless, the descriptive analysis does not go beyond making conclusions. The conclusions are again based on the hypothesis researchers have formulated so far. Here are a few major types of descriptive analysis methods.
Measures of Frequency
- Count, Percent, Frequency
- It is used to denote home often a particular event occurs.
- Researchers use it when they want to showcase how often a response is given.
Measures of Central Tendency
- Mean, Median, Mode
- The method is widely used to demonstrate distribution by various points.
- Researchers use this method when they want to showcase the most commonly or averagely indicated response.
Measures of Dispersion or Variation
- Range, Variance, Standard deviation
- Here the field equals high/low points.
- Variance standard deviation = difference between the observed score and mean
- It is used to identify the spread of scores by stating intervals.
- Researchers use this method to showcase data spread out. It helps them identify the depth until which the data is spread out that it directly affects the mean.
Measures of Position
- Percentile ranks, Quartile ranks
- It relies on standardized scores helping researchers to identify the relationship between different scores.
- It is often used when researchers want to compare scores with the average count.
For quantitative research use of descriptive analysis often give absolute numbers, but the in-depth analysis is never sufficient to demonstrate the rationale behind those numbers. Nevertheless, it is necessary to think of the best method for research and data analysis suiting your survey questionnaire and what story researchers want to tell. For example, the mean is the best way to demonstrate the students’ average scores in schools. It is better to rely on the descriptive statistics when the researchers intend to keep the research or outcome limited to the provided sample without generalizing it. For example, when you want to compare average voting done in two different cities, differential statistics are enough.
Descriptive analysis is also called a ‘univariate analysis’ since it is commonly used to analyze a single variable.
Inferential statistics
Inferential statistics are used to make predictions about a larger population after research and data analysis of the representing population’s collected sample. For example, you can ask some odd 100 audiences at a movie theater if they like the movie they are watching. Researchers then use inferential statistics on the collected sample to reason that about 80-90% of people like the movie.
Here are two significant areas of inferential statistics.
- Estimating parameters: It takes statistics from the sample research data and demonstrates something about the population parameter.
- Hypothesis test: I t’s about sampling research data to answer the survey research questions. For example, researchers might be interested to understand if the new shade of lipstick recently launched is good or not, or if the multivitamin capsules help children to perform better at games.
These are sophisticated analysis methods used to showcase the relationship between different variables instead of describing a single variable. It is often used when researchers want something beyond absolute numbers to understand the relationship between variables.
Here are some of the commonly used methods for data analysis in research.
- Correlation: When researchers are not conducting experimental research or quasi-experimental research wherein the researchers are interested to understand the relationship between two or more variables, they opt for correlational research methods.
- Cross-tabulation: Also called contingency tables, cross-tabulation is used to analyze the relationship between multiple variables. Suppose provided data has age and gender categories presented in rows and columns. A two-dimensional cross-tabulation helps for seamless data analysis and research by showing the number of males and females in each age category.
- Regression analysis: For understanding the strong relationship between two variables, researchers do not look beyond the primary and commonly used regression analysis method, which is also a type of predictive analysis used. In this method, you have an essential factor called the dependent variable. You also have multiple independent variables in regression analysis. You undertake efforts to find out the impact of independent variables on the dependent variable. The values of both independent and dependent variables are assumed as being ascertained in an error-free random manner.
- Frequency tables: The statistical procedure is used for testing the degree to which two or more vary or differ in an experiment. A considerable degree of variation means research findings were significant. In many contexts, ANOVA testing and variance analysis are similar.
- Analysis of variance: The statistical procedure is used for testing the degree to which two or more vary or differ in an experiment. A considerable degree of variation means research findings were significant. In many contexts, ANOVA testing and variance analysis are similar.
Considerations in research data analysis
- Researchers must have the necessary research skills to analyze and manipulation the data , Getting trained to demonstrate a high standard of research practice. Ideally, researchers must possess more than a basic understanding of the rationale of selecting one statistical method over the other to obtain better data insights.
- Usually, research and data analytics projects differ by scientific discipline; therefore, getting statistical advice at the beginning of analysis helps design a survey questionnaire, select data collection methods , and choose samples.
LEARN ABOUT: Best Data Collection Tools
- The primary aim of data research and analysis is to derive ultimate insights that are unbiased. Any mistake in or keeping a biased mind to collect data, selecting an analysis method, or choosing audience sample il to draw a biased inference.
- Irrelevant to the sophistication used in research data and analysis is enough to rectify the poorly defined objective outcome measurements. It does not matter if the design is at fault or intentions are not clear, but lack of clarity might mislead readers, so avoid the practice.
- The motive behind data analysis in research is to present accurate and reliable data. As far as possible, avoid statistical errors, and find a way to deal with everyday challenges like outliers, missing data, data altering, data mining , or developing graphical representation.
LEARN MORE: Descriptive Research vs Correlational Research The sheer amount of data generated daily is frightening. Especially when data analysis has taken center stage. in 2018. In last year, the total data supply amounted to 2.8 trillion gigabytes. Hence, it is clear that the enterprises willing to survive in the hypercompetitive world must possess an excellent capability to analyze complex research data, derive actionable insights, and adapt to the new market needs.
LEARN ABOUT: Average Order Value
QuestionPro is an online survey platform that empowers organizations in data analysis and research and provides them a medium to collect data by creating appealing surveys.
MORE LIKE THIS
Are You Doing Too Good A Job? — Tuesday CX Thoughts
Nov 26, 2024
Qualtrics Employee Experience Alternatives: The 6 Best in 2024
Nov 19, 2024
Reputation Management: How to Protect Your Brand Reputation?
Reference Bias: Identifying and Reducing in Surveys and Research
Other categories.
- Academic Research
- Artificial Intelligence
- Assessments
- Brand Awareness
- Case Studies
- Communities
- Consumer Insights
- Customer effort score
- Customer Engagement
- Customer Experience
- Customer Loyalty
- Customer Research
- Customer Satisfaction
- Employee Benefits
- Employee Engagement
- Employee Retention
- Friday Five
- General Data Protection Regulation
- Insights Hub
- Life@QuestionPro
- Market Research
- Mobile diaries
- Mobile Surveys
- New Features
- Online Communities
- Question Types
- Questionnaire
- QuestionPro Products
- Release Notes
- Research Tools and Apps
- Revenue at Risk
- Survey Templates
- Training Tips
- Tuesday CX Thoughts (TCXT)
- Uncategorized
- What’s Coming Up
- Workforce Intelligence
Data & Finance for Work & Life
Data Analysis: Types, Methods & Techniques (a Complete List)
( Updated Version )
While the term sounds intimidating, “data analysis” is nothing more than making sense of information in a table. It consists of filtering, sorting, grouping, and manipulating data tables with basic algebra and statistics.
In fact, you don’t need experience to understand the basics. You have already worked with data extensively in your life, and “analysis” is nothing more than a fancy word for good sense and basic logic.
Over time, people have intuitively categorized the best logical practices for treating data. These categories are what we call today types , methods , and techniques .
This article provides a comprehensive list of types, methods, and techniques, and explains the difference between them.
For a practical intro to data analysis (including types, methods, & techniques), check out our Intro to Data Analysis eBook for free.
Descriptive, Diagnostic, Predictive, & Prescriptive Analysis
If you Google “types of data analysis,” the first few results will explore descriptive , diagnostic , predictive , and prescriptive analysis. Why? Because these names are easy to understand and are used a lot in “the real world.”
Descriptive analysis is an informational method, diagnostic analysis explains “why” a phenomenon occurs, predictive analysis seeks to forecast the result of an action, and prescriptive analysis identifies solutions to a specific problem.
That said, these are only four branches of a larger analytical tree.
Good data analysts know how to position these four types within other analytical methods and tactics, allowing them to leverage strengths and weaknesses in each to uproot the most valuable insights.
Let’s explore the full analytical tree to understand how to appropriately assess and apply these four traditional types.
Tree diagram of Data Analysis Types, Methods, and Techniques
Here’s a picture to visualize the structure and hierarchy of data analysis types, methods, and techniques.
If it’s too small you can view the picture in a new tab . Open it to follow along!
Note: basic descriptive statistics such as mean , median , and mode , as well as standard deviation , are not shown because most people are already familiar with them. In the diagram, they would fall under the “descriptive” analysis type.
Tree Diagram Explained
The highest-level classification of data analysis is quantitative vs qualitative . Quantitative implies numbers while qualitative implies information other than numbers.
Quantitative data analysis then splits into mathematical analysis and artificial intelligence (AI) analysis . Mathematical types then branch into descriptive , diagnostic , predictive , and prescriptive .
Methods falling under mathematical analysis include clustering , classification , forecasting , and optimization . Qualitative data analysis methods include content analysis , narrative analysis , discourse analysis , framework analysis , and/or grounded theory .
Moreover, mathematical techniques include regression , Nïave Bayes , Simple Exponential Smoothing , cohorts , factors , linear discriminants , and more, whereas techniques falling under the AI type include artificial neural networks , decision trees , evolutionary programming , and fuzzy logic . Techniques under qualitative analysis include text analysis , coding , idea pattern analysis , and word frequency .
It’s a lot to remember! Don’t worry, once you understand the relationship and motive behind all these terms, it’ll be like riding a bike.
