SplashLearn

Conditional Statement – Definition, Truth Table, Examples, FAQs

What is a conditional statement, how to write a conditional statement, what is a biconditional statement, solved examples on conditional statements, practice problems on conditional statements, frequently asked questions about conditional statements.

A conditional statement is a statement that is written in the “If p, then q” format. Here, the statement p is called the hypothesis and q is called the conclusion. It is a fundamental concept in logic and mathematics. 

Conditional statement symbol :  p → q

A conditional statement consists of two parts.

  • The “if” clause, which presents a condition or hypothesis.
  • The “then” clause, which indicates the consequence or result that follows if the condition is true. 

Example : If you brush your teeth, then you won’t get cavities.

Hypothesis (Condition): If you brush your teeth

Conclusion (Consequence): then you won’t get cavities 

Conditional statement

Recommended Games

Missing Numbers in Addition Statement Game

Conditional Statement: Definition

A conditional statement is characterized by the presence of “if” as an antecedent and “then” as a consequent. A conditional statement, also known as an “if-then” statement consists of two parts:

  • The “if” clause (hypothesis): This part presents a condition, situation, or assertion. It is the initial condition that is being considered.
  • The “then” clause (conclusion): This part indicates the consequence, result, or action that will occur if the condition presented in the “if” clause is true or satisfied. 

Recommended Worksheets

Complete the Statements Using Addition Sentence Worksheet

More Worksheets

Representation of Conditional Statement

The conditional statement of the form ‘If p, then q” is represented as p → q. 

It is pronounced as “p implies q.”

Different ways to express a conditional statement are:

  • p implies q
  • p is sufficient for q
  • q is necessary for p

Parts of a Conditional Statement

There are two parts of conditional statements, hypothesis and conclusion. The hypothesis or condition will begin with the “if” part, and the conclusion or action will begin with the “then” part. A conditional statement is also called “implication.”

Conditional Statements Examples:

Example 1: If it is Sunday, then you can go to play. 

Hypothesis: If it is Sunday

Conclusion: then you can go to play. 

Example 2: If you eat all vegetables, then you can have the dessert.

Condition: If you eat all vegetables

Conclusion: then you can have the dessert 

To form a conditional statement, follow these concise steps:

Step 1 : Identify the condition (antecedent or “if” part) and the consequence (consequent or “then” part) of the statement.

Step 2 : Use the “if… then…” structure to connect the condition and consequence.

Step 3 : Ensure the statement expresses a logical relationship where the condition leads to the consequence.

Example 1 : “If you study (condition), then you will pass the exam (consequence).” 

This conditional statement asserts that studying leads to passing the exam. If you study (condition is true), then you will pass the exam (consequence is also true).

Example 2 : If you arrange the numbers from smallest to largest, then you will have an ascending order.

Hypothesis: If you arrange the numbers from smallest to largest

Conclusion: then you will have an ascending order

Truth Table for Conditional Statement

The truth table for a conditional statement is a table used in logic to explore the relationship between the truth values of two statements. It lists all possible combinations of truth values for “p” and “q” and determines whether the conditional statement is true or false for each combination. 

The truth value of p → q is false only when p is true and q is False. 

If the condition is false, the consequence doesn’t affect the truth of the conditional; it’s always true.

In all the other cases, it is true.

The truth table is helpful in the analysis of possible combinations of truth values for hypothesis or condition and conclusion or action. It is useful to understand the presence of truth or false statements. 

Converse, Inverse, and Contrapositive

The converse, inverse, and contrapositive are three related conditional statements that are derived from an original conditional statement “p → q.” 

Consider a conditional statement: If I run, then I feel great.

  • Converse: 

The converse of “p → q” is “q → p.” It reverses the order of the original statement. While the original statement says “if p, then q,” the converse says “if q, then p.” 

Converse: If I feel great, then I run.

  • Inverse: 

The inverse of “p → q” is “~p → ~q,” where “” denotes negation (opposite). It negates both the antecedent (p) and the consequent (q). So, if the original statement says “if p, then q,” the inverse says “if not p, then not q.”

Inverse : If I don’t run, then I don’t feel great.

  • Contrapositive: 

The contrapositive of “p → q” is “~q → ~p.” It reverses the order and also negates both the statements. So, if the original statement says “if p, then q,” the contrapositive says “if not q, then not p.”

Contrapositive: If I don’t feel great, then I don’t run.

A biconditional statement is a type of compound statement in logic that expresses a bidirectional or two-way relationship between two statements. It asserts that “p” is true if and only if “q” is true, and vice versa. In symbolic notation, a biconditional statement is represented as “p ⟺ q.”

In simpler terms, a biconditional statement means that the truth of “p” and “q” are interdependent. 

If “p” is true, then “q” must also be true, and if “q” is true, then “p” must be true. Conversely, if “p” is false, then “q” must be false, and if “q” is false, then “p” must be false. 

