SplashLearn Logo

Conditional Statement – Definition, Truth Table, Examples, FAQs

What is a conditional statement, how to write a conditional statement, what is a biconditional statement, solved examples on conditional statements, practice problems on conditional statements, frequently asked questions about conditional statements.

A conditional statement is a statement that is written in the “If p, then q” format. Here, the statement p is called the hypothesis and q is called the conclusion. It is a fundamental concept in logic and mathematics. 

Conditional statement symbol :  p → q

A conditional statement consists of two parts.

  • The “if” clause, which presents a condition or hypothesis.
  • The “then” clause, which indicates the consequence or result that follows if the condition is true. 

Example : If you brush your teeth, then you won’t get cavities.

Hypothesis (Condition): If you brush your teeth

Conclusion (Consequence): then you won’t get cavities 

Conditional statement

Conditional Statement: Definition

A conditional statement is characterized by the presence of “if” as an antecedent and “then” as a consequent. A conditional statement, also known as an “if-then” statement consists of two parts:

  • The “if” clause (hypothesis): This part presents a condition, situation, or assertion. It is the initial condition that is being considered.
  • The “then” clause (conclusion): This part indicates the consequence, result, or action that will occur if the condition presented in the “if” clause is true or satisfied. 

Related Worksheets

Complete the Statements Using Addition Sentence Worksheet

Representation of Conditional Statement

The conditional statement of the form ‘If p, then q” is represented as p → q. 

It is pronounced as “p implies q.”

Different ways to express a conditional statement are:

  • p implies q
  • p is sufficient for q
  • q is necessary for p

Parts of a Conditional Statement

There are two parts of conditional statements, hypothesis and conclusion. The hypothesis or condition will begin with the “if” part, and the conclusion or action will begin with the “then” part. A conditional statement is also called “implication.”

Conditional Statements Examples:

Example 1: If it is Sunday, then you can go to play. 

Hypothesis: If it is Sunday

Conclusion: then you can go to play. 

Example 2: If you eat all vegetables, then you can have the dessert.

Condition: If you eat all vegetables

Conclusion: then you can have the dessert 

To form a conditional statement, follow these concise steps:

Step 1 : Identify the condition (antecedent or “if” part) and the consequence (consequent or “then” part) of the statement.

Step 2 : Use the “if… then…” structure to connect the condition and consequence.

Step 3 : Ensure the statement expresses a logical relationship where the condition leads to the consequence.

Example 1 : “If you study (condition), then you will pass the exam (consequence).” 

This conditional statement asserts that studying leads to passing the exam. If you study (condition is true), then you will pass the exam (consequence is also true).

Example 2 : If you arrange the numbers from smallest to largest, then you will have an ascending order.

Hypothesis: If you arrange the numbers from smallest to largest

Conclusion: then you will have an ascending order

Truth Table for Conditional Statement

The truth table for a conditional statement is a table used in logic to explore the relationship between the truth values of two statements. It lists all possible combinations of truth values for “p” and “q” and determines whether the conditional statement is true or false for each combination. 

The truth value of p → q is false only when p is true and q is False. 

If the condition is false, the consequence doesn’t affect the truth of the conditional; it’s always true.

In all the other cases, it is true.

TTT
TFF
FTT
FFT

The truth table is helpful in the analysis of possible combinations of truth values for hypothesis or condition and conclusion or action. It is useful to understand the presence of truth or false statements. 

Converse, Inverse, and Contrapositive

The converse, inverse, and contrapositive are three related conditional statements that are derived from an original conditional statement “p → q.” 

Conditional Statementp q
Converseq p
Inverse~p → ~q
Contrapositive~q → ~p

Consider a conditional statement: If I run, then I feel great.

  • Converse: 

The converse of “p → q” is “q → p.” It reverses the order of the original statement. While the original statement says “if p, then q,” the converse says “if q, then p.” 

Converse: If I feel great, then I run.

  • Inverse: 

The inverse of “p → q” is “~p → ~q,” where “” denotes negation (opposite). It negates both the antecedent (p) and the consequent (q). So, if the original statement says “if p, then q,” the inverse says “if not p, then not q.”

Inverse : If I don’t run, then I don’t feel great.

  • Contrapositive: 

The contrapositive of “p → q” is “~q → ~p.” It reverses the order and also negates both the statements. So, if the original statement says “if p, then q,” the contrapositive says “if not q, then not p.”

Contrapositive: If I don’t feel great, then I don’t run.

A biconditional statement is a type of compound statement in logic that expresses a bidirectional or two-way relationship between two statements. It asserts that “p” is true if and only if “q” is true, and vice versa. In symbolic notation, a biconditional statement is represented as “p ⟺ q.”

In simpler terms, a biconditional statement means that the truth of “p” and “q” are interdependent. 

If “p” is true, then “q” must also be true, and if “q” is true, then “p” must be true. Conversely, if “p” is false, then “q” must be false, and if “q” is false, then “p” must be false. 

Biconditional statements are often used to express equality, equivalence, or conditions where two statements are mutually dependent for their truth values. 

Examples : 

  • I will stop my bike if and only if the traffic light is red.  
  • I will stay if and only if you play my favorite song.

Facts about Conditional Statements

  • The negation of a conditional statement “p → q” is expressed as “p and not q.” It is denoted as “𝑝 ∧ ∼𝑞.” 
  • The conditional statement is not logically equivalent to its converse and inverse.
  • The conditional statement is logically equivalent to its contrapositive. 
  • Thus, we can write p → q ∼q → ∼p

In this article, we learned about the fundamentals of conditional statements in mathematical logic, including their structure, parts, truth tables, conditional logic examples, and various related concepts. Understanding conditional statements is key to logical reasoning and problem-solving. Now, let’s solve a few examples and practice MCQs for better comprehension.

Example 1: Identify the hypothesis and conclusion. 

If you sing, then I will dance.

Solution : 

Given statement: If you sing, then I will dance.

Here, the antecedent or the hypothesis is “if you sing.”

The conclusion is “then I will dance.”

Example 2: State the converse of the statement: “If the switch is off, then the machine won’t work.” 

Here, p: The switch is off

q: The machine won’t work.

The conditional statement can be denoted as p → q.

Converse of p → q is written by reversing the order of p and q in the original statement.

Converse of  p → q is q → p.

Converse of  p → q: q → p: If the machine won’t work, then the switch is off.

Example 3: What is the truth value of the given conditional statement? 

If 2+2=5 , then pigs can fly.

Solution:  

q: Pigs can fly.

The statement p is false. Now regardless of the truth value of statement q, the overall statement will be true. 

F → F = T

Hence, the truth value of the statement is true. 

Conditional Statement - Definition, Truth Table, Examples, FAQs

Attend this quiz & Test your knowledge.

What is the antecedent in the given conditional statement? If it’s sunny, then I’ll go to the beach.

A conditional statement can be expressed as, what is the converse of “a → b”, when the antecedent is true and the consequent is false, the conditional statement is.

What is the meaning of conditional statements?

Conditional statements, also known as “if-then” statements, express a cause-and-effect or logical relationship between two propositions.

When does the truth value of a conditional statement is F?

A conditional statement is considered false when the antecedent is true and the consequent is false.

What is the contrapositive of a conditional statement?

The contrapositive reverses the order of the statements and also negates both the statements. It is equivalent in truth value to the original statement.

RELATED POSTS

  • Ordering Decimals: Definition, Types, Examples
  • Decimal to Octal: Steps, Methods, Conversion Table
  • Lattice Multiplication – Definition, Method, Examples, Facts, FAQs
  • X Intercept – Definition, Formula, Graph, Examples
  • Lateral Face – Definition With Examples

Banner Image

Math & ELA | PreK To Grade 5

Kids see fun., you see real learning outcomes..

Make study-time fun with 14,000+ games & activities, 450+ lesson plans, and more—free forever.

Parents, Try for Free Teachers, Use for Free

A free service from Mattecentrum

If-then statement

  • Logical correct I
  • Logical correct II

When we previously discussed inductive reasoning we based our reasoning on examples and on data from earlier events. If we instead use facts, rules and definitions then it's called deductive reasoning.

We will explain this by using an example.

If you get good grades then you will get into a good college.

The part after the "if": you get good grades - is called a hypotheses and the part after the "then" - you will get into a good college - is called a conclusion.

Hypotheses followed by a conclusion is called an If-then statement or a conditional statement.

This is noted as

$$p \to q$$

This is read - if p then q.

A conditional statement is false if hypothesis is true and the conclusion is false. The example above would be false if it said "if you get good grades then you will not get into a good college".

If we re-arrange a conditional statement or change parts of it then we have what is called a related conditional.

Our conditional statement is: if a population consists of 50% men then 50% of the population must be women.

If we exchange the position of the hypothesis and the conclusion we get a converse statemen t: if a population consists of 50% women then 50% of the population must be men.

$$q\rightarrow p$$

If both statements are true or if both statements are false then the converse is true. A conditional and its converse do not mean the same thing

If we negate both the hypothesis and the conclusion we get a inverse statemen t: if a population do not consist of 50% men then the population do not consist of 50% women.

$$\sim p\rightarrow \: \sim q$$

The inverse is not true juest because the conditional is true. The inverse always has the same truth value as the converse.

We could also negate a converse statement, this is called a contrapositive statemen t:  if a population do not consist of 50% women then the population do not consist of 50% men.

$$\sim q\rightarrow \: \sim p$$

The contrapositive does always have the same truth value as the conditional. If the conditional is true then the contrapositive is true.

A pattern of reaoning is a true assumption if it always lead to a true conclusion. The most common patterns of reasoning are detachment and syllogism.

If we turn of the water in the shower, then the water will stop pouring.