We’ll move down the list from top to bottom and I encourage you to open the tree diagram above in a new tab so you can follow along .
But first, let’s just address the elephant in the room: what’s the difference between methods and techniques anyway?
Difference between methods and techniques
Though often used interchangeably, methods ands techniques are not the same. By definition, methods are the process by which techniques are applied, and techniques are the practical application of those methods.
For example, consider driving. Methods include staying in your lane, stopping at a red light, and parking in a spot. Techniques include turning the steering wheel, braking, and pushing the gas pedal.
Data sets: observations and fields
It’s important to understand the basic structure of data tables to comprehend the rest of the article. A data set consists of one far-left column containing observations, then a series of columns containing the fields (aka “traits” or “characteristics”) that describe each observations. For example, imagine we want a data table for fruit. It might look like this:
Now let’s turn to types, methods, and techniques. Each heading below consists of a description, relative importance, the nature of data it explores, and the motivation for using it.
Quantitative Analysis
- It accounts for more than 50% of all data analysis and is by far the most widespread and well-known type of data analysis.
- As you have seen, it holds descriptive, diagnostic, predictive, and prescriptive methods, which in turn hold some of the most important techniques available today, such as clustering and forecasting.
- It can be broken down into mathematical and AI analysis.
- Importance : Very high . Quantitative analysis is a must for anyone interesting in becoming or improving as a data analyst.
- Nature of Data: data treated under quantitative analysis is, quite simply, quantitative. It encompasses all numeric data.
- Motive: to extract insights. (Note: we’re at the top of the pyramid, this gets more insightful as we move down.)
Qualitative Analysis
- It accounts for less than 30% of all data analysis and is common in social sciences .
- It can refer to the simple recognition of qualitative elements, which is not analytic in any way, but most often refers to methods that assign numeric values to non-numeric data for analysis.
- Because of this, some argue that it’s ultimately a quantitative type.
- Importance: Medium. In general, knowing qualitative data analysis is not common or even necessary for corporate roles. However, for researchers working in social sciences, its importance is very high .
- Nature of Data: data treated under qualitative analysis is non-numeric. However, as part of the analysis, analysts turn non-numeric data into numbers, at which point many argue it is no longer qualitative analysis.
- Motive: to extract insights. (This will be more important as we move down the pyramid.)
Mathematical Analysis
- Description: mathematical data analysis is a subtype of qualitative data analysis that designates methods and techniques based on statistics, algebra, and logical reasoning to extract insights. It stands in opposition to artificial intelligence analysis.
- Importance: Very High. The most widespread methods and techniques fall under mathematical analysis. In fact, it’s so common that many people use “quantitative” and “mathematical” analysis interchangeably.
- Nature of Data: numeric. By definition, all data under mathematical analysis are numbers.
- Motive: to extract measurable insights that can be used to act upon.
Artificial Intelligence & Machine Learning Analysis
- Description: artificial intelligence and machine learning analyses designate techniques based on the titular skills. They are not traditionally mathematical, but they are quantitative since they use numbers. Applications of AI & ML analysis techniques are developing, but they’re not yet mainstream enough to show promise across the field.
- Importance: Medium . As of today (September 2020), you don’t need to be fluent in AI & ML data analysis to be a great analyst. BUT, if it’s a field that interests you, learn it. Many believe that in 10 year’s time its importance will be very high .
- Nature of Data: numeric.
- Motive: to create calculations that build on themselves in order and extract insights without direct input from a human.
Descriptive Analysis
- Description: descriptive analysis is a subtype of mathematical data analysis that uses methods and techniques to provide information about the size, dispersion, groupings, and behavior of data sets. This may sounds complicated, but just think about mean, median, and mode: all three are types of descriptive analysis. They provide information about the data set. We’ll look at specific techniques below.
- Importance: Very high. Descriptive analysis is among the most commonly used data analyses in both corporations and research today.
- Nature of Data: the nature of data under descriptive statistics is sets. A set is simply a collection of numbers that behaves in predictable ways. Data reflects real life, and there are patterns everywhere to be found. Descriptive analysis describes those patterns.
- Motive: the motive behind descriptive analysis is to understand how numbers in a set group together, how far apart they are from each other, and how often they occur. As with most statistical analysis, the more data points there are, the easier it is to describe the set.
Diagnostic Analysis
- Description: diagnostic analysis answers the question “why did it happen?” It is an advanced type of mathematical data analysis that manipulates multiple techniques, but does not own any single one. Analysts engage in diagnostic analysis when they try to explain why.
- Importance: Very high. Diagnostics are probably the most important type of data analysis for people who don’t do analysis because they’re valuable to anyone who’s curious. They’re most common in corporations, as managers often only want to know the “why.”
- Nature of Data : data under diagnostic analysis are data sets. These sets in themselves are not enough under diagnostic analysis. Instead, the analyst must know what’s behind the numbers in order to explain “why.” That’s what makes diagnostics so challenging yet so valuable.
- Motive: the motive behind diagnostics is to diagnose — to understand why.
Predictive Analysis
- Description: predictive analysis uses past data to project future data. It’s very often one of the first kinds of analysis new researchers and corporate analysts use because it is intuitive. It is a subtype of the mathematical type of data analysis, and its three notable techniques are regression, moving average, and exponential smoothing.
- Importance: Very high. Predictive analysis is critical for any data analyst working in a corporate environment. Companies always want to know what the future will hold — especially for their revenue.
- Nature of Data: Because past and future imply time, predictive data always includes an element of time. Whether it’s minutes, hours, days, months, or years, we call this time series data . In fact, this data is so important that I’ll mention it twice so you don’t forget: predictive analysis uses time series data .
- Motive: the motive for investigating time series data with predictive analysis is to predict the future in the most analytical way possible.
Prescriptive Analysis
- Description: prescriptive analysis is a subtype of mathematical analysis that answers the question “what will happen if we do X?” It’s largely underestimated in the data analysis world because it requires diagnostic and descriptive analyses to be done before it even starts. More than simple predictive analysis, prescriptive analysis builds entire data models to show how a simple change could impact the ensemble.
- Importance: High. Prescriptive analysis is most common under the finance function in many companies. Financial analysts use it to build a financial model of the financial statements that show how that data will change given alternative inputs.
- Nature of Data: the nature of data in prescriptive analysis is data sets. These data sets contain patterns that respond differently to various inputs. Data that is useful for prescriptive analysis contains correlations between different variables. It’s through these correlations that we establish patterns and prescribe action on this basis. This analysis cannot be performed on data that exists in a vacuum — it must be viewed on the backdrop of the tangibles behind it.
- Motive: the motive for prescriptive analysis is to establish, with an acceptable degree of certainty, what results we can expect given a certain action. As you might expect, this necessitates that the analyst or researcher be aware of the world behind the data, not just the data itself.
Clustering Method
- Description: the clustering method groups data points together based on their relativeness closeness to further explore and treat them based on these groupings. There are two ways to group clusters: intuitively and statistically (or K-means).
- Importance: Very high. Though most corporate roles group clusters intuitively based on management criteria, a solid understanding of how to group them mathematically is an excellent descriptive and diagnostic approach to allow for prescriptive analysis thereafter.
- Nature of Data : the nature of data useful for clustering is sets with 1 or more data fields. While most people are used to looking at only two dimensions (x and y), clustering becomes more accurate the more fields there are.
- Motive: the motive for clustering is to understand how data sets group and to explore them further based on those groups.
- Here’s an example set:
Classification Method
- Description: the classification method aims to separate and group data points based on common characteristics . This can be done intuitively or statistically.
- Importance: High. While simple on the surface, classification can become quite complex. It’s very valuable in corporate and research environments, but can feel like its not worth the work. A good analyst can execute it quickly to deliver results.
- Nature of Data: the nature of data useful for classification is data sets. As we will see, it can be used on qualitative data as well as quantitative. This method requires knowledge of the substance behind the data, not just the numbers themselves.
- Motive: the motive for classification is group data not based on mathematical relationships (which would be clustering), but by predetermined outputs. This is why it’s less useful for diagnostic analysis, and more useful for prescriptive analysis.
Forecasting Method
- Description: the forecasting method uses time past series data to forecast the future.
- Importance: Very high. Forecasting falls under predictive analysis and is arguably the most common and most important method in the corporate world. It is less useful in research, which prefers to understand the known rather than speculate about the future.
- Nature of Data: data useful for forecasting is time series data, which, as we’ve noted, always includes a variable of time.
- Motive: the motive for the forecasting method is the same as that of prescriptive analysis: the confidently estimate future values.
Optimization Method
- Description: the optimization method maximized or minimizes values in a set given a set of criteria. It is arguably most common in prescriptive analysis. In mathematical terms, it is maximizing or minimizing a function given certain constraints.
- Importance: Very high. The idea of optimization applies to more analysis types than any other method. In fact, some argue that it is the fundamental driver behind data analysis. You would use it everywhere in research and in a corporation.
- Nature of Data: the nature of optimizable data is a data set of at least two points.
- Motive: the motive behind optimization is to achieve the best result possible given certain conditions.
Content Analysis Method
- Description: content analysis is a method of qualitative analysis that quantifies textual data to track themes across a document. It’s most common in academic fields and in social sciences, where written content is the subject of inquiry.
