How to write a research plan: Step-by-step guide

Last updated

30 January 2024

Reviewed by

Short on time? Get an AI generated summary of this article instead

Today’s businesses and institutions rely on data and analytics to inform their product and service decisions. These metrics influence how organizations stay competitive and inspire innovation. However, gathering data and insights requires carefully constructed research, and every research project needs a roadmap. This is where a research plan comes into play.

Read this step-by-step guide for writing a detailed research plan that can apply to any project, whether it’s scientific, educational, or business-related.

  • What is a research plan?

A research plan is a documented overview of a project in its entirety, from end to end. It details the research efforts, participants, and methods needed, along with any anticipated results. It also outlines the project’s goals and mission, creating layers of steps to achieve those goals within a specified timeline.

Without a research plan, you and your team are flying blind, potentially wasting time and resources to pursue research without structured guidance.

The principal investigator, or PI, is responsible for facilitating the research oversight. They will create the research plan and inform team members and stakeholders of every detail relating to the project. The PI will also use the research plan to inform decision-making throughout the project.

  • Why do you need a research plan?

Create a research plan before starting any official research to maximize every effort in pursuing and collecting the research data. Crucially, the plan will model the activities needed at each phase of the research project .

Like any roadmap, a research plan serves as a valuable tool providing direction for those involved in the project—both internally and externally. It will keep you and your immediate team organized and task-focused while also providing necessary definitions and timelines so you can execute your project initiatives with full understanding and transparency.

External stakeholders appreciate a working research plan because it’s a great communication tool, documenting progress and changing dynamics as they arise. Any participants of your planned research sessions will be informed about the purpose of your study, while the exercises will be based on the key messaging outlined in the official plan.

Here are some of the benefits of creating a research plan document for every project:

Project organization and structure

Well-informed participants

All stakeholders and teams align in support of the project

Clearly defined project definitions and purposes

Distractions are eliminated, prioritizing task focus

Timely management of individual task schedules and roles

Costly reworks are avoided

  • What should a research plan include?

The different aspects of your research plan will depend on the nature of the project. However, most official research plan documents will include the core elements below. Each aims to define the problem statement , devising an official plan for seeking a solution.

Specific project goals and individual objectives

Ideal strategies or methods for reaching those goals

Required resources

Descriptions of the target audience, sample sizes , demographics, and scopes

Key performance indicators (KPIs)

Project background

Research and testing support

Preliminary studies and progress reporting mechanisms

Cost estimates and change order processes

Depending on the research project’s size and scope, your research plan could be brief—perhaps only a few pages of documented plans. Alternatively, it could be a fully comprehensive report. Either way, it’s an essential first step in dictating your project’s facilitation in the most efficient and effective way.

  • How to write a research plan for your project

When you start writing your research plan, aim to be detailed about each step, requirement, and idea. The more time you spend curating your research plan, the more precise your research execution efforts will be.

Account for every potential scenario, and be sure to address each and every aspect of the research.

Consider following this flow to develop a great research plan for your project:

Define your project’s purpose

Start by defining your project’s purpose. Identify what your project aims to accomplish and what you are researching. Remember to use clear language.

Thinking about the project’s purpose will help you set realistic goals and inform how you divide tasks and assign responsibilities. These individual tasks will be your stepping stones to reach your overarching goal.

Additionally, you’ll want to identify the specific problem, the usability metrics needed, and the intended solutions.

Know the following three things about your project’s purpose before you outline anything else:

What you’re doing

Why you’re doing it

What you expect from it

Identify individual objectives

With your overarching project objectives in place, you can identify any individual goals or steps needed to reach those objectives. Break them down into phases or steps. You can work backward from the project goal and identify every process required to facilitate it.

Be mindful to identify each unique task so that you can assign responsibilities to various team members. At this point in your research plan development, you’ll also want to assign priority to those smaller, more manageable steps and phases that require more immediate or dedicated attention.

Select research methods

Once you have outlined your goals, objectives, steps, and tasks, it’s time to drill down on selecting research methods . You’ll want to leverage specific research strategies and processes. When you know what methods will help you reach your goals, you and your teams will have direction to perform and execute your assigned tasks.

Research methods might include any of the following:

User interviews : this is a qualitative research method where researchers engage with participants in one-on-one or group conversations. The aim is to gather insights into their experiences, preferences, and opinions to uncover patterns, trends, and data.

Field studies : this approach allows for a contextual understanding of behaviors, interactions, and processes in real-world settings. It involves the researcher immersing themselves in the field, conducting observations, interviews, or experiments to gather in-depth insights.

Card sorting : participants categorize information by sorting content cards into groups based on their perceived similarities. You might use this process to gain insights into participants’ mental models and preferences when navigating or organizing information on websites, apps, or other systems.

Focus groups : use organized discussions among select groups of participants to provide relevant views and experiences about a particular topic.

Diary studies : ask participants to record their experiences, thoughts, and activities in a diary over a specified period. This method provides a deeper understanding of user experiences, uncovers patterns, and identifies areas for improvement.

Five-second testing: participants are shown a design, such as a web page or interface, for just five seconds. They then answer questions about their initial impressions and recall, allowing you to evaluate the design’s effectiveness.

Surveys : get feedback from participant groups with structured surveys. You can use online forms, telephone interviews, or paper questionnaires to reveal trends, patterns, and correlations.

Tree testing : tree testing involves researching web assets through the lens of findability and navigability. Participants are given a textual representation of the site’s hierarchy (the “tree”) and asked to locate specific information or complete tasks by selecting paths.

Usability testing : ask participants to interact with a product, website, or application to evaluate its ease of use. This method enables you to uncover areas for improvement in digital key feature functionality by observing participants using the product.

Live website testing: research and collect analytics that outlines the design, usability, and performance efficiencies of a website in real time.

There are no limits to the number of research methods you could use within your project. Just make sure your research methods help you determine the following:

What do you plan to do with the research findings?

What decisions will this research inform? How can your stakeholders leverage the research data and results?

Recruit participants and allocate tasks

Next, identify the participants needed to complete the research and the resources required to complete the tasks. Different people will be proficient at different tasks, and having a task allocation plan will allow everything to run smoothly.

Prepare a thorough project summary

Every well-designed research plan will feature a project summary. This official summary will guide your research alongside its communications or messaging. You’ll use the summary while recruiting participants and during stakeholder meetings. It can also be useful when conducting field studies.

Ensure this summary includes all the elements of your research project . Separate the steps into an easily explainable piece of text that includes the following:

An introduction: the message you’ll deliver to participants about the interview, pre-planned questioning, and testing tasks.

Interview questions: prepare questions you intend to ask participants as part of your research study, guiding the sessions from start to finish.

An exit message: draft messaging your teams will use to conclude testing or survey sessions. These should include the next steps and express gratitude for the participant’s time.

Create a realistic timeline

While your project might already have a deadline or a results timeline in place, you’ll need to consider the time needed to execute it effectively.

Realistically outline the time needed to properly execute each supporting phase of research and implementation. And, as you evaluate the necessary schedules, be sure to include additional time for achieving each milestone in case any changes or unexpected delays arise.

For this part of your research plan, you might find it helpful to create visuals to ensure your research team and stakeholders fully understand the information.

Determine how to present your results

A research plan must also describe how you intend to present your results. Depending on the nature of your project and its goals, you might dedicate one team member (the PI) or assume responsibility for communicating the findings yourself.

In this part of the research plan, you’ll articulate how you’ll share the results. Detail any materials you’ll use, such as:

Presentations and slides

A project report booklet

A project findings pamphlet

Documents with key takeaways and statistics

Graphic visuals to support your findings

  • Format your research plan

As you create your research plan, you can enjoy a little creative freedom. A plan can assume many forms, so format it how you see fit. Determine the best layout based on your specific project, intended communications, and the preferences of your teams and stakeholders.

Find format inspiration among the following layouts:

Written outlines

Narrative storytelling

Visual mapping

Graphic timelines

Remember, the research plan format you choose will be subject to change and adaptation as your research and findings unfold. However, your final format should ideally outline questions, problems, opportunities, and expectations.

  • Research plan example

Imagine you’ve been tasked with finding out how to get more customers to order takeout from an online food delivery platform. The goal is to improve satisfaction and retain existing customers. You set out to discover why more people aren’t ordering and what it is they do want to order or experience. 

You identify the need for a research project that helps you understand what drives customer loyalty . But before you jump in and start calling past customers, you need to develop a research plan—the roadmap that provides focus, clarity, and realistic details to the project.

Here’s an example outline of a research plan you might put together:

Project title

Project members involved in the research plan

Purpose of the project (provide a summary of the research plan’s intent)

Objective 1 (provide a short description for each objective)

Objective 2

Objective 3

Proposed timeline

Audience (detail the group you want to research, such as customers or non-customers)

Budget (how much you think it might cost to do the research)

Risk factors/contingencies (any potential risk factors that may impact the project’s success)

Remember, your research plan doesn’t have to reinvent the wheel—it just needs to fit your project’s unique needs and aims.

Customizing a research plan template

Some companies offer research plan templates to help get you started. However, it may make more sense to develop your own customized plan template. Be sure to include the core elements of a great research plan with your template layout, including the following:

Introductions to participants and stakeholders

Background problems and needs statement

Significance, ethics, and purpose

Research methods, questions, and designs

Preliminary beliefs and expectations

Implications and intended outcomes

Realistic timelines for each phase

Conclusion and presentations

How many pages should a research plan be?

Generally, a research plan can vary in length between 500 to 1,500 words. This is roughly three pages of content. More substantial projects will be 2,000 to 3,500 words, taking up four to seven pages of planning documents.

What is the difference between a research plan and a research proposal?

A research plan is a roadmap to success for research teams. A research proposal, on the other hand, is a dissertation aimed at convincing or earning the support of others. Both are relevant in creating a guide to follow to complete a project goal.

What are the seven steps to developing a research plan?

While each research project is different, it’s best to follow these seven general steps to create your research plan:

Defining the problem

Identifying goals

Choosing research methods

Recruiting participants

Preparing the brief or summary

Establishing task timelines

Defining how you will present the findings

Should you be using a customer insights hub?

Do you want to discover previous research faster?

Do you share your research findings with others?

Do you analyze research data?

Start for free today, add your research, and get to key insights faster

Editor’s picks

Last updated: 18 April 2023

Last updated: 27 February 2023

Last updated: 6 February 2023

Last updated: 5 February 2023

Last updated: 16 April 2023

Last updated: 9 March 2023

Last updated: 30 April 2024

Last updated: 12 December 2023

Last updated: 11 March 2024

Last updated: 4 July 2024

Last updated: 6 March 2024

Last updated: 5 March 2024

Last updated: 13 May 2024

Latest articles

Related topics, .css-je19u9{-webkit-align-items:flex-end;-webkit-box-align:flex-end;-ms-flex-align:flex-end;align-items:flex-end;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;-webkit-box-flex-wrap:wrap;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;-webkit-box-pack:center;-ms-flex-pack:center;-webkit-justify-content:center;justify-content:center;row-gap:0;text-align:center;max-width:671px;}@media (max-width: 1079px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}}@media (max-width: 799px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}} decide what to .css-1kiodld{max-height:56px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}@media (max-width: 1079px){.css-1kiodld{display:none;}} build next, decide what to build next, log in or sign up.

Get started for free

  • Privacy Policy

Research Method

Home » Background of The Study – Examples and Writing Guide

Background of The Study – Examples and Writing Guide

Table of Contents

Background of The Study

Background of The Study

Definition:

Background of the study refers to the context, circumstances, and history that led to the research problem or topic being studied. It provides the reader with a comprehensive understanding of the subject matter and the significance of the study.

The background of the study usually includes a discussion of the relevant literature, the gap in knowledge or understanding, and the research questions or hypotheses to be addressed. It also highlights the importance of the research topic and its potential contributions to the field. A well-written background of the study sets the stage for the research and helps the reader to appreciate the need for the study and its potential significance.

How to Write Background of The Study

Here are some steps to help you write the background of the study:

Identify the Research Problem

Start by identifying the research problem you are trying to address. This problem should be significant and relevant to your field of study.

Provide Context

Once you have identified the research problem, provide some context. This could include the historical, social, or political context of the problem.

Review Literature

Conduct a thorough review of the existing literature on the topic. This will help you understand what has been studied and what gaps exist in the current research.

Identify Research Gap

Based on your literature review, identify the gap in knowledge or understanding that your research aims to address. This gap will be the focus of your research question or hypothesis.

State Objectives

Clearly state the objectives of your research . These should be specific, measurable, achievable, relevant, and time-bound (SMART).

Discuss Significance

Explain the significance of your research. This could include its potential impact on theory , practice, policy, or society.

Finally, summarize the key points of the background of the study. This will help the reader understand the research problem, its context, and its significance.

How to Write Background of The Study in Proposal

The background of the study is an essential part of any proposal as it sets the stage for the research project and provides the context and justification for why the research is needed. Here are the steps to write a compelling background of the study in your proposal:

  • Identify the problem: Clearly state the research problem or gap in the current knowledge that you intend to address through your research.
  • Provide context: Provide a brief overview of the research area and highlight its significance in the field.
  • Review literature: Summarize the relevant literature related to the research problem and provide a critical evaluation of the current state of knowledge.
  • Identify gaps : Identify the gaps or limitations in the existing literature and explain how your research will contribute to filling these gaps.
  • Justify the study : Explain why your research is important and what practical or theoretical contributions it can make to the field.
  • Highlight objectives: Clearly state the objectives of the study and how they relate to the research problem.
  • Discuss methodology: Provide an overview of the methodology you will use to collect and analyze data, and explain why it is appropriate for the research problem.
  • Conclude : Summarize the key points of the background of the study and explain how they support your research proposal.

How to Write Background of The Study In Thesis

The background of the study is a critical component of a thesis as it provides context for the research problem, rationale for conducting the study, and the significance of the research. Here are some steps to help you write a strong background of the study:

  • Identify the research problem : Start by identifying the research problem that your thesis is addressing. What is the issue that you are trying to solve or explore? Be specific and concise in your problem statement.
  • Review the literature: Conduct a thorough review of the relevant literature on the topic. This should include scholarly articles, books, and other sources that are directly related to your research question.
  • I dentify gaps in the literature: After reviewing the literature, identify any gaps in the existing research. What questions remain unanswered? What areas have not been explored? This will help you to establish the need for your research.
  • Establish the significance of the research: Clearly state the significance of your research. Why is it important to address this research problem? What are the potential implications of your research? How will it contribute to the field?
  • Provide an overview of the research design: Provide an overview of the research design and methodology that you will be using in your study. This should include a brief explanation of the research approach, data collection methods, and data analysis techniques.
  • State the research objectives and research questions: Clearly state the research objectives and research questions that your study aims to answer. These should be specific, measurable, achievable, relevant, and time-bound.
  • Summarize the chapter: Summarize the chapter by highlighting the key points and linking them back to the research problem, significance of the study, and research questions.

How to Write Background of The Study in Research Paper

Here are the steps to write the background of the study in a research paper:

  • Identify the research problem: Start by identifying the research problem that your study aims to address. This can be a particular issue, a gap in the literature, or a need for further investigation.
  • Conduct a literature review: Conduct a thorough literature review to gather information on the topic, identify existing studies, and understand the current state of research. This will help you identify the gap in the literature that your study aims to fill.
  • Explain the significance of the study: Explain why your study is important and why it is necessary. This can include the potential impact on the field, the importance to society, or the need to address a particular issue.
  • Provide context: Provide context for the research problem by discussing the broader social, economic, or political context that the study is situated in. This can help the reader understand the relevance of the study and its potential implications.
  • State the research questions and objectives: State the research questions and objectives that your study aims to address. This will help the reader understand the scope of the study and its purpose.
  • Summarize the methodology : Briefly summarize the methodology you used to conduct the study, including the data collection and analysis methods. This can help the reader understand how the study was conducted and its reliability.

Examples of Background of The Study

Here are some examples of the background of the study:

Problem : The prevalence of obesity among children in the United States has reached alarming levels, with nearly one in five children classified as obese.

Significance : Obesity in childhood is associated with numerous negative health outcomes, including increased risk of type 2 diabetes, cardiovascular disease, and certain cancers.

Gap in knowledge : Despite efforts to address the obesity epidemic, rates continue to rise. There is a need for effective interventions that target the unique needs of children and their families.

Problem : The use of antibiotics in agriculture has contributed to the development of antibiotic-resistant bacteria, which poses a significant threat to human health.

Significance : Antibiotic-resistant infections are responsible for thousands of deaths each year and are a major public health concern.

Gap in knowledge: While there is a growing body of research on the use of antibiotics in agriculture, there is still much to be learned about the mechanisms of resistance and the most effective strategies for reducing antibiotic use.

Edxample 3:

Problem : Many low-income communities lack access to healthy food options, leading to high rates of food insecurity and diet-related diseases.

Significance : Poor nutrition is a major contributor to chronic diseases such as obesity, type 2 diabetes, and cardiovascular disease.

Gap in knowledge : While there have been efforts to address food insecurity, there is a need for more research on the barriers to accessing healthy food in low-income communities and effective strategies for increasing access.

Examples of Background of The Study In Research

Here are some real-life examples of how the background of the study can be written in different fields of study:

Example 1 : “There has been a significant increase in the incidence of diabetes in recent years. This has led to an increased demand for effective diabetes management strategies. The purpose of this study is to evaluate the effectiveness of a new diabetes management program in improving patient outcomes.”

Example 2 : “The use of social media has become increasingly prevalent in modern society. Despite its popularity, little is known about the effects of social media use on mental health. This study aims to investigate the relationship between social media use and mental health in young adults.”

Example 3: “Despite significant advancements in cancer treatment, the survival rate for patients with pancreatic cancer remains low. The purpose of this study is to identify potential biomarkers that can be used to improve early detection and treatment of pancreatic cancer.”

Examples of Background of The Study in Proposal

Here are some real-time examples of the background of the study in a proposal:

Example 1 : The prevalence of mental health issues among university students has been increasing over the past decade. This study aims to investigate the causes and impacts of mental health issues on academic performance and wellbeing.

Example 2 : Climate change is a global issue that has significant implications for agriculture in developing countries. This study aims to examine the adaptive capacity of smallholder farmers to climate change and identify effective strategies to enhance their resilience.

Example 3 : The use of social media in political campaigns has become increasingly common in recent years. This study aims to analyze the effectiveness of social media campaigns in mobilizing young voters and influencing their voting behavior.

Example 4 : Employee turnover is a major challenge for organizations, especially in the service sector. This study aims to identify the key factors that influence employee turnover in the hospitality industry and explore effective strategies for reducing turnover rates.

Examples of Background of The Study in Thesis

Here are some real-time examples of the background of the study in the thesis:

Example 1 : “Women’s participation in the workforce has increased significantly over the past few decades. However, women continue to be underrepresented in leadership positions, particularly in male-dominated industries such as technology. This study aims to examine the factors that contribute to the underrepresentation of women in leadership roles in the technology industry, with a focus on organizational culture and gender bias.”

Example 2 : “Mental health is a critical component of overall health and well-being. Despite increased awareness of the importance of mental health, there are still significant gaps in access to mental health services, particularly in low-income and rural communities. This study aims to evaluate the effectiveness of a community-based mental health intervention in improving mental health outcomes in underserved populations.”

Example 3: “The use of technology in education has become increasingly widespread, with many schools adopting online learning platforms and digital resources. However, there is limited research on the impact of technology on student learning outcomes and engagement. This study aims to explore the relationship between technology use and academic achievement among middle school students, as well as the factors that mediate this relationship.”

Examples of Background of The Study in Research Paper

Here are some examples of how the background of the study can be written in various fields:

Example 1: The prevalence of obesity has been on the rise globally, with the World Health Organization reporting that approximately 650 million adults were obese in 2016. Obesity is a major risk factor for several chronic diseases such as diabetes, cardiovascular diseases, and cancer. In recent years, several interventions have been proposed to address this issue, including lifestyle changes, pharmacotherapy, and bariatric surgery. However, there is a lack of consensus on the most effective intervention for obesity management. This study aims to investigate the efficacy of different interventions for obesity management and identify the most effective one.

Example 2: Antibiotic resistance has become a major public health threat worldwide. Infections caused by antibiotic-resistant bacteria are associated with longer hospital stays, higher healthcare costs, and increased mortality. The inappropriate use of antibiotics is one of the main factors contributing to the development of antibiotic resistance. Despite numerous efforts to promote the rational use of antibiotics, studies have shown that many healthcare providers continue to prescribe antibiotics inappropriately. This study aims to explore the factors influencing healthcare providers’ prescribing behavior and identify strategies to improve antibiotic prescribing practices.

Example 3: Social media has become an integral part of modern communication, with millions of people worldwide using platforms such as Facebook, Twitter, and Instagram. Social media has several advantages, including facilitating communication, connecting people, and disseminating information. However, social media use has also been associated with several negative outcomes, including cyberbullying, addiction, and mental health problems. This study aims to investigate the impact of social media use on mental health and identify the factors that mediate this relationship.

Purpose of Background of The Study

The primary purpose of the background of the study is to help the reader understand the rationale for the research by presenting the historical, theoretical, and empirical background of the problem.

More specifically, the background of the study aims to:

  • Provide a clear understanding of the research problem and its context.
  • Identify the gap in knowledge that the study intends to fill.
  • Establish the significance of the research problem and its potential contribution to the field.
  • Highlight the key concepts, theories, and research findings related to the problem.
  • Provide a rationale for the research questions or hypotheses and the research design.
  • Identify the limitations and scope of the study.

When to Write Background of The Study

The background of the study should be written early on in the research process, ideally before the research design is finalized and data collection begins. This allows the researcher to clearly articulate the rationale for the study and establish a strong foundation for the research.

The background of the study typically comes after the introduction but before the literature review section. It should provide an overview of the research problem and its context, and also introduce the key concepts, theories, and research findings related to the problem.

Writing the background of the study early on in the research process also helps to identify potential gaps in knowledge and areas for further investigation, which can guide the development of the research questions or hypotheses and the research design. By establishing the significance of the research problem and its potential contribution to the field, the background of the study can also help to justify the research and secure funding or support from stakeholders.

Advantage of Background of The Study

The background of the study has several advantages, including:

  • Provides context: The background of the study provides context for the research problem by highlighting the historical, theoretical, and empirical background of the problem. This allows the reader to understand the research problem in its broader context and appreciate its significance.
  • Identifies gaps in knowledge: By reviewing the existing literature related to the research problem, the background of the study can identify gaps in knowledge that the study intends to fill. This helps to establish the novelty and originality of the research and its potential contribution to the field.
  • Justifies the research : The background of the study helps to justify the research by demonstrating its significance and potential impact. This can be useful in securing funding or support for the research.
  • Guides the research design: The background of the study can guide the development of the research questions or hypotheses and the research design by identifying key concepts, theories, and research findings related to the problem. This ensures that the research is grounded in existing knowledge and is designed to address the research problem effectively.
  • Establishes credibility: By demonstrating the researcher’s knowledge of the field and the research problem, the background of the study can establish the researcher’s credibility and expertise, which can enhance the trustworthiness and validity of the research.

Disadvantages of Background of The Study

Some Disadvantages of Background of The Study are as follows:

  • Time-consuming : Writing a comprehensive background of the study can be time-consuming, especially if the research problem is complex and multifaceted. This can delay the research process and impact the timeline for completing the study.
  • Repetitive: The background of the study can sometimes be repetitive, as it often involves summarizing existing research and theories related to the research problem. This can be tedious for the reader and may make the section less engaging.
  • Limitations of existing research: The background of the study can reveal the limitations of existing research related to the problem. This can create challenges for the researcher in developing research questions or hypotheses that address the gaps in knowledge identified in the background of the study.
  • Bias : The researcher’s biases and perspectives can influence the content and tone of the background of the study. This can impact the reader’s perception of the research problem and may influence the validity of the research.
  • Accessibility: Accessing and reviewing the literature related to the research problem can be challenging, especially if the researcher does not have access to a comprehensive database or if the literature is not available in the researcher’s language. This can limit the depth and scope of the background of the study.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Research Questions

Research Questions – Types, Examples and Writing...

Data Analysis

Data Analysis – Process, Methods and Types

Research Summary

Research Summary – Structure, Examples and...

Future Research

Future Research – Thesis Guide

Appendix in Research Paper

Appendix in Research Paper – Examples and...

Research Gap

Research Gap – Types, Examples and How to...

Educational resources and simple solutions for your research journey

background research plan

What is the Background of a Study and How to Write It (Examples Included)

background research plan

Have you ever found yourself struggling to write a background of the study for your research paper? You’re not alone. While the background of a study is an essential element of a research manuscript, it’s also one of the most challenging pieces to write. This is because it requires researchers to provide context and justification for their research, highlight the significance of their study, and situate their work within the existing body of knowledge in the field.  