If we call the first part p and the second part q then we know that p results in q. This means that if p is true then q will also be true. This is called the law of detachment and is noted:

$$\left [ (p \to q)\wedge p \right ] \to q$$

The law of syllogism tells us that if p → q and q → r then p → r is also true.

This is noted:

$$\left [ (p \to q)\wedge (q \to r ) \right ] \to (p \to r)$$

If the following statements are true:

If we turn of the water (p), then the water will stop pouring (q). If the water stops pouring (q) then we don't get wet any more (r).

Then the law of syllogism tells us that if we turn of the water (p) then we don't get wet (r) must be true.

Video lesson

Write a converse, inverse and contrapositive to the conditional

"If you eat a whole pint of ice cream, then you won't be hungry"

  • Angles, parallel lines and transversals
  • Congruent triangles
  • More about triangles
  • Inequalities
  • Mean and geometry
  • The converse of the Pythagorean theorem and special triangles
  • Properties of parallelograms
  • Common types of transformation
  • Transformation using matrices
  • Basic information about circles
  • Inscribed angles and polygons
  • Advanced information about circles
  • Parallelogram, triangles etc
  • The surface area and the volume of pyramids, prisms, cylinders and cones
  • SAT Overview
  • ACT Overview

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

K12 LibreTexts

2.11: If Then Statements

  • Last updated
  • Save as PDF
  • Page ID 2144

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

Hypothesis followed by a conclusion in a conditional statement.

Conditional Statements

A conditional statement (also called an if-then statement ) is a statement with a hypothesis followed by a conclusion . The hypothesis is the first, or “if,” part of a conditional statement. The conclusion is the second, or “then,” part of a conditional statement. The conclusion is the result of a hypothesis.

f-d_4db5d03aa180674c10187c8961dc571238102082156ee867771ecea3+IMAGE_TINY+IMAGE_TINY.png

If-then statements might not always be written in the “if-then” form. Here are some examples of conditional statements:

  • Statement 1: If you work overtime, then you’ll be paid time-and-a-half.
  • Statement 2: I’ll wash the car if the weather is nice.
  • Statement 3: If 2 divides evenly into \(x\), then \(x\) is an even number.
  • Statement 4: I’ll be a millionaire when I win the lottery.
  • Statement 5: All equiangular triangles are equilateral.

Statements 1 and 3 are written in the “if-then” form. The hypothesis of Statement 1 is “you work overtime.” The conclusion is “you’ll be paid time-and-a-half.” Statement 2 has the hypothesis after the conclusion. If the word “if” is in the middle of the statement, then the hypothesis is after it. The statement can be rewritten: If the weather is nice, then I will wash the car. Statement 4 uses the word “when” instead of “if” and is like Statement 2. It can be written: If I win the lottery, then I will be a millionaire. Statement 5 “if” and “then” are not there. It can be rewritten: If a triangle is equiangular, then it is equilateral.

What if you were given a statement like "All squares are rectangles"? How could you determine the hypothesis and conclusion of this statement?

Example \(\PageIndex{1}\)

Determine the hypothesis and conclusion: I'll bring an umbrella if it rains.

Hypothesis: "It rains." Conclusion: "I'll bring an umbrella."

Example \(\PageIndex{2}\)

Determine the hypothesis and conclusion: All right angles are \(90^{\circ}\).

Hypothesis: "An angle is right." Conclusion: "It is \(90^{\circ}\)."

Example \(\PageIndex{3}\)

Use the statement: I will graduate when I pass Calculus.

Rewrite in if-then form and determine the hypothesis and conclusion.

This statement can be rewritten as If I pass Calculus, then I will graduate. The hypothesis is “I pass Calculus,” and the conclusion is “I will graduate.”

Example \(\PageIndex{4}\)

Use the statement: All prime numbers are odd.

Rewrite in if-then form, determine the hypothesis and conclusion, and determine whether this is a true statement.

This statement can be rewritten as If a number is prime, then it is odd. The hypothesis is "a number is prime" and the conclusion is "it is odd". This is not a true statement (remember that not all conditional statements will be true!) since 2 is a prime number but it is not odd.

Example \(\PageIndex{5}\)

Determine the hypothesis and conclusion: Sarah will go to the store if Riley does the laundry.

The statement can be rewritten as "If Riley does the laundry then Sarah will go to the store." The hypothesis is "Riley does the laundry" and the conclusion is "Sarah will go to the store."

Determine the hypothesis and the conclusion for each statement.

  • If 5 divides evenly into \(x\), then \(x\) ends in 0 or 5.
  • If a triangle has three congruent sides, it is an equilateral triangle.
  • Three points are coplanar if they all lie in the same plane.
  • If \(x=3\), then \(x^2=9\).
  • If you take yoga, then you are relaxed.
  • All baseball players wear hats.
  • I'll learn how to drive when I am 16 years old.
  • If you do your homework, then you can watch TV.
  • Alternate interior angles are congruent if lines are parallel.
  • All kids like ice cream.

Term Definition
A conditional statement (or 'if-then' statement) is a statement with a hypothesis followed by a conclusion.
A geometric figure formed by two rays that connect at a single point or vertex.
The antecedent is the first, or “if,” part of a conditional statement.
The “then” part of an if-then statement is called the conclusion, consequent or apodosis.
The conclusion of a conditional statement is the result of the hypothesis.
The “then” part of an if-then statement is called the conclusion, consequent or apodosis.
The hypothesis is the first, or “if,” part of a conditional statement.
An if-then statement is another name for a conditional statement.
The protasis is the first, or “if,” part of a conditional statement.
A set is a collection of numbers, letters or anything.
Set theory studies the relationships of sets and subsets.
A subset is a collection of numbers or objects within a larger set.

Additional Resources

Video: If-Then Statements Principles - Basic

Activities: If-Then Statements Discussion Questions

Study Aids: Conditional Statements Study Guide

Practice: If Then Statements

Real World: If Then Statements

  • + ACCUPLACER Mathematics
  • + ACT Mathematics
  • + AFOQT Mathematics
  • + ALEKS Tests
  • + ASVAB Mathematics
  • + ATI TEAS Math Tests
  • + Common Core Math
  • + DAT Math Tests
  • + FSA Tests
  • + FTCE Math
  • + GED Mathematics
  • + Georgia Milestones Assessment
  • + GRE Quantitative Reasoning
  • + HiSET Math Exam
  • + HSPT Math
  • + ISEE Mathematics
  • + PARCC Tests
  • + Praxis Math
  • + PSAT Math Tests
  • + PSSA Tests
  • + SAT Math Tests
  • + SBAC Tests
  • + SIFT Math
  • + SSAT Math Tests
  • + STAAR Tests
  • + TABE Tests
  • + TASC Math
  • + TSI Mathematics
  • + ACT Math Worksheets
  • + Accuplacer Math Worksheets
  • + AFOQT Math Worksheets
  • + ALEKS Math Worksheets
  • + ASVAB Math Worksheets
  • + ATI TEAS 6 Math Worksheets
  • + FTCE General Math Worksheets
  • + GED Math Worksheets
  • + 3rd Grade Mathematics Worksheets
  • + 4th Grade Mathematics Worksheets
  • + 5th Grade Mathematics Worksheets
  • + 6th Grade Math Worksheets
  • + 7th Grade Mathematics Worksheets
  • + 8th Grade Mathematics Worksheets
  • + 9th Grade Math Worksheets
  • + HiSET Math Worksheets
  • + HSPT Math Worksheets
  • + ISEE Middle-Level Math Worksheets
  • + PERT Math Worksheets
  • + Praxis Math Worksheets
  • + PSAT Math Worksheets
  • + SAT Math Worksheets
  • + SIFT Math Worksheets
  • + SSAT Middle Level Math Worksheets
  • + 7th Grade STAAR Math Worksheets
  • + 8th Grade STAAR Math Worksheets
  • + THEA Math Worksheets
  • + TABE Math Worksheets
  • + TASC Math Worksheets
  • + TSI Math Worksheets
  • + AFOQT Math Course
  • + ALEKS Math Course
  • + ASVAB Math Course
  • + ATI TEAS 6 Math Course
  • + CHSPE Math Course
  • + FTCE General Knowledge Course
  • + GED Math Course
  • + HiSET Math Course
  • + HSPT Math Course
  • + ISEE Upper Level Math Course
  • + SHSAT Math Course
  • + SSAT Upper-Level Math Course
  • + PERT Math Course
  • + Praxis Core Math Course
  • + SIFT Math Course
  • + 8th Grade STAAR Math Course
  • + TABE Math Course
  • + TASC Math Course
  • + TSI Math Course
  • + Number Properties Puzzles
  • + Algebra Puzzles
  • + Geometry Puzzles
  • + Intelligent Math Puzzles
  • + Ratio, Proportion & Percentages Puzzles
  • + Other Math Puzzles

How to Understand ‘If-Then’ Conditional Statements: A Comprehensive Guide

In math, and even in everyday life, we often say 'if this, then that.' This is the essence of conditional statements. They set up a condition and then describe what happens if that condition is met. For instance, 'If it rains, then the ground gets wet.' These statements are foundational in math, helping us build logical arguments and solve problems. In this guide, we'll dive into the clear-cut world of conditional statements, breaking them down in both simple terms and their mathematical significance.

How to Understand ‘If-Then’ Conditional Statements: A Comprehensive Guide

Step-by-step Guide: Conditional Statements

Defining Conditional Statements: A conditional statement is a logical statement that has two parts: a hypothesis (the ‘if’ part) and a conclusion (the ‘then’ part). Written symbolically, it takes the form: \( \text{If } p, \text{ then } q \) Where \( p \) is the hypothesis and \( q \) is the conclusion.

Truth Values: A conditional statement is either true or false. The only time a conditional statement is false is when the hypothesis is true, but the conclusion is false.