- Importance: High. In a corporate setting, content analysis as such is less common. If anything Nïave Bayes (a technique we’ll look at below) is the closest corporations come to text. However, it is of the utmost importance for researchers. If you’re a researcher, check out this article on content analysis .
- Nature of Data: data useful for content analysis is textual data.
- Motive: the motive behind content analysis is to understand themes expressed in a large text
Narrative Analysis Method
- Description: narrative analysis is a method of qualitative analysis that quantifies stories to trace themes in them. It’s differs from content analysis because it focuses on stories rather than research documents, and the techniques used are slightly different from those in content analysis (very nuances and outside the scope of this article).
- Importance: Low. Unless you are highly specialized in working with stories, narrative analysis rare.
- Nature of Data: the nature of the data useful for the narrative analysis method is narrative text.
- Motive: the motive for narrative analysis is to uncover hidden patterns in narrative text.
Discourse Analysis Method
- Description: the discourse analysis method falls under qualitative analysis and uses thematic coding to trace patterns in real-life discourse. That said, real-life discourse is oral, so it must first be transcribed into text.
- Importance: Low. Unless you are focused on understand real-world idea sharing in a research setting, this kind of analysis is less common than the others on this list.
- Nature of Data: the nature of data useful in discourse analysis is first audio files, then transcriptions of those audio files.
- Motive: the motive behind discourse analysis is to trace patterns of real-world discussions. (As a spooky sidenote, have you ever felt like your phone microphone was listening to you and making reading suggestions? If it was, the method was discourse analysis.)
Framework Analysis Method
- Description: the framework analysis method falls under qualitative analysis and uses similar thematic coding techniques to content analysis. However, where content analysis aims to discover themes, framework analysis starts with a framework and only considers elements that fall in its purview.
- Importance: Low. As with the other textual analysis methods, framework analysis is less common in corporate settings. Even in the world of research, only some use it. Strangely, it’s very common for legislative and political research.
- Nature of Data: the nature of data useful for framework analysis is textual.
- Motive: the motive behind framework analysis is to understand what themes and parts of a text match your search criteria.
Grounded Theory Method
- Description: the grounded theory method falls under qualitative analysis and uses thematic coding to build theories around those themes.
- Importance: Low. Like other qualitative analysis techniques, grounded theory is less common in the corporate world. Even among researchers, you would be hard pressed to find many using it. Though powerful, it’s simply too rare to spend time learning.
- Nature of Data: the nature of data useful in the grounded theory method is textual.
- Motive: the motive of grounded theory method is to establish a series of theories based on themes uncovered from a text.
Clustering Technique: K-Means
- Description: k-means is a clustering technique in which data points are grouped in clusters that have the closest means. Though not considered AI or ML, it inherently requires the use of supervised learning to reevaluate clusters as data points are added. Clustering techniques can be used in diagnostic, descriptive, & prescriptive data analyses.
- Importance: Very important. If you only take 3 things from this article, k-means clustering should be part of it. It is useful in any situation where n observations have multiple characteristics and we want to put them in groups.
- Nature of Data: the nature of data is at least one characteristic per observation, but the more the merrier.
- Motive: the motive for clustering techniques such as k-means is to group observations together and either understand or react to them.
Regression Technique
- Description: simple and multivariable regressions use either one independent variable or combination of multiple independent variables to calculate a correlation to a single dependent variable using constants. Regressions are almost synonymous with correlation today.
- Importance: Very high. Along with clustering, if you only take 3 things from this article, regression techniques should be part of it. They’re everywhere in corporate and research fields alike.
- Nature of Data: the nature of data used is regressions is data sets with “n” number of observations and as many variables as are reasonable. It’s important, however, to distinguish between time series data and regression data. You cannot use regressions or time series data without accounting for time. The easier way is to use techniques under the forecasting method.
- Motive: The motive behind regression techniques is to understand correlations between independent variable(s) and a dependent one.
Nïave Bayes Technique
- Description: Nïave Bayes is a classification technique that uses simple probability to classify items based previous classifications. In plain English, the formula would be “the chance that thing with trait x belongs to class c depends on (=) the overall chance of trait x belonging to class c, multiplied by the overall chance of class c, divided by the overall chance of getting trait x.” As a formula, it’s P(c|x) = P(x|c) * P(c) / P(x).
- Importance: High. Nïave Bayes is a very common, simplistic classification techniques because it’s effective with large data sets and it can be applied to any instant in which there is a class. Google, for example, might use it to group webpages into groups for certain search engine queries.
- Nature of Data: the nature of data for Nïave Bayes is at least one class and at least two traits in a data set.
- Motive: the motive behind Nïave Bayes is to classify observations based on previous data. It’s thus considered part of predictive analysis.
Cohorts Technique
- Description: cohorts technique is a type of clustering method used in behavioral sciences to separate users by common traits. As with clustering, it can be done intuitively or mathematically, the latter of which would simply be k-means.
- Importance: Very high. With regard to resembles k-means, the cohort technique is more of a high-level counterpart. In fact, most people are familiar with it as a part of Google Analytics. It’s most common in marketing departments in corporations, rather than in research.
- Nature of Data: the nature of cohort data is data sets in which users are the observation and other fields are used as defining traits for each cohort.
- Motive: the motive for cohort analysis techniques is to group similar users and analyze how you retain them and how the churn.
Factor Technique
- Description: the factor analysis technique is a way of grouping many traits into a single factor to expedite analysis. For example, factors can be used as traits for Nïave Bayes classifications instead of more general fields.
- Importance: High. While not commonly employed in corporations, factor analysis is hugely valuable. Good data analysts use it to simplify their projects and communicate them more clearly.
- Nature of Data: the nature of data useful in factor analysis techniques is data sets with a large number of fields on its observations.
- Motive: the motive for using factor analysis techniques is to reduce the number of fields in order to more quickly analyze and communicate findings.
Linear Discriminants Technique
- Description: linear discriminant analysis techniques are similar to regressions in that they use one or more independent variable to determine a dependent variable; however, the linear discriminant technique falls under a classifier method since it uses traits as independent variables and class as a dependent variable. In this way, it becomes a classifying method AND a predictive method.
- Importance: High. Though the analyst world speaks of and uses linear discriminants less commonly, it’s a highly valuable technique to keep in mind as you progress in data analysis.
- Nature of Data: the nature of data useful for the linear discriminant technique is data sets with many fields.
- Motive: the motive for using linear discriminants is to classify observations that would be otherwise too complex for simple techniques like Nïave Bayes.
Exponential Smoothing Technique
- Description: exponential smoothing is a technique falling under the forecasting method that uses a smoothing factor on prior data in order to predict future values. It can be linear or adjusted for seasonality. The basic principle behind exponential smoothing is to use a percent weight (value between 0 and 1 called alpha) on more recent values in a series and a smaller percent weight on less recent values. The formula is f(x) = current period value * alpha + previous period value * 1-alpha.
- Importance: High. Most analysts still use the moving average technique (covered next) for forecasting, though it is less efficient than exponential moving, because it’s easy to understand. However, good analysts will have exponential smoothing techniques in their pocket to increase the value of their forecasts.
- Nature of Data: the nature of data useful for exponential smoothing is time series data . Time series data has time as part of its fields .
- Motive: the motive for exponential smoothing is to forecast future values with a smoothing variable.
Moving Average Technique
- Description: the moving average technique falls under the forecasting method and uses an average of recent values to predict future ones. For example, to predict rainfall in April, you would take the average of rainfall from January to March. It’s simple, yet highly effective.
- Importance: Very high. While I’m personally not a huge fan of moving averages due to their simplistic nature and lack of consideration for seasonality, they’re the most common forecasting technique and therefore very important.
- Nature of Data: the nature of data useful for moving averages is time series data .
- Motive: the motive for moving averages is to predict future values is a simple, easy-to-communicate way.
Neural Networks Technique
- Description: neural networks are a highly complex artificial intelligence technique that replicate a human’s neural analysis through a series of hyper-rapid computations and comparisons that evolve in real time. This technique is so complex that an analyst must use computer programs to perform it.
- Importance: Medium. While the potential for neural networks is theoretically unlimited, it’s still little understood and therefore uncommon. You do not need to know it by any means in order to be a data analyst.
- Nature of Data: the nature of data useful for neural networks is data sets of astronomical size, meaning with 100s of 1000s of fields and the same number of row at a minimum .
- Motive: the motive for neural networks is to understand wildly complex phenomenon and data to thereafter act on it.
Decision Tree Technique
- Description: the decision tree technique uses artificial intelligence algorithms to rapidly calculate possible decision pathways and their outcomes on a real-time basis. It’s so complex that computer programs are needed to perform it.
- Importance: Medium. As with neural networks, decision trees with AI are too little understood and are therefore uncommon in corporate and research settings alike.
- Nature of Data: the nature of data useful for the decision tree technique is hierarchical data sets that show multiple optional fields for each preceding field.
- Motive: the motive for decision tree techniques is to compute the optimal choices to make in order to achieve a desired result.
Evolutionary Programming Technique
- Description: the evolutionary programming technique uses a series of neural networks, sees how well each one fits a desired outcome, and selects only the best to test and retest. It’s called evolutionary because is resembles the process of natural selection by weeding out weaker options.