Despite its challenges, the background of a study is crucial for any research paper. A compelling well-written background of the study can not only promote confidence in the overall quality of your research analysis and findings, but it can also determine whether readers will be interested in knowing more about the rest of the research study.  

In this article, we’ll explore the key elements of the background of a study and provide simple guidelines on how to write one effectively. Whether you’re a seasoned researcher or a graduate student working on your first research manuscript, this post will explain how to write a background for your study that is compelling and informative.  

Table of Contents

What is the background of a study ?  

Typically placed in the beginning of your research paper, the background of a study serves to convey the central argument of your study and its significance clearly and logically to an uninformed audience. The background of a study in a research paper helps to establish the research problem or gap in knowledge that the study aims to address, sets the stage for the research question and objectives, and highlights the significance of the research. The background of a study also includes a review of relevant literature, which helps researchers understand where the research study is placed in the current body of knowledge in a specific research discipline. It includes the reason for the study, the thesis statement, and a summary of the concept or problem being examined by the researcher. At times, the background of a study can may even examine whether your research supports or contradicts the results of earlier studies or existing knowledge on the subject.  

background research plan

How is the background of a study different from the introduction?  

It is common to find early career researchers getting confused between the background of a study and the introduction in a research paper. Many incorrectly consider these two vital parts of a research paper the same and use these terms interchangeably. The confusion is understandable, however, it’s important to know that the introduction and the background of the study are distinct elements and serve very different purposes.   

  • The basic different between the background of a study and the introduction is kind of information that is shared with the readers . While the introduction provides an overview of the specific research topic and touches upon key parts of the research paper, the background of the study presents a detailed discussion on the existing literature in the field, identifies research gaps, and how the research being done will add to current knowledge.  
  • The introduction aims to capture the reader’s attention and interest and to provide a clear and concise summary of the research project. It typically begins with a general statement of the research problem and then narrows down to the specific research question. It may also include an overview of the research design, methodology, and scope. The background of the study outlines the historical, theoretical, and empirical background that led to the research question to highlight its importance. It typically offers an overview of the research field and may include a review of the literature to highlight gaps, controversies, or limitations in the existing knowledge and to justify the need for further research.  
  • Both these sections appear at the beginning of a research paper. In some cases the introduction may come before the background of the study , although in most instances the latter is integrated into the introduction itself. The length of the introduction and background of a study can differ based on the journal guidelines and the complexity of a specific research study.  

Learn to convey study relevance, integrate literature reviews, and articulate research gaps in the background section. Get your All Access Pack now!    

To put it simply, the background of the study provides context for the study by explaining how your research fills a research gap in existing knowledge in the field and how it will add to it. The introduction section explains how the research fills this gap by stating the research topic, the objectives of the research and the findings – it sets the context for the rest of the paper.   

Where is the background of a study placed in a research paper?  

T he background of a study is typically placed in the introduction section of a research paper and is positioned after the statement of the problem. Researchers should try and present the background of the study in clear logical structure by dividing it into several sections, such as introduction, literature review, and research gap. This will make it easier for the reader to understand the research problem and the motivation for the study.  

So, when should you write the background of your study ? It’s recommended that researchers write this section after they have conducted a thorough literature review and identified the research problem, research question, and objectives. This way, they can effectively situate their study within the existing body of knowledge in the field and provide a clear rationale for their research.  

background research plan

Creating an effective background of a study structure  

Given that the purpose of writing the background of your study is to make readers understand the reasons for conducting the research, it is important to create an outline and basic framework to work within. This will make it easier to write the background of the study and will ensure that it is comprehensive and compelling for readers.  

While creating a background of the study structure for research papers, it is crucial to have a clear understanding of the essential elements that should be included. Make sure you incorporate the following elements in the background of the study section :   

  • Present a general overview of the research topic, its significance, and main aims; this may be like establishing the “importance of the topic” in the introduction.   
  • Discuss the existing level of research done on the research topic or on related topics in the field to set context for your research. Be concise and mention only the relevant part of studies, ideally in chronological order to reflect the progress being made.  
  • Highlight disputes in the field as well as claims made by scientists, organizations, or key policymakers that need to be investigated. This forms the foundation of your research methodology and solidifies the aims of your study.   
  • Describe if and how the methods and techniques used in the research study are different from those used in previous research on similar topics.   

By including these critical elements in the background of your study , you can provide your readers with a comprehensive understanding of your research and its context.  

What is the background of a study and how to write it

How to write a background of the study in research papers ?  

Now that you know the essential elements to include, it’s time to discuss how to write the background of the study in a concise and interesting way that engages audiences. The best way to do this is to build a clear narrative around the central theme of your research so that readers can grasp the concept and identify the gaps that the study will address. While the length and detail presented in the background of a study could vary depending on the complexity and novelty of the research topic, it is imperative to avoid wordiness. For research that is interdisciplinary, mentioning how the disciplines are connected and highlighting specific aspects to be studied helps readers understand the research better.   

While there are different styles of writing the background of a study , it always helps to have a clear plan in place. Let us look at how to write a background of study for research papers.    

  • Identify the research problem: Begin the background by defining the research topic, and highlighting the main issue or question that the research aims to address. The research problem should be clear, specific, and relevant to the field of study. It should be framed using simple, easy to understand language and must be meaningful to intended audiences.  
  • Craft an impactful statement of the research objectives: While writing the background of the study it is critical to highlight the research objectives and specific goals that the study aims to achieve. The research objectives should be closely related to the research problem and must be aligned with the overall purpose of the study.  
  • Conduct a review of available literature: When writing the background of the research , provide a summary of relevant literature in the field and related research that has been conducted around the topic. Remember to record the search terms used and keep track of articles that you read so that sources can be cited accurately. Ensure that the literature you include is sourced from credible sources.  
  • Address existing controversies and assumptions: It is a good idea to acknowledge and clarify existing claims and controversies regarding the subject of your research. For example, if your research topic involves an issue that has been widely discussed due to ethical or politically considerations, it is best to address them when writing the background of the study .  
  • Present the relevance of the study: It is also important to provide a justification for the research. This is where the researcher explains why the study is important and what contributions it will make to existing knowledge on the subject. Highlighting key concepts and theories and explaining terms and ideas that may feel unfamiliar to readers makes the background of the study content more impactful.  
  • Proofread to eliminate errors in language, structure, and data shared: Once the first draft is done, it is a good idea to read and re-read the draft a few times to weed out possible grammatical errors or inaccuracies in the information provided. In fact, experts suggest that it is helpful to have your supervisor or peers read and edit the background of the study . Their feedback can help ensure that even inadvertent errors are not overlooked.  

Get exclusive discounts on e xpert-led editing to publication support with Researcher.Life’s All Access Pack. Get yours now!  

background research plan

How to avoid mistakes in writing the background of a study  

While figuring out how to write the background of a study , it is also important to know the most common mistakes authors make so you can steer clear of these in your research paper.   

  • Write the background of a study in a formal academic tone while keeping the language clear and simple. Check for the excessive use of jargon and technical terminology that could confuse your readers.   
  • Avoid including unrelated concepts that could distract from the subject of research. Instead, focus your discussion around the key aspects of your study by highlighting gaps in existing literature and knowledge and the novelty and necessity of your study.   
  • Provide relevant, reliable evidence to support your claims and citing sources correctly; be sure to follow a consistent referencing format and style throughout the paper.   
  • Ensure that the details presented in the background of the study are captured chronologically and organized into sub-sections for easy reading and comprehension.  
  • Check the journal guidelines for the recommended length for this section so that you include all the important details in a concise manner. 

By keeping these tips in mind, you can create a clear, concise, and compelling background of the study for your research paper. Take this example of a background of the study on the impact of social media on mental health.  

Social media has become a ubiquitous aspect of modern life, with people of all ages, genders, and backgrounds using platforms such as Facebook, Instagram, and Twitter to connect with others, share information, and stay updated on news and events. While social media has many potential benefits, including increased social connectivity and access to information, there is growing concern about its impact on mental health.   Research has suggested that social media use is associated with a range of negative mental health outcomes, including increased rates of anxiety, depression, and loneliness. This is thought to be due, in part, to the social comparison processes that occur on social media, whereby users compare their lives to the idealized versions of others that are presented online.   Despite these concerns, there is also evidence to suggest that social media can have positive effects on mental health. For example, social media can provide a sense of social support and community, which can be beneficial for individuals who are socially isolated or marginalized.   Given the potential benefits and risks of social media use for mental health, it is important to gain a better understanding of the mechanisms underlying these effects. This study aims to investigate the relationship between social media use and mental health outcomes, with a particular focus on the role of social comparison processes. By doing so, we hope to shed light on the potential risks and benefits of social media use for mental health, and to provide insights that can inform interventions and policies aimed at promoting healthy social media use.  

To conclude, the background of a study is a crucial component of a research manuscript and must be planned, structured, and presented in a way that attracts reader attention, compels them to read the manuscript, creates an impact on the minds of readers and sets the stage for future discussions. 

A well-written background of the study not only provides researchers with a clear direction on conducting their research, but it also enables readers to understand and appreciate the relevance of the research work being done.   

background research plan

Frequently Asked Questions (FAQs) on background of the study

Q: How does the background of the study help the reader understand the research better?

The background of the study plays a crucial role in helping readers understand the research better by providing the necessary context, framing the research problem, and establishing its significance. It helps readers:

  • understand the larger framework, historical development, and existing knowledge related to a research topic
  • identify gaps, limitations, or unresolved issues in the existing literature or knowledge
  • outline potential contributions, practical implications, or theoretical advancements that the research aims to achieve
  • and learn the specific context and limitations of the research project

Q: Does the background of the study need citation?

Yes, the background of the study in a research paper should include citations to support and acknowledge the sources of information and ideas presented. When you provide information or make statements in the background section that are based on previous studies, theories, or established knowledge, it is important to cite the relevant sources. This establishes credibility, enables verification, and demonstrates the depth of literature review you’ve done.

Q: What is the difference between background of the study and problem statement?

The background of the study provides context and establishes the research’s foundation while the problem statement clearly states the problem being addressed and the research questions or objectives.

Editage All Access is a subscription-based platform that unifies the best AI tools and services designed to speed up, simplify, and streamline every step of a researcher’s journey. The Editage All Access Pack is a one-of-a-kind subscription that unlocks full access to an AI writing assistant, literature recommender, journal finder, scientific illustration tool, and exclusive discounts on professional publication services from Editage.  

Based on 22+ years of experience in academia, Editage All Access empowers researchers to put their best research forward and move closer to success. Explore our top AI Tools pack, AI Tools + Publication Services pack, or Build Your Own Plan. Find everything a researcher needs to succeed, all in one place –  Get All Access now starting at just $14 a month !    

Related Posts

research funding sources

What are the Best Research Funding Sources

inductive research

Inductive vs. Deductive Research Approach

  • Resources Home 🏠
  • Try SciSpace Copilot
  • Search research papers
  • Add Copilot Extension
  • Try AI Detector
  • Try Paraphraser
  • Try Citation Generator
  • April Papers
  • June Papers
  • July Papers

SciSpace Resources

How to Write an Effective Background of the Study: A Comprehensive Guide

Madalsa

Table of Contents

The background of the study in a research paper offers a clear context, highlighting why the research is essential and the problem it aims to address.

As a researcher, this foundational section is essential for you to chart the course of your study, Moreover, it allows readers to understand the importance and path of your research.

Whether in academic communities or to the general public, a well-articulated background aids in communicating the essence of the research effectively.

While it may seem straightforward, crafting an effective background requires a blend of clarity, precision, and relevance. Therefore, this article aims to be your guide, offering insights into:

  • Understanding the concept of the background of the study.
  • Learning how to craft a compelling background effectively.
  • Identifying and sidestepping common pitfalls in writing the background.
  • Exploring practical examples that bring the theory to life.
  • Enhancing both your writing and reading of academic papers.

Keeping these compelling insights in mind, let's delve deeper into the details of the empirical background of the study, exploring its definition, distinctions, and the art of writing it effectively.

What is the background of the study?

The background of the study is placed at the beginning of a research paper. It provides the context, circumstances, and history that led to the research problem or topic being explored.

It offers readers a snapshot of the existing knowledge on the topic and the reasons that spurred your current research.

When crafting the background of your study, consider the following questions.

  • What's the context of your research?
  • Which previous research will you refer to?
  • Are there any knowledge gaps in the existing relevant literature?
  • How will you justify the need for your current research?
  • Have you concisely presented the research question or problem?

In a typical research paper structure, after presenting the background, the introduction section follows. The introduction delves deeper into the specific objectives of the research and often outlines the structure or main points that the paper will cover.

Together, they create a cohesive starting point, ensuring readers are well-equipped to understand the subsequent sections of the research paper.

While the background of the study and the introduction section of the research manuscript may seem similar and sometimes even overlap, each serves a unique purpose in the research narrative.

Difference between background and introduction

A well-written background of the study and introduction are preliminary sections of a research paper and serve distinct purposes.

Here’s a detailed tabular comparison between the two of them.

Aspect

Background

Introduction

Primary purpose

Provides context and logical reasons for the research, explaining why the study is necessary.

Entails the broader scope of the research, hinting at its objectives and significance.

Depth of information

It delves into the existing literature, highlighting gaps or unresolved questions that the research aims to address.

It offers a general overview, touching upon the research topic without going into extensive detail.

Content focus

The focus is on historical context, previous studies, and the evolution of the research topic.

The focus is on the broader research field, potential implications, and a preview of the research structure.

Position in a research paper

Typically comes at the very beginning, setting the stage for the research.

Follows the background, leading readers into the main body of the research.

Tone

Analytical, detailing the topic and its significance.

General and anticipatory, preparing readers for the depth and direction of the focus of the study.

What is the relevance of the background of the study?

It is necessary for you to provide your readers with the background of your research. Without this, readers may grapple with questions such as: Why was this specific research topic chosen? What led to this decision? Why is this study relevant? Is it worth their time?

Such uncertainties can deter them from fully engaging with your study, leading to the rejection of your research paper. Additionally, this can diminish its impact in the academic community, and reduce its potential for real-world application or policy influence .

To address these concerns and offer clarity, the background section plays a pivotal role in research papers.

The background of the study in research is important as it:

  • Provides context: It offers readers a clear picture of the existing knowledge, helping them understand where the current research fits in.
  • Highlights relevance: By detailing the reasons for the research, it underscores the study's significance and its potential impact.
  • Guides the narrative: The background shapes the narrative flow of the paper, ensuring a logical progression from what's known to what the research aims to uncover.
  • Enhances engagement: A well-crafted background piques the reader's interest, encouraging them to delve deeper into the research paper.
  • Aids in comprehension: By setting the scenario, it aids readers in better grasping the research objectives, methodologies, and findings.

How to write the background of the study in a research paper?

The journey of presenting a compelling argument begins with the background study. This section holds the power to either captivate or lose the reader's interest.

An effectively written background not only provides context but also sets the tone for the entire research paper. It's the bridge that connects a broad topic to a specific research question, guiding readers through the logic behind the study.

But how does one craft a background of the study that resonates, informs, and engages?

Here, we’ll discuss how to write an impactful background study, ensuring your research stands out and captures the attention it deserves.

Identify the research problem

The first step is to start pinpointing the specific issue or gap you're addressing. This should be a significant and relevant problem in your field.

A well-defined problem is specific, relevant, and significant to your field. It should resonate with both experts and readers.

Here’s more on how to write an effective research problem .

Provide context

Here, you need to provide a broader perspective, illustrating how your research aligns with or contributes to the overarching context or the wider field of study. A comprehensive context is grounded in facts, offers multiple perspectives, and is relatable.

In addition to stating facts, you should weave a story that connects key concepts from the past, present, and potential future research. For instance, consider the following approach.

  • Offer a brief history of the topic, highlighting major milestones or turning points that have shaped the current landscape.
  • Discuss contemporary developments or current trends that provide relevant information to your research problem. This could include technological advancements, policy changes, or shifts in societal attitudes.
  • Highlight the views of different stakeholders. For a topic like sustainable agriculture, this could mean discussing the perspectives of farmers, environmentalists, policymakers, and consumers.
  • If relevant, compare and contrast global trends with local conditions and circumstances. This can offer readers a more holistic understanding of the topic.

Literature review

For this step, you’ll deep dive into the existing literature on the same topic. It's where you explore what scholars, researchers, and experts have already discovered or discussed about your topic.

Conducting a thorough literature review isn't just a recap of past works. To elevate its efficacy, it's essential to analyze the methods, outcomes, and intricacies of prior research work, demonstrating a thorough engagement with the existing body of knowledge.

  • Instead of merely listing past research study, delve into their methodologies, findings, and limitations. Highlight groundbreaking studies and those that had contrasting results.
  • Try to identify patterns. Look for recurring themes or trends in the literature. Are there common conclusions or contentious points?
  • The next step would be to connect the dots. Show how different pieces of research relate to each other. This can help in understanding the evolution of thought on the topic.

By showcasing what's already known, you can better highlight the background of the study in research.

Highlight the research gap

This step involves identifying the unexplored areas or unanswered questions in the existing literature. Your research seeks to address these gaps, providing new insights or answers.

A clear research gap shows you've thoroughly engaged with existing literature and found an area that needs further exploration.

How can you efficiently highlight the research gap?

  • Find the overlooked areas. Point out topics or angles that haven't been adequately addressed.
  • Highlight questions that have emerged due to recent developments or changing circumstances.
  • Identify areas where insights from other fields might be beneficial but haven't been explored yet.

State your objectives

Here, it’s all about laying out your game plan — What do you hope to achieve with your research? You need to mention a clear objective that’s specific, actionable, and directly tied to the research gap.

How to state your objectives?

  • List the primary questions guiding your research.
  • If applicable, state any hypotheses or predictions you aim to test.
  • Specify what you hope to achieve, whether it's new insights, solutions, or methodologies.

Discuss the significance

This step describes your 'why'. Why is your research important? What broader implications does it have?

The significance of “why” should be both theoretical (adding to the existing literature) and practical (having real-world implications).

How do we effectively discuss the significance?

  • Discuss how your research adds to the existing body of knowledge.
  • Highlight how your findings could be applied in real-world scenarios, from policy changes to on-ground practices.
  • Point out how your research could pave the way for further studies or open up new areas of exploration.

Summarize your points

A concise summary acts as a bridge, smoothly transitioning readers from the background to the main body of the paper. This step is a brief recap, ensuring that readers have grasped the foundational concepts.

How to summarize your study?

  • Revisit the key points discussed, from the research problem to its significance.
  • Prepare the reader for the subsequent sections, ensuring they understand the research's direction.

Include examples for better understanding

Research and come up with real-world or hypothetical examples to clarify complex concepts or to illustrate the practical applications of your research. Relevant examples make abstract ideas tangible, aiding comprehension.

How to include an effective example of the background of the study?

  • Use past events or scenarios to explain concepts.
  • Craft potential scenarios to demonstrate the implications of your findings.
  • Use comparisons to simplify complex ideas, making them more relatable.

Crafting a compelling background of the study in research is about striking the right balance between providing essential context, showcasing your comprehensive understanding of the existing literature, and highlighting the unique value of your research .

While writing the background of the study, keep your readers at the forefront of your mind. Every piece of information, every example, and every objective should be geared toward helping them understand and appreciate your research.

How to avoid mistakes in the background of the study in research?

To write a well-crafted background of the study, you should be aware of the following potential research pitfalls .

  • Stay away from ambiguity. Always assume that your reader might not be familiar with intricate details about your topic.
  • Avoid discussing unrelated themes. Stick to what's directly relevant to your research problem.
  • Ensure your background is well-organized. Information should flow logically, making it easy for readers to follow.
  • While it's vital to provide context, avoid overwhelming the reader with excessive details that might not be directly relevant to your research problem.
  • Ensure you've covered the most significant and relevant studies i` n your field. Overlooking key pieces of literature can make your background seem incomplete.
  • Aim for a balanced presentation of facts, and avoid showing overt bias or presenting only one side of an argument.
  • While academic paper often involves specialized terms, ensure they're adequately explained or use simpler alternatives when possible.
  • Every claim or piece of information taken from existing literature should be appropriately cited. Failing to do so can lead to issues of plagiarism.
  • Avoid making the background too lengthy. While thoroughness is appreciated, it should not come at the expense of losing the reader's interest. Maybe prefer to keep it to one-two paragraphs long.
  • Especially in rapidly evolving fields, it's crucial to ensure that your literature review section is up-to-date and includes the latest research.

Example of an effective background of the study

Let's consider a topic: "The Impact of Online Learning on Student Performance." The ideal background of the study section for this topic would be as follows.

In the last decade, the rise of the internet has revolutionized many sectors, including education. Online learning platforms, once a supplementary educational tool, have now become a primary mode of instruction for many institutions worldwide. With the recent global events, such as the COVID-19 pandemic, there has been a rapid shift from traditional classroom learning to online modes, making it imperative to understand its effects on student performance.

Previous studies have explored various facets of online learning, from its accessibility to its flexibility. However, there is a growing need to assess its direct impact on student outcomes. While some educators advocate for its benefits, citing the convenience and vast resources available, others express concerns about potential drawbacks, such as reduced student engagement and the challenges of self-discipline.

This research aims to delve deeper into this debate, evaluating the true impact of online learning on student performance.

Why is this example considered as an effective background section of a research paper?

This background section example effectively sets the context by highlighting the rise of online learning and its increased relevance due to recent global events. It references prior research on the topic, indicating a foundation built on existing knowledge.

By presenting both the potential advantages and concerns of online learning, it establishes a balanced view, leading to the clear purpose of the study: to evaluate the true impact of online learning on student performance.

As we've explored, writing an effective background of the study in research requires clarity, precision, and a keen understanding of both the broader landscape and the specific details of your topic.

From identifying the research problem, providing context, reviewing existing literature to highlighting research gaps and stating objectives, each step is pivotal in shaping the narrative of your research. And while there are best practices to follow, it's equally crucial to be aware of the pitfalls to avoid.

Remember, writing or refining the background of your study is essential to engage your readers, familiarize them with the research context, and set the ground for the insights your research project will unveil.

Drawing from all the important details, insights and guidance shared, you're now in a strong position to craft a background of the study that not only informs but also engages and resonates with your readers.

Now that you've a clear understanding of what the background of the study aims to achieve, the natural progression is to delve into the next crucial component — write an effective introduction section of a research paper. Read here .

Frequently Asked Questions

The background of the study should include a clear context for the research, references to relevant previous studies, identification of knowledge gaps, justification for the current research, a concise overview of the research problem or question, and an indication of the study's significance or potential impact.

The background of the study is written to provide readers with a clear understanding of the context, significance, and rationale behind the research. It offers a snapshot of existing knowledge on the topic, highlights the relevance of the study, and sets the stage for the research questions and objectives. It ensures that readers can grasp the importance of the research and its place within the broader field of study.

The background of the study is a section in a research paper that provides context, circumstances, and history leading to the research problem or topic being explored. It presents existing knowledge on the topic and outlines the reasons that spurred the current research, helping readers understand the research's foundation and its significance in the broader academic landscape.

The number of paragraphs in the background of the study can vary based on the complexity of the topic and the depth of the context required. Typically, it might range from 3 to 5 paragraphs, but in more detailed or complex research papers, it could be longer. The key is to ensure that all relevant information is presented clearly and concisely, without unnecessary repetition.

background research plan

You might also like

Boosting Citations: A Comparative Analysis of Graphical Abstract vs. Video Abstract

Boosting Citations: A Comparative Analysis of Graphical Abstract vs. Video Abstract

Sumalatha G

The Impact of Visual Abstracts on Boosting Citations

Introducing SciSpace’s Citation Booster To Increase Research Visibility

Introducing SciSpace’s Citation Booster To Increase Research Visibility

Organizing Your Social Sciences Research Assignments

  • Annotated Bibliography
  • Analyzing a Scholarly Journal Article
  • Group Presentations
  • Dealing with Nervousness
  • Using Visual Aids
  • Grading Someone Else's Paper
  • Types of Structured Group Activities
  • Group Project Survival Skills
  • Leading a Class Discussion
  • Multiple Book Review Essay
  • Reviewing Collected Works
  • Writing a Case Analysis Paper
  • Writing a Case Study
  • About Informed Consent
  • Writing Field Notes
  • Writing a Policy Memo
  • Writing a Reflective Paper
  • Writing a Research Proposal
  • Generative AI and Writing
  • Acknowledgments

The goal of a research proposal is twofold: to present and justify the need to study a research problem and to present the practical ways in which the proposed study should be conducted. The design elements and procedures for conducting research are governed by standards of the predominant discipline in which the problem resides, therefore, the guidelines for research proposals are more exacting and less formal than a general project proposal. Research proposals contain extensive literature reviews. They must provide persuasive evidence that a need exists for the proposed study. In addition to providing a rationale, a proposal describes detailed methodology for conducting the research consistent with requirements of the professional or academic field and a statement on anticipated outcomes and benefits derived from the study's completion.