Converse, Inverse, and Contrapositive: 1. Converse: The converse of a conditional statement switches the hypothesis and the conclusion. For the statement “If \( p \), then \( q \)”, the converse is “If \( q \), then \( p \)”.

2. Inverse: The inverse of a conditional statement negates both the hypothesis and the conclusion. For the statement “If \( p \), then \( q \)”, the inverse is “If not \( p \), then not \( q \)”.

3. Contrapositive: The contrapositive of a conditional statement switches and negates both the hypothesis and the conclusion. For the statement “If \( p \), then \( q \)”, the contrapositive is “If not \( q \), then not \( p \)”.

Example 1: Simple Conditional Statement: “If it is raining, then the ground is wet.”

Solution: Hypothesis \(( p )\): It is raining. Conclusion \(( q )\): The ground is wet.

Example 2: Determining Truth Value Statement: “If a shape has four sides, then it is a rectangle.”

Solution: This statement is false because a shape with four sides could be a square, trapezoid, or other quadrilateral, not necessarily a rectangle.

Example 3: Converse, Inverse, and Contrapositive Statement: “If a number is even, then it is divisible by \(2\).”

Solution: Converse: If a number is divisible by \(2\), then it is even. Inverse: If a number is not even, then it is not divisible by \(2\). Contrapositive: If a number is not divisible by \(2\), then it is not even.

Practice Questions:

  • Write the converse, inverse, and contrapositive for the statement: “If a bird is a penguin, then it cannot fly.”
  • Determine the truth value of the statement: “If a shape has three sides, then it is a triangle.”
  • For the statement “If an animal is a cat, then it is a mammal,” which of the following is its converse? a) If an animal is a mammal, then it is a cat. b) If an animal is not a cat, then it is not a mammal. c) If an animal is not a mammal, then it is not a cat.
  • Converse: If a bird cannot fly, then it is a penguin. Inverse: If a bird is not a penguin, then it can fly. Contrapositive: If a bird can fly, then it is not a penguin.
  • The statement is true. A shape with three sides is defined as a triangle.
  • a) If an animal is a mammal, then it is a cat.

by: Effortless Math Team about 8 months ago (category: Articles )

Effortless Math Team

Related to this article, more math articles.

  • Full-Length 6th Grade FSA Math Practice Test-Answers and Explanations
  • Top 10 Free Websites for SHSAT Math Preparation
  • Double the Steps, Double the Fun: How to Solve Two-Step Inequalities
  • How to Convey Decimals in Words
  • CBEST Math FREE Sample Practice Questions
  • How to Solve an Absolute Value Inequality?
  • How to Solve Word Problems Involving the One-Step Equation
  • The Ultimate CBEST Math Course (+FREE Worksheets & Tests)
  • ISEE Middle-Level Math FREE Sample Practice Questions
  • Using Models to Represent Decimal Number Place Value

What people say about "How to Understand ‘If-Then’ Conditional Statements: A Comprehensive Guide - Effortless Math: We Help Students Learn to LOVE Mathematics"?

No one replied yet.

Leave a Reply Cancel reply

You must be logged in to post a comment.

Algebra I Study Guide A Comprehensive Review and Step-By-Step Guide to Preparing for Algebra I

Oar math study guide 2020 – 2021 a comprehensive review and step-by-step guide to preparing for the oar math, grade 8 math study guide 2021 – 2022 a comprehensive review and step-by-step guide to preparing for grade 8 math, shsat math study guide 2020 – 2021 a comprehensive review and step-by-step guide to preparing for the shsat math, psat math study guide 2020 – 2021 a comprehensive review and step-by-step guide to preparing for the psat math, act math study guide 2020 – 2021 a comprehensive review and step-by-step guide to preparing for the act math, accuplacer math study guide 2020 – 2021 a comprehensive review and step-by-step guide to preparing for the accuplacer math, aleks math study guide 2020 – 2021 a comprehensive review and step-by-step guide to preparing for the aleks math, pre-algebra study guide 2020 – 2021 a comprehensive review and step-by-step guide to preparing for the pre-algebra, dat quantitative reasoning study guide 2020 – 2021 a comprehensive review and step-by-step guide to preparing for the dat quantitative reasoning, chspe math study guide 2020 – 2021 a comprehensive review and step-by-step guide to preparing for the chspe math, tsi math study guide 2020 – 2021 a comprehensive review and step-by-step guide to preparing for the tsi math, tabe 11 & 12 math study guide 2020 – 2021 for level d a comprehensive review and step-by-step guide to preparing for the tabe math, ftce math study guide 2020 – 2021 a comprehensive review and step-by-step guide to preparing for the ftce general knowledge math, ged math study guide 2020 – 2021 a comprehensive review and step-by-step guide to preparing for the ged math.

  • ATI TEAS 6 Math
  • ISEE Upper Level Math
  • SSAT Upper-Level Math
  • Praxis Core Math
  • 8th Grade STAAR Math

Limited time only!

Save Over 45 %

It was $89.99 now it is $49.99

Login and use all of our services.

Effortless Math services are waiting for you. login faster!

Register Fast!

Password will be generated automatically and sent to your email.

After registration you can change your password if you want.

  • Math Worksheets
  • Math Courses
  • Math Topics
  • Math Puzzles
  • Math eBooks
  • GED Math Books
  • HiSET Math Books
  • ACT Math Books
  • ISEE Math Books
  • ACCUPLACER Books
  • Premium Membership
  • Youtube Videos

Effortless Math provides unofficial test prep products for a variety of tests and exams. All trademarks are property of their respective trademark owners.

  • Bulk Orders
  • Refund Policy

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Mathematics LibreTexts

3.3: Truth Tables- Conditional, Biconditional

  • Last updated
  • Save as PDF
  • Page ID 52962

  • David Lippman
  • Pierce College via The OpenTextBookStore

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

Conditional

A conditional is a logical compound statement in which a statement \(p\), called the hypothesis, implies a statement \(q\), called the conclusion.

A conditional is written as \(p \rightarrow q\) and is translated as "if \(p\), then \(q\)".

The English statement “If it is raining, then there are clouds is the sky” is a conditional statement. It makes sense because if the hypothesis “it is raining” is true, then the conclusion “there are clouds in the sky” must also be true.

Notice that the statement tells us nothing of what to expect if it is not raining; there might be clouds in the sky, or there might not. If the hypothesis is false, then the conclusion becomes irrelevant.

Suppose you order a team jersey online on Tuesday and want to receive it by Friday so you can wear it to Saturday’s game. The website says that if you pay for expedited shipping, you will receive the jersey by Friday. In what situation is the website telling a lie?

There are four possible outcomes:

  • You pay for expedited shipping and receive the jersey by Friday
  • You pay for expedited shipping and don’t receive the jersey by Friday
  • You don’t pay for expedited shipping and receive the jersey by Friday
  • You don’t pay for expedited shipping and don’t receive the jersey by Friday

Only one of these outcomes proves that the website was lying: the second outcome in which you pay for expedited shipping but don’t receive the jersey by Friday. The first outcome is exactly what was promised, so there’s no problem with that. The third outcome is not a lie because the website never said what would happen if you didn’t pay for expedited shipping; maybe the jersey would arrive by Friday whether you paid for expedited shipping or not. The fourth outcome is not a lie because, again, the website didn’t make any promises about when the jersey would arrive if you didn’t pay for expedited shipping.

It may seem strange that the third outcome in the previous example, in which the first part is false but the second part is true, is not a lie. Remember, though, that if the hypothesis is false, we cannot make any judgment about the conclusion. The website never said that paying for expedited shipping was the only way to receive the jersey by Friday.

A friend tells you “If you upload that picture to Facebook, you’ll lose your job.” Under what conditions can you say that your friend was wrong?

  • You upload the picture and lose your job
  • You upload the picture and don’t lose your job
  • You don’t upload the picture and lose your job
  • You don’t upload the picture and don’t lose your job

There is only one possible case in which you can say your friend was wrong: the second outcome in which you upload the picture but still keep your job. In the last two cases, your friend didn’t say anything about what would happen if you didn’t upload the picture, so you can’t say that their statement was wrong. Even if you didn’t upload the picture and lost your job anyway, your friend never said that you were guaranteed to keep your job if you didn’t upload the picture; you might lose your job for missing a shift or punching your boss instead.

Truth Table for the Conditional

\(\begin{array}{|c|c|c|} \hline p & q & p \rightarrow q \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{T} \\ \hline \end{array}\)

Again, if the hypothesis \(p\) is false, we cannot prove that the statement is a lie, so the result of the third and fourth rows is true.

Construct a truth table for the statement \((m \wedge \sim p) \rightarrow r\)

We start by constructing a truth table with 8 rows to cover all possible scenarios. Next, we can focus on the hypothesis, \(m \wedge \sim p\).

\(\begin{array}{|c|c|c|} \hline m & p & r \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{F} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{F} \\ \hline \end{array}\)

\(\begin{array}{|c|c|c|c|} \hline m & p & r & \sim p \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{F} \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{F} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{F} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{F} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{F} & \mathrm{T} \\ \hline \end{array}\)

\(\begin{array}{|c|c|c|c|c|} \hline m & p & r & \sim p & m \wedge \sim p \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{F} \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{F} & \mathrm{F} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{F} & \mathrm{F} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{F} \\ \hline \end{array}\)

Now we can create a column for the conditional. Because it can be confusing to keep track of all the Ts and \(\mathrm{Fs}\), why don't we copy the column for \(r\) to the right of the column for \(m \wedge \sim p\) ? This makes it a lot easier to read the conditional from left to right.

