FREE K-12 standards-aligned STEM

curriculum for educators everywhere!

Find more at TeachEngineering.org .

  • TeachEngineering
  • What Is the Best Insulator: Air, Styrofoam, Foil or Cotton?

Hands-on Activity What Is the Best Insulator: Air, Styrofoam, Foil or Cotton?

Grade Level: 4 (3-5)

(20-minute set-up, 150 minutes to freeze, 90 minutes to melt, 40-minute assessment)

Expendable Cost/Group: US $1.00

Group Size: 3

Activity Dependency: None

Subject Areas: Physical Science

NGSS Performance Expectations:

NGSS Three Dimensional Triangle

TE Newsletter

Engineering connection, learning objectives, materials list, worksheets and attachments, more curriculum like this, introduction/motivation, vocabulary/definitions, investigating questions, activity extensions, user comments & tips.

Engineering… designed to work wonders

Temperature regulation is important in many aspects of engineering. Packaging engineers design containers and systems to be able to reliably ship items at specific temperatures. Mechanical engineers make sure that working engines do not overheat, and electrical and computer engineers design electronics so that they do not overheat. Civil engineers specify the most suitable insulating materials for the climates where their structures reside. Temperature regulation applies an understanding of the principles of heat transfer, which is relevant in almost all engineering disciplines.

After this activity, students should be able to:

  • Explain what "insulate" means and its implications in keeping things cold or warm.
  • Conduct basic experimental processes.
  • Describe how natural materials differ from human-made materials in terms of insulation.

Educational Standards Each TeachEngineering lesson or activity is correlated to one or more K-12 science, technology, engineering or math (STEM) educational standards. All 100,000+ K-12 STEM standards covered in TeachEngineering are collected, maintained and packaged by the Achievement Standards Network (ASN) , a project of D2L (www.achievementstandards.org). In the ASN, standards are hierarchically structured: first by source; e.g. , by state; within source by type; e.g. , science or mathematics; within type by subtype, then by grade, etc .

Ngss: next generation science standards - science, common core state standards - math.

View aligned curriculum

Do you agree with this alignment? Thanks for your feedback!

International Technology and Engineering Educators Association - Technology

State standards, massachusetts - math, massachusetts - science.

Each group needs:

  • 4 3 oz. plastic cups
  • 4 larger clear plastic cups
  • 3 Styrofoam cups
  • aluminum foil, 8½-in x 11-in piece
  • 20 cotton balls
  • teaspoon-sized spoon
  • 4 rubber bands
  • Data Chart , one per student, to be filled in during the experiment
  • Results Chart , one per student, to be filled in after the experiment

To share with the entire class:

  • pitcher of warm water
  • plastic wrap
  • large book or magazine

Photo looking into an open plastic cooler filled with ice, beverages, sandwiches, fruits and vegetables.

When you go to a summer picnic at a beach, in the mountains or at a lake, why do you put your cold drinks and ice in a cooler? What would happen if you put them in a backpack instead? (Listen to student ideas.) Yes, that's right, you would end up with a wet backpack and warm drinks. The cooler helps to keep the drinks cold because it acts as an insulator and slows the transfer of energy from one source to another, meaning it helps keeps the inside of the cooler cold and the heat out.

The opposite of an insulator is a conductor. What do you think a conductor does? (Listen to student ideas.) Yes, that's right, a conductor speeds up the transfer of energy from one source to another. You may have experienced this if you ever removed the lid to a pot cooking on the stove. A metal pot is a conductor and heats up quickly on the stove so that it cooks food or boils water faster. Just be careful before touching a metal pot because you could get burned.

What would happen if you designed a cooler using a material that acts as a conductor? Or a cooking pot with a material that acts as an insulator? (Listen to student ideas.)

Insulation helps keep cold things from warming up and warm things from cooling down. Insulators do this by slowing down the loss of heat from warm things and the gaining of heat by cool things. Plastics and rubber are usually good insulators. It is for this reason that electrical wires are coated to make them more safe to handle. Metals, on the other hand, usually make good conductors. In fact, copper is used in most electrical wires and circuit boards for this reason.

Before the Activity

  • Gather materials and make copies of the Data Chart and Results Chart , one each per student.
  • To minimize the time spent in the classroom, prepare the insulating materials (although students CAN do this!!).
  • Break up the foam cups into small pieces.
  • Tear the aluminum foil into pieces and loosely crunch up the pieces.
  • Pull the cotton balls apart a little and flatten them so that they resemble pancakes.