Biconditional statements are often used to express equality, equivalence, or conditions where two statements are mutually dependent for their truth values. 

Examples : 

  • I will stop my bike if and only if the traffic light is red.  
  • I will stay if and only if you play my favorite song.

Facts about Conditional Statements

  • The negation of a conditional statement “p → q” is expressed as “p and not q.” It is denoted as “𝑝 ∧ ∼𝑞.” 
  • The conditional statement is not logically equivalent to its converse and inverse.
  • The conditional statement is logically equivalent to its contrapositive. 
  • Thus, we can write p → q ∼q → ∼p

In this article, we learned about the fundamentals of conditional statements in mathematical logic, including their structure, parts, truth tables, conditional logic examples, and various related concepts. Understanding conditional statements is key to logical reasoning and problem-solving. Now, let’s solve a few examples and practice MCQs for better comprehension.

Example 1: Identify the hypothesis and conclusion. 

If you sing, then I will dance.

Solution : 

Given statement: If you sing, then I will dance.

Here, the antecedent or the hypothesis is “if you sing.”

The conclusion is “then I will dance.”

Example 2: State the converse of the statement: “If the switch is off, then the machine won’t work.” 

Here, p: The switch is off

q: The machine won’t work.

The conditional statement can be denoted as p → q.

Converse of p → q is written by reversing the order of p and q in the original statement.

Converse of  p → q is q → p.

Converse of  p → q: q → p: If the machine won’t work, then the switch is off.

Example 3: What is the truth value of the given conditional statement? 

If 2+2=5 , then pigs can fly.

Solution:  

q: Pigs can fly.

The statement p is false. Now regardless of the truth value of statement q, the overall statement will be true. 

F → F = T

Hence, the truth value of the statement is true. 

Conditional Statement - Definition, Truth Table, Examples, FAQs

Attend this quiz & Test your knowledge.

What is the antecedent in the given conditional statement? If it’s sunny, then I’ll go to the beach.

A conditional statement can be expressed as, what is the converse of “a → b”, when the antecedent is true and the consequent is false, the conditional statement is.

What is the meaning of conditional statements?

Conditional statements, also known as “if-then” statements, express a cause-and-effect or logical relationship between two propositions.

When does the truth value of a conditional statement is F?

A conditional statement is considered false when the antecedent is true and the consequent is false.

What is the contrapositive of a conditional statement?

The contrapositive reverses the order of the statements and also negates both the statements. It is equivalent in truth value to the original statement.

RELATED POSTS

  • Ordering Decimals: Definition, Types, Examples
  • Decimal to Octal: Steps, Methods, Conversion Table
  • Lattice Multiplication – Definition, Method, Examples, Facts, FAQs
  • X Intercept – Definition, Formula, Graph, Examples
  • Lateral Face – Definition With Examples

Banner Image

Math & ELA | PreK To Grade 5

Kids see fun., you see real learning outcomes..

Make study-time fun with 14,000+ games & activities, 450+ lesson plans, and more—free forever.

Parents, Try for Free Teachers, Use for Free

senioritis

Understanding the Role of Hypotheses and Conclusions in Mathematical Reasoning

Hypothesis and conclusion.

In the context of mathematics and logic, a hypothesis is a statement or proposition that is assumed to be true for the purpose of a logical argument or investigation. It is usually denoted by “H” or “P” and is the starting point for many mathematical proofs.

For example, let’s consider the hypothesis: “If it is raining outside, then the ground is wet.” This statement assumes that whenever it rains, the ground will be wet.

The conclusion, on the other hand, is the statement or proposition that is inferred or reached by logical reasoning, based on the hypothesis or given information. It is typically denoted by “C” or “Q”.

Using the same example, the conclusion derived from the hypothesis could be: “It is currently raining outside, so the ground is wet.” This conclusion is based on the assumption that the given condition of rain implies a wet ground.

In mathematics, hypotheses and conclusions are commonly used in proofs and logical arguments. By stating a hypothesis and then deducing a conclusion from it, mathematicians can demonstrate the validity of certain mathematical concepts, theorems, or formulas.

It’s important to note that in mathematics, a hypothesis is not the same as a guess or a prediction. It is a statement that is assumed to be true and serves as the basis for logical reasoning, while the conclusion is the logical consequence or outcome that is drawn from the hypothesis.

More Answers:

Recent posts, mathematics in cancer treatment.

How Mathematics is Transforming Cancer Treatment Mathematics plays an increasingly vital role in the fight against cancer mesothelioma. From optimizing drug delivery systems to personalizing

Ramses II A Prominent Pharaoh and Legacy of Ancient Egypt

Ramses II (c. 1279–1213 BCE) Ramses II, also known as Ramses the Great, was one of the most prominent and powerful pharaohs of ancient Egypt.