\(\begin{array}{|c|c|c|c|c|c|c|} \hline m & p & r & \sim p & m \wedge \sim p & r & (m \wedge \sim p) \rightarrow r \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{F} & \mathrm{F} & \mathrm{F} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{F} & \mathrm{F} & \mathrm{F} & \mathrm{F} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{F} & \mathrm{F} & \mathrm{T} \\ \hline \end{array}\)

When \(m\) is true, \(p\) is false, and \(r\) is false- -the fourth row of the table-then the hypothesis \(m \wedge \sim p\) will be true but the conclusion false, resulting in an invalid conditional; every other case gives a valid conditional.

If you want a real-life situation that could be modeled by \((m \wedge \sim p) \rightarrow r\), consider this: let \(m=\) we order meatballs, \(p=\) we order pasta, and \(r=\) Rob is happy. The statement \((m \wedge \sim p) \rightarrow r\) is "if we order meatballs and don't order pasta, then Rob is happy". If \(m\) is true (we order meatballs), \(p\) is false (we don't order pasta), and \(r\) is false (Rob is not happy), then the statement is false, because we satisfied the hypothesis but Rob did not satisfy the conclusion.

For any conditional, there are three related statements, the converse, the inverse, and the contrapositive.

Derived Forms of a Conditional

The original conditional is \(\quad\) "if \(p,\) then \(q^{\prime \prime} \quad p \rightarrow q\)

The converse is \(\quad\) "if \(q,\) then \(p^{\prime \prime} \quad q \rightarrow p\)

The inverse is \(\quad\) "if not \(p,\) then not \(q^{\prime \prime} \quad \sim p \rightarrow \sim q\)

The contrapositive is "if not \(q,\) then not \(p^{\prime \prime} \quad \sim q \rightarrow \sim p\)

Consider again the conditional “If it is raining, then there are clouds in the sky.” It seems reasonable to assume that this is true.

The converse would be “If there are clouds in the sky, then it is raining.” This is not always true.

The inverse would be “If it is not raining, then there are not clouds in the sky.” Likewise, this is not always true.

The contrapositive would be “If there are not clouds in the sky, then it is not raining.” This statement is true, and is equivalent to the original conditional.

Looking at truth tables, we can see that the original conditional and the contrapositive are logically equivalent, and that the converse and inverse are logically equivalent.

clipboard_e4fc512ef5eaeb010f3e7328168fcef19.png

Equivalence

A conditional statement and its contrapositive are logically equivalent.

The converse and inverse of a conditional statement are logically equivalent.

In other words, the original statement and the contrapositive must agree with each other; they must both be true, or they must both be false. Similarly, the converse and the inverse must agree with each other; they must both be true, or they must both be false.

We typically represent the conditional using the words, "if ..., then ...," but there are other ways this logical connective can be represented in English. Consider the conditional from Example 5: "If it is raining, then there are clouds in the sky." We could equivalently write, "It is raining only if there are clouds in the sky." You can probably imagine how these two statements are saying the same thing - whenever it's raining outside, it is a safe conclusion there are clouds in the sky as well. Some other wordings that communicate the same information use either "sufficient" or "necessary." For example, "Raining is a sufficient condition for it to be cloudy," and "Being cloudy is a necessary condition for it to be raining." Here is a table summarizing the different wordings.

Different Wordings of the Conditional

The following statements are equivalent:

  • If \(p\), then \(q\).
  • \(q\) only if \(p\).
  • \(p\) is sufficient for \(q\).
  • \(q\) is necessary for \(p\).

In everyday life, we often have a stronger meaning in mind when we use a conditional statement. Consider “If you submit your hours today, then you will be paid next Friday.” What the payroll rep really means is “If you submit your hours today, then you will be paid next Friday, and if you don’t submit your hours today, then you won’t be paid next Friday.” The conditional statement if t , then p also includes the inverse of the statement: if not t , then not p . A more compact way to express this statement is “You will be paid next Friday if and only if you submit your timesheet today.” A statement of this form is called a biconditional .

Biconditional

A biconditional is a logical conditional statement in which the hypothesis and conclusion are interchangeable.

A biconditional is written as \(p \leftrightarrow q\) and is translated as " \(p\) if and only if \(q^{\prime \prime}\).

Because a biconditional statement \(p \leftrightarrow q\) is equivalent to \((p \rightarrow q) \wedge(q \rightarrow p),\) we may think of it as a conditional statement combined with its converse: if \(p\), then \(q\) and if \(q\), then \(p\). The double-headed arrow shows that the conditional statement goes from left to right and from right to left. A biconditional is considered true as long as the hypothesis and the conclusion have the same truth value; that is, they are either both true or both false.

Truth Table for the Biconditional

\(\begin{array}{|c|c|c|} \hline p & q & p \leftrightarrow q \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{T} \\ \hline \end{array}\)

Notice that the fourth row, where both components are false, is true; if you don’t submit your timesheet and you don’t get paid, the person from payroll told you the truth.

Suppose this statement is true: “The garbage truck comes down my street if and only if it is Thursday morning.” Which of the following statements could be true?

  • It is noon on Thursday and the garbage truck did not come down my street this morning.
  • It is Monday and the garbage truck is coming down my street.
  • It is Wednesday at 11:59PM and the garbage truck did not come down my street today.
  • This cannot be true. This is like the second row of the truth table; it is true that I just experienced Thursday morning, but it is false that the garbage truck came.
  • This cannot be true. This is like the third row of the truth table; it is false that it is Thursday, but it is true that the garbage truck came.
  • This could be true. This is like the fourth row of the truth table; it is false that it is Thursday, but it is also false that the garbage truck came, so everything worked out like it should.

Try it Now 1

Suppose this statement is true: “I wear my running shoes if and only if I am exercising.” Determine whether each of the following statements must be true or false.

  • I am exercising and I am not wearing my running shoes.
  • I am wearing my running shoes and I am not exercising.
  • I am not exercising and I am not wearing my running shoes.

Choices a & b are false; c is true.

Create a truth table for the statement \((A \vee B) \leftrightarrow \sim C\)

Whenever we have three component statements, we start by listing all the possible truth value combinations for \(A, B,\) and \(C .\) After creating those three columns, we can create a fourth column for the hypothesis, \(A \vee B\). Now we will temporarily ignore the column for \(C\) and focus on \(A\) and \(B\), writing the truth values for \(A \vee B\).

\(\begin{array}{|c|c|c|} \hline A & B & C \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{F} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{F} \\ \hline \end{array}\)

\(\begin{array}{|c|c|c|c|} \hline A & B & C & A \vee B \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{F} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{F} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{F} & \mathrm{F} \\ \hline \end{array}\)

Next we can create a column for the negation of \(C\). (Ignore the \(A \vee B\) column and simply negate the values in the \(C\) column.)

\(\begin{array}{|c|c|c|c|c|} \hline A & B & C & A \vee B & \sim C \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{F} \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{F} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{F} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{F} & \mathrm{F} & \mathrm{T} \\ \hline \end{array}\)

Finally, we find the truth values of \((A \vee B) \leftrightarrow \sim C\). Remember, a biconditional is true when the truth value of the two parts match, but it is false when the truth values do not match.

\(\begin{array}{|c|c|c|c|c|c|} \hline A & B & C & A \vee B & \sim C & (A \vee B) \leftrightarrow \sim C \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{F} \\ \hline \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{F} \\ \hline \mathrm{T} & \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{F} \\ \hline \mathrm{F} & \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{F} & \mathrm{F} & \mathrm{T} \\ \hline \mathrm{F} & \mathrm{F} & \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{F} \\ \hline \end{array}\)

To illustrate this situation, suppose your boss needs you to do either project \(A\) or project \(B\) (or both, if you have the time). If you do one of the projects, you will not get a crummy review ( \(C\) is for crummy). So \((A \vee B) \leftrightarrow \sim C\) means "You will not get a crummy review if and only if you do project \(A\) or project \(B\)." Looking at a few of the rows of the truth table, we can see how this works out. In the first row, \(A, B,\) and \(C\) are all true: you did both projects and got a crummy review, which is not what your boss told you would happen! That is why the final result of the first row is false. In the fourth row, \(A\) is true, \(B\) is false, and \(C\) is false: you did project \(A\) and did not get a crummy review. This is what your boss said would happen, so the final result of this row is true. And in the eighth row, \(A, B\), and \(C\) are all false: you didn't do either project and did not get a crummy review. This is not what your boss said would happen, so the final result of this row is false. (Even though you may be happy that your boss didn't follow through on the threat, the truth table shows that your boss lied about what would happen.)

Introduction to Proofs: An Active Exploration of Mathematical Language

Jennifer Firkins Nordstrom

Search Results:

Section 2.3 conditional statements, activity 2.3.1 . which type., activity 2.3.2 . relationship between universal and conditional., example 2.3.1 . universal conditional statement..

Translate the statement using quantifiers and variables, “If an integer is even then it is divisible by 2.” Answer . Let \(P(x)\) be “ \(x\) is even” and \(Q(x)\) be “ \(x\) is divisible by 2.” \(\forall x\in \mathbb{Z}, P(x)\rightarrow Q(x)\text{.}\)

Activity 2.3.3 . Translating to Universal Conditional.

Activity 2.3.4 . a geography conditional., activity 2.3.5 . a weather conditional., activity 2.3.6 . an argument conditional., activity 2.3.7 . a mathematical conditional., logical equivalences for conditionals..

  • \(\displaystyle p\rightarrow q\equiv \neg p\ \vee q\)
  • \(\displaystyle \neg(p\rightarrow q)\equiv p\ \wedge \neg q\)

Definition 2.3.2 .

  • contrapositive : \(\neg q\rightarrow \neg p\text{;}\)
  • converse : \(q\rightarrow p\text{;}\)
  • inverse : \(\neg p\rightarrow \neg q\text{.}\)

Definition 2.3.3 .

Definition 2.3.4 ., activity 2.3.8 . writing contrapositives., activity 2.3.9 . more writing contrapositives., activity 2.3.10 . converse statements., converting an argument to a conditional statement..