Krathwohl, David R. How to Prepare a Dissertation Proposal: Suggestions for Students in Education and the Social and Behavioral Sciences . Syracuse, NY: Syracuse University Press, 2005.

How to Approach Writing a Research Proposal

Your professor may assign the task of writing a research proposal for the following reasons:

  • Develop your skills in thinking about and designing a comprehensive research study;
  • Learn how to conduct a comprehensive review of the literature to determine that the research problem has not been adequately addressed or has been answered ineffectively and, in so doing, become better at locating pertinent scholarship related to your topic;
  • Improve your general research and writing skills;
  • Practice identifying the logical steps that must be taken to accomplish one's research goals;
  • Critically review, examine, and consider the use of different methods for gathering and analyzing data related to the research problem; and,
  • Nurture a sense of inquisitiveness within yourself and to help see yourself as an active participant in the process of conducting scholarly research.

A proposal should contain all the key elements involved in designing a completed research study, with sufficient information that allows readers to assess the validity and usefulness of your proposed study. The only elements missing from a research proposal are the findings of the study and your analysis of those findings. Finally, an effective proposal is judged on the quality of your writing and, therefore, it is important that your proposal is coherent, clear, and compelling.

Regardless of the research problem you are investigating and the methodology you choose, all research proposals must address the following questions:

  • What do you plan to accomplish? Be clear and succinct in defining the research problem and what it is you are proposing to investigate.
  • Why do you want to do the research? In addition to detailing your research design, you also must conduct a thorough review of the literature and provide convincing evidence that it is a topic worthy of in-depth study. A successful research proposal must answer the "So What?" question.
  • How are you going to conduct the research? Be sure that what you propose is doable. If you're having difficulty formulating a research problem to propose investigating, go here for strategies in developing a problem to study.

Common Mistakes to Avoid

  • Failure to be concise . A research proposal must be focused and not be "all over the map" or diverge into unrelated tangents without a clear sense of purpose.
  • Failure to cite landmark works in your literature review . Proposals should be grounded in foundational research that lays a foundation for understanding the development and scope of the the topic and its relevance.
  • Failure to delimit the contextual scope of your research [e.g., time, place, people, etc.]. As with any research paper, your proposed study must inform the reader how and in what ways the study will frame the problem.
  • Failure to develop a coherent and persuasive argument for the proposed research . This is critical. In many workplace settings, the research proposal is a formal document intended to argue for why a study should be funded.
  • Sloppy or imprecise writing, or poor grammar . Although a research proposal does not represent a completed research study, there is still an expectation that it is well-written and follows the style and rules of good academic writing.
  • Too much detail on minor issues, but not enough detail on major issues . Your proposal should focus on only a few key research questions in order to support the argument that the research needs to be conducted. Minor issues, even if valid, can be mentioned but they should not dominate the overall narrative.

Procter, Margaret. The Academic Proposal.  The Lab Report. University College Writing Centre. University of Toronto; Sanford, Keith. Information for Students: Writing a Research Proposal. Baylor University; Wong, Paul T. P. How to Write a Research Proposal. International Network on Personal Meaning. Trinity Western University; Writing Academic Proposals: Conferences, Articles, and Books. The Writing Lab and The OWL. Purdue University; Writing a Research Proposal. University Library. University of Illinois at Urbana-Champaign.

Structure and Writing Style

Beginning the Proposal Process

As with writing most college-level academic papers, research proposals are generally organized the same way throughout most social science disciplines. The text of proposals generally vary in length between ten and thirty-five pages, followed by the list of references. However, before you begin, read the assignment carefully and, if anything seems unclear, ask your professor whether there are any specific requirements for organizing and writing the proposal.

A good place to begin is to ask yourself a series of questions:

  • What do I want to study?
  • Why is the topic important?
  • How is it significant within the subject areas covered in my class?
  • What problems will it help solve?
  • How does it build upon [and hopefully go beyond] research already conducted on the topic?
  • What exactly should I plan to do, and can I get it done in the time available?

In general, a compelling research proposal should document your knowledge of the topic and demonstrate your enthusiasm for conducting the study. Approach it with the intention of leaving your readers feeling like, "Wow, that's an exciting idea and I can’t wait to see how it turns out!"

Most proposals should include the following sections:

I.  Introduction

In the real world of higher education, a research proposal is most often written by scholars seeking grant funding for a research project or it's the first step in getting approval to write a doctoral dissertation. Even if this is just a course assignment, treat your introduction as the initial pitch of an idea based on a thorough examination of the significance of a research problem. After reading the introduction, your readers should not only have an understanding of what you want to do, but they should also be able to gain a sense of your passion for the topic and to be excited about the study's possible outcomes. Note that most proposals do not include an abstract [summary] before the introduction.

Think about your introduction as a narrative written in two to four paragraphs that succinctly answers the following four questions :

  • What is the central research problem?
  • What is the topic of study related to that research problem?
  • What methods should be used to analyze the research problem?
  • Answer the "So What?" question by explaining why this is important research, what is its significance, and why should someone reading the proposal care about the outcomes of the proposed study?

II.  Background and Significance

This is where you explain the scope and context of your proposal and describe in detail why it's important. It can be melded into your introduction or you can create a separate section to help with the organization and narrative flow of your proposal. Approach writing this section with the thought that you can’t assume your readers will know as much about the research problem as you do. Note that this section is not an essay going over everything you have learned about the topic; instead, you must choose what is most relevant in explaining the aims of your research.

To that end, while there are no prescribed rules for establishing the significance of your proposed study, you should attempt to address some or all of the following:

  • State the research problem and give a more detailed explanation about the purpose of the study than what you stated in the introduction. This is particularly important if the problem is complex or multifaceted .
  • Present the rationale of your proposed study and clearly indicate why it is worth doing; be sure to answer the "So What? question [i.e., why should anyone care?].
  • Describe the major issues or problems examined by your research. This can be in the form of questions to be addressed. Be sure to note how your proposed study builds on previous assumptions about the research problem.
  • Explain the methods you plan to use for conducting your research. Clearly identify the key sources you intend to use and explain how they will contribute to your analysis of the topic.
  • Describe the boundaries of your proposed research in order to provide a clear focus. Where appropriate, state not only what you plan to study, but what aspects of the research problem will be excluded from the study.
  • If necessary, provide definitions of key concepts, theories, or terms.

III.  Literature Review

Connected to the background and significance of your study is a section of your proposal devoted to a more deliberate review and synthesis of prior studies related to the research problem under investigation . The purpose here is to place your project within the larger whole of what is currently being explored, while at the same time, demonstrating to your readers that your work is original and innovative. Think about what questions other researchers have asked, what methodological approaches they have used, and what is your understanding of their findings and, when stated, their recommendations. Also pay attention to any suggestions for further research.

Since a literature review is information dense, it is crucial that this section is intelligently structured to enable a reader to grasp the key arguments underpinning your proposed study in relation to the arguments put forth by other researchers. A good strategy is to break the literature into "conceptual categories" [themes] rather than systematically or chronologically describing groups of materials one at a time. Note that conceptual categories generally reveal themselves after you have read most of the pertinent literature on your topic so adding new categories is an on-going process of discovery as you review more studies. How do you know you've covered the key conceptual categories underlying the research literature? Generally, you can have confidence that all of the significant conceptual categories have been identified if you start to see repetition in the conclusions or recommendations that are being made.

NOTE: Do not shy away from challenging the conclusions made in prior research as a basis for supporting the need for your proposal. Assess what you believe is missing and state how previous research has failed to adequately examine the issue that your study addresses. Highlighting the problematic conclusions strengthens your proposal. For more information on writing literature reviews, GO HERE .

To help frame your proposal's review of prior research, consider the "five C’s" of writing a literature review:

  • Cite , so as to keep the primary focus on the literature pertinent to your research problem.
  • Compare the various arguments, theories, methodologies, and findings expressed in the literature: what do the authors agree on? Who applies similar approaches to analyzing the research problem?
  • Contrast the various arguments, themes, methodologies, approaches, and controversies expressed in the literature: describe what are the major areas of disagreement, controversy, or debate among scholars?
  • Critique the literature: Which arguments are more persuasive, and why? Which approaches, findings, and methodologies seem most reliable, valid, or appropriate, and why? Pay attention to the verbs you use to describe what an author says/does [e.g., asserts, demonstrates, argues, etc.].
  • Connect the literature to your own area of research and investigation: how does your own work draw upon, depart from, synthesize, or add a new perspective to what has been said in the literature?

IV.  Research Design and Methods

This section must be well-written and logically organized because you are not actually doing the research, yet, your reader must have confidence that you have a plan worth pursuing . The reader will never have a study outcome from which to evaluate whether your methodological choices were the correct ones. Thus, the objective here is to convince the reader that your overall research design and proposed methods of analysis will correctly address the problem and that the methods will provide the means to effectively interpret the potential results. Your design and methods should be unmistakably tied to the specific aims of your study.

Describe the overall research design by building upon and drawing examples from your review of the literature. Consider not only methods that other researchers have used, but methods of data gathering that have not been used but perhaps could be. Be specific about the methodological approaches you plan to undertake to obtain information, the techniques you would use to analyze the data, and the tests of external validity to which you commit yourself [i.e., the trustworthiness by which you can generalize from your study to other people, places, events, and/or periods of time].

When describing the methods you will use, be sure to cover the following:

  • Specify the research process you will undertake and the way you will interpret the results obtained in relation to the research problem. Don't just describe what you intend to achieve from applying the methods you choose, but state how you will spend your time while applying these methods [e.g., coding text from interviews to find statements about the need to change school curriculum; running a regression to determine if there is a relationship between campaign advertising on social media sites and election outcomes in Europe ].
  • Keep in mind that the methodology is not just a list of tasks; it is a deliberate argument as to why techniques for gathering information add up to the best way to investigate the research problem. This is an important point because the mere listing of tasks to be performed does not demonstrate that, collectively, they effectively address the research problem. Be sure you clearly explain this.
  • Anticipate and acknowledge any potential barriers and pitfalls in carrying out your research design and explain how you plan to address them. No method applied to research in the social and behavioral sciences is perfect, so you need to describe where you believe challenges may exist in obtaining data or accessing information. It's always better to acknowledge this than to have it brought up by your professor!

V.  Preliminary Suppositions and Implications

Just because you don't have to actually conduct the study and analyze the results, doesn't mean you can skip talking about the analytical process and potential implications . The purpose of this section is to argue how and in what ways you believe your research will refine, revise, or extend existing knowledge in the subject area under investigation. Depending on the aims and objectives of your study, describe how the anticipated results will impact future scholarly research, theory, practice, forms of interventions, or policy making. Note that such discussions may have either substantive [a potential new policy], theoretical [a potential new understanding], or methodological [a potential new way of analyzing] significance.   When thinking about the potential implications of your study, ask the following questions:

  • What might the results mean in regards to challenging the theoretical framework and underlying assumptions that support the study?
  • What suggestions for subsequent research could arise from the potential outcomes of the study?
  • What will the results mean to practitioners in the natural settings of their workplace, organization, or community?
  • Will the results influence programs, methods, and/or forms of intervention?
  • How might the results contribute to the solution of social, economic, or other types of problems?
  • Will the results influence policy decisions?
  • In what way do individuals or groups benefit should your study be pursued?
  • What will be improved or changed as a result of the proposed research?
  • How will the results of the study be implemented and what innovations or transformative insights could emerge from the process of implementation?

NOTE:   This section should not delve into idle speculation, opinion, or be formulated on the basis of unclear evidence . The purpose is to reflect upon gaps or understudied areas of the current literature and describe how your proposed research contributes to a new understanding of the research problem should the study be implemented as designed.

ANOTHER NOTE : This section is also where you describe any potential limitations to your proposed study. While it is impossible to highlight all potential limitations because the study has yet to be conducted, you still must tell the reader where and in what form impediments may arise and how you plan to address them.

VI.  Conclusion

The conclusion reiterates the importance or significance of your proposal and provides a brief summary of the entire study . This section should be only one or two paragraphs long, emphasizing why the research problem is worth investigating, why your research study is unique, and how it should advance existing knowledge.

Someone reading this section should come away with an understanding of:

  • Why the study should be done;
  • The specific purpose of the study and the research questions it attempts to answer;
  • The decision for why the research design and methods used where chosen over other options;
  • The potential implications emerging from your proposed study of the research problem; and
  • A sense of how your study fits within the broader scholarship about the research problem.

VII.  Citations

As with any scholarly research paper, you must cite the sources you used . In a standard research proposal, this section can take two forms, so consult with your professor about which one is preferred.

  • References -- a list of only the sources you actually used in creating your proposal.
  • Bibliography -- a list of everything you used in creating your proposal, along with additional citations to any key sources relevant to understanding the research problem.

In either case, this section should testify to the fact that you did enough preparatory work to ensure the project will complement and not just duplicate the efforts of other researchers. It demonstrates to the reader that you have a thorough understanding of prior research on the topic.

Most proposal formats have you start a new page and use the heading "References" or "Bibliography" centered at the top of the page. Cited works should always use a standard format that follows the writing style advised by the discipline of your course [e.g., education=APA; history=Chicago] or that is preferred by your professor. This section normally does not count towards the total page length of your research proposal.

Develop a Research Proposal: Writing the Proposal. Office of Library Information Services. Baltimore County Public Schools; Heath, M. Teresa Pereira and Caroline Tynan. “Crafting a Research Proposal.” The Marketing Review 10 (Summer 2010): 147-168; Jones, Mark. “Writing a Research Proposal.” In MasterClass in Geography Education: Transforming Teaching and Learning . Graham Butt, editor. (New York: Bloomsbury Academic, 2015), pp. 113-127; Juni, Muhamad Hanafiah. “Writing a Research Proposal.” International Journal of Public Health and Clinical Sciences 1 (September/October 2014): 229-240; Krathwohl, David R. How to Prepare a Dissertation Proposal: Suggestions for Students in Education and the Social and Behavioral Sciences . Syracuse, NY: Syracuse University Press, 2005; Procter, Margaret. The Academic Proposal. The Lab Report. University College Writing Centre. University of Toronto; Punch, Keith and Wayne McGowan. "Developing and Writing a Research Proposal." In From Postgraduate to Social Scientist: A Guide to Key Skills . Nigel Gilbert, ed. (Thousand Oaks, CA: Sage, 2006), 59-81; Wong, Paul T. P. How to Write a Research Proposal. International Network on Personal Meaning. Trinity Western University; Writing Academic Proposals: Conferences , Articles, and Books. The Writing Lab and The OWL. Purdue University; Writing a Research Proposal. University Library. University of Illinois at Urbana-Champaign.

  • << Previous: Writing a Reflective Paper
  • Next: Generative AI and Writing >>
  • Last Updated: Jun 3, 2024 9:44 AM
  • URL: https://libguides.usc.edu/writingguide/assignments
  • Research Process
  • Manuscript Preparation
  • Manuscript Review
  • Publication Process
  • Publication Recognition
  • Language Editing Services
  • Translation Services

Elsevier QRcode Wechat

What is the Background of a Study and How Should it be Written?

  • 3 minute read
  • 985.1K views

Table of Contents

The background of a study is one of the most important components of a research paper. The quality of the background determines whether the reader will be interested in the rest of the study. Thus, to ensure that the audience is invested in reading the entire research paper, it is important to write an appealing and effective background. So, what constitutes the background of a study, and how must it be written?

What is the background of a study?

The background of a study is the first section of the paper and establishes the context underlying the research. It contains the rationale, the key problem statement, and a brief overview of research questions that are addressed in the rest of the paper. The background forms the crux of the study because it introduces an unaware audience to the research and its importance in a clear and logical manner. At times, the background may even explore whether the study builds on or refutes findings from previous studies. Any relevant information that the readers need to know before delving into the paper should be made available to them in the background.

How is a background different from the introduction?

The introduction of your research paper is presented before the background. Let’s find out what factors differentiate the background from the introduction.

  • The introduction only contains preliminary data about the research topic and does not state the purpose of the study. On the contrary, the background clarifies the importance of the study in detail.
  • The introduction provides an overview of the research topic from a broader perspective, while the background provides a detailed understanding of the topic.
  • The introduction should end with the mention of the research questions, aims, and objectives of the study. In contrast, the background follows no such format and only provides essential context to the study.

How should one write the background of a research paper?

The length and detail presented in the background varies for different research papers, depending on the complexity and novelty of the research topic. At times, a simple background suffices, even if the study is complex. Before writing and adding details in the background, take a note of these additional points:

  • Start with a strong beginning: Begin the background by defining the research topic and then identify the target audience.
  • Cover key components: Explain all theories, concepts, terms, and ideas that may feel unfamiliar to the target audience thoroughly.
  • Take note of important prerequisites: Go through the relevant literature in detail. Take notes while reading and cite the sources.
  • Maintain a balance: Make sure that the background is focused on important details, but also appeals to a broader audience.
  • Include historical data: Current issues largely originate from historical events or findings. If the research borrows information from a historical context, add relevant data in the background.
  • Explain novelty: If the research study or methodology is unique or novel, provide an explanation that helps to understand the research better.
  • Increase engagement: To make the background engaging, build a story around the central theme of the research

Avoid these mistakes while writing the background:

  • Ambiguity: Don’t be ambiguous. While writing, assume that the reader does not understand any intricate detail about your research.
  • Unrelated themes: Steer clear from topics that are not related to the key aspects of your research topic.
  • Poor organization: Do not place information without a structure. Make sure that the background reads in a chronological manner and organize the sub-sections so that it flows well.

Writing the background for a research paper should not be a daunting task. But directions to go about it can always help. At Elsevier Author Services we provide essential insights on how to write a high quality, appealing, and logically structured paper for publication, beginning with a robust background. For further queries, contact our experts now!

How to Use Tables and Figures effectively in Research Papers

How to Use Tables and Figures effectively in Research Papers

Qualities of Every Good Researcher

The Top 5 Qualities of Every Good Researcher

You may also like.

Academic paper format

Submission 101: What format should be used for academic papers?

Being Mindful of Tone and Structure in Artilces

Page-Turner Articles are More Than Just Good Arguments: Be Mindful of Tone and Structure!

How to Ensure Inclusivity in Your Scientific Writing

A Must-see for Researchers! How to Ensure Inclusivity in Your Scientific Writing

impactful introduction section

Make Hook, Line, and Sinker: The Art of Crafting Engaging Introductions

Limitations of a Research

Can Describing Study Limitations Improve the Quality of Your Paper?

Guide to Crafting Impactful Sentences

A Guide to Crafting Shorter, Impactful Sentences in Academic Writing

Write an Excellent Discussion in Your Manuscript

6 Steps to Write an Excellent Discussion in Your Manuscript

How to Write Clear Civil Engineering Papers

How to Write Clear and Crisp Civil Engineering Papers? Here are 5 Key Tips to Consider

Input your search keywords and press Enter.

stage indicator - apply for a grant

Write Your Research Plan

In this part, we give you detailed information about writing an effective Research Plan. We start with the importance and parameters of significance and innovation.

We then discuss how to focus the Research Plan, relying on the iterative process described in the Iterative Approach to Application Planning Checklist shown at Draft Specific Aims  and give you advice for filling out the forms.

You'll also learn the importance of having a well-organized, visually appealing application that avoids common missteps and the importance of preparing your just-in-time information early.

While this document is geared toward the basic research project grant, the R01, much of it is useful for other grant types.

Table of Contents

Research plan overview and your approach, craft a title, explain your aims, research strategy instructions, advice for a successful research strategy, graphics and video, significance, innovation, and approach, tracking for your budget, preliminary studies or progress report, referencing publications, review and finalize your research plan, abstract and narrative.

Your application's Research Plan has two sections:

  • Specific Aims —a one-page statement of your objectives for the project.
  • Research Strategy —a description of the rationale for your research and your experiments in 12 pages for an R01.

In your Specific Aims, you note the significance and innovation of your research; then list your two to three concrete objectives, your aims.

Your Research Strategy is the nuts and bolts of your application, where you describe your research rationale and the experiments you will conduct to accomplish each aim. Though how you organize it is largely up to you, NIH expects you to follow these guidelines.

  • Organize using bold headers or an outline or numbering system—or both—that you use consistently throughout.
  • Start each section with the appropriate header: Significance, Innovation, or Approach.
  • Organize the Approach section around your Specific Aims.

Format of Your Research Plan

To write the Research Plan, you don't need the application forms. Write the text in your word processor, turn it into a PDF file, and upload it into the application form when it's final.

Because NIH may return your application if it doesn't meet all requirements, be sure to follow the rules for font, page limits, and more. Read the instructions at NIH’s Format Attachments .

For an R01, the Research Strategy can be up to 12 pages, plus one page for Specific Aims. Don't pad other sections with information that belongs in the Research Plan. NIH is on the lookout and may return your application to you if you try to evade page limits.

Follow Examples

As you read this page, look at our Sample Applications and More  to see some of the different strategies successful PIs use to create an outstanding Research Plan.

Keeping It All In Sync

Writing in a logical sequence will save you time.

Information you put in the Research Plan affects just about every other application part. You'll need to keep everything in sync as your plans evolve during the writing phase.

It's best to consider your writing as an iterative process. As you develop and finalize your experiments, you will go back and check other parts of the application to make sure everything is in sync: the "who, what, when, where, and how (much money)" as well as look again at the scope of your plans.

In that vein, writing in a logical sequence is a good approach that will save you time. We suggest proceeding in the following order:

  • Create a provisional title.
  • Write a draft of your Specific Aims.
  • Start with your Significance and Innovation sections.
  • Then draft the Approach section considering the personnel and skills you'll need for each step.
  • Evaluate your Specific Aims and methods in light of your expected budget (for a new PI, it should be modest, probably under the $250,000 for NIH's modular budget).
  • As you design experiments, reevaluate your hypothesis, aims, and title to make sure they still reflect your plans.
  • Prepare your Abstract (a summary of your Specific Aims).
  • Complete the other forms.

Even the smaller sections of your application need to be well-organized and readable so reviewers can readily grasp the information. If writing is not your forte, get help.

To view writing strategies for successful applications, see our Sample Applications and More . There are many ways to create a great application, so explore your options.

Within the character limit, include the important information to distinguish your project within the research area, your project's goals, and the research problem.

Giving your project a title at the outset can help you stay focused and avoid a meandering Research Plan. So you may want to launch your writing by creating a well-defined title.

NIH gives you a 200 character limit, but don’t feel obliged to use all of that allotment. Instead, we advise you to keep the title as succinct as possible while including the important information to distinguish your project within the research area. Make your title reflect your project's goals, the problem your project addresses, and possibly your approach to studying it. Make your title specific: saying you are studying lymphocyte trafficking is not informative enough.

For examples of strong titles, see our Sample Applications and More .

After you write a preliminary title, check that

  • My title is specific, indicating at least the research area and the goals of my project.
  • It is 200 characters or less.
  • I use as simple language as possible.
  • I state the research problem and, possibly, my approach to studying it.
  • I use a different title for each of my applications. (Note: there are exceptions, for example, for a renewal—see Apply for Renewal  for details.)
  • My title has appropriate keywords.

Later you may want to change your initial title. That's fine—at this point, it's just an aid to keep your plans focused.

Since all your reviewers read your Specific Aims, you want to excite them about your project.

If testing your hypothesis is the destination for your research, your Research Plan is the map that takes you there.

You'll start by writing the smaller part, the Specific Aims. Think of the one-page Specific Aims as a capsule of your Research Plan. Since all your reviewers read your Specific Aims, you want to excite them about your project.

For more on crafting your Specific Aims, see Draft Specific Aims .

Write a Narrative

Use at least half the page to provide the rationale and significance of your planned research. A good way to start is with a sentence that states your project's goals.

For the rest of the narrative, you will describe the significance of your research, and give your rationale for choosing the project. In some cases, you may want to explain why you did not take an alternative route.

Then, briefly describe your aims, and show how they build on your preliminary studies and your previous research. State your hypothesis.

If it is likely your application will be reviewed by a study section with broad expertise, summarize the status of research in your field and explain how your project fits in.

In the narrative part of the Specific Aims of many outstanding applications, people also used their aims to

  • State the technologies they plan to use.
  • Note their expertise to do a specific task or that of collaborators.
  • Describe past accomplishments related to the project.
  • Describe preliminary studies and new and highly relevant findings in the field.
  • Explain their area's biology.
  • Show how the aims relate to one another.
  • Describe expected outcomes for each aim.
  • Explain how they plan to interpret data from the aim’s efforts.
  • Describe how to address potential pitfalls with contingency plans.

Depending on your situation, decide which items are important for you. For example, a new investigator would likely want to highlight preliminary data and qualifications to do the work.

Many people use bold or italics to emphasize items they want to bring to the reviewers' attention, such as the hypothesis or rationale.