Formula for cyclic adenosine monophosphate & Its Significance

Is the formula of cyclic adenosine monophosphate (cAMP) $ce{C_{10}H_{11}N_{5}O_{6}P}$ or $ce{C_{10}H_{12}N_{5}O_{6}P}$? Does it matter? The correct formula for cyclic adenosine monophosphate (cAMP) is $ce{C_{10}H_{11}N_{5}O_{6}P}$. The

Development of a Turtle Inside its Egg

How does a turtle develop inside its egg? The development of a turtle inside its egg is a fascinating process that involves several stages and

The Essential Molecule in Photosynthesis for Energy and Biomass

Why does photosynthesis specifically produce glucose? Photosynthesis is the biological process by which plants, algae, and some bacteria convert sunlight, carbon dioxide (CO2), and water

  • + ACCUPLACER Mathematics
  • + ACT Mathematics
  • + AFOQT Mathematics
  • + ALEKS Tests
  • + ASVAB Mathematics
  • + ATI TEAS Math Tests
  • + Common Core Math
  • + DAT Math Tests
  • + FSA Tests
  • + FTCE Math
  • + GED Mathematics
  • + Georgia Milestones Assessment
  • + GRE Quantitative Reasoning
  • + HiSET Math Exam
  • + HSPT Math
  • + ISEE Mathematics
  • + PARCC Tests
  • + Praxis Math
  • + PSAT Math Tests
  • + PSSA Tests
  • + SAT Math Tests
  • + SBAC Tests
  • + SIFT Math
  • + SSAT Math Tests
  • + STAAR Tests
  • + TABE Tests
  • + TASC Math
  • + TSI Mathematics
  • + ACT Math Worksheets
  • + Accuplacer Math Worksheets
  • + AFOQT Math Worksheets
  • + ALEKS Math Worksheets
  • + ASVAB Math Worksheets
  • + ATI TEAS 6 Math Worksheets
  • + FTCE General Math Worksheets
  • + GED Math Worksheets
  • + 3rd Grade Mathematics Worksheets
  • + 4th Grade Mathematics Worksheets
  • + 5th Grade Mathematics Worksheets
  • + 6th Grade Math Worksheets
  • + 7th Grade Mathematics Worksheets
  • + 8th Grade Mathematics Worksheets
  • + 9th Grade Math Worksheets
  • + HiSET Math Worksheets
  • + HSPT Math Worksheets
  • + ISEE Middle-Level Math Worksheets
  • + PERT Math Worksheets
  • + Praxis Math Worksheets
  • + PSAT Math Worksheets
  • + SAT Math Worksheets
  • + SIFT Math Worksheets
  • + SSAT Middle Level Math Worksheets
  • + 7th Grade STAAR Math Worksheets
  • + 8th Grade STAAR Math Worksheets
  • + THEA Math Worksheets
  • + TABE Math Worksheets
  • + TASC Math Worksheets
  • + TSI Math Worksheets
  • + AFOQT Math Course
  • + ALEKS Math Course
  • + ASVAB Math Course
  • + ATI TEAS 6 Math Course
  • + CHSPE Math Course
  • + FTCE General Knowledge Course
  • + GED Math Course
  • + HiSET Math Course
  • + HSPT Math Course
  • + ISEE Upper Level Math Course
  • + SHSAT Math Course
  • + SSAT Upper-Level Math Course
  • + PERT Math Course
  • + Praxis Core Math Course
  • + SIFT Math Course
  • + 8th Grade STAAR Math Course
  • + TABE Math Course
  • + TASC Math Course
  • + TSI Math Course
  • + Number Properties Puzzles
  • + Algebra Puzzles
  • + Geometry Puzzles
  • + Intelligent Math Puzzles
  • + Ratio, Proportion & Percentages Puzzles
  • + Other Math Puzzles

How to Understand ‘If-Then’ Conditional Statements: A Comprehensive Guide

In math, and even in everyday life, we often say 'if this, then that.' This is the essence of conditional statements. They set up a condition and then describe what happens if that condition is met. For instance, 'If it rains, then the ground gets wet.' These statements are foundational in math, helping us build logical arguments and solve problems. In this guide, we'll dive into the clear-cut world of conditional statements, breaking them down in both simple terms and their mathematical significance.

How to Understand ‘If-Then’ Conditional Statements: A Comprehensive Guide

Step-by-step Guide: Conditional Statements

Defining Conditional Statements: A conditional statement is a logical statement that has two parts: a hypothesis (the ‘if’ part) and a conclusion (the ‘then’ part). Written symbolically, it takes the form: \( \text{If } p, \text{ then } q \) Where \( p \) is the hypothesis and \( q \) is the conclusion.

Truth Values: A conditional statement is either true or false. The only time a conditional statement is false is when the hypothesis is true, but the conclusion is false.