A
B
\(\therefore\ \)C

Example 2.3.5 . Converting and Argument to a Conditional.

\(p\wedge q\)
\(\therefore\ \)\(p\)

Example 2.3.6 . Converting and Argument to a Conditional.

\(p\vee q\)
\(\therefore\ \)\(p\)

Activity 2.3.11 . Checking Validity with Conditional.

\(p\rightarrow q\)
\(\neg q\)
\(\therefore\ \)\(\neg p\)

Activity 2.3.12 . More Checking Validity with Conditional.

\(p\rightarrow q\)
\(\neg p\)
\(\therefore\ \)\(\neg q\)

Exercises Exercises

  • Given any positive real number \(r\text{,}\) the reciprocal of ___.
  • For any real number \(r\text{,}\) if \(r\) is ___ then ___.
  • If a real number \(r\) ___, then ___.
  • Given any negative real number \(s\text{,}\) the cube root of ___.
  • For any real number \(s\text{,}\) if \(s\) is ___, then ___.
  • If a real number \(s\) ___, then ___.
  • There are real numbers \(u\) and \(v\) with the property that \(u+v < v-u\text{.}\)
  • There is a real number \(x\) such that \(x^2 < x\text{.}\)
  • For all positive integers \(n\text{,}\) \(n^2\geq n\text{.}\)
  • For all real numbers \(a\) and \(b\text{,}\) \(| a+b | \leq | a | + | b |\text{.}\)
  • All nonzero real numbers ___.
  • For all nonzero real numbers \(r\text{,}\) there is ___ for \(r\text{.}\)
  • For all nonzero real numbers \(r\text{,}\) there is a real number \(s\) such that ___.
  • \(\forall\) real numbers \(x\text{,}\) if \(x>3\) then \(x^2>9\text{.}\)
  • \(\forall n\in \mathbb{Z}\text{,}\) if \(n\) is prime then \(n\) is odd or \(n=2\text{.}\)
  • \(\forall\) integers \(n\text{,}\) if \(n\) is divisible by 6, then \(n\) is divisible by 2 and \(n\) is divisible by 3.
\(p\)
\(p\rightarrow q\)
\(\neg q\ \vee r\)
\(\therefore r\)
\((p\ \wedge q)\rightarrow \neg r\)
\(p\ \vee \neg q\)
\(\neg q\rightarrow p\)
\(\therefore \neg r\)
\(p \ \vee q\)
\(\neg p\)
\(\therefore q\)
\(\neg p\rightarrow q\)
\(p\)
\(\therefore \neg q\)

conditional statement hypothesis and conclusion

Conditional Statement

A conditional statement is a part of mathematical reasoning which is a critical skill that enables students to analyze a given hypothesis without any reference to a particular context or meaning. In layman words, when a scientific inquiry or statement is examined, the reasoning is not based on an individual's opinion. Derivations and proofs need a factual and scientific basis. 

Mathematical critical thinking and logical reasoning are important skills that are required to solve maths reasoning questions.

If and Then  conditional image

In this mini-lesson, we will explore the world of conditional statements. We will walk through the answers to the questions like what is meant by a conditional statement, what are the parts of a conditional statement, and how to create conditional statements along with solved examples and interactive questions.

Lesson Plan  

1.
2.
3.
4.
5.

What Is Meant By a Conditional Statement?

A statement that is of the form "If p, then q" is a conditional statement. Here 'p' refers to 'hypothesis' and 'q' refers to 'conclusion'.

For example, "If Cliff is thirsty, then she drinks water."

conditional statement

This is a conditional statement. It is also called an implication.

'\(\rightarrow\)' is the symbol used to represent the relation between two statements. For example, A\(\rightarrow\)B. It is known as the logical connector. It can be read as A implies B. 

Here are two more conditional statement examples

Example 1: If a number is divisible by 4, then it is divisible by 2.

Example 2: If today is Monday, then yesterday was Sunday.

What Are the Parts of a Conditional Statement?

Hypothesis (if) and Conclusion (then) are the two main parts that form a conditional statement.

Let us consider the above-stated example to understand the parts of a conditional statement.

Conditional Statement : If today is Monday, then yesterday was Sunday.

Hypothesis : "If today is Monday."

Conclusion : "Then yesterday was Sunday."

On interchanging the form of statement the relationship gets changed.

To check whether the statement is true or false here, we have subsequent parts of a conditional statement. They are:

  • Contrapositive

Biconditional Statement

Let us consider hypothesis as statement A and Conclusion as statement B.

Following are the observations made:

Conditions of conditional statement

Converse of Statement

When hypothesis and conclusion are switched or interchanged, it is termed as converse statement . For example,

Conditional Statement : “If today is Monday, then yesterday was Sunday.”

Hypothesis : “If today is Monday”

Converse : “If yesterday was Sunday, then today is Monday.”

Here the conditional statement logic is, If B, then A (B → A)

Inverse of Statement

When both the hypothesis and conclusion of the conditional statement are negative, it is termed as an inverse of the statement. For example,

Conditional Statement: “If today is Monday, then yesterday was Sunday”.

Inverse : “If today is not Monday, then yesterday was not Sunday.”

Here the conditional statement logic is, If not A, then not B (~A → ~B)

Contrapositive Statement

When the hypothesis and conclusion are negative and simultaneously interchanged, then the statement is contrapositive. For example,

Contrapositive: “If yesterday was not Sunday, then today is not Monday”

Here the conditional statement logic is, if not B, then not A (~B → ~A)

The statement is a biconditional statement when a statement satisfies both the conditions as true, being conditional and converse at the same time. For example,

Biconditional : “Today is Monday if and only if yesterday was Sunday.”

Here the conditional statement logic is, A if and only if B (A ↔ B)

How to Create Conditional Statements?

Here, the point to be kept in mind is that the 'If' and 'then' part must be true.

If a number is a perfect square , then it is even.

  • 'If' part is a number that is a perfect square.

Think of 4 which is a perfect square.

This has become true.

  • The 'then' part is that the number should be even. 4 is even.

This has also become true. 

Thus, we have set up a conditional statement.

Let us hypothetically consider two statements, statement A and statement B. Observe the truth table for the statements:

Truth

Truth Truth

Truth

False False

False

Truth Truth

False

False Truth

According to the table, only if the hypothesis (A) is true and the conclusion (B) is false then, A → B will be false, or else A → B will be true for all other conditions.

tips and tricks

  • A sentence needs to be either true or false, but not both, to be considered as a mathematically accepted statement.
  • Any sentence which is either imperative or interrogative or exclamatory cannot be considered a mathematically validated statement. 
  • A sentence containing one or many variables is termed as an open statement. An open statement can become a statement if the variables present in the sentence are replaced by definite values.

Solved Examples

Let us have a look at a few solved examples on conditional statements.

Identify the types of conditional statements.

There are four types of conditional statements:

  • If condition
  • If-else condition
  • Nested if-else
  • If-else ladder.

Ray tells "If the perimeter of a rectangle is 14, then its area is 10."

Which of the following could be the counterexamples? Justify your decision.

a) A rectangle with sides measuring 2 and 5

b) A rectangle with sides measuring 10 and 1

c) A rectangle with sides measuring 1 and 5

d) A rectangle with sides measuring 4 and 3

a) Rectangle with sides 2 and 5: Perimeter = 14 and area = 10

Both 'if' and 'then' are true.

b) Rectangle with sides 10 and 1: Perimeter = 22 and area = 10

'If' is false and 'then' is true.

c) Rectangle with sides 1 and 5: Perimeter = 12 and area = 5

Both 'if' and 'then' are false.

d) Rectangle with sides 4 and 3: Perimeter = 14 and area = 12

'If' is true and 'then' is false.

Joe examined the set of numbers {16, 27, 24} to check if they are the multiples of 3. He claimed that they are divisible by 9. Do you agree or disagree? Justify your answer.

Conditional statement : If a number is a multiple of 3, then it is divisible by 9.

Let us find whether the conditions are true or false.

a) 16 is not a multiple of 3. Thus, the condition is false. 

16 is not divisible by 9. Thus, the conclusion is false. 

b) 27 is a multiple of 3. Thus, the condition is true.

27 is divisible by 9. Thus, the conclusion is true. 

c) 24 is a multiple of 3. Thus the condition is true.

24 is not divisible by 9. Thus the conclusion is false.

Write the converse, inverse, and contrapositive statement for the following conditional statement. 

If you study well, then you will pass the exam.

The given statement is - If you study well, then you will pass the exam.

It is of the form, "If p, then q"

The converse statement is, "You will pass the exam if you study well" (if q, then p).

The inverse statement is, "If you do not study well then you will not pass the exam" (if not p, then not q).

The contrapositive statement is, "If you did not pass the exam, then you did not study well" (if not q, then not p).

Interactive Questions

Here are a few activities for you to practice. Select/Type your answer and click the "Check Answer" button to see the result.

Challenge your math skills

Let's Summarize

The mini-lesson targeted the fascinating concept of the conditional statement. The math journey around conditional statements started with what a student already knew and went on to creatively crafting a fresh concept in the young minds. Done in a way that not only it is relatable and easy to grasp, but also will stay with them forever.

About Cuemath

At  Cuemath , our team of math experts is dedicated to making learning fun for our favorite readers, the students!

Through an interactive and engaging learning-teaching-learning approach, the teachers explore all angles of a topic.

Be it worksheets, online classes, doubt sessions, or any other form of relation, it’s the logical thinking and smart learning approach that we, at Cuemath, believe in.

FAQs on Conditional Statement

1. what is the most common conditional statement.

'If and then' is the most commonly used conditional statement.

2. When do you use a conditional statement?

Conditional statements are used to justify the given condition or two statements as true or false.

3. What is if and if-else statement?

If is used when a specified condition is true. If-else is used when a particular specified condition is not satisfying and is false.