Detail Your Aims

After the narrative, enter your aims as bold bullets, or stand-alone or run-on headers.

  • State your plans using strong verbs like identify, define, quantify, establish, determine.
  • Describe each aim in one to three sentences.
  • Consider adding bullets under each aim to refine your objectives.

How focused should your aims be? Look at the example below.

Spot the Sample

Read the Specific Aims of the Application from Drs. Li and Samulski , "Enhance AAV Liver Transduction with Capsid Immune Evasion."

  • Aim 1. Study the effect of adeno-associated virus (AAV) empty particles on AAV capsid antigen cross-presentation in vivo .
  • Aim 2. Investigate AAV capsid antigen presentation following administration of AAV mutants and/or proteasome inhibitors for enhanced liver transduction in vivo .
  • Aim 3. Isolate AAV chimeric capsids with human hepatocyte tropism and the capacity for cytotoxic T lymphocytes (CTL) evasion.

After finishing the draft Specific Aims, check that

  • I keep to the one-page limit.
  • Each of my two or three aims is a narrowly focused, concrete objective I can achieve during the grant.
  • They give a clear picture of how my project can generate knowledge that may improve human health.
  • They show my project's importance to science, how it addresses a critical research opportunity that can move my field forward.
  • My text states how my work is innovative.
  • I describe the biology to the extent needed for my reviewers.
  • I give a rationale for choosing the topic and approach.
  • I tie the project to my preliminary data and other new findings in the field.
  • I explicitly state my hypothesis and why testing it is important.
  • My aims can test my hypothesis and are logical.
  • I can design and lead the execution of two or three sets of experiments that will strive to accomplish each aim.
  • As much as possible, I use language that an educated person without expertise can understand.
  • My text has bullets, bolding, or headers so reviewers can easily spot my aims (and other key items).

For each element listed above, analyze your text and revise it until your Specific Aims hit all the key points you'd like to make.

After the list of aims, some people add a closing paragraph, emphasizing the significance of the work, their collaborators, or whatever else they want to focus reviewers' attention on.

Your Research Strategy is the bigger part of your application's Research Plan (the other part is the Specific Aims—discussed above.)

The Research Strategy is the nuts and bolts of your application, describing the rationale for your research and the experiments you will do to accomplish each aim. It is structured as follows:

  • Significance
  • You can either include this information as a subsection of Approach or integrate it into any or all of the three main sections.
  • If you do the latter, be sure to mark the information clearly, for example, with a bold subhead.
  • Possible other sections, for example, human subjects, vertebrate animals, select agents, and others (these do not count toward the page limit).

Though how you organize your application is largely up to you, NIH does want you to follow these guidelines:

  • Add bold headers or an outlining or numbering system—or both—that you use consistently throughout.
  • Start each of the Research Strategy's sections with a header: Significance, Innovation, and Approach.

For an R01, the Research Strategy is limited to 12 pages for the three main sections and the preliminary studies only. Other items are not included in the page limit.

Find instructions for R01s in the SF 424 Application Guide—go to NIH's SF 424 (R&R) Application and Electronic Submission Information for the generic SF 424 Application Guide or find it in your notice of funding opportunity (NOFO).

For most applications, you need to address Rigor and Reproducibility by describing the experimental design and methods you propose and how they will achieve robust and unbiased results. The requirement applies to research grant, career development, fellowship, and training applications.

If you're responding to an institute-specific program announcement (PA) (not a parent program announcement) or a request for applications (RFA), check the NIH Guide notice, which has additional information you need. Should it differ from the NOFO, go with the NIH Guide .

Also note that your application must meet the initiative's objectives and special requirements. NIAID program staff will check your application, and if it is not responsive to the announcement, your application will be returned to you without a review.

When writing your Research Strategy, your goal is to present a well-organized, visually appealing, and readable description of your proposed project. That means your writing should be streamlined and organized so your reviewers can readily grasp the information. If writing is not your forte, get help.

There are many ways to create an outstanding Research Plan, so explore your options.

What Success Looks Like

Your application's Research Plan is the map that shows your reviewers how you plan to test your hypothesis.

It not only lays out your experiments and expected outcomes, but must also convince your reviewers of your likely success by allaying any doubts that may cross their minds that you will be able to conduct the research.

Notice in the sample applications how the writing keeps reviewers' eyes on the ball by bringing them back to the main points the PIs want to make. Write yourself an insurance policy against human fallibility: if it's a key point, repeat it, then repeat it again.

The Big Three

So as you write, put the big picture squarely in your sights. When reviewers read your application, they'll look for the answers to three basic questions:

  • Can your research move your field forward?
  • Is the field important—will progress make a difference to human health?
  • Can you and your team carry out the work?

Add Emphasis

Savvy PIs create opportunities to drive their main points home. They don't stop at the Significance section to emphasize their project's importance, and they look beyond their biosketches to highlight their team's expertise.

Don't take a chance your reviewer will gloss over that one critical sentence buried somewhere in your Research Strategy or elsewhere. Write yourself an insurance policy against human fallibility: if it's a key point, repeat it, then repeat it again.

Add more emphasis by putting the text in bold, or bold italics (in the modern age, we skip underlining—it's for typewriters).

Here are more strategies from our successful PIs:

  • While describing a method in the Approach section, they state their or collaborators' experience with it.
  • They point out that they have access to a necessary piece of equipment.
  • When explaining their field and the status of current research, they weave in their own work and their preliminary data.
  • They delve into the biology of the area to make sure reviewers will grasp the importance of their research and understand their field and how their work fits into it.

You can see many of these principles at work in the Approach section of the Application from Dr. William Faubion , "Inflammatory cascades disrupt Treg function through epigenetic mechanisms."

  • Reviewers felt that the experiments described for Aim 1 will yield clear results.
  • The plans to translate those findings to gene targets of relevance are well outlined and focused.
  • He ties his proposed experiments to the larger picture, including past research and strong preliminary data for the current application. 

Anticipate Reviewer Questions

Our applicants not only wrote with their reviewers in mind they seemed to anticipate their questions. You may think: how can I anticipate all the questions people may have? Of course you can't, but there are some basic items (in addition to the "big three" listed above) that will surely be on your reviewers' minds:

  • Will the investigators be able to get the work done within the project period, or is the proposed work over ambitious?
  • Did the PI describe potential pitfalls and possible alternatives?
  • Will the experiments generate meaningful data?
  • Could the resulting data prove the hypothesis?
  • Are others already doing the work, or has it been already completed?

Address these questions; then spend time thinking about more potential issues specific to you and your research—and address those too.

For applications, a picture can truly be worth a thousand words. Graphics can illustrate complex information in a small space and add visual interest to your application.

Look at our sample applications to see how the investigators included schematics, tables, illustrations, graphs, and other types of graphics to enhance their applications.

Consider adding a timetable or flowchart to illustrate your experimental plan, including decision trees with alternative experimental pathways to help your reviewers understand your plans.

Plan Ahead for Video

If you plan to send one or more videos, you'll need to meet certain standards and include key information in your Research Strategy now.

To present some concepts or demonstrations, video may enhance your application beyond what graphics alone can achieve. However, you can't count on all reviewers being able to see or hear video, so you'll want to be strategic in how you incorporate it into your application.

Be reviewer-friendly. Help your cause by taking the following steps:

  • Caption any narration in the video.
  • Choose evocative still images from your video to accompany your summary.
  • Write your summary of the video carefully so the text would make sense even without the video.

In addition to those considerations, create your videos to fit NIH’s technical requirements. Learn more in the SF 424 Form Instructions .

Next, as you write your Research Strategy, include key images from the video and a brief description.

Then, state in your cover letter that you plan to send video later. (Don't attach your files to the application.)

After you apply and get assignment information from the Commons, ask your assigned scientific review officer (SRO) how your business official should send the files. Your video files are due at least one month before the peer review meeting.

Know Your Audience's Perspective

The primary audience for your application is your peer review group. Learn how to write for the reviewers who are experts in your field and those who are experts in other fields by reading Know Your Audience .

Be Organized: A B C or 1 2 3?

In the top-notch applications we reviewed, organization ruled but followed few rules. While you want to be organized, how you go about it is up to you.

Nevertheless, here are some principles to follow:

  • Start each of the Research Strategy's sections with a header: Significance, Innovation, and Approach—this you must do.

The Research Strategy's page limit—12 for R01s—is for the three main parts: Significance, Innovation, and Approach and your preliminary studies (or a progress report if you're renewing your grant). Other sections, for example, research animals or select agents, do not have a page limit.

Although you will emphasize your project's significance throughout the application, the Significance section should give the most details. Don't skimp—the farther removed your reviewers are from your field, the more information you'll need to provide on basic biology, importance of the area, research opportunities, and new findings.

When you describe your project's significance, put it in the context of 1) the state of your field, 2) your long-term research plans, and 3) your preliminary data.

In our Sample Applications , you can see that both investigators and reviewers made a case for the importance of the research to improving human health as well as to the scientific field.

Look at the Significance section of the Application from Dr. Mengxi Jiang , "Intersection of polyomavirus infection and host cellular responses," to see how these elements combine to make a strong case for significance.

  • Dr. Jiang starts with a summary of the field of polyomavirus research, identifying critical knowledge gaps in the field.
  • The application ties the lab's previous discoveries and new research plans to filling those gaps, establishing the significance with context.
  • Note the use of formatting, whitespace, and sectioning to highlight key points and make it easier for reviewers to read the text.

After conveying the significance of the research in several parts of the application, check that

  • In the Significance section, I describe the importance of my hypothesis to the field (especially if my reviewers are not in it) and human disease.
  • I also point out the project's significance throughout the application.
  • The application shows that I am aware of opportunities, gaps, roadblocks, and research underway in my field.
  • I state how my research will advance my field, highlighting knowledge gaps and showing how my project fills one or more of them.
  • Based on my scan of the review committee roster, I determine whether I cannot assume my reviewers will know my field and provide some information on basic biology, the importance of the area, knowledge gaps, and new findings.

If you are either a new PI or entering a new area: be cautious about seeming too innovative. Not only is innovation just one of five review criteria, but there might be a paradigm shift in your area of science. A reviewer may take a challenge to the status quo as a challenge to his or her world view.

When you look at our sample applications, you see that both the new and experienced investigators are not generally shifting paradigms. They are using new approaches or models, working in new areas, or testing innovative ideas.

After finishing the draft innovation section, check that

  • I show how my proposed research is new and unique, e.g., explores new scientific avenues, has a novel hypothesis, will create new knowledge.
  • Most likely, I explain how my project's research can refine, improve, or propose a new application of an existing concept or method.
  • Make a very strong case for challenging the existing paradigm.
  • Have data to support the innovative approach.
  • Have strong evidence that I can do the work.

In your Approach, you spell out a few sets of experiments to address each aim. As we noted above, it's a good idea to restate the key points you've made about your project's significance, its place in your field, and your long-term goals.

You're probably wondering how much detail to include.

If you look at our sample applications as a guide, you can see very different approaches. Though people generally used less detail than you'd see in a scientific paper, they do include some experimental detail.

Expect your assigned reviewers to scrutinize your approach: they will want to know what you plan to do and how you plan to do it.

NIH data show that of the peer review criteria, approach has the highest correlation with the overall impact score.

Look at the Application from Dr. Mengxi Jiang , "Intersection of polyomavirus infection and host cellular responses," to see how a new investigator handled the Approach section.

For an example of an experienced investigator's well-received Approach section, see the Application from Dr. William Faubion , "Inflammatory cascades disrupt Treg function through epigenetic mechanisms."

Especially if you are a new investigator, you need enough detail to convince reviewers that you understand what you are undertaking and can handle the method.

  • Cite a publication that shows you can handle the method where you can, but give more details if you and your team don't have a proven record using the method—and state explicitly why you think you will succeed.
  • If space is short, you could also focus on experiments that highlight your expertise or are especially interesting. For experiments that are pedestrian or contracted out, just list the method.

Be sure to lay out a plan for alternative experiments and approaches in case you get negative or surprising results. Show reviewers you have a plan for spending the four or five years you will be funded no matter where the experiments lead.

See the Application from Drs. Li and Samulski , "Enhance AAV Liver Transduction with Capsid Immune Evasion," for a strong Approach section covering potential. As an example, see section C.1.3.'s alternative approaches.

Here are some pointers for organizing your Approach:

  • Enter a bold header for each Specific Aim.
  • Under each aim, describe the first set of experiments.
  • If you get result X, you will follow pathway X; if you get result Y, you will follow pathway Y.
  • Consider illustrating this with a flowchart.

Trim the fat—omit all information not needed to make your case. If you try to wow reviewers with your knowledge, they'll find flaws and penalize you heavily. Don't give them ammunition by including anything you don't need.

As you design your experiments, keep a running tab of the following essential data on a separate piece of paper:

  • Who. A list of people who will help you for your Key Personnel section later.
  • What. A list of equipment and supplies for the experiments you plan.
  • Time. Notes on how long each step takes. Timing directly affects your budget as well as how many Specific Aims you can realistically achieve.

Jotting this information down will help you Create a Budget and complete other sections later.

After finishing a draft Approach section, check that

  • I include enough background and preliminary data to give reviewers the context and significance of my plans.
  • They can test the hypothesis (or hypotheses).
  • I show alternative experiments and approaches in case I get negative or surprising results.
  • My experiments can yield meaningful data to test my hypothesis (or hypotheses).
  • As a new investigator, I include enough detail to convince reviewers I understand and can handle a method. I reviewed the sample applications to see how much detail to use.
  • If I or my team has experience with a method, I cite it; otherwise I include enough details to convince reviewers we can handle it.
  • I describe the results I anticipate and their implications.
  • I omit all information not needed to state my case.
  • I keep track of and explain who will do what, what they will do, when and where they will do it, how long it will take, and how much money it will cost.
  • My timeline shows when I expect to complete my aims.

If you are applying for a new application, include preliminary studies; for a renewal or a revision (a competing supplement to an existing grant), prepare a progress report instead.

Describing Preliminary Studies

Your preliminary studies show that you can handle the methods and interpret results. Here's where you build reviewer confidence that you are headed in the right direction by pursuing research that builds on your accomplishments.

Reviewers use your preliminary studies together with the biosketches to assess the investigator review criterion, which reflects the competence of the research team.

Give alternative interpretations to your data to show reviewers you've thought through problems in-depth and are prepared to meet future challenges. If you don't do this, the reviewers will!

Though you may include other people's publications, focus on your preliminary data or unpublished data from your lab and the labs of your team members as much as you can.

As we noted above, you can put your preliminary data anywhere in the Research Strategy that you feel is appropriate, but just make sure your reviewers will be able to distinguish it. Alternatively, you can create a separate section with its own header.

Including a Progress Report

If you are applying for a renewal or a revision (a competing supplement to an existing grant), prepare a progress report instead of preliminary studies.

Create a header so your program officer can easily find it and include the following information:

  • Project period beginning and end dates.
  • Summary of the importance of your findings in relation to your Specific Aims.
  • Account of published and unpublished results, highlighting your progress toward achieving your Specific Aims.

Note: if you submit a renewal application before the due date of your progress report, you do not need to submit a separate progress report for your grant. However, you will need to submit it, if your renewal is not funded.

After finishing the draft, check that

  • I interpret my preliminary results critically.
  • There is enough information to show I know what I'm talking about.
  • If my project is complex, I give more preliminary studies.
  • I show how my previous experience prepared me for the new project.
  • It's clear which data are mine and which are not.

References show your breadth of knowledge of the field. If you leave out an important work, reviewers may assume you're not aware of it.

Throughout your application, you will reference all relevant publications for the concepts underlying your research and your methods.

Read more about your Bibliography and References Cited at Add a Bibliography and Appendix .

  • Throughout my application I cite the literature thoroughly but not excessively, adding citations for all references important to my work.
  • I cite all papers important to my field, including those from potential reviewers.
  • I include fewer than 100 citations (if possible).
  • My Bibliography and References Cited form lists all my references.
  • I refer to unpublished work, including information I learned through personal contacts.
  • If I do not describe a method, I add a reference to the literature.

Look over what you've written with a critical eye of a reviewer to identify potential questions or weak spots.

Enlist others to do that too—they can look at your application with a fresh eye. Include people who aren't familiar with your research to make sure you can get your point across to someone outside your field.

As you finalize the details of your Research Strategy, you will also need to return to your Specific Aims to see if you must revise. See Draft Specific Aims .

After you finish your Research Plan, you are ready to write your Abstract (called Project Summary/Abstract) and Project Narrative, which are attachments to the Other Project Information form.

These sections may be small, but they're important.

  • All your peer reviewers read your Abstract and narrative.
  • Staff and automated systems in NIH's Center for Scientific Review use them to decide where to assign your application, even if you requested an institute and study section.
  • They show the importance and health relevance of your research to members of the public and Congress who are interested in what NIH is funding with taxpayer dollars.

Be sure to omit confidential or proprietary information in these sections! When your application is funded, NIH enters your title and Abstract in the public RePORTER database.

Think brief and simple: to the extent that you can, write these sections in lay language, and include appropriate keywords, e.g., immunotherapy, genetic risk factors.

As NIH referral officers use these parts to direct your application to an institute for possible funding, your description can influence the choice they make.

Write a succinct summary of your project that both a scientist and a lay person can understand (to the extent that you can).

  • Use your Specific Aims as a template—shorten it and simplify the language.
  • In the first sentence, state the significance of your research to your field and relevance to NIAID's mission: to better understand, treat, and prevent infectious, immunologic, and allergic diseases.
  • Next state your hypothesis and the innovative potential of your research.
  • Then list and briefly describe your Specific Aims and long-term objectives.

In your Project Narrative, you have only a few sentences to drive home your project's potential to improve public health.

Check out these effective Abstracts and Narratives from our R01  Sample Applications :

  • Application from Dr. Mengxi Jiang , "Intersection of polyomavirus infection and host cellular responses"
  • Application from Dr. William Faubion , "Inflammatory cascades disrupt Treg function through epigenetic mechanisms"
  • My Project Summary/Abstract and Project Narrative (and title) are accessible to a broad audience.
  • They describe the significance of my research to my field and state my hypothesis, my aims, and the innovative potential of my research.
  • My narrative describes my project's potential to improve public health.
  • I do not include any confidential or proprietary information.
  • I do not use graphs or images.
  • My Abstract has keywords that are appropriate and distinct enough to avoid confusion with other terms.
  • My title is specific and informative.

Previous Step

Have questions.

A program officer in your area of science can give you application advice, NIAID's perspective on your research, and confirmation that your proposed research fits within NIAID’s mission.

Find contacts and instructions at When to Contact an NIAID Program Officer .

Banner

Background Research

What is background research, tyes of background information.

  • General Sources
  • Subject Specific Sources

Background research (or pre-research) is the research that you do before you start writing your paper or working on your project. Sometimes background research happens before you've even chosen a topic. The purpose of background research is to make the research that goes into your paper or project easier and more successful.

Some reasons to do background research include:

  • Determining an appropriate scope for your research: Successful research starts with a topic or question that is appropriate to the scope of the assignment. A topic that is too broad means too much relevant information to review and distill. If your topic is too narrow, there won't be enough information to do meaningful research.
  • Understanding how your research fits in with the broader conversation surrounding the topic: What are the major points of view or areas of interest in discussions of your research topic and how does your research fit in with these? Answering this question can help you define the parts of your topic that you need to explore.
  • Establishing the value of your research : What is the impact of your research and why does it matter? How might your research clarify or change our understanding of the topic?
  • Identifying experts and other important perspectives: Are there scholars whose work you need to understand for your research to be complete? Are there points of view that you need to include or address?

Doing background research helps you choose a topic that you'll be happy with and develop a sense of what research you'll need to do in order to successfully complete your assignment. It will also help you plan your research and understand how much time you'll need to dedicate to understanding and exploring your topic.

Some types of information sources can be particularly helpful when you're doing background research. These are often primarily tertiary sources meaning that, rather than conducting original research they often summarize existing research on the topic.

Current Events Briefs Databases like CQ Researcher are focused on understanding controversial topics in current events. They provide information about the background of the issue as well as explanations of the positions of those on either side of a controversy.

Encyclopedias  Encyclopedias are ideal sources for doing background research in order build your knowledge about a topic sufficiently to identify a topic and develop a research plan.

Dictionaries Dictionaries include both general dictionaries like the Oxford English Dictionary as well as more specialized dictionaries focused on a single area. Dictionary entries are usually shorter and less detailed than encyclopedia entries and generally do not include references. However, they can be helpful when your research introduces you to concepts with which you aren't familiar.

Textbooks Your textbook is a potential source of background information, providing an explanation of the topic that prepares you to focus and dig deeper. Textbooks give a general overview of lot of information.

Statistics While you may find that it's difficult to make sense of statistics related to your topic while you're still exploring, statistics can be a powerful tool for establishing the context and importance of your research.

  • Next: General Sources >>
  • Last Updated: Jul 16, 2024 8:42 AM
  • URL: https://guides.lib.odu.edu/background

background research plan

How to Write a Research Proposal: (with Examples & Templates)

how to write a research proposal

Table of Contents

Before conducting a study, a research proposal should be created that outlines researchers’ plans and methodology and is submitted to the concerned evaluating organization or person. Creating a research proposal is an important step to ensure that researchers are on track and are moving forward as intended. A research proposal can be defined as a detailed plan or blueprint for the proposed research that you intend to undertake. It provides readers with a snapshot of your project by describing what you will investigate, why it is needed, and how you will conduct the research.  

Your research proposal should aim to explain to the readers why your research is relevant and original, that you understand the context and current scenario in the field, have the appropriate resources to conduct the research, and that the research is feasible given the usual constraints.  

This article will describe in detail the purpose and typical structure of a research proposal , along with examples and templates to help you ace this step in your research journey.  

What is a Research Proposal ?  

A research proposal¹ ,²  can be defined as a formal report that describes your proposed research, its objectives, methodology, implications, and other important details. Research proposals are the framework of your research and are used to obtain approvals or grants to conduct the study from various committees or organizations. Consequently, research proposals should convince readers of your study’s credibility, accuracy, achievability, practicality, and reproducibility.   

With research proposals , researchers usually aim to persuade the readers, funding agencies, educational institutions, and supervisors to approve the proposal. To achieve this, the report should be well structured with the objectives written in clear, understandable language devoid of jargon. A well-organized research proposal conveys to the readers or evaluators that the writer has thought out the research plan meticulously and has the resources to ensure timely completion.  

Purpose of Research Proposals  

A research proposal is a sales pitch and therefore should be detailed enough to convince your readers, who could be supervisors, ethics committees, universities, etc., that what you’re proposing has merit and is feasible . Research proposals can help students discuss their dissertation with their faculty or fulfill course requirements and also help researchers obtain funding. A well-structured proposal instills confidence among readers about your ability to conduct and complete the study as proposed.  

Research proposals can be written for several reasons:³  

  • To describe the importance of research in the specific topic  
  • Address any potential challenges you may encounter  
  • Showcase knowledge in the field and your ability to conduct a study  
  • Apply for a role at a research institute  
  • Convince a research supervisor or university that your research can satisfy the requirements of a degree program  
  • Highlight the importance of your research to organizations that may sponsor your project  
  • Identify implications of your project and how it can benefit the audience  

What Goes in a Research Proposal?    

Research proposals should aim to answer the three basic questions—what, why, and how.  

The What question should be answered by describing the specific subject being researched. It should typically include the objectives, the cohort details, and the location or setting.  

The Why question should be answered by describing the existing scenario of the subject, listing unanswered questions, identifying gaps in the existing research, and describing how your study can address these gaps, along with the implications and significance.  

The How question should be answered by describing the proposed research methodology, data analysis tools expected to be used, and other details to describe your proposed methodology.   

Research Proposal Example  

Here is a research proposal sample template (with examples) from the University of Rochester Medical Center. 4 The sections in all research proposals are essentially the same although different terminology and other specific sections may be used depending on the subject.  

Research Proposal Template

Structure of a Research Proposal  

If you want to know how to make a research proposal impactful, include the following components:¹  

1. Introduction  

This section provides a background of the study, including the research topic, what is already known about it and the gaps, and the significance of the proposed research.  

2. Literature review  

This section contains descriptions of all the previous relevant studies pertaining to the research topic. Every study cited should be described in a few sentences, starting with the general studies to the more specific ones. This section builds on the understanding gained by readers in the Introduction section and supports it by citing relevant prior literature, indicating to readers that you have thoroughly researched your subject.  

3. Objectives  

Once the background and gaps in the research topic have been established, authors must now state the aims of the research clearly. Hypotheses should be mentioned here. This section further helps readers understand what your study’s specific goals are.  

4. Research design and methodology  

Here, authors should clearly describe the methods they intend to use to achieve their proposed objectives. Important components of this section include the population and sample size, data collection and analysis methods and duration, statistical analysis software, measures to avoid bias (randomization, blinding), etc.  