- Importance: Medium. As with the other AI techniques, evolutionary programming just isn’t well-understood enough to be usable in many cases. It’s complexity also makes it hard to explain in corporate settings and difficult to defend in research settings.
- Nature of Data: the nature of data in evolutionary programming is data sets of neural networks, or data sets of data sets.
- Motive: the motive for using evolutionary programming is similar to decision trees: understanding the best possible option from complex data.
- Video example :
Fuzzy Logic Technique
- Description: fuzzy logic is a type of computing based on “approximate truths” rather than simple truths such as “true” and “false.” It is essentially two tiers of classification. For example, to say whether “Apples are good,” you need to first classify that “Good is x, y, z.” Only then can you say apples are good. Another way to see it helping a computer see truth like humans do: “definitely true, probably true, maybe true, probably false, definitely false.”
- Importance: Medium. Like the other AI techniques, fuzzy logic is uncommon in both research and corporate settings, which means it’s less important in today’s world.
- Nature of Data: the nature of fuzzy logic data is huge data tables that include other huge data tables with a hierarchy including multiple subfields for each preceding field.
- Motive: the motive of fuzzy logic to replicate human truth valuations in a computer is to model human decisions based on past data. The obvious possible application is marketing.
Text Analysis Technique
- Description: text analysis techniques fall under the qualitative data analysis type and use text to extract insights.
- Importance: Medium. Text analysis techniques, like all the qualitative analysis type, are most valuable for researchers.
- Nature of Data: the nature of data useful in text analysis is words.
- Motive: the motive for text analysis is to trace themes in a text across sets of very long documents, such as books.
Coding Technique
- Description: the coding technique is used in textual analysis to turn ideas into uniform phrases and analyze the number of times and the ways in which those ideas appear. For this reason, some consider it a quantitative technique as well. You can learn more about coding and the other qualitative techniques here .
- Importance: Very high. If you’re a researcher working in social sciences, coding is THE analysis techniques, and for good reason. It’s a great way to add rigor to analysis. That said, it’s less common in corporate settings.
- Nature of Data: the nature of data useful for coding is long text documents.
- Motive: the motive for coding is to make tracing ideas on paper more than an exercise of the mind by quantifying it and understanding is through descriptive methods.
Idea Pattern Technique
- Description: the idea pattern analysis technique fits into coding as the second step of the process. Once themes and ideas are coded, simple descriptive analysis tests may be run. Some people even cluster the ideas!
- Importance: Very high. If you’re a researcher, idea pattern analysis is as important as the coding itself.
- Nature of Data: the nature of data useful for idea pattern analysis is already coded themes.
- Motive: the motive for the idea pattern technique is to trace ideas in otherwise unmanageably-large documents.
Word Frequency Technique
- Description: word frequency is a qualitative technique that stands in opposition to coding and uses an inductive approach to locate specific words in a document in order to understand its relevance. Word frequency is essentially the descriptive analysis of qualitative data because it uses stats like mean, median, and mode to gather insights.
- Importance: High. As with the other qualitative approaches, word frequency is very important in social science research, but less so in corporate settings.
- Nature of Data: the nature of data useful for word frequency is long, informative documents.
- Motive: the motive for word frequency is to locate target words to determine the relevance of a document in question.
Types of data analysis in research
Types of data analysis in research methodology include every item discussed in this article. As a list, they are:
- Quantitative
- Qualitative
- Mathematical
- Machine Learning and AI
- Descriptive
- Prescriptive
- Classification
- Forecasting
- Optimization
- Grounded theory
- Artificial Neural Networks
- Decision Trees
- Evolutionary Programming
- Fuzzy Logic
- Text analysis
- Idea Pattern Analysis
- Word Frequency Analysis
- Nïave Bayes
- Exponential smoothing
- Moving average
- Linear discriminant
Types of data analysis in qualitative research
As a list, the types of data analysis in qualitative research are the following methods:
Types of data analysis in quantitative research
As a list, the types of data analysis in quantitative research are:
Data analysis methods
As a list, data analysis methods are:
- Content (qualitative)
- Narrative (qualitative)
- Discourse (qualitative)
- Framework (qualitative)
- Grounded theory (qualitative)
Quantitative data analysis methods
As a list, quantitative data analysis methods are:
Tabular View of Data Analysis Types, Methods, and Techniques
About the author.
Noah is the founder & Editor-in-Chief at AnalystAnswers. He is a transatlantic professional and entrepreneur with 5+ years of corporate finance and data analytics experience, as well as 3+ years in consumer financial products and business software. He started AnalystAnswers to provide aspiring professionals with accessible explanations of otherwise dense finance and data concepts. Noah believes everyone can benefit from an analytical mindset in growing digital world. When he's not busy at work, Noah likes to explore new European cities, exercise, and spend time with friends and family.
File available immediately.
Notice: JavaScript is required for this content.
- Data Science
- Data Analysis
- Data Visualization
- Machine Learning
- Deep Learning
- Computer Vision
- Artificial Intelligence
- AI ML DS Interview Series
- AI ML DS Projects series
- Data Engineering
- Web Scrapping
Types of Data Analysis Techniques
Data analysis techniques have significantly evolved, providing a comprehensive toolkit for understanding, interpreting, and predicting data patterns. These methods are crucial in extracting actionable insights from data, enabling organizations to make informed decisions.
This article will cover major Types of Data Analysis Techniques , each tailored to specific goals and data types.
Data Analysis Techniques
Descriptive Data Analysis
Qualitative data analysis, predictive data analysis, diagnostic data analysis, regression analysis, cohort analysis, factor analysis, time series analysis, cluster analysis.
Descriptive analysis is considered the beginning point for the analytic journey and often strives to answer questions related to what happened. This technique follows ordering factors, manipulating and interpreting varied data from diverse sources, and then turning it into valuable insights.
In addition, conducting this analysis is imperative as it allows individuals to showcase insights in a streamlined method. This technique does not allow you to estimate future outcomes - such as identifying specific reasoning for a particular factor. It will keep your data streamlined and simplify to conduct a thorough evaluation for further circumstances.
Examples of Descriptive Data Analysis :
- Sales Performance: A retail company might use descriptive statistics to understand the average sales volume per store or to find which products are the best sellers.
- Customer Satisfaction Surveys: Analyzing survey data to find the most common responses or average scores.
Qualitative data analysis techniques cannot be measured directly, and hence, this technique is utilized when an organization needs to make decisions based on subjective interpretation. For instance, qualitative data can involve evaluating customer feedback, the impact of survey questions, the effectiveness of social media posts, analyzing specific changes or features of a product, and more.
The focus of this technique should be identifying meaningful insights or answers from unstructured data such as transcripts, vocal feedback, and more. Additionally, qualitative analysis aids in organizing data into themes or categories, which can be further automated. Quantitative data analysis refers to measurable information, which includes specific numbers and quantities. For instance, sales figures, email campaigns based on click-through rates, website visitors, employee performance percentage, or percentage for revenue generated, and more.
Examples of Qualitative Data Analysis:
- Market Analysis: A business might analyze why a product’s sales spiked in a particular quarter by looking at marketing activities, price changes, and market trends.
- Medical Diagnosis: Clinicians use diagnostic analysis to understand the cause of symptoms based on lab results and patient data.
Predictive data analysis enables us to look into the future by answering questions— what will happen? Individuals need to utilize the results of descriptive data analysis, exploratory and diagnostic analysis techniques, and combine machine learning and artificial intelligence . Using this method, you can get an overview of future trends and identify potential issues and loopholes in your dataset.
In addition, you can discover and develop initiatives to enhance varied operation processes and your competitive edge with insightful data. With easy-to-understand insights, businesses can tap into trends, common patterns, or reasons for a specific event, making initiatives or decisions for further strategies easier.
Examples of Predictive Data Analysis:
- Credit Scoring: Financial institutions use predictive models to assess a customer's likelihood of defaulting on a loan.
- Weather Forecasting: Meteorologists use predictive models to forecast weather conditions based on historical weather data.
When you know why something happened, it is easy to identify the "How" for that specific aspect. For instance, with diagnostic analysis , you can identify why your sales results are declining and eventually explore the exact factors that led to this loss.
In addition, this technique offers actionable answers to your specific questions. It is also the most commonly preferred method in research for varied domains.
Example of Diagnostic Data Analysis:
- Inventory Analysis: Checking if lower sales correlate with stock outs or overstock situations.
- Promotion Effectiveness: Analyzing the impact of different promotional campaigns to see which failed to attract customers.
This method utilizes historical data to understand the impact on the dependent variable's value when one or more independent variables tend to change or remain the same. In addition, determining each variable's relationship and past development or initiative enables you to predict potential outcomes in the future. And the technique gives you the right path to make informed decisions effectively.
Let's assume you conducted a Regression Analysis for your sales report in 2022, and the results represented variables like customer services, sales channels, marketing campaigns, and more that affected the overall results. Then, you can conduct another regression analysis to check if the variables changed over time or if new variables are impacting your sales result in 2023. By following this method, your sales can increase with improved product quality or services
Example of Regression Analysis:
- Market Trend Assessment: Evaluating how changes in the economic environment (e.g., interest rates) affect property prices.