4. What is the symbol for a conditional statement?

'\(\rightarrow\)' is the symbol used to represent the relation between two statements. For example, A\(\rightarrow\)B. It is known as the logical connector. It can be read as A implies B.

5. What is the Contrapositive of a conditional statement?

If not B, then not A (~B → ~A)

6. What is a universal conditional statement?

Conditional statements are those statements where a hypothesis is followed by a conclusion. It is also known as an " If-then" statement. If the hypothesis is true and the conclusion is false, then the conditional statement is false. Likewise, if the hypothesis is false the whole statement is false. Conditional statements are also termed as implications.

Conditional Statement: If today is Monday, then yesterday was Sunday

Hypothesis: "If today is Monday."

Conclusion: "Then yesterday was Sunday."

If A, then B (A → B)

  • Live one on one classroom and doubt clearing
  • Practice worksheets in and after class for conceptual clarity
  • Personalized curriculum to keep up with school

Conditional Statements

Andymath.com features free videos, notes, and practice problems with answers! Printable pages make math easy. Are you ready to be a mathmagician?

Notes for Conditional Statements

Practice Problems & Videos

\(\textbf{1)}\) “if a figure has 3 sides, then it is a triangle.” state the hypothesis. show answer the hypothesis is “a figure has 3 sides.”, \(\textbf{2)}\) “if a figure has 3 sides, then it is a triangle.” state the conclusion. show answer the conclusion is “a figure is a triangle.”, \(\textbf{3)}\) “if a figure has 3 sides, then it is a triangle.” state the converse. show answer the converse is “if a figure is a triangle, then it has 3 sides.”, \(\textbf{4)}\) “if a figure has 3 sides, then it is a triangle.” state the inverse. show answer the inverse is “if a figure does not have 3 sides, then it is not a triangle.”, \(\textbf{5)}\) “if a figure has 3 sides, then it is a triangle.” state the contrapositive. show answer the contrapositive is “if a figure is not a triangle, then it does not have 3 sides.”, \(\textbf{6)}\) “if a figure has 3 sides, then it is a triangle.” state the biconditional. show answer the biconditional is “a figure has 3 sides, if and only if, it is a triangle.”, challenge problems, \(\textbf{7)}\) create a venn diagram for “all circles are ellipses.” show answer one example below, \(\textbf{8)}\) create a venn diagram for “if you don’t have an ellipse, then you don’t have a circle.” show answer note it is the same answer as number 7. they are equivalent statements., \(\textbf{9)}\) write 2 conditional statements based on the venn diagram below. show answer “if a square, then a rectangle.” or “all squares are rectangles” and “if not a rectangle, not a square.” or “all non-rectangles are non-squares”, see related pages\(\), \(\bullet\text{ geometry homepage}\) \(\,\,\,\,\,\,\,\,\text{all the best topics…}\), \(\bullet\text{ law of syllogism}\) \(\,\,\,\,\,\,\,\,\text{if p then q,}\) \(\,\,\,\,\,\,\,\,\text{if q then r,}\) \(\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{if p then r…}\), \(\bullet\text{ law of detachment}\) \(\,\,\,\,\,\,\,\,\text{if p then q,}\) \(\,\,\,\,\,\,\,\,\text{p is true,}\) \(\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{q is true…}\), a conditional statement is a statement in the form “if p, then q,” where p and q are called the hypothesis and conclusion, respectively. the statement “if it is raining, then the ground is wet” is an example of a conditional statement. the converse of a conditional statement is formed by flipping the order in which the hypothesis and conclusion appear. for example, the converse of the statement “if it is raining, then the ground is wet” is “if the ground is wet, then it is raining.” the inverse of a conditional statement is formed by negating both the hypothesis and conclusion. for example, the inverse of the statement “if it is raining, then the ground is wet” is “if it is not raining, then the ground is not wet” the contrapositive of a conditional statement is formed by negating both the hypothesis and conclusion and flipping the order in which they appear. for example, the contrapositive of the statement “if it is raining, then the ground is wet” is “if the ground is not wet, then it is not raining.” a biconditional statement is a statement in the form “if and only if p, then q,” which is equivalent to the statement “p if and only if q.” this means that p and q are either both true or both false. for example, the statement “if and only if it is raining, the ground is wet” is a biconditional statement. in geometry class, students learn about conditional statements and their related concepts (inverse, converse, contrapositive, and biconditional) in order to make logical deductions about geometric figures and their properties. these concepts are often used to prove theorems and solve problems. andymath.com is a free math website with the mission of helping students, teachers and tutors find helpful notes, useful sample problems with answers including step by step solutions, and other related materials to supplement classroom learning. if you have any requests for additional content, please contact andy at [email protected] . he will promptly add the content. topics cover elementary math , middle school , algebra , geometry , algebra 2/pre-calculus/trig , calculus and probability/statistics . in the future, i hope to add physics and linear algebra content. visit me on youtube , tiktok , instagram and facebook . andymath content has a unique approach to presenting mathematics. the clear explanations, strong visuals mixed with dry humor regularly get millions of views. we are open to collaborations of all types, please contact andy at [email protected] for all enquiries. to offer financial support, visit my patreon page. let’s help students understand the math way of thinking thank you for visiting. how exciting.

Two common types of statements found in the study of logic are conditional and biconditional statements. They are formed by combining two statements which we then we call compound statements. What if we were to say, "If it snows, then we don't go outside." This is two statements combined. They are often called if-then statements. As in, "IF it snows, THEN we don't go outside." They are a fundamental building block of computer programming.

Writing conditional statements

A statement written in if-then format is a conditional statement.

It looks like

This represents the conditional statement:

"If p then q ."

A conditional statement is also called an implication.

If a closed shape has three sides, then it is a triangle.

The part of the statement that follows the "if" is called the hypothesis. The part of the statement that follows the "then" is the conclusion.

So in the above statement,

If a closed shape has three sides, (this is the hypothesis)

Then it is a triangle. (this is the conclusion)

Identify the hypothesis and conclusion of the following conditional statement.

A polygon is a hexagon if it has six sides.

Hypothesis: The polygon has six sides.

Conclusion: It is a hexagon.

The hypothesis does not always come first in a conditional statement. You must read it carefully to determine which part of the statement is the hypothesis and which part is the conclusion.

Truth table for conditional statement

The truth table for any two given inputs, say A and B , is given by:

  • If A and B are both true, then A → B is true.
  • If A is true and B is false, then A → B is false.
  • If A is false and B is true, then A → B is true.
  • If A and B are both false, then A → B is true.

Take our conditional statement that if it snows, we do not go outside.

If it is snowing ( A is true) and we do go outside ( B is false), then the statement A → B is false.

If it is not snowing ( A is false), it doesn't matter if we go outside or not ( B is true or false), because A → B is impossible to determine if A is false, so the statement A → B can still be true.

Biconditional statements

A biconditional statement is a combination of a statement and its opposite written in the format of "if and only if."

For example, "Two line segments are congruent if and only if they are the same length."

This is a combination of two conditional statements.

"Two line segments are congruent if they are the same length."

"Two line segments are the same length if they are congruent."

A biconditional statement is true if and only if both the conditional statements are true.

Biconditional statements are represented by the symbol:

p ↔ q

p ↔ q = p → q ∧ q → p

Writing biconditional statements

Write the two conditional statements that make up this biconditional statement:

I am punctual if and only if I am on time to school every day.

The two conditional statements that have to be true to make this statement true are:

  • I am punctual if I am on time to school every day.
  • I am on time to school every day if I am punctual.

A rectangle is a square if and only if the adjacent sides are congruent.

  • If the adjacent sides of a rectangle are congruent then it is a square.
  • If a rectangle is a square then the adjacent sides are congruent.

Topics related to the Conditional Statements

Conjunction

Counter Example

Biconditional Statement

Flashcards covering the Conditional Statements

Symbolic Logic Flashcards

Introduction to Proofs Flashcards

Practice tests covering the Conditional Statements

Introduction to Proofs Practice Tests

Get help learning about conditional statements

Understanding conditional statements can be tricky, especially when it gets deeper into programming language. If your student needs a boost in their comprehension of conditional statements, have them meet with an expert tutor who can give them 1-on-1 support in a setting free from distractions. A tutor can work at your student's pace so that tutoring is efficient while using their learning style - so that tutoring is effective. To learn more about how tutoring can help your student master conditional statements, contact the Educational Directors at Varsity Tutors today.

Conditional Statements

Study.com

In order to continue enjoying our site, we ask that you confirm your identity as a human. Thank you very much for your cooperation.

Talk to our experts

1800-120-456-456

  • Conditional Statement

ffImage

What Is A Conditional Statement?

In mathematics, we define statement as a declarative statement which may either be true or may be false. Often sentences that are mathematical in nature may not be a statement because we might not know what the variable represents. For example, 2x + 2 = 5. Now here we do not know what x represents thus if we substitute the value of x (let us consider that x = 3) i.e., 2 × 3 = 6. Therefore, it is a false statement. So, what is a conditional statement? In simple words, when through a statement we put a condition on something in return of something, we call it a conditional statement. For example, Mohan tells his friend that “if you do my homework, then I will pay you 50 dollars”. So what is happening here? Mohan is paying his friend 50 dollars but places a condition that if only he’s work will be completed by his friend. A conditional statement is made up of two parts. First, there is a hypothesis that is placed after “if” and before the comma and second is a conclusion that is placed after “then”. Here, the hypothesis will be “you do my homework” and the conclusion will be “I will pay you 50 dollars”. Now, this statement can either be true or may be false. We don’t know. 