5. Ethical considerations  

This refers to the protection of participants’ rights, such as the right to privacy, right to confidentiality, etc. Researchers need to obtain informed consent and institutional review approval by the required authorities and mention this clearly for transparency.  

6. Budget/funding  

Researchers should prepare their budget and include all expected expenditures. An additional allowance for contingencies such as delays should also be factored in.  

7. Appendices  

This section typically includes information that supports the research proposal and may include informed consent forms, questionnaires, participant information, measurement tools, etc.  

8. Citations  

background research plan

Important Tips for Writing a Research Proposal  

Writing a research proposal begins much before the actual task of writing. Planning the research proposal structure and content is an important stage, which if done efficiently, can help you seamlessly transition into the writing stage. 3,5  

The Planning Stage  

  • Manage your time efficiently. Plan to have the draft version ready at least two weeks before your deadline and the final version at least two to three days before the deadline.
  • What is the primary objective of your research?  
  • Will your research address any existing gap?  
  • What is the impact of your proposed research?  
  • Do people outside your field find your research applicable in other areas?  
  • If your research is unsuccessful, would there still be other useful research outcomes?  

  The Writing Stage  

  • Create an outline with main section headings that are typically used.  
  • Focus only on writing and getting your points across without worrying about the format of the research proposal , grammar, punctuation, etc. These can be fixed during the subsequent passes. Add details to each section heading you created in the beginning.   
  • Ensure your sentences are concise and use plain language. A research proposal usually contains about 2,000 to 4,000 words or four to seven pages.  
  • Don’t use too many technical terms and abbreviations assuming that the readers would know them. Define the abbreviations and technical terms.  
  • Ensure that the entire content is readable. Avoid using long paragraphs because they affect the continuity in reading. Break them into shorter paragraphs and introduce some white space for readability.  
  • Focus on only the major research issues and cite sources accordingly. Don’t include generic information or their sources in the literature review.  
  • Proofread your final document to ensure there are no grammatical errors so readers can enjoy a seamless, uninterrupted read.  
  • Use academic, scholarly language because it brings formality into a document.  
  • Ensure that your title is created using the keywords in the document and is neither too long and specific nor too short and general.  
  • Cite all sources appropriately to avoid plagiarism.  
  • Make sure that you follow guidelines, if provided. This includes rules as simple as using a specific font or a hyphen or en dash between numerical ranges.  
  • Ensure that you’ve answered all questions requested by the evaluating authority.  

Key Takeaways   

Here’s a summary of the main points about research proposals discussed in the previous sections:  

  • A research proposal is a document that outlines the details of a proposed study and is created by researchers to submit to evaluators who could be research institutions, universities, faculty, etc.  
  • Research proposals are usually about 2,000-4,000 words long, but this depends on the evaluating authority’s guidelines.  
  • A good research proposal ensures that you’ve done your background research and assessed the feasibility of the research.  
  • Research proposals have the following main sections—introduction, literature review, objectives, methodology, ethical considerations, and budget.  

background research plan

Frequently Asked Questions  

Q1. How is a research proposal evaluated?  

A1. In general, most evaluators, including universities, broadly use the following criteria to evaluate research proposals . 6  

  • Significance —Does the research address any important subject or issue, which may or may not be specific to the evaluator or university?  
  • Content and design —Is the proposed methodology appropriate to answer the research question? Are the objectives clear and well aligned with the proposed methodology?  
  • Sample size and selection —Is the target population or cohort size clearly mentioned? Is the sampling process used to select participants randomized, appropriate, and free of bias?  
  • Timing —Are the proposed data collection dates mentioned clearly? Is the project feasible given the specified resources and timeline?  
  • Data management and dissemination —Who will have access to the data? What is the plan for data analysis?  

Q2. What is the difference between the Introduction and Literature Review sections in a research proposal ?  

A2. The Introduction or Background section in a research proposal sets the context of the study by describing the current scenario of the subject and identifying the gaps and need for the research. A Literature Review, on the other hand, provides references to all prior relevant literature to help corroborate the gaps identified and the research need.  

Q3. How long should a research proposal be?  

A3. Research proposal lengths vary with the evaluating authority like universities or committees and also the subject. Here’s a table that lists the typical research proposal lengths for a few universities.  

     
  Arts programs  1,000-1,500 
University of Birmingham  Law School programs  2,500 
  PhD  2,500 
    2,000 
  Research degrees  2,000-3,500 

Q4. What are the common mistakes to avoid in a research proposal ?  

A4. Here are a few common mistakes that you must avoid while writing a research proposal . 7  

  • No clear objectives: Objectives should be clear, specific, and measurable for the easy understanding among readers.  
  • Incomplete or unconvincing background research: Background research usually includes a review of the current scenario of the particular industry and also a review of the previous literature on the subject. This helps readers understand your reasons for undertaking this research because you identified gaps in the existing research.  
  • Overlooking project feasibility: The project scope and estimates should be realistic considering the resources and time available.   
  • Neglecting the impact and significance of the study: In a research proposal , readers and evaluators look for the implications or significance of your research and how it contributes to the existing research. This information should always be included.  
  • Unstructured format of a research proposal : A well-structured document gives confidence to evaluators that you have read the guidelines carefully and are well organized in your approach, consequently affirming that you will be able to undertake the research as mentioned in your proposal.  
  • Ineffective writing style: The language used should be formal and grammatically correct. If required, editors could be consulted, including AI-based tools such as Paperpal , to refine the research proposal structure and language.  

Thus, a research proposal is an essential document that can help you promote your research and secure funds and grants for conducting your research. Consequently, it should be well written in clear language and include all essential details to convince the evaluators of your ability to conduct the research as proposed.  

This article has described all the important components of a research proposal and has also provided tips to improve your writing style. We hope all these tips will help you write a well-structured research proposal to ensure receipt of grants or any other purpose.  

References  

  • Sudheesh K, Duggappa DR, Nethra SS. How to write a research proposal? Indian J Anaesth. 2016;60(9):631-634. Accessed July 15, 2024. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5037942/  
  • Writing research proposals. Harvard College Office of Undergraduate Research and Fellowships. Harvard University. Accessed July 14, 2024. https://uraf.harvard.edu/apply-opportunities/app-components/essays/research-proposals  
  • What is a research proposal? Plus how to write one. Indeed website. Accessed July 17, 2024. https://www.indeed.com/career-advice/career-development/research-proposal  
  • Research proposal template. University of Rochester Medical Center. Accessed July 16, 2024. https://www.urmc.rochester.edu/MediaLibraries/URMCMedia/pediatrics/research/documents/Research-proposal-Template.pdf  
  • Tips for successful proposal writing. Johns Hopkins University. Accessed July 17, 2024. https://research.jhu.edu/wp-content/uploads/2018/09/Tips-for-Successful-Proposal-Writing.pdf  
  • Formal review of research proposals. Cornell University. Accessed July 18, 2024. https://irp.dpb.cornell.edu/surveys/survey-assessment-review-group/research-proposals  
  • 7 Mistakes you must avoid in your research proposal. Aveksana (via LinkedIn). Accessed July 17, 2024. https://www.linkedin.com/pulse/7-mistakes-you-must-avoid-your-research-proposal-aveksana-cmtwf/  

Paperpal is a comprehensive AI writing toolkit that helps students and researchers achieve 2x the writing in half the time. It leverages 21+ years of STM experience and insights from millions of research articles to provide in-depth academic writing, language editing, and submission readiness support to help you write better, faster.  

Get accurate academic translations, rewriting support, grammar checks, vocabulary suggestions, and generative AI assistance that delivers human precision at machine speed. Try for free or upgrade to Paperpal Prime starting at US$19 a month to access premium features, including consistency, plagiarism, and 30+ submission readiness checks to help you succeed.  

Experience the future of academic writing – Sign up to Paperpal and start writing for free!  

Related Reads:

How to write a phd research proposal.

  • What are the Benefits of Generative AI for Academic Writing?
  • How to Avoid Plagiarism When Using Generative AI Tools
  • What is Hedging in Academic Writing?  

How to Write Your Research Paper in APA Format

The future of academia: how ai tools are changing the way we do research, you may also like, dissertation printing and binding | types & comparison , what is a dissertation preface definition and examples , how to write your research paper in apa..., how to choose a dissertation topic, how to write an academic paragraph (step-by-step guide), maintaining academic integrity with paperpal’s generative ai writing..., research funding basics: what should a grant proposal..., how to write an abstract in research papers..., how to write dissertation acknowledgements.

Enago Academy

What Is Background in a Research Paper?

' src=

So you have carefully written your research paper  and probably ran it through your colleagues ten to fifteen times. While there are many elements to a good research article, one of the most important elements for your readers is the background of your study.

What is Background of the Study in Research

The background of your study will provide context to the information discussed throughout the research paper . Background information may include both important and relevant studies. This is particularly important if a study either supports or refutes your thesis.

Why is Background of the Study Necessary in Research?

The background of the study discusses your problem statement, rationale, and research questions. It links  introduction to your research topic  and ensures a logical flow of ideas.  Thus, it helps readers understand your reasons for conducting the study.

Providing Background Information

The reader should be able to understand your topic and its importance. The length and detail of your background also depend on the degree to which you need to demonstrate your understanding of the topic. Paying close attention to the following questions will help you in writing background information:

  • Are there any theories, concepts, terms, and ideas that may be unfamiliar to the target audience and will require you to provide any additional explanation?
  • Any historical data that need to be shared in order to provide context on why the current issue emerged?
  • Are there any concepts that may have been borrowed from other disciplines that may be unfamiliar to the reader and need an explanation?
Related: Ready with the background and searching for more information on journal ranking? Check this infographic on the SCImago Journal Rank today!

Is the research study unique for which additional explanation is needed? For instance, you may have used a completely new method

How to Write a Background of the Study

The structure of a background study in a research paper generally follows a logical sequence to provide context, justification, and an understanding of the research problem. It includes an introduction, general background, literature review , rationale , objectives, scope and limitations , significance of the study and the research hypothesis . Following the structure can provide a comprehensive and well-organized background for your research.

Here are the steps to effectively write a background of the study.

1. Identify Your Audience:

Determine the level of expertise of your target audience. Tailor the depth and complexity of your background information accordingly.

2. Understand the Research Problem:

Define the research problem or question your study aims to address. Identify the significance of the problem within the broader context of the field.

3. Review Existing Literature:

Conduct a thorough literature review to understand what is already known in the area. Summarize key findings, theories, and concepts relevant to your research.

4. Include Historical Data:

Integrate historical data if relevant to the research, as current issues often trace back to historical events.

5. Identify Controversies and Gaps:

Note any controversies or debates within the existing literature. Identify gaps , limitations, or unanswered questions that your research can address.

6. Select Key Components:

Choose the most critical elements to include in the background based on their relevance to your research problem. Prioritize information that helps build a strong foundation for your study.

7. Craft a Logical Flow:

Organize the background information in a logical sequence. Start with general context, move to specific theories and concepts, and then focus on the specific problem.

8. Highlight the Novelty of Your Research:

Clearly explain the unique aspects or contributions of your study. Emphasize why your research is different from or builds upon existing work.

Here are some extra tips to increase the quality of your research background:

Example of a Research Background

Here is an example of a research background to help you understand better.

The above hypothetical example provides a research background, addresses the gap and highlights the potential outcome of the study; thereby aiding a better understanding of the proposed research.

What Makes the Introduction Different from the Background?

Your introduction is different from your background in a number of ways.

  • The introduction contains preliminary data about your topic that  the reader will most likely read , whereas the background clarifies the importance of the paper.
  • The background of your study discusses in depth about the topic, whereas the introduction only gives an overview.
  • The introduction should end with your research questions, aims, and objectives, whereas your background should not (except in some cases where your background is integrated into your introduction). For instance, the C.A.R.S. ( Creating a Research Space ) model, created by John Swales is based on his analysis of journal articles. This model attempts to explain and describe the organizational pattern of writing the introduction in social sciences.

Points to Note

Your background should begin with defining a topic and audience. It is important that you identify which topic you need to review and what your audience already knows about the topic. You should proceed by searching and researching the relevant literature. In this case, it is advisable to keep track of the search terms you used and the articles that you downloaded. It is helpful to use one of the research paper management systems such as Papers, Mendeley, Evernote, or Sente. Next, it is helpful to take notes while reading. Be careful when copying quotes verbatim and make sure to put them in quotation marks and cite the sources. In addition, you should keep your background focused but balanced enough so that it is relevant to a broader audience. Aside from these, your background should be critical, consistent, and logically structured.

Writing the background of your study should not be an overly daunting task. Many guides that can help you organize your thoughts as you write the background. The background of the study is the key to introduce your audience to your research topic and should be done with strong knowledge and thoughtful writing.

The background of a research paper typically ranges from one to two paragraphs, summarizing the relevant literature and context of the study. It should be concise, providing enough information to contextualize the research problem and justify the need for the study. Journal instructions about any word count limits should be kept in mind while deciding on the length of the final content.

The background of a research paper provides the context and relevant literature to understand the research problem, while the introduction also introduces the specific research topic, states the research objectives, and outlines the scope of the study. The background focuses on the broader context, whereas the introduction focuses on the specific research project and its objectives.

When writing the background for a study, start by providing a brief overview of the research topic and its significance in the field. Then, highlight the gaps in existing knowledge or unresolved issues that the study aims to address. Finally, summarize the key findings from relevant literature to establish the context and rationale for conducting the research, emphasizing the need and importance of the study within the broader academic landscape.

The background in a research paper is crucial as it sets the stage for the study by providing essential context and rationale. It helps readers understand the significance of the research problem and its relevance in the broader field. By presenting relevant literature and highlighting gaps, the background justifies the need for the study, building a strong foundation for the research and enhancing its credibility.

' src=

The presentation very informative

' src=

It is really educative. I love the workshop. It really motivated me into writing my first paper for publication.

' src=

an interesting clue here, thanks.

thanks for the answers.

Good and interesting explanation. Thanks

Thank you for good presentation.

' src=

Hi Adam, we are glad to know that you found our article beneficial

The background of the study is the key to introduce your audience to YOUR research topic.

Awesome. Exactly what i was looking forwards to 😉

Hi Maryam, we are glad to know that you found our resource useful.

my understanding of ‘Background of study’ has been elevated.

Hi Peter, we are glad to know that our article has helped you get a better understanding of the background in a research paper.

thanks to give advanced information

Hi Shimelis, we are glad to know that you found the information in our article beneficial.

When i was studying it is very much hard for me to conduct a research study and know the background because my teacher in practical research is having a research so i make it now so that i will done my research

Very informative……….Thank you.

The confusion i had before, regarding an introduction and background to a research work is now a thing of the past. Thank you so much.

Thanks for your help…

Thanks for your kind information about the background of a research paper.

Thanks for the answer

Very informative. I liked even more when the difference between background and introduction was given. I am looking forward to learning more from this site. I am in Botswana

Hello, I am Benoît from Central African Republic. Right now I am writing down my research paper in order to get my master degree in British Literature. Thank you very much for posting all this information about the background of the study. I really appreciate. Thanks!

The write up is quite good, detailed and informative. Thanks a lot. The article has certainly enhanced my understanding of the topic.

Rate this article Cancel Reply

Your email address will not be published.

background research plan

Enago Academy's Most Popular Articles

manuscript writing with AI

  • AI in Academia
  • Infographic
  • Manuscripts & Grants
  • Reporting Research
  • Trending Now

Can AI Tools Prepare a Research Manuscript From Scratch? — A comprehensive guide

As technology continues to advance, the question of whether artificial intelligence (AI) tools can prepare…

difference between abstract and introduction

Abstract Vs. Introduction — Do you know the difference?

Ross wants to publish his research. Feeling positive about his research outcomes, he begins to…

background research plan

  • Old Webinars
  • Webinar Mobile App

Demystifying Research Methodology With Field Experts

Choosing research methodology Research design and methodology Evidence-based research approach How RAxter can assist researchers

Best Research Methodology

  • Manuscript Preparation
  • Publishing Research

How to Choose Best Research Methodology for Your Study

Successful research conduction requires proper planning and execution. While there are multiple reasons and aspects…

Methods and Methodology

Top 5 Key Differences Between Methods and Methodology

While burning the midnight oil during literature review, most researchers do not realize that the…

How to Draft the Acknowledgment Section of a Manuscript

Discussion Vs. Conclusion: Know the Difference Before Drafting Manuscripts

background research plan

Sign-up to read more

Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:

  • 2000+ blog articles
  • 50+ Webinars
  • 10+ Expert podcasts
  • 50+ Infographics
  • 10+ Checklists
  • Research Guides

We hate spam too. We promise to protect your privacy and never spam you.

  • Industry News
  • Promoting Research
  • Career Corner
  • Diversity and Inclusion
  • Infographics
  • Expert Video Library
  • Other Resources
  • Enago Learn
  • Upcoming & On-Demand Webinars
  • Peer-Review Week 2023
  • Open Access Week 2023
  • Conference Videos
  • Enago Report
  • Journal Finder
  • Enago Plagiarism & AI Grammar Check
  • Editing Services
  • Publication Support Services
  • Research Impact
  • Translation Services
  • Publication solutions
  • AI-Based Solutions
  • Thought Leadership
  • Call for Articles
  • Call for Speakers
  • Author Training
  • Edit Profile

I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:

background research plan

In your opinion, what is the most effective way to improve integrity in the peer review process?

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Research paper

Writing a Research Paper Introduction | Step-by-Step Guide

Published on September 24, 2022 by Jack Caulfield . Revised on March 27, 2023.

Writing a Research Paper Introduction

The introduction to a research paper is where you set up your topic and approach for the reader. It has several key goals:

  • Present your topic and get the reader interested
  • Provide background or summarize existing research
  • Position your own approach
  • Detail your specific research problem and problem statement
  • Give an overview of the paper’s structure

The introduction looks slightly different depending on whether your paper presents the results of original empirical research or constructs an argument by engaging with a variety of sources.

Instantly correct all language mistakes in your text

Upload your document to correct all your mistakes in minutes

upload-your-document-ai-proofreader

Table of contents

Step 1: introduce your topic, step 2: describe the background, step 3: establish your research problem, step 4: specify your objective(s), step 5: map out your paper, research paper introduction examples, frequently asked questions about the research paper introduction.

The first job of the introduction is to tell the reader what your topic is and why it’s interesting or important. This is generally accomplished with a strong opening hook.

The hook is a striking opening sentence that clearly conveys the relevance of your topic. Think of an interesting fact or statistic, a strong statement, a question, or a brief anecdote that will get the reader wondering about your topic.

For example, the following could be an effective hook for an argumentative paper about the environmental impact of cattle farming:

A more empirical paper investigating the relationship of Instagram use with body image issues in adolescent girls might use the following hook:

Don’t feel that your hook necessarily has to be deeply impressive or creative. Clarity and relevance are still more important than catchiness. The key thing is to guide the reader into your topic and situate your ideas.

Don't submit your assignments before you do this

The academic proofreading tool has been trained on 1000s of academic texts. Making it the most accurate and reliable proofreading tool for students. Free citation check included.

background research plan

Try for free

This part of the introduction differs depending on what approach your paper is taking.

In a more argumentative paper, you’ll explore some general background here. In a more empirical paper, this is the place to review previous research and establish how yours fits in.

Argumentative paper: Background information

After you’ve caught your reader’s attention, specify a bit more, providing context and narrowing down your topic.

Provide only the most relevant background information. The introduction isn’t the place to get too in-depth; if more background is essential to your paper, it can appear in the body .

Empirical paper: Describing previous research

For a paper describing original research, you’ll instead provide an overview of the most relevant research that has already been conducted. This is a sort of miniature literature review —a sketch of the current state of research into your topic, boiled down to a few sentences.

This should be informed by genuine engagement with the literature. Your search can be less extensive than in a full literature review, but a clear sense of the relevant research is crucial to inform your own work.

Begin by establishing the kinds of research that have been done, and end with limitations or gaps in the research that you intend to respond to.

The next step is to clarify how your own research fits in and what problem it addresses.

Argumentative paper: Emphasize importance

In an argumentative research paper, you can simply state the problem you intend to discuss, and what is original or important about your argument.

Empirical paper: Relate to the literature

In an empirical research paper, try to lead into the problem on the basis of your discussion of the literature. Think in terms of these questions:

  • What research gap is your work intended to fill?
  • What limitations in previous work does it address?
  • What contribution to knowledge does it make?

You can make the connection between your problem and the existing research using phrases like the following.

Although has been studied in detail, insufficient attention has been paid to . You will address a previously overlooked aspect of your topic.
The implications of study deserve to be explored further. You will build on something suggested by a previous study, exploring it in greater depth.
It is generally assumed that . However, this paper suggests that … You will depart from the consensus on your topic, establishing a new position.

Now you’ll get into the specifics of what you intend to find out or express in your research paper.

The way you frame your research objectives varies. An argumentative paper presents a thesis statement, while an empirical paper generally poses a research question (sometimes with a hypothesis as to the answer).

Argumentative paper: Thesis statement

The thesis statement expresses the position that the rest of the paper will present evidence and arguments for. It can be presented in one or two sentences, and should state your position clearly and directly, without providing specific arguments for it at this point.

Empirical paper: Research question and hypothesis

The research question is the question you want to answer in an empirical research paper.

Present your research question clearly and directly, with a minimum of discussion at this point. The rest of the paper will be taken up with discussing and investigating this question; here you just need to express it.

A research question can be framed either directly or indirectly.

  • This study set out to answer the following question: What effects does daily use of Instagram have on the prevalence of body image issues among adolescent girls?
  • We investigated the effects of daily Instagram use on the prevalence of body image issues among adolescent girls.

If your research involved testing hypotheses , these should be stated along with your research question. They are usually presented in the past tense, since the hypothesis will already have been tested by the time you are writing up your paper.

For example, the following hypothesis might respond to the research question above:

Scribbr Citation Checker New

The AI-powered Citation Checker helps you avoid common mistakes such as:

  • Missing commas and periods
  • Incorrect usage of “et al.”
  • Ampersands (&) in narrative citations
  • Missing reference entries

background research plan

The final part of the introduction is often dedicated to a brief overview of the rest of the paper.

In a paper structured using the standard scientific “introduction, methods, results, discussion” format, this isn’t always necessary. But if your paper is structured in a less predictable way, it’s important to describe the shape of it for the reader.

If included, the overview should be concise, direct, and written in the present tense.

  • This paper will first discuss several examples of survey-based research into adolescent social media use, then will go on to …
  • This paper first discusses several examples of survey-based research into adolescent social media use, then goes on to …

Full examples of research paper introductions are shown in the tabs below: one for an argumentative paper, the other for an empirical paper.

  • Argumentative paper
  • Empirical paper

Are cows responsible for climate change? A recent study (RIVM, 2019) shows that cattle farmers account for two thirds of agricultural nitrogen emissions in the Netherlands. These emissions result from nitrogen in manure, which can degrade into ammonia and enter the atmosphere. The study’s calculations show that agriculture is the main source of nitrogen pollution, accounting for 46% of the country’s total emissions. By comparison, road traffic and households are responsible for 6.1% each, the industrial sector for 1%. While efforts are being made to mitigate these emissions, policymakers are reluctant to reckon with the scale of the problem. The approach presented here is a radical one, but commensurate with the issue. This paper argues that the Dutch government must stimulate and subsidize livestock farmers, especially cattle farmers, to transition to sustainable vegetable farming. It first establishes the inadequacy of current mitigation measures, then discusses the various advantages of the results proposed, and finally addresses potential objections to the plan on economic grounds.

The rise of social media has been accompanied by a sharp increase in the prevalence of body image issues among women and girls. This correlation has received significant academic attention: Various empirical studies have been conducted into Facebook usage among adolescent girls (Tiggermann & Slater, 2013; Meier & Gray, 2014). These studies have consistently found that the visual and interactive aspects of the platform have the greatest influence on body image issues. Despite this, highly visual social media (HVSM) such as Instagram have yet to be robustly researched. This paper sets out to address this research gap. We investigated the effects of daily Instagram use on the prevalence of body image issues among adolescent girls. It was hypothesized that daily Instagram use would be associated with an increase in body image concerns and a decrease in self-esteem ratings.

The introduction of a research paper includes several key elements:

  • A hook to catch the reader’s interest
  • Relevant background on the topic
  • Details of your research problem

and your problem statement

  • A thesis statement or research question
  • Sometimes an overview of the paper

Don’t feel that you have to write the introduction first. The introduction is often one of the last parts of the research paper you’ll write, along with the conclusion.

This is because it can be easier to introduce your paper once you’ve already written the body ; you may not have the clearest idea of your arguments until you’ve written them, and things can change during the writing process .

The way you present your research problem in your introduction varies depending on the nature of your research paper . A research paper that presents a sustained argument will usually encapsulate this argument in a thesis statement .