- Predictive Pricing: Using historical data to predict future price trends based on current market dynamics.
Cohort analysis includes historical data to analyze and compare specific segments in user behavior and groups a few aspects with other similar elements. This technique can provide an idea of your customer's and target audience's evolving needs.
In addition, you can utilize Cohort analysis to determine a marketing campaign's impact on certain audience groups. For instance, you can implement the features of the Cohort analysis technique to evaluate two types of email campaigns—commonly termed A/B Testing over time—and understand which variation turned out to be responsive and impactful in terms of performance.
Example of Cohort Analysis:
- Customer Retention: Measuring how long newly acquired customers continue to make purchases compared to those not enrolled in the loyalty program.
- Program Impact: Determining if and how the loyalty program influences buying patterns and average spend per purchase.
Factor data analysis defines the variations with observed related variables based on lower unobserved variables termed factors. In short, it helps in extracting independent variables, which is considered ideal for optimizing specific segments.
For instance, if you have a product and collect customer feedback for varied purposes, this analysis technique aids in focusing on specific factors like current trends, layout, product performance, potential errors, and more. The factors can vary depending on what you want to monitor and focus on. Lastly, factor analysis simplifies summarizing related factors in similar groups.
Example of Factor Analysis :
- Service Improvement: Identifying key factors such as wait time, staff behavior, and treatment outcome that impact patient satisfaction.
- Resource Allocation: Using these insights to improve areas that significantly affect patient satisfaction.
A time series analysis technique checks data points over a certain timeframe. You can utilize this method to monitor data within a certain time frame on a loop; however, this technique isn't ideal for collecting data only in a specific time interval.
Sounds confusing? This technique is ideal for determining whether the variable changed amid the evaluation interval, how each variable is dependent, and how the result was achieved for a specific aspect. Additionally, you can rely on time series analysis to determine market trends and patterns over time. You can also use this method to forecast future events based on certain data insights.
Example of Time Series Analysis :
- Demand Forecasting: Estimating sales volume for the next season based on historical sales data during similar periods.
- Resource Planning: Adjusting production schedules and inventory levels to meet anticipated demand.
Cluster analysis describes data and identifies common patterns. It is often used when data needs more evident labels or insights or has ambiguous categories. This process includes recognizing similar observations and grouping those aspects to create clusters, which means assigning names and categorizing groups.
In addition, this technique aids in identifying similarities and disparities in databases and presenting them in a visually organized method to seamlessly compare factors. Box plot visualization is mainly preferred to showcase data clusters.
Example of Cluster Analysis:
- Market Segmentation: Dividing customers into groups that exhibit similar behaviors and preferences for more targeted marketing.
- Campaign Customization: Designing unique marketing strategies for each cluster to maximize engagement and conversions.
Each method offers unique benefits and is suited to different types of data challenges. Understanding and applying the right data analysis techniques can significantly impact an organization's strategy and decision-making processes, leading to more targeted, efficient, and effective outcomes.
Similar Reads
Improve your coding skills with practice.
What kind of Experience do you want to share?
- Privacy Policy
Home » Data Analysis – Process, Methods and Types
Data Analysis – Process, Methods and Types
Table of Contents
Data analysis is the systematic process of inspecting, cleaning, transforming, and modeling data to uncover meaningful insights, support decision-making, and solve specific problems. In today’s data-driven world, data analysis is crucial for businesses, researchers, and policymakers to interpret trends, predict outcomes, and make informed decisions. This article delves into the data analysis process, commonly used methods, and the different types of data analysis.
Data Analysis
Data analysis involves the application of statistical, mathematical, and computational techniques to make sense of raw data. It transforms unorganized data into actionable information, often through visualizations, statistical summaries, or predictive models.
For example, analyzing sales data over time can help a retailer understand seasonal trends and forecast future demand.
Importance of Data Analysis
- Informed Decision-Making: Helps stakeholders make evidence-based choices.
- Problem Solving: Identifies patterns, relationships, and anomalies in data.
- Efficiency Improvement: Optimizes processes and operations through insights.
- Strategic Planning: Assists in setting realistic goals and forecasting outcomes.
Data Analysis Process
The process of data analysis typically follows a structured approach to ensure accuracy and reliability.
1. Define Objectives
Clearly articulate the research question or business problem you aim to address.
- Example: A company wants to analyze customer satisfaction to improve its services.
2. Data Collection
Gather relevant data from various sources, such as surveys, databases, or APIs.
- Example: Collect customer feedback through online surveys and customer service logs.
3. Data Cleaning
Prepare the data for analysis by removing errors, duplicates, and inconsistencies.
- Example: Handle missing values, correct typos, and standardize formats.
4. Data Exploration
Perform exploratory data analysis (EDA) to understand data patterns, distributions, and relationships.
- Example: Use summary statistics and visualizations like histograms or scatter plots.
5. Data Transformation
Transform raw data into a usable format by scaling, encoding, or aggregating.
- Example: Convert categorical data into numerical values for machine learning algorithms.
6. Analysis and Interpretation
Apply appropriate methods or models to analyze the data and extract insights.
- Example: Use regression analysis to predict customer churn rates.
7. Reporting and Visualization
Present findings in a clear and actionable format using dashboards, charts, or reports.
- Example: Create a dashboard summarizing customer satisfaction scores by region.
8. Decision-Making and Implementation
Use the insights to make recommendations or implement strategies.
- Example: Launch targeted marketing campaigns based on customer preferences.
Methods of Data Analysis
1. statistical methods.
- Descriptive Statistics: Summarizes data using measures like mean, median, and standard deviation.
- Inferential Statistics: Draws conclusions or predictions from sample data using techniques like hypothesis testing or confidence intervals.
2. Data Mining
Data mining involves discovering patterns, correlations, and anomalies in large datasets.
- Example: Identifying purchasing patterns in retail through association rules.
3. Machine Learning
Applies algorithms to build predictive models and automate decision-making.
- Example: Using supervised learning to classify email spam.
4. Text Analysis
Analyzes textual data to extract insights, often used in sentiment analysis or topic modeling.
- Example: Analyzing customer reviews to understand product sentiment.
5. Time-Series Analysis
Focuses on analyzing data points collected over time to identify trends and patterns.
- Example: Forecasting stock prices based on historical data.
6. Data Visualization
Transforms data into visual representations like charts, graphs, and heatmaps to make findings comprehensible.
- Example: Using bar charts to compare monthly sales performance.
7. Predictive Analytics
Uses statistical models and machine learning to forecast future outcomes based on historical data.
- Example: Predicting the likelihood of equipment failure in a manufacturing plant.
8. Diagnostic Analysis
Focuses on identifying causes of observed patterns or trends in data.
- Example: Investigating why sales dropped in a particular quarter.
Types of Data Analysis
1. descriptive analysis.
- Purpose: Summarizes raw data to provide insights into past trends and performance.
- Example: Analyzing average customer spending per month.
2. Exploratory Analysis
- Purpose: Identifies patterns, relationships, or hypotheses for further study.
- Example: Exploring correlations between advertising spend and sales.
3. Inferential Analysis
- Purpose: Draws conclusions or makes predictions about a population based on sample data.
- Example: Estimating national voter preferences using survey data.
4. Diagnostic Analysis
- Purpose: Examines the reasons behind observed outcomes or trends.
- Example: Investigating why website traffic decreased after a redesign.
5. Predictive Analysis
- Purpose: Forecasts future outcomes based on historical data.
- Example: Predicting customer churn using machine learning algorithms.
6. Prescriptive Analysis
- Purpose: Recommends actions based on data insights and predictive models.
- Example: Suggesting the best marketing channels to maximize ROI.
Tools for Data Analysis
1. programming languages.
- Python: Popular for data manipulation, analysis, and machine learning (e.g., Pandas, NumPy, Scikit-learn).
- R: Ideal for statistical computing and visualization.
2. Data Visualization Tools
- Tableau: Creates interactive dashboards and visualizations.
- Power BI: Microsoft’s tool for business intelligence and reporting.
3. Statistical Software
- SPSS: Used for statistical analysis in social sciences.
- SAS: Advanced analytics, data management, and predictive modeling tool.
4. Big Data Platforms
- Hadoop: Framework for processing large-scale datasets.
- Apache Spark: Fast data processing engine for big data analytics.
5. Spreadsheet Tools
- Microsoft Excel: Widely used for basic data analysis and visualization.
- Google Sheets: Collaborative online spreadsheet tool.
Challenges in Data Analysis
- Data Quality Issues: Missing, inconsistent, or inaccurate data can compromise results.
- Scalability: Analyzing large datasets requires advanced tools and computing power.
- Bias in Data: Skewed datasets can lead to misleading conclusions.
- Complexity: Choosing the appropriate analysis methods and models can be challenging.
Applications of Data Analysis
- Business: Improving customer experience through sales and marketing analytics.
- Healthcare: Analyzing patient data to improve treatment outcomes.
- Education: Evaluating student performance and designing effective teaching strategies.
- Finance: Detecting fraudulent transactions using predictive models.
- Social Science: Understanding societal trends through demographic analysis.