A hypothesis is a part that is used after the 'if' and before the comma. This composes the first part of a conditional statement. For example, the statement, 'I help you get an A+ in math,' is a hypothesis because this phrase is coming in between the 'if' and the comma. So, now I hope you can spot the hypothesis in other examples of a conditional statement. Of course, you can. Here is a statement: 'If Miley gets a car, then Allie's dog will be trained,' the hypothesis here is, 'Miley gets a car.' For the statement, 'If Tom eats chocolate ice cream, then Luke eats double chocolate ice cream,' the hypothesis here is, 'Tom eats chocolate ice cream. Now it is time for you to try and locate the hypothesis for the statement, 'If the square is a rectangle, then the rectangle is a quadrilateral'?

A conclusion is a part that is used after “then”. This composes the second part of a conditional statement. For example, for the statement, “I help you get an A+ in math”, the conclusion will be “you will give me 50 dollars”. The next statement was “If Miley gets a car, then Allie's dog will be trained”, the conclusion here is Allie's dog will be trained. It is the same with the next statement and for every other conditional statement.   

How Do We Know If A Statement Is True or False? 

In mathematics, the best way we can know if a statement is true or false is by writing a mathematical proof. Before writing a proof, the mathematician must find if the statement is true or false that can be done with the help of exploration and then by finding the counterexample. Once the proof is discovered, the mathematician must communicate this discovery to those who speak the language of maths. 

Converse, Inverse, contrapositive, And Bi-conditional Statement

We usually use the term “converse” as a verb for talking and chatting and as a noun we use it to represent a brand of footwear. But in mathematics, we use it differently. Converse and inverse are the two terms that are a connected concept in the making of a conditional statement.

If we want to create the converse of a conditional statement, we just have to switch the hypothesis and the conclusion. To create the inverse of a conditional statement, we have to turn both the hypothesis and the conclusion to the negative. A contrapositive statement can be made if we first interchange the hypothesis and conclusion then make them both negative. In a bi-conditional statement, we use “if and only if” which means that the hypothesis is true only if the condition is true. For example, 

If you eat junk food, then you will gain weight is a conditional statement.

If you gained weight, then you ate junk food is a converse of a conditional statement.

If you do not eat junk food, then you will not gain weight is an inverse of a conditional statement.

If yesterday was not Monday, then today is not Tuesday is a contrapositive statement. 

Today is Tuesday if and only if yesterday was Monday is a bi-conventional statement.   

Image will be uploaded soon

A Conditional Statement Truth Table

p

q

p→q

T

T

T

T

F

F

F

T

T

F

F

T

In the table above, p→q will be false only if the hypothesis(p) will be true and the conclusion(q) will be false, or else p→q will be true. 

Conditional Statement Examples

Below, you can see some of the conditional statement examples.

Example 1) Given, P = I do my work; Q = I get the allowance

What does p→q represent?

Solution 1) In the sentence above, the hypothesis is “I do my work” and the conclusion is “ I get the allowance”. Therefore, the condition p→q represents the conditional statement, “If I do my work, then I get the allowance”. 

Example 2) Given, a = The sun is a ball of gas; b = 5 is a prime number. Write a→b in a sentence. 

Solution 2) The conditional statement a→b here is “if the sun is a ball of gas, then 5 is a prime number”.

arrow-right

FAQs on Conditional Statement

1. How many types of conditional statements are there?

There are basically 5 types of conditional statements.

If statement, if-else statement, nested if-else statement, if-else-if ladder, and switch statement are the basic types of conditional statements. If a function displays a statement or performs a function on the condition if the statement is true. If-else statement executes a block of code if the condition is true but if the condition is false, a new block of code is placed. The switch statement is a selection control mechanism that allows the value of a variable to change the control flow of a program. 

2. How are a conditional statement and a loop different from each other?

A conditional statement is sometimes used by a loop but a loop is of no use to a conditional statement. A conditional statement is basically a “yes” or a “no” i.e., if yes, then take the first path else take the second one. A loop is more like a cyclic chain starting from the start point i.e., if yes, then take path a, if no, take path b and it comes back to the start point. 

Conditional statement executes a statement based on a condition without causing any repetition. 

A loop executes a statement repeatedly. There are two loop variables i.e., for loop and while loop.

  • Français
  • Preparatory

Question Video: Truth Values of Conditional Statements

Let 𝐴 be the hypothesis “𝑥 + 3 = 3 + 𝑥” and 𝐵 be the conclusion “𝑥 is prime.” The conditional statement 𝐴 ⇒ 𝐵 reads, “if 𝑥 + 3 = 3 + 𝑥, then 𝑥 is prime.” Is this true or false? The converse statement 𝐵 ⇒ 𝐴 reads, “if 𝑥 is prime, then 𝑥 + 3 = 3 + 𝑥.” Is this true or false? The inverse statement ¬𝐴 ⇒ ¬𝐵 reads, “If 𝑥 + 3 ≠ 3 + 𝑥, then 𝑥 is not prime.” Is this true or false? The contrapositive statement ¬𝐵 ⇒ ¬𝐴 reads, “if 𝑥 is not prime, then 𝑥 + 3 ≠ 3 + 𝑥.” Is this true or false?

Video Transcript

Let 𝐴 be the hypothesis “𝑥 plus three equals three plus 𝑥” and 𝐵 be the conclusion “𝑥 is prime.” The conditional statement 𝐴 then 𝐵 reads, “if 𝑥 plus three equals three plus 𝑥, then 𝑥 is prime.” Is this true or false? The converse statement if 𝐵 then 𝐴 reads, “if 𝑥 is prime, then 𝑥 plus three equals three plus 𝑥.” Is this true or false? The inverse statement if not 𝐴, then not 𝐵 reads, “if 𝑥 plus three does not equal three plus 𝑥, then 𝑥 is not prime.” Is this true or false? The contrapositive statement if not 𝐵, then not 𝐴 reads, “if 𝑥 is not prime, then 𝑥 plus three is not equal to three plus 𝑥.” Is this true or false?

In this question, we have a series of if p-then q type statements. One helpful tool for solving these types of problems is using a truth table. We’ll consider the possibilities of our hypothesis being true and our hypothesis being false. In the two cases where our hypothesis is true, the conclusion can be true or false. In the two cases where our hypothesis is false, we’ll have a true and false conclusion. If the hypothesis is true and the conclusion is true, the conditional statement if p, then q is true. If the hypothesis is true but the conclusion is false, the statement is false.

The third line of the truth table is a little bit tricky because if the conclusion is true, even if the hypothesis is false, as a whole, the if-then statement is true because the conclusion is true. And finally, if both the conclusion and the hypothesis are false, the if-then statement is true. The only place in conditional statements where the conditional truth value is false is if you start with a true hypothesis and end up with a false conclusion. But let’s see how these play out in each of these four circumstances.

For the conditional statement, we have if 𝑥 plus three equals three plus 𝑥, and we know that that is true for any value of 𝑥, 𝑥 plus three equals three plus 𝑥. And now, we need to consider if this statement 𝑥 plus three equals three plus 𝑥 mean that 𝑥 is prime. To find out if this is true, we can try to think of a counterexample. The counterexample would be a place where 𝑥 plus three equals three plus 𝑥, but 𝑥 is not prime. For example, eight plus three is equal to three plus eight, but eight is not prime. And so, we have a case where the conditional is true, but the conclusion is false, which makes the if-then statement false.

Moving on to the converse statement if 𝐵, then 𝐴, our starting point is if 𝑥 is prime. We can choose any prime number. Let’s choose two. So that’s true. If 𝑥 is prime, we chose two. That’s a true statement. Then two plus three is equal to three plus two, which is also true. We want to know is there any place where we could plug in a prime number for 𝑥 such that 𝑥 plus three does not equal three plus 𝑥? No. This is because the statement 𝑥 plus three equals three plus 𝑥 is always true. Here’s a good time to think about that tricky truth value I talked about earlier. If p is false, but q is true.

For example, what if we plugged in the statement 𝑥 equals eight? Well, 𝑥 is not prime. So the first bit would be false. But eight plus three does equal three plus eight. And so, the conclusion would have to be true. Even if 𝑥 is not prime, so even if the statement 𝑥 is prime is false, the conclusion 𝑥 plus three equals three plus 𝑥 still stands. And this converse statement if 𝐵, then 𝐴 must be true. At this point, we could keep going with the same strategy. But there’s something we can remember about the relationship between conditional, contrapositive, converse, and inverse statements.

If the conditional statement is true, then the contrapositive is true. And likewise, if the conditional statement is false, then the contrapositive is false. We can also say that if the converse is true, then the inverse is true. Our third sentence is the inverse statement if not 𝐴, then not 𝐵. We know that the inverse must be true because the converse statement was true. And the converse statement and inverse statement have the same truth value. Let’s take a closer look at why.

We have the condition if 𝑥 plus three is not equal to 𝑥 plus three. This statement will always be false because 𝑥 plus three is equal to three plus 𝑥. If the condition is false, no matter what the conclusion is, if p-then q must be true. In other words, there’s nothing we could plug in for 𝑥 plus three not equal to three plus 𝑥 that would then be prime. If our condition is always false, it doesn’t matter if the conclusion is true or false. And finally, we’ll deal with the contrapositive statement, which says, if not 𝐵, then not 𝐴.

The contrapositive has the same truth value as the conditional statement. Our conditional statement was false, which means the contrapositive is also false. We can prove this is false by thinking of a counterexample, a place where 𝑥 is not prime. So we can use eight. Eight is not prime. So that makes the if 𝑥 is not prime true. The then statement would say then eight plus three is not equal to three plus eight. What we’ve just found is a true-then false. And we know if true-then false statements must be false.

To solve questions like these, it’s good to have multiple strategies from a truth table to memorising facts about the relationship between these four types of statements. In addition to that, it’s good to plug in values to help you see what’s happening. In this case, we have a false conditional, a true converse, a true inverse, and a false contrapositive.