Converse, Inverse, and Contrapositive: 1. Converse: The converse of a conditional statement switches the hypothesis and the conclusion. For the statement “If \( p \), then \( q \)”, the converse is “If \( q \), then \( p \)”.

2. Inverse: The inverse of a conditional statement negates both the hypothesis and the conclusion. For the statement “If \( p \), then \( q \)”, the inverse is “If not \( p \), then not \( q \)”.

3. Contrapositive: The contrapositive of a conditional statement switches and negates both the hypothesis and the conclusion. For the statement “If \( p \), then \( q \)”, the contrapositive is “If not \( q \), then not \( p \)”.

Example 1: Simple Conditional Statement: “If it is raining, then the ground is wet.”

Solution: Hypothesis \(( p )\): It is raining. Conclusion \(( q )\): The ground is wet.

Example 2: Determining Truth Value Statement: “If a shape has four sides, then it is a rectangle.”

Solution: This statement is false because a shape with four sides could be a square, trapezoid, or other quadrilateral, not necessarily a rectangle.

Example 3: Converse, Inverse, and Contrapositive Statement: “If a number is even, then it is divisible by \(2\).”

Solution: Converse: If a number is divisible by \(2\), then it is even. Inverse: If a number is not even, then it is not divisible by \(2\). Contrapositive: If a number is not divisible by \(2\), then it is not even.

Practice Questions:

  • Write the converse, inverse, and contrapositive for the statement: “If a bird is a penguin, then it cannot fly.”
  • Determine the truth value of the statement: “If a shape has three sides, then it is a triangle.”
  • For the statement “If an animal is a cat, then it is a mammal,” which of the following is its converse? a) If an animal is a mammal, then it is a cat. b) If an animal is not a cat, then it is not a mammal. c) If an animal is not a mammal, then it is not a cat.
  • Converse: If a bird cannot fly, then it is a penguin. Inverse: If a bird is not a penguin, then it can fly. Contrapositive: If a bird can fly, then it is not a penguin.
  • The statement is true. A shape with three sides is defined as a triangle.
  • a) If an animal is a mammal, then it is a cat.

by: Effortless Math Team about 1 year ago (category: Articles )

Effortless Math Team

Related to this article, more math articles.

  • 10 Most Common 6th Grade NYSE Math Questions
  • Using Strip Models to Solve Percentage Problems
  • Top 10 Trigonometry Books: A Comprehensive Guide for Students and Teachers (Our 2024 Favorite Picks)
  • Differential Equations: Laws of The Universe Unraveled
  • The Ultimate ParaPro Math Formula Cheat Sheet
  • FREE 6th Grade STAAR Math Practice Test
  • 7th Grade MAP Math Worksheets: FREE & Printable
  • Full-Length Accuplacer Math Practice Test
  • 2nd Grade Mathematics Worksheets: FREE & Printable
  • Meet the Key Reasons to Start Learning Math Now

What people say about "How to Understand ‘If-Then’ Conditional Statements: A Comprehensive Guide - Effortless Math: We Help Students Learn to LOVE Mathematics"?

No one replied yet.

Leave a Reply Cancel reply

You must be logged in to post a comment.

Algebra I Study Guide A Comprehensive Review and Step-By-Step Guide to Preparing for Algebra I

Oar math study guide 2020 – 2021 a comprehensive review and step-by-step guide to preparing for the oar math, grade 8 math study guide 2021 – 2022 a comprehensive review and step-by-step guide to preparing for grade 8 math, shsat math study guide 2020 – 2021 a comprehensive review and step-by-step guide to preparing for the shsat math, hspt math study guide 2020 – 2021 a comprehensive review and step-by-step guide to preparing for the hspt math, act math study guide 2020 – 2021 a comprehensive review and step-by-step guide to preparing for the act math, aleks math study guide 2020 – 2021 a comprehensive review and step-by-step guide to preparing for the aleks math, pre-algebra study guide 2020 – 2021 a comprehensive review and step-by-step guide to preparing for the pre-algebra, asvab math study guide 2020 – 2021 a comprehensive review and step-by-step guide to preparing for the asvab math, dat quantitative reasoning study guide 2020 – 2021 a comprehensive review and step-by-step guide to preparing for the dat quantitative reasoning, chspe math study guide 2020 – 2021 a comprehensive review and step-by-step guide to preparing for the chspe math, tsi math study guide 2020 – 2021 a comprehensive review and step-by-step guide to preparing for the tsi math, tabe 11 & 12 math study guide 2020 – 2021 for level d a comprehensive review and step-by-step guide to preparing for the tabe math, ftce math study guide 2020 – 2021 a comprehensive review and step-by-step guide to preparing for the ftce general knowledge math, ged math study guide 2020 – 2021 a comprehensive review and step-by-step guide to preparing for the ged math.