A research paper designed to present the results of empirical research tends to present a research question that it seeks to answer. It may also include a hypothesis —a prediction that will be confirmed or disproved by your research.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Caulfield, J. (2023, March 27). Writing a Research Paper Introduction | Step-by-Step Guide. Scribbr. Retrieved August 12, 2024, from https://www.scribbr.com/research-paper/research-paper-introduction/

Is this article helpful?

Jack Caulfield

Jack Caulfield

Other students also liked, writing strong research questions | criteria & examples, writing a research paper conclusion | step-by-step guide, research paper format | apa, mla, & chicago templates, what is your plagiarism score.

Ohio State navigation bar

  • BuckeyeLink
  • Search Ohio State

background research plan

2024 Open Enrollment Benefits Information

  • Open Enrollment

Open Enrollment is the annual opportunity for you to evaluate your benefit options and make elections for the upcoming year.

Open Enrollment for the 2024 benefit plan year is November 1-15, 2023 .

We strongly encourage you to visit the Open Enrollment website and benefits eligibility page to select options that best fit your needs.

What’s Changing in 2024

  • Increases in 2024 employee contributions for medical and dental plans
  • Enhancements to the Dental Plan
  • Increase in Health Care Flexible Spending Account (FSA) limit
  • Name change of Trustmark, the medical claims administrator, to Luminare Health

Enrollment Opportunities

  • Medical coverage
  • Dental and Vision
  • Flexible Spending Accounts

All elections made during Open Enrollment become effective January 1, 2024 .

Ways to Save

Using pre-tax dollars from a Flexible Spending Account (FSA) means you save money that would otherwise be spent on federal and state taxes. During Open Enrollment, you can elect:

  • A Health Care FSA to pay for eligible health care expenses for you and your eligible dependents.
  • A Dependent Care FSA, sometimes known as dependent day care, to pay for expenses related to the care of your dependents.

Another way to save is by participating in Ohio State’s employee wellness program, Your Plan for Health (YP4H) . You can earn:

  • Premium credit of up to $480 per year if you and your enrolled spouse take your annual Personal Health & Wellbeing Assessment with biometrics.
  • Up to $500 a year paid by the university to your Health Reimbursement Account (HRA) if you participate in the YP4H Incentive Program, with an additional $500 a year if your spouse participates.

Read about more ways to save .

In addition to the online resources, a printed overview of important Open Enrollment information will be mailed to your home. Live webinars and recorded videos are also available.

Ohio State is proud to offer eligible faculty and staff exceptional benefits as part of your total rewards package. Learn more at hr.osu.edu/oe .

Share this page

Facebook logo

HR Focus News

Save smart, plan ahead: join the virtual retirement fair, workday notifications for merit increases, more than a job: selena browning raises thousands towards cancer research, tuition assistance enrollment deadline, grow your skills, pursue new interests with linkedin learning, recent hr news, faculty and staff appreciation football game, faculty and staff appreciation week, second quarter deadline for lifestyle spending account claims, reminder: time and attendance standards, connect program.

An official website of the United States government

Here's how you know

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS. A lock ( Lock Locked padlock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Important information for proposers

All proposals must be submitted in accordance with the requirements specified in this funding opportunity and in the NSF Proposal & Award Policies & Procedures Guide (PAPPG) that is in effect for the relevant due date to which the proposal is being submitted. It is the responsibility of the proposer to ensure that the proposal meets these requirements. Submitting a proposal prior to a specified deadline does not negate this requirement.

Research Coordination Network for a University-Community Climate Action Network (RCN-UCCAN)

Dear Colleagues:

With this Dear Colleague Letter (DCL), the U.S. National Science Foundation's Directorate for Technology, Innovation and Partnerships (TIP) and the Department of Energy's Advanced Materials and Manufacturing Technologies Office (AMMTO) within the Office of Energy Efficiency and Renewable Energy (EERE) announce their intent to together establish a strategic leadership network on climate action engagement aimed at the transition from the linear economy of today to a circular economy of tomorrow, including one that will better integrate university research and community needs. With this investment, NSF and DOE aim to organize "Climate Action Ambassadors" into an effective national network of professionals to develop evidence-based models, program concepts and recommendations that share, implement, and scale university-community partnerships in this national priority area.

The expertise of the Ambassadors will span climate action strategies across all areas of science and engineering for mitigation (including circular design and circular economy principles), resiliency, and/or adaptation, resulting in a new multi-disciplinary, multi-sector Research Coordination Network (RCN) called a U niversity- C ommunity C limate A ction N etwork (UCCAN). Ambassadors will be geographically distributed and represent the diverse range of communities (e.g., cities, towns, tribal nations) as well as U.S. Institutions of Higher Education (IHEs), referred to in this DCL as colleges and universities (e.g., Land Grant, public, private, community, technical, Minority Serving Institutions) across the nation.

NSF and DOE will invest in one RCN proposal to develop new connections and collaborations to accelerate and elevate climate action through university-community partnerships and identify untapped resources to ensure environmental justice for unserved and under-served communities. This RCN-UCCAN will provide a framework for engaging students and participating local communities to co-create and scale successful proof-of-concept projects. The RCN-UCCAN also will create the "connective tissue" to build upon existing efforts and support collaborations and communication between campuses with governments, industry, and their surrounding communities to enable fast response, replication, and scaling of climate mitigation, resilience, and/or adaptation solutions nationally.

Ambassadors will build upon the momentum and findings of an initial meeting convened by NSF together with other federal departments, agencies, and offices on March 8-9, 2023. Specifically, that forum was a first step in an inclusive effort to marshal the strengths of campuses, including the nearly 20 million students enrolled in the U.S. post-secondary education system, to help address climate mitigation, resilience, and/or adaptation, environmental sustainability, and environmental justice, and encourage and support their innovation and entrepreneurship. Students seek access to the translational knowledge and skills to address issues related to climate and environment in their communities, which this RCN-UCCAN aims to uniquely make possible.

PROPOSAL GUIDANCE AND SUBMISSION REQUIREMENTS

The RCN-UCCAN should aim to develop a national strategy connecting our colleges and universities with their communities to share knowledge and resources across a network that spans a range of institution types. Of particular interest is ensuring that everyone, regardless of location or affiliation, has the opportunity to address the goals outlined in this DCL. Researchers and practitioners across their communities are especially encouraged to communicate, collaborate and exchange information for action on climate mitigation, resilience and adaption through the RCN, including with international partners.

Proposals responding to this DCL should be prepared in accordance with the guidance contained in the RCN solicitation including the seven guidance items outlined in Section II. Program Description. When submitting the proposal, select the RCN solicitation and then direct the proposal to the Special Projects Program in the Division of Innovation and Technology Ecosystems (ITE) within the TIP directorate. Proposal titles should begin with "RCN-UCCAN:" followed by a substantive title. RCN-UCCAN proposals should be received by November 15, 2024 (due by 5 p.m. submitting organization's local time).

Proposals should include a network of named Ambassadors who will contribute a substantial portion (minimum of 20% with a greater commitment preferred) of their time to the RCN-UCCAN. For instance, coordinating sabbatical or other similar time away from normal duties is encouraged. Each Ambassador who is either a faculty or practitioner (such as a Director or Vice President of Sustainability) should form a substantive collaboration with a community Ambassador focused on climate action and facilitating interactions with students. Each named Ambassador should also enlist the help of one or more undergraduate students, graduate students, and/or post-doctoral fellows for a minimum of 10 hours per week. Additionally, to ensure co-design and co-creation of solutions, specific funding to support a community leader to serve as an Ambassador alongside the university Ambassador for a minimum of 20% of their time should be included. Further, proposals that show substantive reach and collaboration with K-12 networks in the participating communities/regions are highly encouraged.

For purposes of this DCL, any RCN-UCCAN proposal should address the proposer's ability to contribute to the following deliverables envisioned for the RCN-UCCAN:

  • A connected university-community climate action network bringing together multiple universities, or regional groups of universities, with their local communities to develop climate action solutions;
  • An implementation governance structure to coordinate the multi-sector effort that will create a self-sustaining effort;
  • Campus as a Living Lab/Testbed: activities would include assessing campus-generated climate solutions, piloting commercial innovations, refining models and tools through campus and community testing, and importantly, empowering student-led innovation for climate solutions. Galvanizing the innovative and problem-solving capabilities of our nation's 20 million students and supporting their entrepreneurial efforts and continued contributions to all fields of STEM through a lens of environmental sustainability will be encouraged.
  • Campus Sustainability and Resilience: activities would include decarbonizing the built campus environment, modernizing transportation, considering the campus as a functioning ecosystem and making campuses more resilient.
  • Climate Action in the Classroom: activities would include engaging in climate across the curriculum such as circular design and circular economy, programs and majors for climate action leaders, skilled workforce development and public engagement, and informal science education.
  • Providing Climate Services to Communities: with emphasis in mitigation/prevention, activities would include local transitions to clean energy and renewable technologies, development of climate-resilient agriculture and ecosystems, building capacity for community-based climate research and action, and partnerships for mitigation, resilience and adaptation.
  • New models for implementation and scaling of pilots across institutions of higher education and from those institutions to their communities and their states for the four themes.

The essential work of the Ambassadors will be to leverage existing and future climate solutions and strengthen the ties between the Universities and their respective communities as well as create a strategic network across all institutions to leverage best practices, build new collaborations, and share resources. The RCN-UCCAN thus formed will be the result of the efforts of the Ambassadors. It is further anticipated that the RCN-UCCAN network would grow each year with external funding from sources beyond NSF. Such growth can lead to a new set of Ambassadors to build upon, update, and/or execute the strategy to mitigate further climate change and build capacity for resilience and adaptation. In this way, the reach of coordination and cooperation across the US and internationally can be extended and sustained.

REVIEW AND AWARD INFORMATION

Proposals should be prepared and submitted to NSF as described above. NSF will manage and conduct the review process of proposals in accordance with standard NSF policies and procedures. If selected for funding by NSF, the award will be made and managed by NSF with funds transferred from DOE. NSF anticipates issuing one cooperative agreement for up to two years for up to $2 million, subject to the quality of proposals and availability of funds.

For questions about this DCL, please contact Linda Molnar, program director in TIP/ITE, at [email protected] .

Erwin Gianchandani Assistant Director for Technology, Innovation and Partnerships

Takes of Marine Mammals Incidental to Specified Activities; Taking Marine Mammals Incidental to the Office of Naval Research's Arctic Research Activities in the Beaufort and Chukchi Seas (Year 7)

A Notice by the National Oceanic and Atmospheric Administration on 08/14/2024

This document has a comment period that ends in 30 days. (09/13/2024) Submit a formal comment

Thank you for taking the time to create a comment. Your input is important.

Once you have filled in the required fields below you can preview and/or submit your comment to the Commerce Department for review. All comments are considered public and will be posted online once the Commerce Department has reviewed them.

You can view alternative ways to comment or you may also comment via Regulations.gov at /documents/2024/08/14/2024-18130/takes-of-marine-mammals-incidental-to-specified-activities-taking-marine-mammals-incidental-to-the .

  • What is your comment about?

Note: You can attach your comment as a file and/or attach supporting documents to your comment. Attachment Requirements .

this will NOT be posted on regulations.gov

  • Opt to receive email confirmation of submission and tracking number?
  • Tell us about yourself! I am... *
  • First Name *
  • Last Name *
  • State Alabama Alaska American Samoa Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Guam Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Puerto Rico Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virgin Islands Virginia Washington West Virginia Wisconsin Wyoming
  • Country Afghanistan Åland Islands Albania Algeria American Samoa Andorra Angola Anguilla Antarctica Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia, Plurinational State of Bonaire, Sint Eustatius and Saba Bosnia and Herzegovina Botswana Bouvet Island Brazil British Indian Ocean Territory Brunei Darussalam Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Christmas Island Cocos (Keeling) Islands Colombia Comoros Congo Congo, the Democratic Republic of the Cook Islands Costa Rica Côte d'Ivoire Croatia Cuba Curaçao Cyprus Czech Republic Denmark Djibouti Dominica Dominican Republic Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Falkland Islands (Malvinas) Faroe Islands Fiji Finland France French Guiana French Polynesia French Southern Territories Gabon Gambia Georgia Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guam Guatemala Guernsey Guinea Guinea-Bissau Guyana Haiti Heard Island and McDonald Islands Holy See (Vatican City State) Honduras Hong Kong Hungary Iceland India Indonesia Iran, Islamic Republic of Iraq Ireland Isle of Man Israel Italy Jamaica Japan Jersey Jordan Kazakhstan Kenya Kiribati Korea, Democratic People's Republic of Korea, Republic of Kuwait Kyrgyzstan Lao People's Democratic Republic Latvia Lebanon Lesotho Liberia Libya Liechtenstein Lithuania Luxembourg Macao Macedonia, the Former Yugoslav Republic of Madagascar Malawi Malaysia Maldives Mali Malta Marshall Islands Martinique Mauritania Mauritius Mayotte Mexico Micronesia, Federated States of Moldova, Republic of Monaco Mongolia Montenegro Montserrat Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norfolk Island Northern Mariana Islands Norway Oman Pakistan Palau Palestine, State of Panama Papua New Guinea Paraguay Peru Philippines Pitcairn Poland Portugal Puerto Rico Qatar Réunion Romania Russian Federation Rwanda Saint Barthélemy Saint Helena, Ascension and Tristan da Cunha Saint Kitts and Nevis Saint Lucia Saint Martin (French part) Saint Pierre and Miquelon Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Serbia Seychelles Sierra Leone Singapore Sint Maarten (Dutch part) Slovakia Slovenia Solomon Islands Somalia South Africa South Georgia and the South Sandwich Islands South Sudan Spain Sri Lanka Sudan Suriname Svalbard and Jan Mayen Swaziland Sweden Switzerland Syrian Arab Republic Taiwan, Province of China Tajikistan Tanzania, United Republic of Thailand Timor-Leste Togo Tokelau Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Tuvalu Uganda Ukraine United Arab Emirates United Kingdom United States United States Minor Outlying Islands Uruguay Uzbekistan Vanuatu Venezuela, Bolivarian Republic of Viet Nam Virgin Islands, British Virgin Islands, U.S. Wallis and Futuna Western Sahara Yemen Zambia Zimbabwe
  • Organization Type * Company Organization Federal State Local Tribal Regional Foreign U.S. House of Representatives U.S. Senate
  • Organization Name *
  • You are filing a document into an official docket. Any personal information included in your comment text and/or uploaded attachment(s) may be publicly viewable on the web.
  • I read and understand the statement above.
  • Preview Comment

This document has been published in the Federal Register . Use the PDF linked in the document sidebar for the official electronic format.

  • Document Details Published Content - Document Details Agencies Department of Commerce National Oceanic and Atmospheric Administration Agency/Docket Number RTID 0648-XE173 Document Citation 89 FR 66068 Document Number 2024-18130 Document Type Notice Pages 66068-66091 (24 pages) Publication Date 08/14/2024 Published Content - Document Details
  • View printed version (PDF)
  • Document Dates Published Content - Document Dates Comments Close 09/13/2024 Dates Text Comments and information must be received no later than September 13, 2024. Published Content - Document Dates

This table of contents is a navigational tool, processed from the headings within the legal text of Federal Register documents. This repetition of headings to form internal navigation links has no substantive legal effect.

FOR FURTHER INFORMATION CONTACT:

Supplementary information: ( print page 66069), national environmental policy act, summary of request, description of proposed activity, dates and duration, geographic region, detailed description of the specified activity, research vessels, glider surveys, moored and drifting acoustic sources, activities not likely to result in take, description of marine mammals in the area of specified activities, beluga whale, ringed seal, critical habitat, marine mammal hearing, potential effects of specified activities on marine mammals and their habitat, description of sound sources, acoustic impacts, estimated take of marine mammals, acoustic thresholds, level b harassment, level a harassment, quantitative modeling, non-impulsive acoustic analysis, marine mammal occurrence and take estimation, proposed mitigation, proposed monitoring and reporting, negligible impact analysis and determination, unmitigable adverse impact analysis and determination, peer review of the monitoring plan, endangered species act, proposed authorization, request for public comments.

Comments are being accepted - Submit a public comment on this document .

Additional information is not currently available for this document.

  • Sharing Enhanced Content - Sharing Shorter Document URL https://www.federalregister.gov/d/2024-18130 Email Email this document to a friend Enhanced Content - Sharing
  • Print this document

This document is also available in the following formats:

More information and documentation can be found in our developer tools pages .

This PDF is the current document as it appeared on Public Inspection on 08/13/2024 at 8:45 am.

It was viewed 13 times while on Public Inspection.

If you are using public inspection listings for legal research, you should verify the contents of the documents against a final, official edition of the Federal Register. Only official editions of the Federal Register provide legal notice of publication to the public and judicial notice to the courts under 44 U.S.C. 1503 & 1507 . Learn more here .

Document headings vary by document type but may contain the following:

  • the agency or agencies that issued and signed a document
  • the number of the CFR title and the number of each part the document amends, proposes to amend, or is directly related to
  • the agency docket number / agency internal file number
  • the RIN which identifies each regulatory action listed in the Unified Agenda of Federal Regulatory and Deregulatory Actions

See the Document Drafting Handbook for more details.

Department of Commerce

National oceanic and atmospheric administration.

  • [RTID 0648-XE173]

National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce.

Notice; proposed incidental harassment authorization; request for comments on proposed authorization and possible renewal.

NMFS has received a request from the Office of Naval Research (ONR) for authorization to take marine mammals incidental to Arctic Research Activities (ARA) in the Beaufort Sea and eastern Chukchi Sea. Pursuant to the Marine Mammal Protection Act (MMPA), NMFS is requesting comments on its proposal to issue an incidental harassment authorization (IHA) to incidentally take marine mammals during the specified activities. NMFS is also requesting comments on a possible one-time, 1-year renewal that could be issued under certain circumstances and if all requirements are met, as described in Request for Public Comments at the end of this notice. NMFS will consider public comments prior to making any final decision on the issuance of the requested MMPA authorization and agency responses will be summarized in the final notice of our decision. The ONR's activities are considered military readiness activities pursuant to the MMPA, as amended by the National Defense Authorization Act for Fiscal Year 2004 (2004 NDAA).

Comments and information must be received no later than September 13, 2024.

Comments should be addressed to Jolie Harrison, Chief, Permits and Conservation Division, Office of Protected Resources, National Marine Fisheries Service and should be submitted via email to [email protected] . Electronic copies of the application and supporting documents, as well as a list of the references cited in this document, may be obtained online at: https://www.fisheries.noaa.gov/​national/​marine-mammal-protection/​incidental-take-authorizations-military-readiness-activities . In case of problems accessing these documents, please call the contact listed below.

Instructions: NMFS is not responsible for comments sent by any other method, to any other address or individual, or received after the end of the comment period. Comments, including all attachments, must not exceed a 25-megabyte file size. All comments received are a part of the public record and will generally be posted online at https://www.fisheries.noaa.gov/​permit/​incidental-take-authorizations-under-marine-mammal-protection-act without change. All personal identifying information ( e.g., name, address) voluntarily submitted by the commenter may be publicly accessible. Do not submit confidential business information or otherwise sensitive or protected information.

Alyssa Clevenstine, Office of Protected Resources, NMFS, (301) 427-8401.

The MMPA prohibits the “take” of marine mammals, with certain exceptions. Sections 101(a)(5)(A) and (D) of the MMPA ( 16 U.S.C. 1361 et seq. ) direct the Secretary of Commerce (as delegated to NMFS) to allow, upon request, the incidental, but not intentional, taking of small numbers of marine mammals by U.S. citizens who engage in a specified activity (other than commercial fishing) within a specified geographical region if certain findings are made and either regulations are proposed or, if the taking is limited to harassment, a notice of a proposed IHA is provided to the public for review.

Authorization for incidental takings shall be granted if NMFS finds that the taking will have a negligible impact on the species or stock(s) and will not have an unmitigable adverse impact on the availability of the species or stock(s) for taking for subsistence uses (where relevant). Further, NMFS must prescribe the permissible methods of taking and other “means of effecting the least practicable adverse impact” on the affected species or stocks and their habitat, paying particular attention to rookeries, mating grounds, and areas of similar significance, and on the availability of the species or stocks for taking for certain subsistence uses (referred to in shorthand as “mitigation”); and requirements pertaining to the monitoring and reporting of the takings. The definitions of all applicable MMPA statutory terms cited above are included in the relevant sections below.

The 2004 NDAA ( Pub. L. 108-136 ) removed the “small numbers” and “specified geographical region” limitations indicated above and amended the definition of “harassment” as applied to a “military readiness activity.” The activity for which incidental take of marine mammals is being requested qualifies as a military readiness activity.

To comply with the National Environmental Policy Act of 1969 (NEPA; 42 U.S.C. 4321 et seq. ) and NOAA Administrative Order (NAO) 216-6A, NMFS must review our proposed action ( i.e., the issuance of an IHA) with respect to potential impacts on the human environment.

In 2018, the U.S. Navy prepared an Overseas Environmental Assessment (OEA) analyzing the project. Prior to issuing the IHA for the first year of this project, NMFS reviewed the 2018 EA and the public comments received, determined that a separate NEPA analysis was not necessary, and subsequently adopted the document and issued a NMFS Finding of No Significant Impact (FONSI) in support of the issuance of an IHA ( 83 FR 48799 , September 27, 2018).

In 2019, the Navy prepared a supplemental OEA. Prior to issuing the IHA in 2019, NMFS reviewed the supplemental OEA and the public comments received, determined that a separate NEPA analysis was not necessary, and subsequently adopted the document and issued a NMFS FONSI in support of the issuance of an IHA ( 84 FR 50007 , September 24, 2019).

In 2020, the Navy submitted a request for a renewal of the 2019 IHA. Prior to issuing the renewal IHA, NMFS reviewed ONR's application and determined that the proposed action was identical to that considered in the previous IHA. Because no significantly new circumstances or information relevant to any environmental concerns had been identified, NMFS determined that the preparation of a new or supplemental NEPA document was not necessary and relied on the supplemental OEA and FONSI from 2019 when issuing the renewal IHA in 2020 ( 85 FR 41560 , July 10, 2020).

In 2021, the Navy submitted a request for an IHA for incidental take of marine mammals during continuation of ARA. NMFS reviewed the Navy's OEA and determined it to be sufficient for taking into consideration the direct, indirect, and cumulative effects to the human environment resulting from continuation of the ARA. NMFS subsequently adopted that OEA and signed a FONSI ( 86 FR 54931 , October 5, 2021).

In 2022, the Navy submitted a request for an IHA for incidental take of marine mammals during continuation of ARA and prepared an OEA analyzing the project. Prior to issuing the IHA for the project, we reviewed the 2022-2025 OEA and the public comments received, determined that a separate NEPA analysis was not necessary, and subsequently adopted the document and issued our own FONSI in support of the issuance of an IHA ( 87 FR 57458 , September 20, 2022).

In 2023, the ONR requested a renewal of the 2022 IHA for ongoing ARA from September 2023 to September 2024, and the 2022 IHA monitoring report. Prior to issuing the renewal IHA, NMFS reviewed ONR's application and determined that the proposed action was identical to that considered in the previous IHA. Because no significantly new circumstances or information relevant to any environmental concerns were identified, NMFS determined that the preparation of a new or supplemental NEPA document was not necessary and relied on the supplemental OEA and FONSI from 2022 when issuing the renewal IHA in 2023 ( 88 FR 65657 , September 18, 2023).

Accordingly, NMFS preliminarily has determined to adopt the Navy's OEA for ONR ARA in the Beaufort and Chukchi Seas 2022-2025, provided our independent evaluation of the document finds that it includes adequate information analyzing the effects on the human environment of issuing the IHA. NMFS is a not cooperating agency on the U.S. Navy's OEA.

We will review all comments submitted in response to this notice prior to concluding our NEPA process or making a final decision on the IHA request.

On March 29, 2024, NMFS received a request from the ONR for an IHA to take marine mammals incidental to ARA in the Beaufort and Chukchi Seas. Following NMFS' review of the application, the ONR submitted a revised version on July 23, 2024. The application was deemed adequate and complete on August 5, 2024. The ONR's request is for take of beluga whales and ringed seals by Level B harassment only. Neither the ONR nor NMFS expect serious injury or mortality to result from this activity and, therefore, an IHA is appropriate.

This proposed IHA would cover the seventh year of a larger project for which ONR obtained prior IHAs and renewal IHAs ( 83 FR 48799 , September 27, 2018; 84 FR 50007 , September 24, 2019; 85 FR 53333 , August 28, 2020; 86 FR 54931 , October 5, 2021; 87 FR 57458 , September 20, 2022; 88 FR 65657 , September 18, 2023). ONR has complied with all the requirements ( e.g., mitigation, monitoring, and reporting) of the previous IHAs.