Data analysis is an essential process for transforming raw data into actionable insights. By understanding the process, methods, and types of data analysis, researchers and professionals can effectively tackle complex problems, uncover trends, and make data-driven decisions. With advancements in tools and technology, the scope and impact of data analysis continue to expand, shaping the future of industries and research.
- McKinney, W. (2017). Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython . O’Reilly Media.
- Han, J., Pei, J., & Kamber, M. (2011). Data Mining: Concepts and Techniques . Morgan Kaufmann.
- Provost, F., & Fawcett, T. (2013). Data Science for Business: What You Need to Know About Data Mining and Data-Analytic Thinking . O’Reilly Media.
- Montgomery, D. C., & Runger, G. C. (2018). Applied Statistics and Probability for Engineers . Wiley.
- Tableau Public (2023). Creating Data Visualizations and Dashboards . Retrieved from https://www.tableau.com.
About the author
Muhammad Hassan
Researcher, Academic Writer, Web developer
You may also like
References in Research – Types, Examples and...
Dissertation vs Thesis – Key Differences
Research Problem – Examples, Types and Guide
Data Interpretation – Process, Methods and...
Tables in Research Paper – Types, Creating Guide...
Narrative Analysis – Types, Methods and Examples
8 Types of Data Analysis
The different types of data analysis include descriptive, diagnostic, exploratory, inferential, predictive, causal, mechanistic and prescriptive. Here’s what you need to know about each one.
Data analysis is an aspect of data science and data analytics that is all about analyzing data for different kinds of purposes. The data analysis process involves inspecting, cleaning, transforming and modeling data to draw useful insights from it.
Types of Data Analysis
- Descriptive analysis
- Diagnostic analysis
- Exploratory analysis
- Inferential analysis
- Predictive analysis
- Causal analysis
- Mechanistic analysis
- Prescriptive analysis
With its multiple facets, methodologies and techniques, data analysis is used in a variety of fields, including energy, healthcare and marketing, among others. As businesses thrive under the influence of technological advancements in data analytics, data analysis plays a huge role in decision-making , providing a better, faster and more effective system that minimizes risks and reduces human biases .
That said, there are different kinds of data analysis with different goals. We’ll examine each one below.
Two Camps of Data Analysis
Data analysis can be divided into two camps, according to the book R for Data Science :
- Hypothesis Generation: This involves looking deeply at the data and combining your domain knowledge to generate hypotheses about why the data behaves the way it does.
- Hypothesis Confirmation: This involves using a precise mathematical model to generate falsifiable predictions with statistical sophistication to confirm your prior hypotheses.
More on Data Analysis: Data Analyst vs. Data Scientist: Similarities and Differences Explained
Data analysis can be separated and organized into types, arranged in an increasing order of complexity.
1. Descriptive Analysis
The goal of descriptive analysis is to describe or summarize a set of data . Here’s what you need to know:
- Descriptive analysis is the very first analysis performed in the data analysis process.
- It generates simple summaries of samples and measurements.
- It involves common, descriptive statistics like measures of central tendency, variability, frequency and position.
Descriptive Analysis Example
Take the Covid-19 statistics page on Google, for example. The line graph is a pure summary of the cases/deaths, a presentation and description of the population of a particular country infected by the virus.
Descriptive analysis is the first step in analysis where you summarize and describe the data you have using descriptive statistics, and the result is a simple presentation of your data.
2. Diagnostic Analysis
Diagnostic analysis seeks to answer the question “Why did this happen?” by taking a more in-depth look at data to uncover subtle patterns. Here’s what you need to know:
- Diagnostic analysis typically comes after descriptive analysis, taking initial findings and investigating why certain patterns in data happen.
- Diagnostic analysis may involve analyzing other related data sources, including past data, to reveal more insights into current data trends.
- Diagnostic analysis is ideal for further exploring patterns in data to explain anomalies .
Diagnostic Analysis Example
A footwear store wants to review its website traffic levels over the previous 12 months. Upon compiling and assessing the data, the company’s marketing team finds that June experienced above-average levels of traffic while July and August witnessed slightly lower levels of traffic.
To find out why this difference occurred, the marketing team takes a deeper look. Team members break down the data to focus on specific categories of footwear. In the month of June, they discovered that pages featuring sandals and other beach-related footwear received a high number of views while these numbers dropped in July and August.
Marketers may also review other factors like seasonal changes and company sales events to see if other variables could have contributed to this trend.
3. Exploratory Analysis (EDA)
Exploratory analysis involves examining or exploring data and finding relationships between variables that were previously unknown. Here’s what you need to know:
- EDA helps you discover relationships between measures in your data, which are not evidence for the existence of the correlation, as denoted by the phrase, “ Correlation doesn’t imply causation .”
- It’s useful for discovering new connections and forming hypotheses. It drives design planning and data collection .
Exploratory Analysis Example
Climate change is an increasingly important topic as the global temperature has gradually risen over the years. One example of an exploratory data analysis on climate change involves taking the rise in temperature over the years from 1950 to 2020 and the increase of human activities and industrialization to find relationships from the data. For example, you may increase the number of factories, cars on the road and airplane flights to see how that correlates with the rise in temperature.
Exploratory analysis explores data to find relationships between measures without identifying the cause. It’s most useful when formulating hypotheses.
4. Inferential Analysis
Inferential analysis involves using a small sample of data to infer information about a larger population of data.
The goal of statistical modeling itself is all about using a small amount of information to extrapolate and generalize information to a larger group. Here’s what you need to know:
- Inferential analysis involves using estimated data that is representative of a population and gives a measure of uncertainty or standard deviation to your estimation.
- The accuracy of inference depends heavily on your sampling scheme. If the sample isn’t representative of the population, the generalization will be inaccurate. This is known as the central limit theorem .
Inferential Analysis Example
A psychological study on the benefits of sleep might have a total of 500 people involved. When they followed up with the candidates, the candidates reported to have better overall attention spans and well-being with seven to nine hours of sleep, while those with less sleep and more sleep than the given range suffered from reduced attention spans and energy. This study drawn from 500 people was just a tiny portion of the 7 billion people in the world, and is thus an inference of the larger population.
Inferential analysis extrapolates and generalizes the information of the larger group with a smaller sample to generate analysis and predictions.
5. Predictive Analysis
Predictive analysis involves using historical or current data to find patterns and make predictions about the future. Here’s what you need to know:
- The accuracy of the predictions depends on the input variables.
- Accuracy also depends on the types of models. A linear model might work well in some cases, and in other cases it might not.
- Using a variable to predict another one doesn’t denote a causal relationship.
Predictive Analysis Example
The 2020 United States election is a popular topic and many prediction models are built to predict the winning candidate. FiveThirtyEight did this to forecast the 2016 and 2020 elections. Prediction analysis for an election would require input variables such as historical polling data, trends and current polling data in order to return a good prediction. Something as large as an election wouldn’t just be using a linear model, but a complex model with certain tunings to best serve its purpose.
6. Causal Analysis
Causal analysis looks at the cause and effect of relationships between variables and is focused on finding the cause of a correlation. This way, researchers can examine how a change in one variable affects another. Here’s what you need to know:
- To find the cause, you have to question whether the observed correlations driving your conclusion are valid. Just looking at the surface data won’t help you discover the hidden mechanisms underlying the correlations.
- Causal analysis is applied in randomized studies focused on identifying causation.
- Causal analysis is the gold standard in data analysis and scientific studies where the cause of a phenomenon is to be extracted and singled out, like separating wheat from chaff.
- Good data is hard to find and requires expensive research and studies. These studies are analyzed in aggregate (multiple groups), and the observed relationships are just average effects (mean) of the whole population. This means the results might not apply to everyone.
Causal Analysis Example
Say you want to test out whether a new drug improves human strength and focus. To do that, you perform randomized control trials for the drug to test its effect. You compare the sample of candidates for your new drug against the candidates receiving a mock control drug through a few tests focused on strength and overall focus and attention. This will allow you to observe how the drug affects the outcome.
7. Mechanistic Analysis
Mechanistic analysis is used to understand exact changes in variables that lead to other changes in other variables . In some ways, it is a predictive analysis, but it’s modified to tackle studies that require high precision and meticulous methodologies for physical or engineering science. Here’s what you need to know:
- It’s applied in physical or engineering sciences, situations that require high precision and little room for error, only noise in data is measurement error.
- It’s designed to understand a biological or behavioral process, the pathophysiology of a disease or the mechanism of action of an intervention.
Mechanistic Analysis Example
Say an experiment is done to simulate safe and effective nuclear fusion to power the world. A mechanistic analysis of the study would entail a precise balance of controlling and manipulating variables with highly accurate measures of both variables and the desired outcomes. It’s this intricate and meticulous modus operandi toward these big topics that allows for scientific breakthroughs and advancement of society.
8. Prescriptive Analysis
Prescriptive analysis compiles insights from other previous data analyses and determines actions that teams or companies can take to prepare for predicted trends. Here’s what you need to know:
- Prescriptive analysis may come right after predictive analysis, but it may involve combining many different data analyses.
- Companies need advanced technology and plenty of resources to conduct prescriptive analysis. Artificial intelligence systems that process data and adjust automated tasks are an example of the technology required to perform prescriptive analysis.