  • ATI TEAS 6 Math
  • ISEE Upper Level Math
  • SSAT Upper-Level Math
  • Praxis Core Math
  • 8th Grade STAAR Math

Limited time only!

Save Over 45 %

It was $89.99 now it is $49.99

Login and use all of our services.

Effortless Math services are waiting for you. login faster!

Register Fast!

Password will be generated automatically and sent to your email.

After registration you can change your password if you want.

  • Math Worksheets
  • Math Courses
  • Math Topics
  • Math Puzzles
  • Math eBooks
  • GED Math Books
  • HiSET Math Books
  • ACT Math Books
  • ISEE Math Books
  • ACCUPLACER Books
  • Premium Membership
  • Youtube Videos

Effortless Math provides unofficial test prep products for a variety of tests and exams. All trademarks are property of their respective trademark owners.

  • Bulk Orders
  • Refund Policy

Department of Mathematics

Logic and Mathematical Statements

Worked examples, if...then... statements, mini-lecture., example. consider the statement "$x > 0 \rightarrow x+1>0$". is this statement true or false, example. consider the statement "if $x$ is a positive integer or a solution to $x+3>4$, then $x>0$ and $x> \frac{1}{2}$." is this statement true, example. consider the statement "$0>1 \rightarrow \sin x = 2$". is this statement true or false.

Conditional Statement

A conditional statement is a part of mathematical reasoning which is a critical skill that enables students to analyze a given hypothesis without any reference to a particular context or meaning. In layman words, when a scientific inquiry or statement is examined, the reasoning is not based on an individual's opinion. Derivations and proofs need a factual and scientific basis. 

Mathematical critical thinking and logical reasoning are important skills that are required to solve maths reasoning questions.

If and Then  conditional image

In this mini-lesson, we will explore the world of conditional statements. We will walk through the answers to the questions like what is meant by a conditional statement, what are the parts of a conditional statement, and how to create conditional statements along with solved examples and interactive questions.

Lesson Plan  

What is meant by a conditional statement.

A statement that is of the form "If p, then q" is a conditional statement. Here 'p' refers to 'hypothesis' and 'q' refers to 'conclusion'.

For example, "If Cliff is thirsty, then she drinks water."

conditional statement

This is a conditional statement. It is also called an implication.

'\(\rightarrow\)' is the symbol used to represent the relation between two statements. For example, A\(\rightarrow\)B. It is known as the logical connector. It can be read as A implies B. 

Here are two more conditional statement examples

Example 1: If a number is divisible by 4, then it is divisible by 2.

Example 2: If today is Monday, then yesterday was Sunday.

What Are the Parts of a Conditional Statement?

Hypothesis (if) and Conclusion (then) are the two main parts that form a conditional statement.

Let us consider the above-stated example to understand the parts of a conditional statement.

Conditional Statement : If today is Monday, then yesterday was Sunday.

Hypothesis : "If today is Monday."

Conclusion : "Then yesterday was Sunday."

On interchanging the form of statement the relationship gets changed.

To check whether the statement is true or false here, we have subsequent parts of a conditional statement. They are:

  • Contrapositive

Biconditional Statement

Let us consider hypothesis as statement A and Conclusion as statement B.

Following are the observations made:

Conditions of conditional statement

Converse of Statement

When hypothesis and conclusion are switched or interchanged, it is termed as converse statement . For example,

Conditional Statement : “If today is Monday, then yesterday was Sunday.”

Hypothesis : “If today is Monday”

Converse : “If yesterday was Sunday, then today is Monday.”

Here the conditional statement logic is, If B, then A (B → A)

Inverse of Statement

When both the hypothesis and conclusion of the conditional statement are negative, it is termed as an inverse of the statement. For example,

Conditional Statement: “If today is Monday, then yesterday was Sunday”.

Inverse : “If today is not Monday, then yesterday was not Sunday.”

Here the conditional statement logic is, If not A, then not B (~A → ~B)

Contrapositive Statement

When the hypothesis and conclusion are negative and simultaneously interchanged, then the statement is contrapositive. For example,

Contrapositive: “If yesterday was not Sunday, then today is not Monday”

Here the conditional statement logic is, if not B, then not A (~B → ~A)

The statement is a biconditional statement when a statement satisfies both the conditions as true, being conditional and converse at the same time. For example,

Biconditional : “Today is Monday if and only if yesterday was Sunday.”

Here the conditional statement logic is, A if and only if B (A ↔ B)

How to Create Conditional Statements?

Here, the point to be kept in mind is that the 'If' and 'then' part must be true.

If a number is a perfect square , then it is even.

  • 'If' part is a number that is a perfect square.

Think of 4 which is a perfect square.

This has become true.

  • The 'then' part is that the number should be even. 4 is even.

This has also become true. 

Thus, we have set up a conditional statement.