The ONR proposes to conduct scientific experiments in support of ARA using active acoustic sources within the Beaufort and Chukchi Seas. Project activities involve acoustic testing and a multi-frequency navigation system concept test using left-behind active acoustic sources. The proposed experiments involve the deployment of moored, drifting, and ice-tethered active acoustic sources from the Research Vessel (R/V) Sikuliaq. Recovery of equipment may be from R/V Sikuliaq, ( print page 66070) U.S. Coast Guard Cutter (CGC) HEALY, or another vessel, and icebreaking may be required. Underwater sound from the active acoustic sources and noise from icebreaking may result in Level B harassment of marine mammals.

The proposed action would occur from September 2024 through September 2025 and include up to two research cruises. Acoustic testing would take place during the cruises, with the first cruise beginning September 2, 2024, and a potential second cruise occurring in summer or fall 2025, which may include up to 8 days of icebreaking activities.

The proposed action would occur across the U.S. Exclusive Economic Zone (EEZ) in the Beaufort and Chukchi Seas, partially in the high seas north of Alaska, the Global Commons, and within a part of the Canadian EEZ (in which the appropriate permits would be obtained by the Navy) (figure 1). The proposed action would primarily occur in the Beaufort Sea but the analysis considers the drifting of active sources on buoys into the eastern portion of the Chukchi Sea. The closest point of the study area to the Alaska coast is 204 kilometers (km; 110 nautical miles (nm)). The proposed study area is approximately 639,267 square kilometers (km 2 ).

background research plan

The ONR ARA Global Prediction Program supports two major projects: Stratified Ocean Dynamics of the Arctic (SODA) and Arctic Mobile Observing System (AMOS). The SODA and AMOS projects have been previously discussed in association with previously issued IHAs ( 83 FR 40234 , August 14, 2018; 84 FR 37240 , July 31, 2019). However, only activities relating to the AMOS project will occur during the period covered by this proposed action.

The proposed action constitutes the development of a modified system under the ONR AMOS involving very-low-, low-, and mid-frequency (VLF, LF, MF) transmissions (35 Hertz (Hz), 900 Hz, and 10 kilohertz (kHz), respectively). The AMOS project utilizes acoustic sources and receivers to provide a means of performing under-ice navigation for gliders and unmanned undersea vehicles (UUVs). This would allow for the possibility of year-round scientific observations of the environment in the Arctic. As an environment that is particularly affected by climate change, year-round observations under a variety of ice conditions are required to study the ( print page 66072) effects of this changing environment for military readiness, as well as the implications of environmental change to humans and animals. VLF technology is important in extending the range of navigation systems and has the potential to allow for development and use of navigational systems that would not be heard by some marine mammal species and, therefore, would be less impactful overall.

Up to six moorings (four fixed acoustic navigation sources transmitting at 900 Hz, two fixed VLF sources transmitting at 35 Hz) and two drifting ice gateway buoys (IGBs) would be configured with active acoustic sources and would operate for a period of up to 1 year. Four gliders with passive acoustics would be used to support drifting IGBs. No UUV use is planned during the September 2024 research cruise; however, there is the potential for one UUV (without active acoustic sources) to be deployed and up to 8 days of icebreaking activities to occur on a potential research cruise in summer/fall 2025, which would require the use of a vessel with ice-breaking capabilities ( e.g., CGC HEALY).

During the research cruise, acoustic sources would be deployed from the vessel for intermittent testing of the system components, which would take place in the vicinity of the source locations (figure 1). During this testing, 35 Hz, 900 Hz, 10 kHz, and acoustic modems would be employed. The six fixed moorings would be anchored on the seabed and held in the water column with subsurface buoys.

Autonomous vehicles would be able to navigate by receiving acoustic signals from multiple locations and triangulating. This is needed for vehicles that are under ice and cannot communicate with satellites. Source transmits would be offset by 15 minutes from each other ( i.e., sources would not be transmitting at the same time). All navigation sources would be recovered. The purpose of the navigation sources is to orient UUVs and gliders in situations when they are under ice and cannot communicate with satellites.

The proposed action would utilize non-impulsive acoustic sources, although not all sources will cause take of marine mammals (tables 1, 2). Marine mammal takes would arise from the operation of non-impulsive active sources. Although not currently planned, icebreaking could occur as part of this proposed action if a research vessel needs to return to the study area before the end of the IHA period to ensure scientific objectives are met. In this case, icebreaking could result in Level B harassment.

Below are descriptions of the platforms and equipment that would be deployed at different times during the proposed activity.

The R/V Sikuliaq would perform the research cruise in September 2024 and conduct testing of acoustic sources during the cruise, as well as leave sources behind to operate as a year-round navigation system observation. The vessel to be used in a potential 2025 cruise is yet to be determined but the most probable option would be the CGC HEALY.

The R/V Sikuliaq has a maximum speed of approximately 12 knots (22.2 km per hour (km/hr)) with a cruising speed of 11 knots (20.4 km/hr). The R/V Sikuliaq is not an icebreaking ship but an ice strengthened ship. It would not be icebreaking and therefore acoustic signatures of icebreaking for the R/V Sikuliaq are not relevant. CGC HEALY travels at a maximum speed of 17 knots (31.5 km/hr) with a cruising speed of 12 knots (22.2 km/hr) and a maximum speed of 3 knots (5.6 km/hr) when traveling through 1.07 m (3.5 ft) of sea ice. While no icebreaking cruise on the CGC HEALY is scheduled during the IHA period, need may arise. Therefore, for the purposes of this IHA application, an icebreaking cruise is considered.

The R/V Sikuliaq, CGC HEALY, or any other vessel operating a research cruise associated with the Proposed Action may perform the following activities during their research cruises:

  • Deployment of moored and/or ice-tethered passive sensors (oceanographic measurement devices, acoustic receivers);
  • Deployment of moored and/or ice-tethered active acoustic sources to transmit acoustic signals;
  • Deployment of UUVs;
  • Deployment of drifting buoys, with or without acoustic sources; or,
  • Recovery of equipment.

Glider surveys are proposed for the research cruise. All gliders would be recovered; some may be recovered during the cruise, but the remainder would be recovered at a later date. Up to four gliders would be deployed during the research cruise as part of on-ice operations (one to two gliders would be associated with each on-ice station).

Long-endurance, autonomous sea gliders are intended for use in extended missions in ice-covered waters. Gliders are buoyancy-driven, equipped with satellite modems providing two-way communication, and are capable of transiting to depths of up to 1,000 m (3,280 ft). Gliders would collect data in the area of the shallow water sources and moored sources, moving at a speed of 0.25 meters per second (m/s; 23 kilometers per day (km/day)). A combination of recent advances in sea glider technology would provide full-year endurance. When operating in ice-covered waters, gliders navigate by trilateration (the process of determining location by measurement of distances, using the geometry of circles, spheres or triangles) from moored acoustic sound sources (or dead reckoning should navigation signals be unavailable); they do not contain any active acoustic sources. Hibernating gliders would continue to track their position, waking to reposition should they drift too far from their target region. Gliders would measure temperature, salinity, dissolved oxygen, rates of dissipation of temperature variance (and vertical turbulent diffusivity), and multi-spectral down welling irradiance.

During the September 2024 cruise, active acoustic sources would be lowered from the cruise vessel while stationary, deployed on gliders and UUVs, or deployed on fixed AMOS and VLF moorings for intermittent testing of the system components. The testing would take place in the vicinity of the source locations in figure 1. During this testing, 35 Hz, 900 Hz, 10 kHz, and acoustic modems would be employed. No UUV use is planned during the September 2024 research cruise but UUV use may be included in future test plans covered by this IHA.

Up to four fixed acoustic navigation sources transmitting at 900 Hz would remain in place for a year. These moorings would be anchored on the seabed and held in the water column with subsurface buoys. All sources would be deployed by shipboard winches, which would lower sources and receivers in a controlled manner. Anchors would be steel “wagon wheels” typically used for this type of deployment. Two VLF sources transmitting at 35 Hz would be deployed in a similar manner. Two drifting IGBs would also be configured with active acoustic sources. ( print page 66073)

Table 1—Characteristics of Modeled Acoustic Sources

Platform (total number deployed) Acoustic source Purpose/ function Frequency Signal strength (dB re 1 μPa at 1 m) Pulse width/duty cycle
REMUS 600 UUV  (up to 1) WHOI Micro-modem Acoustic communications 900-950 Hz NTE 180 dB by sys design limits 5 pings/hour with 30 sec pulse length.
REMUS 600 UUV  (up to 1) UUV/WHOI Micro-modem Acoustic communications 8-14 kHz NTE 185 dB by sys design limits 10% average duty cycle, with 4 sec pulse length.
IGB (drifting) (2) WHOI Micro-modem Acoustic communications 900-950 Hz NTE 180 dB by sys design limits Transmit every 4 hours, 30 sec pulse length.
IGB (drifting) (2) WHOI Micro-modem Acoustic communications 8-14 kHz NTE 185 dB by sys design limits Typically receive only. Transmit is very intermittent.
Mooring (6) WHOI Micro-modem (4) Acoustic Navigation 900-950 Hz NTE 180 dB by sys design limits Transmit every 4 hours, 30 sec pulse length.
Mooring (6) VLF (2) Acoustic Navigation 35 Hz NTE 190 dB Up to 4 times per day, 10 minutes each.
dB re 1 μPa at 1 m = decibels referenced to 1 microPascal at 1 meter; Hz = Hertz; IGB = Ice Gateway Buoy; kHz = kilohertz; NTE = not to exceed; VLF = very low frequency; WHOI = Woods Hole Oceanographic Institution.
 REMUS use is not anticipated during the September 2024 cruise but is included in case of future use during the proposed IHA period.

The following activities have been determined to be unlikely to result in take of marine mammals. These activities are described here but they are not discussed further in this notice.

De minimis Sources—The ONR characterizes de minimis sources as those with the following parameters: low source levels (SLs), narrow beams, downward directed transmission, short pulse lengths, frequencies outside known marine mammal hearing ranges, or some combination of these factors (Navy, 2013). NMFS concurs with the ONR's determination that the sources they have identified here as de minimis are unlikely to result in take of marine mammals. The following are some of the planned de minimis sources which would be used during the proposed action: Woods Hole Oceanographic Institution (WHOI) micromodem, Acoustic Doppler Current Profilers (ADCPs), ice profilers, and additional sources below 160 decibels referenced to 1 microPascal (dB re 1 μPa) used during towing operations. ADCPs may be used on moorings. Ice-profilers measure ice properties and roughness. The ADCPs and ice-profilers would all be above 200 kHz and therefore out of marine mammal hearing ranges, with the exception of the 75 kHz ADCP which has the characteristics and de minimis justification listed in table 2. They may be employed on moorings or UUVs.

A WHOI micromodem will also be employed during the leave behind period. In contrast with the WHOI micromodem usage described in table 1, which covers the use of the micromodem during research cruises, the use of the source during the leave behind period differs in nature. During this period, it is being used for very intermittent communication with vehicles to communicate vehicle status for safety of navigation purposes, and is treated as de minimis while employed in this manner.

Table 2—Parameters for De Minimis Non-Impulsive Acoustic Sources

Source name Frequency range (kHz) Sound pressure level (dB re 1 μPa at 1 m) Pulse length (seconds) Duty cycle (percent) justification
ADCP >200, 150, or 75 190 <0.001 <0.1 Very low pulse length, narrow beam, moderate source level.
Nortek Signature 500 kHz Doppler Velocity Log 500 214 <0.1 <13 Very high frequency.
CTD Attached Echosounder 5-20 160 0.004 2 Very low source level.
dB re 1 μPa at 1 m = decibels referenced to 1 microPascal at 1 meter; kHz = kilohertz; ADCP = acoustic Doppler current profiler; CTD = conductivity temperature depth.

Drifting Oceanographic Sensors—Observations of ocean-ice interactions require the use of sensors that are moored and embedded in the ice. For the proposed action, it will not be required to break ice to do this, as deployments can be performed in areas of low ice-coverage or free floating ice. Sensors are deployed within a few dozen meters of each other on the same ice floe. Three types of sensors would be used: autonomous ocean flux buoys, Integrated Autonomous Drifters, and ice-tethered profilers. The autonomous ocean flux buoys measure oceanographic properties just below the ocean-ice interface. The autonomous ocean flux buoys would have ADCPs and temperature chains attached, to measure temperature, salinity, and other ocean parameters the top 6 m (20 ft) of the water column. Integrated Autonomous Drifters would have a long temperate string extending down to 200 m (656 ft) depth and would incorporate meteorological sensors, and a temperature spring to estimate ice thickness. The ice-tethered profilers would collect information on ocean temperature, salinity, and velocity down to 250 m (820 ft) depth.

Up to 20 Argo-type autonomous profiling floats may be deployed in the central Beaufort Sea. Argo float drift at 1,500 m (4,921 ft) depth, profiling from 2,000 m (6,562 ft) to the sea surface once every 10 days to collect profiles of ( print page 66074) temperature and salinity. Moored Oceanographic Sensors—Moored sensors would capture a range of ice, ocean, and atmospheric conditions on a year-round basis. These would be bottom anchored, sub-surface moorings measuring velocity, temperature, and salinity in the upper 500 m (1,640 ft) of the water column. The moorings also collect high-resolution acoustic measurements of the ice using the ice profilers described above. Ice velocity and surface waves would be measured by 500 kHz multibeam sonars from Nortek Signatures. The moored oceanographic sensors described above use only de minimis sources and are therefore not anticipated to have the potential for impacts on marine mammals or their habitat. On-ice Measurements—On-ice measurement systems would be used to collect weather data. These would include an Autonomous Weather Station and an Ice Mass Balance Buoy. The Autonomous Weather Station would be deployed on a tripod; the tripod has insulated foot platforms that are frozen into the ice. The system would consist of an anemometer, humidity sensor, and pressure sensor. The Autonomous Weather Station also includes an altimeter that is de minimis due to its very high frequency (200 kHz). The Ice Mass Balance Buoy is a 6 m (20 ft) sensor string, which is deployed through a 5 centimeter (cm; 2 inch (in)) hole drilled into the ice. The string is weighted by a 1 kilogram (kg; 2.2 pound (lb)) lead weight and is supported by a tripod. The buoy contains a de minimis 200 kHz altimeter and snow depth sensor. Autonomous Weather Stations and Ice Mass Balance Buoys will be deployed and will drift with the ice, making measurements until their host ice floes melt, thus destroying the instruments (likely in summer, roughly 1 year after deployment). After the on-ice instruments are destroyed they cannot be recovered and would sink to the seafloor as their host ice floes melted.

Proposed mitigation, monitoring, and reporting measures are described in detail later in this document (please see Proposed Mitigation and Proposed Monitoring and Reporting).

Sections 3 and 4 of the application summarize available information regarding status and trends, distribution and habitat preferences, and behavior and life history of the potentially affected species. NMFS fully considered all of this information, and we refer the reader to these descriptions, instead of reprinting the information. Additional information regarding population trends and threats may be found in NMFS' Stock Assessment Reports (SARs; https://www.fisheries.noaa.gov/​national/​marine-mammal-protection/​marine-mammal-stock-assessments ) and more general information about these species ( e.g., physical and behavioral descriptions) may be found on NMFS' website ( https://www.fisheries.noaa.gov/​find-species ).

Table 3 lists all species or stocks for which take is expected and proposed to be authorized for this activity and summarizes information related to the population or stock, including regulatory status under the MMPA and Endangered Species Act (ESA) and potential biological removal (PBR), where known. PBR is defined by the MMPA as the maximum number of animals, not including natural mortalities, that may be removed from a marine mammal stock while allowing that stock to reach or maintain its optimum sustainable population (as described in NMFS' SARs). While no serious injury or mortality is anticipated or proposed to be authorized here, PBR and annual serious injury and mortality from anthropogenic sources are included here as gross indicators of the status of the species or stocks and other threats.

Marine mammal abundance estimates presented in this document represent the total number of individuals that make up a given stock or the total number estimated within a particular study or survey area. NMFS' stock abundance estimates for most species represent the total estimate of individuals within the geographic area, if known, that comprises that stock. For some species, this geographic area may extend beyond U.S. waters. All managed stocks in this region are assessed in NMFS' U.S. Alaska SARs (Young et al., 2023). All values presented in table 3 are the most recent available at the time of publication and are available online at: https://www.fisheries.noaa.gov/​national/​marine-mammal-protection/​marine-mammal-stock-assessments .

Table 3—Species Likely Impacted by the Specified Activities 

Common name Scientific name Stock ESA/MMPA status; strategic (Y/N)  Stock abundance (CV, N , most recent abundance survey)  PBR Annual M/SI 
Beluga Whale Beaufort Sea -, -, N 39,258 (0.229, N/A, 1992) UND 104
Beluga Whale Eastern Chukchi -, -, N 13,305 (0.51, 8,875, 2017) 178 56
Ringed Seal Arctic T, D, Y UND  (UND, UND, 2013) UND 6,459
 Information on the classification of marine mammal species can be found on the web page for The Society for Marine Mammalogy's Committee on Taxonomy ( ).
 ESA status: Endangered (E), Threatened (T)/MMPA status: Depleted (D). A dash (-) indicates that the species is not listed under the ESA or designated as depleted under the MMPA. Under the MMPA, a strategic stock is one for which the level of direct human-caused mortality exceeds PBR or which is determined to be declining and likely to be listed under the ESA within the foreseeable future. Any species or stock listed under the ESA is automatically designated under the MMPA as depleted and as a strategic stock.
 NMFS marine mammal stock assessment reports online at: . CV is coefficient of variation; N is the minimum estimate of stock abundance.
 These values, found in NMFS's SARs, represent annual levels of human-caused mortality plus serious injury from all sources combined ( commercial fisheries, vessel strike). Annual M/SI often cannot be determined precisely and is in some cases presented as a minimum value or range. A CV associated with estimated mortality due to commercial fisheries is presented in some cases.
 A reliable population estimate for the entire stock is not available. Using a sub-sample of data collected from the U.S. portion of the Bering Sea, an abundance estimate of 171,418 ringed seals has been calculated, but this estimate does not account for availability bias due to seals in the water or in the shore-fast ice zone at the time of the survey. The actual number of ringed seals in the U.S. portion of the Bering Sea is likely much higher. Using the N based upon this negatively biased population estimate, the PBR is calculated to be 4,755 seals, although this is also a negatively biased estimate.

As indicated above, both species (with three managed stocks) in table 3 temporally and spatially co-occur with the activity to the degree that take is reasonably likely to occur. While bowhead whales ( Balaena mysticetus ), gray whales ( Eschrichtius robustus ), bearded seals ( Erignathus barbatus ), spotted seals ( Phoca largha ), and ribbon seals ( Histriophoca fasciata ) have been documented in the area, the temporal and/or spatial occurrence of these ( print page 66075) species is such that take is not expected to occur, and they are not discussed further beyond the explanation provided below.

Due to the location of the study area ( i.e., northern offshore, deep water), there were no calculated exposures for the bowhead whale, gray whale, bearded seal, spotted seal, and ribbon seal from quantitative modeling of acoustic sources. Bowhead and gray whales are closely associated with the shallow waters of the continental shelf in the Beaufort Sea and are unlikely to be exposed to acoustic harassment from this activity (Young et al., 2023). Gray whales feed primarily in the Beaufort Sea, Chukchi Sea, and Northwestern Bering Sea during the summer and fall, but migrate south to winter in Baja California lagoons (Young et al., 2023). Gray whales are primarily bottom feeders (Swartz et al., 2006) in water depths of less than 60 m (196.9 ft) (Pike, 1962). Therefore, on the rare occasion that a gray whale does overwinter in the Beaufort Sea (Stafford et al., 2007), we would expect an overwintering individual to remain in shallow water over the continental shelf where it could feed. Spotted seals tend to prefer pack ice areas with water depths less than 200 m (656.2 ft) during the spring and move to coastal habitats in the summer and fall, found as far north as 69-72 degrees N (Muto et al., 2021). Although the study area includes some waters south of 72 degrees N, the acoustic sources with the potential to result in take of marine mammals are not found below that latitude and spotted seals are not expected to be exposed. Ribbon seals are found year-round in the Bering Sea but may seasonally range into the Chukchi Sea (Muto et al., 2021). The proposed action occurs primarily in the Beaufort Sea, outside of the core range of ribbon seals, thus ribbon seals are not expected to be behaviorally harassed. Narwhals ( Monodon monoceros ) are considered extralimital in the project area and are not expected to be encountered. As no harassment is expected of the bowhead whale, gray whale, spotted seal, bearded seal, ribbon seal, and narwhal, these species will not be discussed further in this proposed notice.

The ONR utilized Conn et al. (2014) in their IHA application as an abundance estimate for ringed seals, which is based upon aerial abundance and distribution surveys conducted in the U.S. portion Bering Sea in 2012 (171,418 ringed seals) (Muto et al., 2021). This value is likely an underestimate due to the lack of accounting for availability bias for seals that were in the water at the time of the surveys as well as not including seals located within the shore-fast ice zone (Muto et al., 2021). Muto et al. (2021) notes that an accurate population estimate is likely larger by a factor of two or more. However, no accepted population estimate is present for Arctic ringed seals. Therefore, NMFS will also adopt the Conn et al. (2014) abundance estimate (171,418) for further analyses and discussions on this proposed action by ONR.

In addition, the polar bear ( Ursus maritimus ) and Pacific walrus ( Odobenus rosmarus ) may be found both on sea ice and/or in the water within the Beaufort Sea and Chukchi Sea. These species are managed by the U.S. Fish and Wildlife Service rather than NMFS and, therefore, they are not considered further in this document.

Beluga whales are distributed throughout seasonally ice-covered arctic and subarctic waters of the Northern Hemisphere (Gurevich, 1980), and are closely associated with open leads and polynyas in ice-covered regions (Hazard, 1988). Belugas may be either migratory or residential (non-migratory), depending on the population. Seasonal distribution is affected by ice cover, tidal conditions, access to prey, temperature, and human interaction (Frost et al., 1985; Hauser et al., 2014).

There are five beluga whale stocks recognized within U.S. waters: Cook Inlet, Bristol Bay, eastern Bering Sea, eastern Chukchi Sea, and Beaufort Sea. Two stocks, the Beaufort Sea and eastern Chukchi Sea stocks, have the potential to occur in the location of this proposed action.

Migratory Biologically Important Areas (BIAs) for belugas in the eastern Chukchi and Alaskan Beaufort Sea overlap the southern and western portion of the Study Area (Clarke et al., 2023). A migration corridor for both stocks of beluga whale includes the eastern Chukchi Sea through the Beaufort Sea, with the Beaufort Sea stock utilizing the migratory BIA in April-May and the Eastern Chukchi Sea stock utilizing portions of the area in November. There are also feeding BIAs for both stocks throughout the Arctic region (Clarke et al., 2023). During the winter, they can be found foraging in offshore waters associated with pack ice. When the sea ice melts in summer, they move to warmer river estuaries and coastal areas for molting and calving (Muto et al., 2021). Annual migrations can span over thousands of kilometers. The residential Beaufort Sea populations participate in short distance movements within their range throughout the year. Based on satellite tags (Suydam et al., 2001; Hauser et al., 2014), there is some overlap in distribution with the eastern Chukchi Sea beluga whale stock.

During the winter, eastern Chukchi Sea belugas occur in offshore waters associated with pack ice. In the spring, they migrate to warmer coastal estuaries, bays, and rivers where they may molt (Finley, 1982; Suydam, 2009), give birth to, and care for their calves (Sergeant and Brodie, 1969). Eastern Chukchi Sea belugas move into coastal areas, including Kasegaluk Lagoon (outside of the proposed project site), in late June and animals are sighted in the area until about mid-July (Frost and Lowry, 1990; Frost et al., 1993). Satellite tags attached to eastern Chukchi Sea belugas captured in Kasegaluk Lagoon during the summer showed these whales traveled 1,100 km (593 nm) north of the Alaska coastline, into the Canadian Beaufort Sea within three months (Suydam et al., 2001). Satellite telemetry data from 23 whales tagged during 1998-2007 suggest variation in movement patterns for different age and/or sex classes during July-September (Suydam et al., 2005). Adult males used deeper waters and remained there for the duration of the summer; all belugas that moved into the Arctic Ocean (north of 75 degrees N) were males, and males traveled through 90 percent pack ice cover to reach deeper waters in the Beaufort Sea and Arctic Ocean (79-80 degrees N) by late July/early August. Adult and immature female belugas remained at or near the shelf break in the south through the eastern Bering Strait into the northern Bering Sea, remaining north of Saint Lawrence Island over the winter.