With the Students

  • Present the Introduction/Motivation content. As a class, discuss what types of devices students have seen or used to keep things warm or cold. Talk about the materials from which they think these devices are made.
  • Divide the class into groups of two to four students each.
  • Have students examine the insulating materials they are going to be given and have groups make predictions about which they think will work best.
  • Hand out the materials and blank charts to each group.
  • Give each team its supply of three different insulating materials: Styrofoam, aluminum foil and cotton balls. Air is the fourth insulating material. Have students place enough of each insulating material in each large plastic cup so that it covers the bottom of the cup. Put nothing in the fourth large cup because air will serve as the insulator for that cup.
  • Place a small 3 oz. cup in the center of each large cup.
  • Have students fill the space between the cups with the same insulating material they used on the bottom.
  • Place 3 teaspoons of warm tap water in each small cup.
  • Have each group cover each of its large cups with plastic wrap held on by a rubber band.
  • Place the cups in the freezer. Check the cups every 15 minutes to see which cup forms ice first. Record observations in the data chart. Keep checking until you see ice form in all four cups.
  • Let the cups sit in the freezer until the ice is frozen solid in all cups.
  • Remove the cups from the freezer and place them in a baking pan.
  • Place a book or a magazine on top of the cups to keep them from tipping or floating.
  • Pour very warm tap water into the pan.
  • Have teams check their cups every few minutes to see which seems to be melting first, second, third and fourth. Record observations in the data chart.
  • Conclude with a class discussion to share and compare results and findings. Ask the Investigating Questions. Use the attached rubric to gauge student accomplishments.

conductor: A substance or body that can allow electricity, heat or sound to pass through it.

conservation of energy: A physics principle that states that energy can neither be created nor destroyed and that the total energy of a system by itself remains constant.

energy: The capacity for doing work; can be in many forms such as electrical, mechanical, chemical, sound, light and heat.

freeze: The process of changing from a liquid to a solid (as ice) by loss of heat.

heat: A form of energy that causes substances to rise in temperature or go through associated changes (melting, evaporation or expansion).

insulate: To prevent or slow the transfer of electricity, heat or sound from one environment to another.

insulator: A substance that resists the flow of heat, electricity or sound through it.

melt: The process of changing from a solid to a liquid state through heat gain.

Pre-Activity Prediction : Have students feel and examine the test insulating materials (Styrofoam, aluminum foil, cotton, air), and have groups make predictions about which they think will work best. Their predictions give some indication of their understanding of heat transfer and insulation concepts.

Embedded Assessment : Observe students during the experimental process. Evaluate their comprehension of the subject matter and activity engagement using the criteria provided in the Rubric for Performance Assessment , which considers their understanding of insulating materials and teamwork.

Homework : Ask students to write paragraph-long answers to the two following questions, to turn in the next day or share in a class discussion. Review their answers to gauge their comprehension of the activity content.

  • Would you rather have gloves made of fabric or aluminum foil? Explain your choice using what you know about the properties of heat transfer. (Example answer: Fabric gloves would keep my hands warmer than foil gloves because fabric insulates our bodies, slowing down the time it takes for our hands to become cold. On the other hand, metals speed up the transfer of heat so any warmth in my hands prior to putting on "aluminum gloves" would quickly escape through the foil, leaving me with very cold hands.)
  • List at least three different products, devices or structures for which engineers applied their understanding of heat transfer principles in designing systems or choosing materials for the purpose of temperature regulation. (Tip: Think what might be designed by packaging, mechanical, electrical, computer and civil engineers, maybe items you use every day for comfort, life-saving necessity and entertainment.) (Example answers: thermos beverage containers, ice cream cart coolers, refrigerated trucks to ship foods at specific temperatures, coolers used to store and transport donated blood and body parts to patients, insulating materials in house walls and roofs to keep the inside cool or warm, special materials and weaves of fabrics used for clothing designed for specific weather conditions, wires made of metal and coated in plastic, fans and the liquids in radiators to keep electronics and motors from overheating. Specific example: If the casing that surrounds a tablet computer or pocket computer was made of rubber, the device would become hot very fast, and too uncomfortable to hold.)

Graphing: Have each student create a bar graph of the time taken to freeze/melt water for each insulator used. Use data obtained from the Data Chart for the bar graph.

  • What does "insulate" mean?
  • What materials are used for insulation?
  • Which insulator was best at slowing down the loss of heat from the warm water? Which was the worst?
  • Did the results in the second half of the activity make sense with the results from the first half? Explain.
  • Which is best for insulating a cup of ice: Styrofoam, foil or cotton?