Let us hypothetically consider two statements, statement A and statement B. Observe the truth table for the statements:

According to the table, only if the hypothesis (A) is true and the conclusion (B) is false then, A → B will be false, or else A → B will be true for all other conditions.

tips and tricks

  • A sentence needs to be either true or false, but not both, to be considered as a mathematically accepted statement.
  • Any sentence which is either imperative or interrogative or exclamatory cannot be considered a mathematically validated statement. 
  • A sentence containing one or many variables is termed as an open statement. An open statement can become a statement if the variables present in the sentence are replaced by definite values.

Solved Examples

Let us have a look at a few solved examples on conditional statements.

Identify the types of conditional statements.

There are four types of conditional statements:

  • If condition
  • If-else condition
  • Nested if-else
  • If-else ladder.

Ray tells "If the perimeter of a rectangle is 14, then its area is 10."

Which of the following could be the counterexamples? Justify your decision.

a) A rectangle with sides measuring 2 and 5

b) A rectangle with sides measuring 10 and 1

c) A rectangle with sides measuring 1 and 5

d) A rectangle with sides measuring 4 and 3

a) Rectangle with sides 2 and 5: Perimeter = 14 and area = 10

Both 'if' and 'then' are true.

b) Rectangle with sides 10 and 1: Perimeter = 22 and area = 10

'If' is false and 'then' is true.

c) Rectangle with sides 1 and 5: Perimeter = 12 and area = 5

Both 'if' and 'then' are false.

d) Rectangle with sides 4 and 3: Perimeter = 14 and area = 12

'If' is true and 'then' is false.

Joe examined the set of numbers {16, 27, 24} to check if they are the multiples of 3. He claimed that they are divisible by 9. Do you agree or disagree? Justify your answer.

Conditional statement : If a number is a multiple of 3, then it is divisible by 9.

Let us find whether the conditions are true or false.

a) 16 is not a multiple of 3. Thus, the condition is false. 

16 is not divisible by 9. Thus, the conclusion is false. 

b) 27 is a multiple of 3. Thus, the condition is true.

27 is divisible by 9. Thus, the conclusion is true. 

c) 24 is a multiple of 3. Thus the condition is true.

24 is not divisible by 9. Thus the conclusion is false.

Write the converse, inverse, and contrapositive statement for the following conditional statement. 

If you study well, then you will pass the exam.

The given statement is - If you study well, then you will pass the exam.

It is of the form, "If p, then q"

The converse statement is, "You will pass the exam if you study well" (if q, then p).

The inverse statement is, "If you do not study well then you will not pass the exam" (if not p, then not q).

The contrapositive statement is, "If you did not pass the exam, then you did not study well" (if not q, then not p).

Interactive Questions

Here are a few activities for you to practice. Select/Type your answer and click the "Check Answer" button to see the result.

Challenge your math skills

Let's Summarize

The mini-lesson targeted the fascinating concept of the conditional statement. The math journey around conditional statements started with what a student already knew and went on to creatively crafting a fresh concept in the young minds. Done in a way that not only it is relatable and easy to grasp, but also will stay with them forever.

About Cuemath

At  Cuemath , our team of math experts is dedicated to making learning fun for our favorite readers, the students!

Through an interactive and engaging learning-teaching-learning approach, the teachers explore all angles of a topic.

Be it worksheets, online classes, doubt sessions, or any other form of relation, it’s the logical thinking and smart learning approach that we, at Cuemath, believe in.

FAQs on Conditional Statement

1. what is the most common conditional statement.

'If and then' is the most commonly used conditional statement.

2. When do you use a conditional statement?

Conditional statements are used to justify the given condition or two statements as true or false.

3. What is if and if-else statement?

If is used when a specified condition is true. If-else is used when a particular specified condition is not satisfying and is false.

4. What is the symbol for a conditional statement?

'\(\rightarrow\)' is the symbol used to represent the relation between two statements. For example, A\(\rightarrow\)B. It is known as the logical connector. It can be read as A implies B.

5. What is the Contrapositive of a conditional statement?

If not B, then not A (~B → ~A)

6. What is a universal conditional statement?

Conditional statements are those statements where a hypothesis is followed by a conclusion. It is also known as an " If-then" statement. If the hypothesis is true and the conclusion is false, then the conditional statement is false. Likewise, if the hypothesis is false the whole statement is false. Conditional statements are also termed as implications.

Conditional Statement: If today is Monday, then yesterday was Sunday

Hypothesis: "If today is Monday."

Conclusion: "Then yesterday was Sunday."

If A, then B (A → B)

  • Live one on one classroom and doubt clearing
  • Practice worksheets in and after class for conceptual clarity
  • Personalized curriculum to keep up with school

logo white

  • Mathematicians
  • Math Lessons
  • Square Roots
  • Math Calculators
  • Conclusion | Definition & Meaning

JUMP TO TOPIC

Hypothesis and Conclusion

If-then statement, a implies b, conclusion|definition & meaning.