Join Nagwa Classes

Attend live sessions on Nagwa Classes to boost your learning with guidance and advice from an expert teacher!

  • Interactive Sessions
  • Chat & Messaging
  • Realistic Exam Questions

conditional statement hypothesis and conclusion

Nagwa uses cookies to ensure you get the best experience on our website. Learn more about our Privacy Policy

Grade 8 Mathematics Module: “Determining the Relationship Between the Hypothesis and the Conclusion of an If-then Statement”

This Self-Learning Module (SLM) is prepared so that you, our dear learners, can continue your studies and learn while at home. Activities, questions, directions, exercises, and discussions are carefully stated for you to understand each lesson.

Each SLM is composed of different parts. Each part shall guide you step-by-step as you discover and understand the lesson prepared for you.

Pre-tests are provided to measure your prior knowledge on lessons in each SLM. This will tell you if you need to proceed on completing this module or if you need to ask your facilitator or your teacher’s assistance for better understanding of the lesson. At the end of each module, you need to answer the post-test to self-check your learning. Answer keys are provided for each activity and test. We trust that you will be honest in using these.

Please use this module with care. Do not put unnecessary marks on any part of this SLM. Use a separate sheet of paper in answering the exercises and tests. And read the instructions carefully before performing each task.

If you have any questions in using this SLM or any difficulty in answering the tasks in this module, do not hesitate to consult your teacher or facilitator.

This module was designed and written with you in mind. It is here to help you determine the relationship between the hypothesis and the conclusion of a given conditional statement or an if-then statement. Knowledge of this module is fundamental in transforming conditional statements to if-then statements.

This module contains:

  • Lesson 1: Determining the Relationship Between the Hypothesis and the Conclusion of an If-then Statement

After going through this module, you are expected to:

1. identify the hypothesis and the conclusion of an if-then statement;

2. evaluate the hypothesis and the conclusion of an if-then statement; and

3. determine the importance of correctly evaluating the truth value of a given conditional statement.

Grade 8 Mathematics Quarter 2 Self-Learning Module: “Determining the Relationship Between the Hypothesis and the Conclusion of an If-then Statement”

Can't find what you're looking for.

We are here to help - please use the search box below.

Leave a Comment Cancel reply

IMAGES

  1. Conditional Statements in Geometry

    conditional statement hypothesis and conclusion

  2. PPT

    conditional statement hypothesis and conclusion

  3. PPT

    conditional statement hypothesis and conclusion

  4. Conditional Statements

    conditional statement hypothesis and conclusion

  5. PPT

    conditional statement hypothesis and conclusion

  6. PPT

    conditional statement hypothesis and conclusion

VIDEO

  1. #Second Quarter Week 5/ Lesson: #CONDITIONAL Statements #Hypothesis #Conclusion #If-thenStatements

  2. Conditional Sentences

  3. Lesson 2 Section 2 Conditional Statements

  4. Identifying Hypothesis and Conclusion of “If-Then” Statement

  5. GRADE 8

  6. Lesson 2-1 (part 1) Conditional Statements

COMMENTS

  1. Conditional Statement: Definition, Truth Table, Examples

    What Is a Conditional Statement? A conditional statement is a statement that is written in the "If p, then q" format. Here, the statement p is called the hypothesis and q is called the conclusion. It is a fundamental concept in logic and mathematics. Conditional statement symbol: p → q. A conditional statement consists of two parts.

  2. 1.1: Statements and Conditional Statements

    A conditional statement is a statement that can be written in the form "If P then Q ," where P and Q are sentences. For this conditional statement, P is called the hypothesis and Q is called the conclusion. Intuitively, "If P then Q " means that Q must be true whenever P is true.

  3. If-then statement (Geometry, Proof)

    Hypotheses followed by a conclusion is called an If-then statement or a conditional statement. This is noted as. p → q. This is read - if p then q. A conditional statement is false if hypothesis is true and the conclusion is false. The example above would be false if it said "if you get good grades then you will not get into a good college".

  4. 2.11: If Then Statements

    The conclusion is the result of a hypothesis. Figure 2.11.1 2.11. 1. If-then statements might not always be written in the "if-then" form. Here are some examples of conditional statements: Statement 1: If you work overtime, then you'll be paid time-and-a-half. Statement 2: I'll wash the car if the weather is nice.

  5. How to identify the hypothesis and conclusion of a conditional

    A conditional statement is an if-then statement connecting a hypothesis (p) and the conclusion (q... 👉 Learn how to label the parts of a conditional statement.

  6. How to Understand 'If-Then' Conditional Statements: A Comprehensive

    Where \( p \) is the hypothesis and \( q \) is the conclusion. Truth Values: A conditional statement is either true or false. The only time a conditional statement is false is when the hypothesis is true, but the conclusion is false. Converse, Inverse, and Contrapositive: 1. Converse: The converse of a conditional statement switches the ...

  7. 3.3: Truth Tables- Conditional, Biconditional

    Example 7. Create a truth table for the statement (A ∨ B) ↔∼ C ( A ∨ B) ↔∼ C. Solution. Whenever we have three component statements, we start by listing all the possible truth value combinations for A, B, A, B, and C. C. After creating those three columns, we can create a fourth column for the hypothesis, A ∨ B A ∨ B.

  8. Conditional Statements

    A conditional statement, as we've seen, has the form "if p then , q, " and we use the connective . p → q. As many mathematical statements are in the form of a conditional, it is important to keep in mind how to determine if a conditional statement is true or false. A conditional, , p → q, is TRUE if you can show that whenever p is true ...

  9. Conditional Statement

    Here the conditional statement logic is, If B, then A (B → A) Inverse of Statement. When both the hypothesis and conclusion of the conditional statement are negative, it is termed as an inverse of the statement. For example, Conditional Statement:"If today is Monday, then yesterday was Sunday".

  10. Conditional Statements

    In Summary. A conditional statement is a statement in the form "If P, then Q," where P and Q are called the hypothesis and conclusion, respectively. The statement "If it is raining, then the ground is wet" is an example of a conditional statement. The converse of a conditional statement is formed by flipping the order in which the ...

  11. Conditional Statements

    The hypothesis does not always come first in a conditional statement. You must read it carefully to determine which part of the statement is the hypothesis and which part is the conclusion.

  12. PDF 2-1 Conditional Statements

    11 Conditional Statements Conditional Statements If an integer ends with 0, then it is divisible by 5. Hypothesis: Conclusion: y 5 8 y 2 3 5 5 If a figure is a square, then it has 4 congruent sides. Check Skills You'll Need GO for Help For: Conditionals Activity Use: Interactive Textbook, 2-1 2-1 80 1. Plan Objectives 1 To recognize ...

  13. Conditional Statement

    A conditional statement will look like ''if HYPOTHESIS, then CONCLUSION'' or ''CONCLUSION is true IF HYPOTHESIS is true.'' Learning Outcomes Following this lesson, you should have the ability to:

  14. PDF Conditional Statements

    conditional statement, symbolized by statement" in which p is the hypothesis. q, can be written as an "if-then. →. and q is the conclusion. Here is an example. If a polygon is a triangle, then the sum of its angle measures is 180 °. hypothesis, p. conclusion, q.

  15. Conditional Statement

    A conditional statement is made up of two parts. First, there is a hypothesis that is placed after "if" and before the comma and second is a conclusion that is placed after "then". Here, the hypothesis will be "you do my homework" and the conclusion will be "I will pay you 50 dollars". Now, this statement can either be true or ...

  16. Question Video: Truth Values of Conditional Statements

    In the two cases where our hypothesis is false, we'll have a true and false conclusion. If the hypothesis is true and the conclusion is true, the conditional statement if p, then q is true. If the hypothesis is true but the conclusion is false, the statement is false. The third line of the truth table is a little bit tricky because if the ...

  17. CK12-Foundation

    Learn how to use if-then statements to express logical relationships between geometric concepts in this CK-12 lesson.

  18. Grade 8 Mathematics Module: "Determining the Relationship Between the

    1. identify the hypothesis and the conclusion of an if-then statement; 2. evaluate the hypothesis and the conclusion of an if-then statement; and. 3. determine the importance of correctly evaluating the truth value of a given conditional statement. Grade 8 Mathematics Quarter 2 Self-Learning Module: "Determining the Relationship Between the ...

  19. Geometry

    A statement formed by interchanging the hypothesis and the conclusion in a conditional statement. 4. A statement formed by combining two statements with the word or. 5. The then clause in a conditional statement. 6. The process of making a conclusion about a specific statement by supporting with general rules and principles. 7.

  20. PDF Identify the hypothesis and conclusion of each conditional statement

    Identify the hypothesis and conclusion of each conditional statement. If the degree measure of an angle is between 90 and 180 , then the angle is obtuse. 62/87,21 The hypothesis of a conditional statement is the phrase immediately following the word if. The conclusion of a conditional statement is the phrase immediately following the word then .

  21. Conditional statement Flashcards

    Study with Quizlet and memorize flashcards containing terms like Conjecture, Counterexample, Conditional statement and more. ... statement formed from a conditional statement by switching and negating the hypothesis and conclusion. Biconditional statement. statement combining a conditional statement and its converse using the phrase if and only ...

  22. If then statements, hypothesis and conclusion Flashcards

    48 terms. parlor_kelsey2023. Preview. Word Quiz (son- through trache-) 35 terms. lgarrity12. Preview. Study with Quizlet and memorize flashcards containing terms like conditional statement, hypothesis, conclusion and more.

  23. Chapters 2.1-2.3 Flashcards

    Study with Quizlet and memorize flashcards containing terms like Conditional Statement, Hypothesis, Conclusion and more. ... A statement formed by interchanging the hypothesis and conclusion of a conditional statement. Converse. When a conditional is true and its hypothesis is true, then its conclusion is true.