So students can experience first hand that foil is not a good insulator, extend the activity with this quick hands-on demonstration:

  • Have each student wrap a cup with aluminum foil and another cup with paper.
  • Pour ice water into the cups.
  • Have students hold the cups in their hands to judge which material is the best insulator.

insulation experiment graph

Students learn about the definition of heat as a form of energy and how it exists in everyday life. They learn about the three types of heat transfer—conduction, convection and radiation—as well as the connection between heat and insulation.

preview of 'What Is Heat?' Lesson

Students learn about the nature of thermal energy, temperature and how materials store thermal energy. They discuss the difference between conduction, convection and radiation of thermal energy, and complete activities in which they investigate the difference between temperature, thermal energy and ...

preview of 'How Hot Is It?' Lesson

With the help of simple, teacher-led demonstration activities, students learn the basic physics of heat transfer by means of conduction, convection and radiation. They also learn about examples of heating and cooling devices, from stove tops to car radiators, that they encounter in their homes, scho...

preview of 'What's Hot and What's Not?' Lesson

Students learn the scientific concepts of temperature, heat and the transfer of heat through conduction, convection and radiation, which are illustrated by comparison to magical spells found in the Harry Potter books.

preview of 'Heat Transfer: No Magic About It' Lesson

Kessler, James H. and Andrea Bennett. The Best of WonderScience: Elementary Science Activities . Boston, MA: Delmar Publishers, 1997. pp 207, 210-211. ISBN: 0827380941

Supporting Program

Acknowledgements.

The contents of this digital library curriculum were developed under a National Science Foundation GK-12 grant. However, these contents do not necessarily represent the policies of the National Science Foundation, and you should not assume endorsement by the federal government.

Last modified: July 27, 2023

turtle

The Biology Corner

Biology Teaching Resources

two turtles

Investigation: Heat Loss and Insulation in a Jar

worksheet

This simple experiment can be used as a way to introduce the scientific method. Students design an experiment to test which materials are the best insulators by measuring heat loss.

The materials are simple, and the experiment doesn’t take very long. They will need two beakers per group, a thermometer, and hot water. Also, a variety of insulation materials, such as cotton, newspaper, styrofoam, cardboard.

You can substitute any number of materials. You can also brainstorm with students before class about things that make good insulators. Then, bring the ones students suggest for testing.

The Experiment

First, students design the experiment and discuss what type of data they will need to gather. They will need a beaker filled with hot water. I use a kettle to heat up water in my classroom.

They will then use a thermometer to measure heat loss over 14 minutes. This is compared to another jar with a different type of insulation

Final Synthesis

Finally, students answer questions about their experiment. They identify the control, dependent, and independent variables. Then, they create a graph that shows how temperature changes over time. Students should observe that the beaker with insulation changes more slowly than the one without insulation. Instructors can compile all the group data so they can compare different materials and determine which one is the best insulator.

The graph shown below is a example of the type of graph that students will create based on their data. You can opt to run the experiment longer than 14 minutes which may have more dramatic results. The time is based on my class period which is about 50 minutes, leaving time for discussion and completing the worksheet.

graph

Worksheet ends with a CER ( Claim, Evidence, Reasoning ). Students must answer the question about which materials are the best insulators.

There are two versions of this worksheet, a regular version with mostly open-ended questions, and a simpler version that has easier questions that are multiple choice. The simple version also has the graph set up (X and Y axes labeled). These versions are created for differentiation in classes that may have ELL students or students with special needs.

Shannan Muskopf

IMAGES

  1. Required Practical: Investigating Insulation

    insulation experiment graph

  2. Variation of mean insulation thickness with percentage overlap

    insulation experiment graph

  3. Study of efficient home insulation

    insulation experiment graph

  4. Insulation Thermal Conductivity versus Mean Temperature

    insulation experiment graph

  5. Investigation: Heat Loss Modeling with a Jar

    insulation experiment graph

  6. Comparing the Insulation Effectiveness of Four Insulation Materials of

    insulation experiment graph

VIDEO

  1. Winter Insulation Process for Tree Saplings

  2. EKODJAR

  3. Mosquitoes 🦟 torture-insulation process #experiment #asmr #shortfeed #mosquito

  4. The is insulation foam #short #facts

  5. insulation tap കൊണ്ട് മഴവിൽ ഉണ്ടാക്കാം🌈😱| #shorts #viral #trending #tiktok #malayalam #diy

  6. Fill those gaps with polyurethane spray foam to save energy!