 The term conclusion in maths is used to define us about the problem that we solve and when we produce the final result at the end then that stage of processes is called as conclusion.

think broadly

Figure 1 – Give the Right Conclusion to the problem 

When you solve a maths question, you have to end the problem by calculating the last answer and pulling a conclus ion by writing the answer.  A conclusion is the last step of the maths problem. The conclusion is the final answer produced in the end . The answer is completed by writing the arguments and statements by telling the answer to the question. The ending statement of a problem is called a conclusion.

Drawing conclusions refers to the act of thinking of interpreting a series of premises or some ideas and, from them, suggesting something that leads to a meaningful finding. It is normally regarded as a conscious way of learning .

conclusion depiction

As a rule, a mathematical statement comprises two sections : the first section is assumptions or hypotheses , and the other section is the conclusion . Most mathematical statements have the form “If A, then B.” Often, this statement is written as “A implies B” or “A $\Rightarrow $ B.”  The assumptions we make are what makes “A,” and the circumstances that make “B” are called the conclusion .

To prove that a given statement “If A, then B” is said to be true, we will require some assumptions for “A,” and after doing some work on it, we need to conclude that “B” must also hold when “A” holds.

If we are asked to apply the statement “If A, then B,” firstly, we should be sure that the conditions of the statement “A” are met and true before we start to talk about the conclusion “B.”

Suppose you want to apply the statement “x is even $\Rightarrow$ x2 is an integer.” First, you must verify  that x is even  before  you  conclude that x2 is an integer.

In maths, you will, at many times, confront statements in the form “X $\Leftrightarrow$ Y” or “X if and only if Y.”  These statements are actually two “if, then” statements. The following statement, “X if and only if Y,” is logically equivalent to the statements “If X, then Y” and “If Y, then X.” One more method for thinking about this kind of explanation is an equality between the statements X and Y: so, whenever X holds, Y holds, and whenever Y hold, X holds.

Assume the example: “ x is even $\Leftrightarrow$ x 2  is an integer “. Statement A says, “ x is even,” whereas statement B says, “ x 2  is an integer.” If we get a quick revision about what it suggests to be even (simply that x is a multiple of 2), we can see with ease that the following two statements are identical : If x = 2 k is proved to be even, then it implies x 2 = 2 k 2 = k is an integer, and we know that x 2 = k is an integer, then x = 2 k so n is proved to be even.

In day-to-day use, a statement which is in the form “ If A, then B ,” in some cases, means “ A if and only if B. ” For example, when people agree on a deal, they say, “If you agree to sell me your car for 500k, then I’ll buy from you this week” they straightaway mean, “I’ll buy your car if and only if you agree to sell me in 500k.” In other words, if you don’t agree on 500k, they will not be buying your car from you .

In geometry, the validation or proof is stated in the if-then format. The “if” is a condition or hypothesis , and if that condition is met, only then the second part of the statement is true , which is called the conclusion . The working is like any other if-then statement. For illustration, the statement “If a toy shop has toys for two age groups and 45 percent of toys in the shop are for 14 or above years old, then 55 percent of the toys in the shop are for 13 and fewer years old.” The above statement concludes that “55 percent of the toys in the shop are for 13 and fewer years old.”

In maths, the statement “A if and only if B” is very different from “A implies B.” Assume the example: “ x is an integer” is the A statement, and “ x 3 is a rational number” is the B statement  The statement “A implies B” here means “If x is an integer, then x 3 is a rational number.” The statement is proven to be true. On the other hand, the statement, “A, if and only if B,” means “ x is an integer if and only if x 3 is a rational number,” which is not true in this case.

Examples of Drawing Conclusions

Consider the equation below. Comment if this equation is true or false.

conclusion example problem

Figure 3 – Example Problem

To calculate its true answer, first, consider the hypothesis $x>0$. Whatever we are going to conclude, it will be a consequence of the truth that $x$ is positive.

Next, consider the conclusion $x+1>0$. This equation is right, since $x+1>x>0$.

This implies that the provided inequality is true.

Simplify the below problem by providing a conclusion by calculating the answer of A.

\[ A= \dfrac{35}{3} \]

The expression given in the question is: $A= \dfrac{35}{3}$

Calculating the answer of A to make a conclusion, The arithmetic operation division is found in the question that is to be figured out in the provided problem. After figuring out the answer to expression A, The conclusion will be given.

\[ A= 11. 667 \]

Therefore, we conclude the question by calculating the answer of $A=11.666$

Consider the equation $0>1 \Rightarrow sinx=2$. Is this equation true or false?