Prescriptive Analysis Example
Prescriptive analysis is pervasive in everyday life, driving the curated content users consume on social media. On platforms like TikTok and Instagram, algorithms can apply prescriptive analysis to review past content a user has engaged with and the kinds of behaviors they exhibited with specific posts. Based on these factors, an algorithm seeks out similar content that is likely to elicit the same response and recommends it on a user’s personal feed.
More on Data Explaining the Empirical Rule for Normal Distribution
When to Use the Different Types of Data Analysis
- Descriptive analysis summarizes the data at hand and presents your data in a comprehensible way.
- Diagnostic analysis takes a more detailed look at data to reveal why certain patterns occur, making it a good method for explaining anomalies.
- Exploratory data analysis helps you discover correlations and relationships between variables in your data.
- Inferential analysis is for generalizing the larger population with a smaller sample size of data.
- Predictive analysis helps you make predictions about the future with data.
- Causal analysis emphasizes finding the cause of a correlation between variables.
- Mechanistic analysis is for measuring the exact changes in variables that lead to other changes in other variables.
- Prescriptive analysis combines insights from different data analyses to develop a course of action teams and companies can take to capitalize on predicted outcomes.
A few important tips to remember about data analysis include:
- Correlation doesn’t imply causation.
- EDA helps discover new connections and form hypotheses.
- Accuracy of inference depends on the sampling scheme.
- A good prediction depends on the right input variables.
- A simple linear model with enough data usually does the trick.
- Using a variable to predict another doesn’t denote causal relationships.
- Good data is hard to find, and to produce it requires expensive research.
- Results from studies are done in aggregate and are average effects and might not apply to everyone.
Frequently Asked Questions
What is an example of data analysis.
A marketing team reviews a company’s web traffic over the past 12 months. To understand why sales rise and fall during certain months, the team breaks down the data to look at shoe type, seasonal patterns and sales events. Based on this in-depth analysis, the team can determine variables that influenced web traffic and make adjustments as needed.
How do you know which data analysis method to use?
Selecting a data analysis method depends on the goals of the analysis and the complexity of the task, among other factors. It’s best to assess the circumstances and consider the pros and cons of each type of data analysis before moving forward with a particular method.
Recent Data Science Articles
What Is Data Analysis? Types, Methods, and Tools for Research
- Couchbase Product Marketing December 17, 2023
Data analysis is the process of cleaning, transforming, and interpreting data to uncover insights, patterns, and trends. It plays a crucial role in decision making, problem solving, and driving innovation across various domains.
This blog post will discuss common data analysis techniques, delve into the distinction between quantitative and qualitative data, explore popular data analysis tools, explain the importance of data analysis across organizations, and discuss exactly how to analyze data.
By the end, you should have a deeper understanding of data analysis and its applications, empowering you to harness the power of data to make informed decisions and gain actionable insights.
Why Is Data Analysis Important?
Data analysis is important across various domains and industries. It helps with:
- Decision Making : Data analysis provides valuable insights that support informed decision making, enabling organizations to make data-driven choices for better outcomes.
- Problem Solving : Data analysis helps identify and solve problems by uncovering root causes, detecting anomalies, and optimizing processes for increased efficiency.
- Performance Evaluation : Data analysis allows organizations to evaluate performance, track progress, and measure success by analyzing key performance indicators (KPIs) and other relevant metrics.
- Gathering Insights : Data analysis uncovers valuable insights that drive innovation, enabling businesses to develop new products, services, and strategies aligned with customer needs and market demand.
- Risk Management : Data analysis helps mitigate risks by identifying risk factors and enabling proactive measures to minimize potential negative impacts.
By leveraging data analysis, organizations can gain a competitive advantage, improve operational efficiency, and make smarter decisions that positively impact the bottom line.
Quantitative vs. Qualitative Data
In data analysis, you’ll commonly encounter two types of data: quantitative and qualitative. Understanding the differences between these two types of data is essential for selecting appropriate analysis methods and drawing meaningful insights. Here’s an overview of quantitative and qualitative data:
Quantitative Data
Quantitative data is numerical and represents quantities or measurements. It’s typically collected through surveys, experiments, and direct measurements. This type of data is characterized by its ability to be counted, measured, and subjected to mathematical calculations. Examples of quantitative data include age, height, sales figures, test scores, and the number of website users.
Quantitative data has the following characteristics:
- Numerical : Quantitative data is expressed in numerical values that can be analyzed and manipulated mathematically.
- Objective : Quantitative data is objective and can be measured and verified independently of individual interpretations.
- Statistical Analysis : Quantitative data lends itself well to statistical analysis. It allows for applying various statistical techniques, such as descriptive statistics, correlation analysis, regression analysis, and hypothesis testing.
- Generalizability : Quantitative data often aims to generalize findings to a larger population. It allows for making predictions, estimating probabilities, and drawing statistical inferences.
Qualitative Data
Qualitative data, on the other hand, is non-numerical and is collected through interviews, observations, and open-ended survey questions. It focuses on capturing rich, descriptive, and subjective information to gain insights into people’s opinions, attitudes, experiences, and behaviors. Examples of qualitative data include interview transcripts, field notes, survey responses, and customer feedback.
Qualitative data has the following characteristics:
- Descriptive : Qualitative data provides detailed descriptions, narratives, or interpretations of phenomena, often capturing context, emotions, and nuances.
- Subjective : Qualitative data is subjective and influenced by the individuals’ perspectives, experiences, and interpretations.
- Interpretive Analysis : Qualitative data requires interpretive techniques, such as thematic analysis, content analysis, and discourse analysis, to uncover themes, patterns, and underlying meanings.
- Contextual Understanding : Qualitative data emphasizes understanding the social, cultural, and contextual factors that shape individuals’ experiences and behaviors.
- Rich Insights : Qualitative data enables researchers to gain in-depth insights into complex phenomena and explore research questions in greater depth.
In summary, quantitative data represents numerical quantities and lends itself well to statistical analysis, while qualitative data provides rich, descriptive insights into subjective experiences and requires interpretive analysis techniques. Understanding the differences between quantitative and qualitative data is crucial for selecting appropriate analysis methods and drawing meaningful conclusions in research and data analysis.
Types of Data Analysis
Different types of data analysis techniques serve different purposes. In this section, we’ll explore four types of data analysis: descriptive, diagnostic, predictive, and prescriptive, and go over how you can use them.
Descriptive Analysis
Descriptive analysis involves summarizing and describing the main characteristics of a dataset. It focuses on gaining a comprehensive understanding of the data through measures such as central tendency (mean, median, mode), dispersion (variance, standard deviation), and graphical representations (histograms, bar charts). For example, in a retail business, descriptive analysis may involve analyzing sales data to identify average monthly sales, popular products, or sales distribution across different regions.
Diagnostic Analysis
Diagnostic analysis aims to understand the causes or factors influencing specific outcomes or events. It involves investigating relationships between variables and identifying patterns or anomalies in the data. Diagnostic analysis often uses regression analysis, correlation analysis, and hypothesis testing to uncover the underlying reasons behind observed phenomena. For example, in healthcare, diagnostic analysis could help determine factors contributing to patient readmissions and identify potential improvements in the care process.
Predictive Analysis
Predictive analysis focuses on making predictions or forecasts about future outcomes based on historical data. It utilizes statistical models, machine learning algorithms, and time series analysis to identify patterns and trends in the data. By applying predictive analysis, businesses can anticipate customer behavior, market trends, or demand for products and services. For example, an e-commerce company might use predictive analysis to forecast customer churn and take proactive measures to retain customers.
Prescriptive Analysis
Prescriptive analysis takes predictive analysis a step further by providing recommendations or optimal solutions based on the predicted outcomes. It combines historical and real-time data with optimization techniques, simulation models, and decision-making algorithms to suggest the best course of action. Prescriptive analysis helps organizations make data-driven decisions and optimize their strategies. For example, a logistics company can use prescriptive analysis to determine the most efficient delivery routes, considering factors like traffic conditions, fuel costs, and customer preferences.
In summary, data analysis plays a vital role in extracting insights and enabling informed decision making. Descriptive analysis helps understand the data, diagnostic analysis uncovers the underlying causes, predictive analysis forecasts future outcomes, and prescriptive analysis provides recommendations for optimal actions. These different data analysis techniques are valuable tools for businesses and organizations across various industries.
Data Analysis Methods
In addition to the data analysis types discussed earlier, you can use various methods to analyze data effectively. These methods provide a structured approach to extract insights, detect patterns, and derive meaningful conclusions from the available data. Here are some commonly used data analysis methods:
Statistical Analysis
Statistical analysis involves applying statistical techniques to data to uncover patterns, relationships, and trends. It includes methods such as hypothesis testing, regression analysis, analysis of variance (ANOVA), and chi-square tests. Statistical analysis helps organizations understand the significance of relationships between variables and make inferences about the population based on sample data. For example, a market research company could conduct a survey to analyze the relationship between customer satisfaction and product price. They can use regression analysis to determine whether there is a significant correlation between these variables.
Data Mining
Data mining refers to the process of discovering patterns and relationships in large datasets using techniques such as clustering, classification, association analysis, and anomaly detection. It involves exploring data to identify hidden patterns and gain valuable insights. For example, a telecommunications company could analyze customer call records to identify calling patterns and segment customers into groups based on their calling behavior.
Text Mining
Text mining involves analyzing unstructured data , such as customer reviews, social media posts, or emails, to extract valuable information and insights. It utilizes techniques like natural language processing (NLP), sentiment analysis, and topic modeling to analyze and understand textual data. For example, consider how a hotel chain might analyze customer reviews from various online platforms to identify common themes and sentiment patterns to improve customer satisfaction.
Time Series Analysis
Time series analysis focuses on analyzing data collected over time to identify trends, seasonality, and patterns. It involves techniques such as forecasting, decomposition, and autocorrelation analysis to make predictions and understand the underlying patterns in the data.
For example, an energy company could analyze historical electricity consumption data to forecast future demand and optimize energy generation and distribution.
Data Visualization
Data visualization is the graphical representation of data to communicate patterns, trends, and insights visually. It uses charts, graphs, maps, and other visual elements to present data in a visually appealing and easily understandable format. For example, a sales team might use a line chart to visualize monthly sales trends and identify seasonal patterns in their sales data.
These are just a few examples of the data analysis methods you can use. Your choice should depend on the nature of the data, the research question or problem, and the desired outcome.
How to Analyze Data
Analyzing data involves following a systematic approach to extract insights and derive meaningful conclusions. Here are some steps to guide you through the process of analyzing data effectively:
Define the Objective : Clearly define the purpose and objective of your data analysis. Identify the specific question or problem you want to address through analysis.
Prepare and Explore the Data : Gather the relevant data and ensure its quality. Clean and preprocess the data by handling missing values, duplicates, and formatting issues. Explore the data using descriptive statistics and visualizations to identify patterns, outliers, and relationships.
Apply Analysis Techniques : Choose the appropriate analysis techniques based on your data and research question. Apply statistical methods, machine learning algorithms, and other analytical tools to derive insights and answer your research question.
Interpret the Results : Analyze the output of your analysis and interpret the findings in the context of your objective. Identify significant patterns, trends, and relationships in the data. Consider the implications and practical relevance of the results.
Communicate and Take Action : Communicate your findings effectively to stakeholders or intended audiences. Present the results clearly and concisely, using visualizations and reports. Use the insights from the analysis to inform decision making.
Remember, data analysis is an iterative process, and you may need to revisit and refine your analysis as you progress. These steps provide a general framework to guide you through the data analysis process and help you derive meaningful insights from your data.
Data Analysis Tools
Data analysis tools are software applications and platforms designed to facilitate the process of analyzing and interpreting data . These tools provide a range of functionalities to handle data manipulation, visualization, statistical analysis, and machine learning. Here are some commonly used data analysis tools:
Spreadsheet Software
Tools like Microsoft Excel, Google Sheets, and Apple Numbers are used for basic data analysis tasks. They offer features for data entry, manipulation, basic statistical functions, and simple visualizations.
Business Intelligence (BI) Platforms
BI platforms like Microsoft Power BI, Tableau, and Looker integrate data from multiple sources, providing comprehensive views of business performance through interactive dashboards, reports, and ad hoc queries.
Programming Languages and Libraries
Programming languages like R and Python, along with their associated libraries (e.g., NumPy, SciPy, scikit-learn), offer extensive capabilities for data analysis. These tools provide flexibility, customizability, and access to a wide range of statistical and machine-learning algorithms.
Cloud-Based Analytics Platforms
Cloud-based platforms like Google Cloud Platform (BigQuery, Data Studio), Microsoft Azure (Azure Analytics, Power BI), and Amazon Web Services (AWS Analytics, QuickSight) provide scalable and collaborative environments for data storage, processing, and analysis. They have a wide range of analytical capabilities for handling large datasets.
Data Mining and Machine Learning Tools
Data analysis tools like RapidMiner, KNIME, and Weka automate the process of data preprocessing, feature selection, model training, and evaluation. They’re designed to extract insights and build predictive models from complex datasets.
Text Analytics Tools
Text analytics tools, such as Natural Language Processing (NLP) libraries in Python (NLTK, spaCy) or platforms like RapidMiner Text Mining Extension, enable the analysis of unstructured text data . They help extract information, sentiment, and themes from sources like customer reviews or social media.
Choosing the right data analysis tool depends on analysis complexity, dataset size, required functionalities, and user expertise. You might need to use a combination of tools to leverage their combined strengths and address specific analysis needs.
By understanding the importance of data analysis, you can leverage its power to make informed decisions, identify opportunities for improvement, and drive innovation within your organization. Whether you’re working with quantitative data for statistical analysis or qualitative data for in-depth insights, it’s important to select the right analysis techniques and tools for your objectives.
To continue learning about data analysis, review the following resources:
- What is Big Data Analytics?
- Operational Analytics
- JSON Analytics + Real-Time Insights
- Database vs. Data Warehouse: Differences, Use Cases, Examples
- Couchbase Capella Columnar Product Blog
- Posted in: Analytics , Application Design , Best Practices and Tutorials
- Tagged in: data analytics , data visualization , time series
Posted by Couchbase Product Marketing
Leave a reply cancel reply.
You must be logged in to post a comment.
Check your inbox or spam folder to confirm your subscription.
Website navigation
In this section
- Imperial Home
- Centre for Higher Education Research and Scholarship
- Educational research methods
- Analysing and writing up your research
Types of data analysis
The means by which you analyse your data are largely determined by the nature of your research question , the approach and paradigm within which your research operates, the methods used, and consequently the type of data elicited. In turn, the language and terms you use in both conducting and reporting your data analysis should reflect these.
The list below includes some of the more commonly used means of qualitative data analysis in educational research – although this is by no means exhaustive. It is also important to point out that each of the terms given below generally encompass a range of possible methods or options and there can be overlap between them. In all cases, further reading is essential to ensure that the process of data analysis is valid, transparent and appropriately systematic, and we have provided below (as well as in our further resources and tools and resources for qualitative data analysis sections) some recommendations for this.
If your research is likely to involve quantitative analysis, we recommend the books listed below.
Types of qualitative data analysis
- Thematic analysis
- Coding and/or content analysis
- Concept map analysis
- Discourse or narrative analysis
- Grouded theory
- Phenomenological analysis or interpretative phenomenological analysis (IPA)
Further reading and resources
As a starting point for most of these, we would recommend the relevant chapter from Part 5 of Cohen, Manion and Morrison (2018), Research Methods in Education. You may also find the following helpful:
For qualitative approaches
Savin-Baden, M. & Howell Major, C. (2013) Data analysis. In Qualitative Research: The essential guide to theory and practice . (Abingdon, Routledge, pp. 434-450).
For quantitative approaches
Bors, D. (2018) Data analysis for the social sciences (Sage, London).
IMAGES
VIDEO
COMMENTS
Data analysis in qualitative research. Data analysis and qualitative data research work a little differently from the numerical data as the quality data is made up of words, descriptions, images, objects, and sometimes symbols. Getting insight from such complicated information is a complicated process.
Data analysis is a crucial step in the research process, transforming raw data into meaningful insights that drive informed decisions and advance knowledge. This article explores the various types and methods of data analysis in research, providing a comprehensive guide for researchers across disciplines. Data Analysis in Research
Note: basic descriptive statistics such as mean, median, and mode, as well as standard deviation, are not shown because most people are already familiar with them.In the diagram, they would fall under the "descriptive" analysis type. Tree Diagram Explained. The highest-level classification of data analysis is quantitative vs qualitative.Quantitative implies numbers while qualitative ...
Data analysis is a crucial step in the research process, transforming raw data into meaningful insights that drive informed decisions and advance knowledge. This article explores the various types and methods of data analysis in research, providing a comprehensive guide for researchers across disciplines. Overview of Data analysis in researchData a
By understanding the process, methods, and types of data analysis, researchers and professionals can effectively tackle complex problems, uncover trends, and make data-driven decisions. With advancements in tools and technology, the scope and impact of data analysis continue to expand, shaping the future of industries and research.
4 types of data analysis (with examples) Data can be used to answer questions and support decisions in many different ways. To identify the best way to analyze your data, it's useful to familiarize yourself with the different types of analysis most commonly used in the field. 1. Descriptive analysis. Descriptive analysis tells us what happened.
Types of Data Analysis. Data analysis can be separated and organized into types, arranged in an increasing order of complexity. 1. Descriptive Analysis. The goal of descriptive analysis is to describe or summarize a set of data. Here's what you need to know: Descriptive analysis is the very first analysis performed in the data analysis process.
In addition to the data analysis types discussed earlier, you can use various methods to analyze data effectively. These methods provide a structured approach to extract insights, detect patterns, and derive meaningful conclusions from the available data. ... Your choice should depend on the nature of the data, the research question or problem ...
The means by which you analyse your data are largely determined by the nature of your research question, the approach and paradigm within which your research operates, the methods used, and consequently the type of data elicited. In turn, the language and terms you use in both conducting and reporting your data analysis should reflect these.
Data Analysis Tools. Data analysis tools make it easier for users to process and manipulate data, analyze the relationships and correlations between data sets, and it also helps to identify patterns and trends for interpretation. Here is a complete list of tools used for data analysis in research. Types of Data Analysis: Techniques and Methods