To calculate the correct answer, first consider the hypothesis $0>1$. This equation is clearly false.

calculate the below problem by providing a conclusion by estimating the value of X.

\[ 3+8 \times 2\]

The expression given in the problem is $3+8 \times 2 $.

Multiplication and Plus operation is to be carried out to calculate the answer to the given problem. After figuring out the answer to X  the conclusion will be given.

Thus, we conclude the example by calculating the value of $X = 19$.

All images/mathematical drawings were created with GeoGebra.

Concentric Circles Definition < Glossary Index > Cone Definiton

IMAGES

  1. Identifying Hypothesis and Conclusion

    math hypothesis and conclusion

  2. PPT

    math hypothesis and conclusion

  3. SOLUTION: Hypothesis and conclusion discrete math

    math hypothesis and conclusion

  4. Identifying Hypothesis and Conclusion (Easier)

    math hypothesis and conclusion

  5. PPT

    math hypothesis and conclusion

  6. What Is A Conclusion In Math

    math hypothesis and conclusion

VIDEO

  1. Determining the Relation of Hypothesis and a Conclusion II Math with Teacher Marife Adonis

  2. DETERMINING THE RELATIONSHIP BETWEEN THE HYPOTHESIS AND THE CONCLUSION OF AN IF-THEN STATEMENT

  3. #argument with examples. #Valid and #invalid statements

  4. Determining the Relationship Between the Hypothesis and the Conclusion of an If Then Statement

  5. MATH 8 (Q2-M9): The Relationship between the Hypothesis and the Conclusion of an If-Then Statement

  6. IB MAI HL

COMMENTS

  1. 2.11: If Then Statements

    The hypothesis of Statement 1 is "you work overtime." The conclusion is "you'll be paid time-and-a-half." Statement 2 has the hypothesis after the conclusion. If the word "if" is in the middle of the statement, then the hypothesis is after it. The statement can be rewritten: If the weather is nice, then I will wash the car.

  2. Conditional Statement: Definition, Truth Table, Examples

    Here, the statement p is called the hypothesis and q is called the conclusion. It is a fundamental concept in logic and mathematics. Conditional statement symbol: p → q. A conditional statement consists of two parts. The "if" clause, which presents a condition or hypothesis.

  3. 1.1: Statements and Conditional Statements

    This means that if we can find one instance where the hypothesis is true and the conclusion is false, then the conditional statement is false. Example 1.6: Closure In order for the set of natural numbers to be closed under subtraction, the following conditional statement would have to be true: If \(x\) and \(y\) are natural numbers, then \(x ...

  4. PDF Mathematics

    So, using the if- then statement, the input is the hypothesis of the statement and the output is the conclusion of the statement. Answer: If I studied for my math test, then I got a good grade. 2. Input: It is raining. Output: We need to use our umbrella. So, using the if- then statement, the input is the hypothesis of the statement

  5. Understanding the Role of Hypotheses and Conclusions in Mathematical

    In mathematics, hypotheses and conclusions are commonly used in proofs and logical arguments. By stating a hypothesis and then deducing a conclusion from it, mathematicians can demonstrate the validity of certain mathematical concepts, theorems, or formulas. It's important to note that in mathematics, a hypothesis is not the same as a guess ...

  6. How to Understand 'If-Then' Conditional ...

    A conditional statement is either true or false. The only time a conditional statement is false is when the hypothesis is true, but the conclusion is false. Converse, Inverse, and Contrapositive: 1. Converse: The converse of a conditional statement switches the hypothesis and the conclusion. For the statement "If \( p \), then \( q \)", the ...

  7. Logic and Mathematical Statements

    In general, a mathematical statement consists of two parts: the hypothesis or assumptions, and the conclusion. Most mathematical statements you will see in first year courses have the form "If A ... In mathematics you will often encounter statements of the form "A if and only if B" or "A $\Leftrightarrow$ B". These statements are really two "if ...

  8. 3.3: Truth Tables- Conditional, Biconditional

    It makes sense because if the hypothesis "it is raining" is true, then the conclusion "there are clouds in the sky" must also be true. Notice that the statement tells us nothing of what to expect if it is not raining; there might be clouds in the sky, or there might not. If the hypothesis is false, then the conclusion becomes irrelevant.

  9. Conditional Statement

    Hypothesis: "If today is Monday" Converse: "If yesterday was Sunday, then today is Monday." Here the conditional statement logic is, If B, then A (B → A) Inverse of Statement. When both the hypothesis and conclusion of the conditional statement are negative, it is termed as an inverse of the statement. For example,

  10. Conclusion|Definition & Meaning

    Hypothesis and Conclusion. As a rule, a mathematical statement comprises two sections: the first section is assumptions or hypotheses, and the other section is the conclusion.Most mathematical statements have the form "If A, then B."Often, this statement is written as "A implies B" or "A $\Rightarrow $ B." The assumptions we make are what makes "A," and the circumstances that ...