Ringed seals are the most common pinniped in the Study Area and have wide distribution in seasonally and permanently ice-covered waters of the Northern Hemisphere (North Atlantic Marine Mammal Commission, 2004). Throughout their range, ringed seals have an affinity for ice-covered waters and are well adapted to occupying both shore-fast and pack ice (Kelly, 1988). Ringed seals can be found further offshore than other pinnipeds since they can maintain breathing holes in ice thickness greater than 2 m (6.6 ft) (Smith and Stirling, 1975). The breathing holes are maintained by ringed seals using their sharp teeth and claws found on their fore flippers. They remain in contact with ice most of the year and use it as a platform for molting in late spring to early summer, for pupping and nursing in late winter to ( print page 66076) early spring, and for resting at other times of the year (Muto et al., 2018).

Ringed seals have at least two distinct types of subnivean lairs: Haulout lairs and birthing lairs (Smith and Stirling, 1975). Haul-out lairs are typically single-chambered and offer protection from predators and cold weather. Birthing lairs are larger, multi-chambered areas that are used for pupping in addition to protection from predators. Ringed seals pup on both shore-fast ice as well as stable pack ice. Lentfer (1972) found that ringed seals north of Utqiaġvik, Alaska, build their subnivean lairs on the pack ice near pressure ridges. Since subnivean lairs were found north of Utqiaġvik, Alaska, in pack ice, they are also assumed to be found within the sea ice in the proposed project site. Ringed seals excavate subnivean lairs in drifts over their breathing holes in the ice, in which they rest, give birth, and nurse their pups for 5-9 weeks during late winter and spring (Chapskii, 1940; McLaren, 1958; Smith and Stirling, 1975). Ringed seals are born beginning in March but the majority of births occur in early April. About a month after parturition, mating begins in late April and early May.

In Alaskan waters, during winter and early spring when sea ice is at its maximum extent, ringed seals are abundant in the northern Bering Sea, Norton and Kotzebue Sounds, and throughout the Chukchi and Beaufort seas (Frost, 1985; Kelly, 1988). Passive acoustic monitoring of ringed seals from a high frequency recording package deployed at a depth of 240 m (787 ft) in the Chukchi Sea 120 km (65 nm) north-northwest of Utqiaġvik, Alaska detected ringed seals in the area between mid-December and late May over the 4 year study (Jones et al., 2014). In addition, ringed seals have been observed near and beyond the outer boundary of the U.S. EEZ (Beland and Ireland, 2010). During the spring and early summer, ringed seals may migrate north as the ice edge recedes and spend their summers in the open water period of the northern Beaufort and Chukchi Seas (Frost, 1985). Foraging-type movements have been recorded over the continental shelf and north of the continental shelf waters (Von Duyke et al., 2020). During this time, sub-adult ringed seals may also occur in the Arctic Ocean Basin (Hamilton et al., 2015; Hamilton et al., 2017).

With the onset of fall freeze, ringed seal movements become increasingly restricted and seals will either move west and south with the advancing ice pack with many seals dispersing throughout the Chukchi and Bering Seas, or remaining in the Beaufort Sea (Crawford et al., 2012; Frost and Lowry, 1984; Harwood et al., 2012). Kelly et al. (2010a) tracked home ranges for ringed seals in the subnivean period (using shore-fast ice); the size of the home ranges varied from less than 1 up to 279 km 2 (median = 0.62 km 2 for adult males, 0.65 km 2 for adult females). Most (94 percent) of the home ranges were less than 3 km 2 during the subnivean period (Kelly et al., 2010a). Near large polynyas, ringed seals maintain ranges, up to 7,000 km 2 during winter and 2,100 km 2 during spring (Born et al., 2004). Some adult ringed seals return to the same small home ranges they occupied during the previous winter (Kelly et al., 2010a). The size of winter home ranges can vary by up to a factor of 10 depending on the amount of fast ice; seal movements were more restricted during winters with extensive fast ice, and were much less restricted where fast ice did not form at high levels (Harwood et al., 2015).

Of the five recognized subspecies of ringed seals, the Arctic ringed seal occurs in the Arctic Ocean and Bering Sea and is the only stock that occurs in U.S. waters. NMFS listed the Arctic ringed seal subspecies as threatened under the ESA on December 28, 2012 ( 77 FR 76706 ), primarily due to anticipated loss of sea ice through the end of the 21st century. Climate change presents a major concern for the conservation of ringed seals due to the potential for long-term habitat loss and modification (Muto et al., 2021). Based upon an analysis of various life history features and the rapid changes that may occur in ringed seal habitat, ringed seals are expected to be highly sensitive to climate change (Laidre et al., 2008; Kelly et al., 2010b).

Critical habitat for the ringed seal was designated in May 2022 and includes marine waters within one specific area in the Bering, Chukchi, and Beaufort Seas ( 87 FR 19232 , April 1, 2022). Essential features established by NMFS for conservation of ringed seals are (1) snow-covered sea ice habitat suitable for the formation and maintenance of subnivean birth lairs used for sheltering pups during whelping and nursing, which is defined as waters 3 m (9.8 ft) or more in depth (relative to Mean Lower Low Water (MLLW)) containing areas of seasonal land-fast (shore-fast) ice or dense, stable pack ice, that have undergone deformation and contain snowdrifts of sufficient depth to form and maintain birth lairs (typically at least 54 cm (21.3 in) deep); (2) sea ice habitat suitable as a platform for basking and molting, which is defined as areas containing sea ice of 15 percent or more concentration in waters 3 m (9.8 ft) or more in depth (relative to MLLW); and (3) primary prey resources to support Arctic ringed seals, which are defined to be small, often schooling, fishes, in particular Arctic cod ( Boreogadus saida ), saffron cod ( Eleginus gracilis ), and rainbow smelt ( Osmerus dentex ); and small crustaceans, in particular, shrimps and amphipods.

The Study Area does not overlap with ringed seal critical habitat ( 87 FR 19232 , April 1, 2022). However, as stated in NMFS' final rule for the Designation of Critical Habitat for the Arctic Subspecies of the Ringed Seal ( 87 FR 19232 , April 1, 2022), the area excluded from the critical habitat contains one or more of the essential features of the Arctic ringed seal's critical habitat, therefore, even though this area is excluded from critical habitat designation, habitat with the physical and biological features essential for ringed seal conservation is still available to the species, although data are limited to inform NMFS' assessment of the relative value of this area to the conservation of the species. As described later and in more detail in the Potential Effects of Specified Activities on Marine Mammals and Their Habitat section, we expect minimal impacts to marine mammal habitat as a result of the ONR's ARA, including impacts to ringed seal sea ice habitat suitable as a platform for basking and molting and impacts on prey availability.

Hearing is the most important sensory modality for marine mammals underwater, and exposure to anthropogenic sound can have deleterious effects. To appropriately assess the potential effects of exposure to sound, it is necessary to understand the frequency ranges marine mammals are able to hear. Not all marine mammal species have equal hearing capabilities ( e.g., Richardson et al., 1995; Wartzok and Ketten, 1999; Au and Hastings, 2008). To reflect this, Southall et al. (2007) and Southall et al. (2019) recommended that marine mammals be divided into hearing groups based on directly measured (behavioral or auditory evoked potential techniques) or estimated hearing ranges (behavioral response data, anatomical modeling, etc. ). Subsequently, NMFS (2018) described generalized hearing ranges for these marine mammal hearing groups. Generalized hearing ranges were chosen based on the approximately 65 dB threshold from the normalized composite audiograms, with the exception for lower limits for low- ( print page 66077) frequency cetaceans where the lower bound was deemed to be biologically implausible and the lower bound from Southall et al. (2007) retained. Marine mammal hearing groups and their associated hearing ranges are provided in table 4.

Table 4—Marine Mammal Hearing Groups

[NMFS, 2018]

Hearing group Generalized hearing range * Low-frequency (LF) cetaceans (baleen whales) 7 Hz to 35 kHz. Mid-frequency (MF) cetaceans (dolphins, toothed whales, beaked whales, bottlenose whales) 150 Hz to 160 kHz. High-frequency (HF) cetaceans (true porpoises, river dolphins, Cephalorhynchid, & ) 275 Hz to 160 kHz. Phocid pinnipeds (PW) (underwater) (true seals) 50 Hz to 86 kHz. Otariid pinnipeds (OW) (underwater) (sea lions and fur seals) 60 Hz to 39 kHz.  Represents the generalized hearing range for the entire group as a composite ( all species within the group), where individual species' hearing ranges are typically not as broad. Generalized hearing range chosen based on approximately 65 dB threshold from normalized composite audiogram, with the exception for lower limits for LF cetaceans (Southall 2007) and PW pinniped (approximation).

The pinniped functional hearing group was modified from Southall et al. (2007) on the basis of data indicating that phocid species have consistently demonstrated an extended frequency range of hearing compared to otariids, especially in the higher frequency range (Hemilä et al., 2006; Kastelein et al., 2009; Reichmuth et al., 2013). This division between phocid and otariid pinnipeds is now reflected in the updated hearing groups proposed in Southall et al. (2019).

For more detail concerning these groups and associated frequency ranges, please see NMFS (2018) for a review of available information.

This section provides a discussion of the ways in which components of the specified activity may impact marine mammals and their habitat. The Estimated Take of Marine Mammals section later in this document includes a quantitative analysis of the number of individuals that are expected to be taken by this activity. The Negligible Impact Analysis and Determination section considers the content of this section, the Estimated Take of Marine Mammals section, and the Proposed Mitigation section, to draw conclusions regarding the likely impacts of these activities on the reproductive success or survivorship of individuals and whether those impacts are reasonably expected to, or reasonably likely to, adversely affect the species or stock through effects on annual rates of recruitment or survival.

The marine soundscape is comprised of both ambient and anthropogenic sounds. Ambient sound is defined as the all-encompassing sound in a given place and is usually a composite of sound from many sources both near and far (ANSI, 1995). The sound level of an area is defined by the total acoustical energy being generated by known and unknown sources. These sources may include physical ( e.g., waves, wind, precipitation, earthquakes, ice, atmospheric sound), biological ( e.g., sounds produced by marine mammals, fish, and invertebrates), and anthropogenic sound ( e.g., vessels, dredging, aircraft, construction).

The sum of the various natural and anthropogenic sound sources at any given location and time—which comprise “ambient” or “background” sound—depends not only on the source levels (as determined by current weather conditions and levels of biological and shipping activity) but also on the ability of sound to propagate through the environment. In turn, sound propagation is dependent on the spatially and temporally varying properties of the water column and sea floor, and is frequency-dependent. As a result of the dependence on a large number of varying factors, ambient sound levels can be expected to vary widely over both coarse and fine spatial and temporal scales. Sound levels at a given frequency and location can vary by 10-20 dB from day to day (Richardson et al., 1995). The result is that, depending on the source type and its intensity, sound from the specified activities may be a negligible addition to the local environment or could form a distinctive signal that may affect marine mammals.

Active acoustic sources and icebreaking, if necessary, are proposed for use in the Study Area. The sounds produced by these activities fall into one of two general sound types: impulsive and non-impulsive. Impulsive sounds ( e.g., ice explosions, gunshots, sonic booms, impact pile driving) are typically transient, brief (less than 1 second), broadband, and consist of high peak sound pressure with rapid rise time and rapid decay (ANSI, 1986; NIOSH, 1998; NMFS, 2018). Non-impulsive sounds ( e.g., aircraft, machinery operations such as drilling or dredging, vibratory pile driving, pile cutting, diamond wire sawing, and active sonar systems) can be broadband, narrowband, or tonal, brief or prolonged (continuous or intermittent), and typically do not have the high peak sound pressure with raid rise/decay time that impulsive sounds do (ANSI, 1986; NIOSH, 1998; NMFS, 2018). The distinction between these two sound types is important because they have differing potential to cause physical effects, particularly with regard to hearing ( e.g., Ward, 1997; Southall et al., 2007).

The likely or possible impacts of the ONR's proposed action on marine mammals involve both non-acoustic and acoustic stressors. Potential non-acoustic stressors could result from the physical presence of vessels, equipment, and personnel ( e.g., icebreaking impacts, vessel and in-water vehicle strike, and bottom disturbance); however, any impacts to marine mammals are expected to primarily be acoustic in nature ( e.g., non-impulsive acoustic sources, noise from icebreaking vessel (“icebreaking noise”), and vessel noise).

The introduction of anthropogenic noise into the aquatic environment from active acoustic sources and noise from icebreaking is the means by which marine mammals may be harassed from the ONR's specified activity. In general, animals exposed to natural or anthropogenic sound may experience behavioral, physiological, and/or physical effects, ranging in magnitude from none to severe (Southall et al., 2007). In general, exposure to pile driving noise has the potential to result in behavioral reactions ( e.g., avoidance, temporary cessation of foraging and vocalizing, changes in dive behavior) and, in limited cases, an auditory threshold shift (TS). Exposure to anthropogenic noise can also lead to non-observable physiological responses such an increase in stress hormones. Additional noise in a marine mammal's habitat can mask acoustic cues used by marine mammals to carry out daily functions such as communication and predator and prey detection. The effects ( print page 66078) of pile driving noise on marine mammals are dependent on several factors, including, but not limited to, sound type ( e.g., impulsive versus non-impulsive), the species, age and sex class ( e.g., adult male versus mother with calf), duration of exposure, the distance between the pile and the animal, received levels, behavior at time of exposure, and previous history with exposure (Wartzok et al., 2004; Southall et al., 2007). Here we discuss physical auditory effects ( i.e., TS) followed by behavioral effects and potential impacts on habitat.

NMFS defines a noise-induced TS as a change, usually an increase, in the threshold of audibility at a specified frequency or portion of an individual's hearing range above a previously established reference level (NMFS, 2018). The amount of TS is customarily expressed in dB and TS can be permanent or temporary. As described in NMFS (2018), there are numerous factors to consider when examining the consequence of TS, including, but not limited to, the signal temporal pattern ( e.g., impulsive or non-impulsive), likelihood an individual would be exposed for a long enough duration or to a high enough level to induce a TS, the magnitude of the TS, time to recovery (seconds to minutes or hours to days), the frequency range of the exposure ( i.e., spectral content), the hearing and vocalization frequency range of the exposed species relative to the signal's frequency spectrum ( i.e., how animal uses sound within the frequency band of the signal) (Kastelein et al., 2014), and the overlap between the animal and the source ( e.g., spatial, temporal, and spectral).

Permanent Threshold Shift (PTS)—NMFS defines PTS as a permanent, irreversible increase in the threshold of audibility at a specified frequency or portion of an individual's hearing range above a previously established reference level (NMFS, 2018). Available data from humans and other terrestrial mammals indicate that a 40 dB TS approximates PTS onset (see Ward et al., 1958; Ward et al., 1959; Ward, 1960; Kryter et al., 1966; Miller, 1974; Ahroon et al., 1996; Henderson et al., 2008). PTS levels for marine mammals are estimates as, with the exception of a single study unintentionally inducing PTS in a harbor seal ( e.g., Kastak et al., 2008), there are no empirical data measuring PTS in marine mammals largely due to the fact that, for various ethical reasons, experiments involving anthropogenic noise exposure at levels inducing PTS are not typically pursued or authorized (NMFS, 2018).

Temporary Threshold Shift (TTS)—TTS is a temporary, reversible increase in the threshold of audibility at a specified frequency or portion of an individual's hearing range above a previously established reference level (NMFS, 2018). Based on data from cetacean TTS measurements (see Southall et al., 2007), a TTS of 6 dB is considered the minimum TS clearly larger than any day-to-day or session-to-session variation in a subject's normal hearing ability (Finneran et al., 2000; Schlundt et al., 2000; Finneran et al., 2002). As described in Finneran (2016), marine mammal studies have shown the amount of TTS increases with cumulative sound exposure level (SEL cum ) in an accelerating fashion: At low exposures with lower SEL cum , the amount of TTS is typically small and the growth curves have shallow slopes. At exposures with higher SEL cum , the growth curves become steeper and approach linear relationships with the noise SEL.

Depending on the degree (elevation of threshold in dB), duration ( i.e., recovery time), and frequency range of TTS, and the context in which it is experienced, TTS can have effects on marine mammals ranging from discountable to serious (similar to those discussed in the Auditory Masking section). For example, a marine mammal may be able to readily compensate for a brief, relatively small amount of TTS in a non-critical frequency range that takes place during a time when the animal is traveling through the open ocean, where ambient noise is lower and there are not as many competing sounds present. Alternatively, a larger amount and longer duration of TTS sustained during time when communication is critical for successful mother/calf interactions could have more serious impacts. We note that reduced hearing sensitivity as a simple function of aging has been observed in marine mammals, as well as humans and other taxa (Southall et al., 2007), so we can infer that strategies exist for coping with this condition to some degree, though likely not without cost.

Many studies have examined noise-induced hearing loss in marine mammals (see Finneran, 2015; Southall et al., 2019 for summaries). TTS is the mildest form of hearing impairment that can occur during exposure to sound (Kryter et al., 1966). While experiencing TTS, the hearing threshold rises, and a sound must be at a higher level in order to be heard. In terrestrial and marine mammals, TTS can last from minutes or hours to days (in cases of strong TTS). In many cases, hearing sensitivity recovers rapidly after exposure to the sound ends. For cetaceans, published data on the onset of TTS are limited to captive bottlenose dolphin ( Tursiops truncatus ), beluga whale, harbor porpoise ( Phocoena phocoena ), and Yangtze finless porpoise ( Neophocoena asiaeorientalis ) (Southall et al., 2019). For pinnipeds in water, measurements of TTS are limited to harbor seals ( Phoca vitulina ), elephant seals ( Mirounga angustirostris ), bearded seals, and California sea lions ( Zalophus californianus ) (Kastak et al., 1999; Kastak et al., 2008; Kastelein et al., 2020b; Reichmuth et al., 2013; Sills et al., 2020). TTS was not observed in spotted and ringed seals exposed to single airgun impulse sounds at levels matching previous predictions of TTS onset (Reichmuth et al., 2016). These studies examine hearing thresholds measured in marine mammals before and after exposure to intense or long-duration sound exposure. The difference between the pre-exposure and post-exposure thresholds can be used to determine the amount of threshold shift at various post-exposure times.

The amount and onset of TTS depends on the exposure frequency. Sounds at low frequencies, well below the region of best sensitivity for a species or hearing group, are less hazardous than those at higher frequencies, near the region of best sensitivity (Finneran and Schlundt, 2013). At low frequencies, onset-TTS exposure levels are higher compared to those in the region of best sensitivity ( i.e., a low frequency noise would need to be louder to cause TTS onset when TTS exposure level is higher), as shown for harbor porpoises and harbor seals (Kastelein et al., 2019a; Kastelein et al., 2019b; Kastelein et al., 2020a; Kastelein et al., 2020b). Note that in general, harbor seals and harbor porpoises have a lower TTS onset than other measured pinniped or cetacean species (Finneran, 2015). In addition, TTS can accumulate across multiple exposures but the resulting TTS will be less than the TTS from a single, continuous exposure with the same SEL (Mooney et al., 2009; Finneran et al., 2010; Kastelein et al., 2014; Kastelein et al., 2015). This means that TTS predictions based on the total SEL cum will overestimate the amount of TTS from intermittent exposures, such as sonars and impulsive sources. Nachtigall et al. (2018) describe measurements of hearing sensitivity of multiple odontocete species (bottlenose dolphin, harbor porpoise, beluga whale, and false killer whale ( Pseudorca crassidens )) when a relatively loud sound was preceded by a warning ( print page 66079) sound. These captive animals were shown to reduce hearing sensitivity when warned of an impending intense sound. Based on these experimental observations of captive animals, the authors suggest that wild animals may dampen their hearing during prolonged exposures or if conditioned to anticipate intense sounds. Another study showed that echolocating animals (including odontocetes) might have anatomical specializations that might allow for conditioned hearing reduction and filtering of low-frequency ambient noise, including increased stiffness and control of middle ear structures and placement of inner ear structures (Ketten et al., 2021). Data available on noise-induced hearing loss for mysticetes are currently lacking (NMFS, 2018). Additionally, the existing marine mammal TTS data come from a limited number of individuals within these species.

Relationships between TTS and PTS thresholds have not been studied in marine mammals and there is no PTS data for cetaceans, but such relationships are assumed to be similar to those in humans and other terrestrial mammals. PTS typically occurs at exposure levels at least several decibels above that inducing mild TTS ( e.g., a 40-dB threshold shift approximates PTS onset (Kryter et al., 1966; Miller, 1974), while a 6-dB threshold shift approximates TTS onset (Southall et al., 2007; Southall et al., 2019). Based on data from terrestrial mammals, a precautionary assumption is that the PTS thresholds for impulsive sounds (such as impact pile driving pulses as received close to the source) are at least 6 dB higher than the TTS threshold on a peak-pressure basis and PTS cumulative sound exposure level thresholds are 15 to 20 dB higher than TTS cumulative sound exposure level thresholds (Southall et al., 2007; Southall et al., 2019). Given the higher level of sound or longer exposure duration necessary to cause PTS as compared with TTS, it is considerably less likely that PTS could occur.

Activities for this project include active acoustics, equipment deployment and recovery, and, potentially, icebreaking. For the proposed action, these activities would not occur at the same time and there would likely be pauses in activities producing the sound during each day. Given these pauses and that many marine mammals are likely moving through the Study Area and not remaining for extended periods of time, the potential for TS declines.

Behavioral Harassment—Exposure to noise from pile driving and drilling also has the potential to behaviorally disturb marine mammals. Generally speaking, NMFS considers a behavioral disturbance that rises to the level of harassment under the MMPA a non-minor response—in other words, not every response qualifies as behavioral disturbance, and for responses that do, those of a higher level, or accrued across a longer duration, have the potential to affect foraging, reproduction, or survival. Behavioral disturbance may include a variety of effects, including subtle changes in behavior ( e.g., minor or brief avoidance of an area or changes in vocalizations), more conspicuous changes in similar behavioral activities, and more sustained and/or potentially severe reactions, such as displacement from or abandonment of high-quality habitat. Behavioral responses may include changing durations of surfacing and dives, changing direction and/or speed; reducing/increasing vocal activities; changing/cessation of certain behavioral activities (such as socializing or feeding); eliciting a visible startle response or aggressive behavior (such as tail/fin slapping or jaw clapping); avoidance of areas where sound sources are located. Pinnipeds may increase their haul out time, possibly to avoid in-water disturbance (Thorson and Reyff, 2006). Behavioral responses to sound are highly variable and context-specific and any reactions depend on numerous intrinsic and extrinsic factors ( e.g., species, state of maturity, experience, current activity, reproductive state, auditory sensitivity, time of day), as well as the interplay between factors ( e.g., Richardson et al., 1995; Wartzok et al., 2004; Southall et al., 2007; Southall et al., 2019; Weilgart, 2007; Archer et al., 2010). Behavioral reactions can vary not only among individuals but also within an individual, depending on previous experience with a sound source, context, and numerous other factors (Ellison et al., 2012), and can vary depending on characteristics associated with the sound source ( e.g., whether it is moving or stationary, number of sources, distance from the source). In general, pinnipeds seem more tolerant of, or at least habituate more quickly to, potentially disturbing underwater sound than do cetaceans, and generally seem to be less responsive to exposure to industrial sound than most cetaceans. Please see Appendices B and C of Southall et al. (2007) and Gomez et al. (2016) for reviews of studies involving marine mammal behavioral responses to sound.

Habituation can occur when an animal's response to a stimulus wanes with repeated exposure, usually in the absence of unpleasant associated events (Wartzok et al., 2004). Animals are most likely to habituate to sounds that are predictable and unvarying. It is important to note that habituation is appropriately considered as a “progressive reduction in response to stimuli that are perceived as neither aversive nor beneficial,” rather than as, more generally, moderation in response to human disturbance (Bejder et al., 2009). The opposite process is sensitization, when an unpleasant experience leads to subsequent responses, often in the form of avoidance, at a lower level of exposure.

As noted above, behavioral state may affect the type of response. For example, animals that are resting may show greater behavioral change in response to disturbing sound levels than animals that are highly motivated to remain in an area for feeding (Richardson et al., 1995; Wartzok et al., 2004; NRC, 2005). Controlled experiments with captive marine mammals have showed pronounced behavioral reactions, including avoidance of loud sound sources (Ridgway et al., 1997; Finneran et al., 2003). Observed responses of wild marine mammals to loud pulsed sound sources ( e.g., seismic airguns) have been varied but often consist of avoidance behavior or other behavioral changes (Richardson et al., 1995; Morton and Symonds, 2002; Nowacek et al., 2007).

Available studies show wide variation in response to underwater sound; therefore, it is difficult to predict specifically how any given sound in a particular instance might affect marine mammals perceiving the signal. If a marine mammal does react briefly to an underwater sound by changing its behavior or moving a small distance, the impacts of the change are unlikely to be significant to the individual, let alone the stock or population. However, if a sound source displaces marine mammals from an important feeding or breeding area for a prolonged period, impacts on individuals and populations could be significant ( e.g., Lusseau and Bejder, 2007; Weilgart, 2007; NRC, 2005). However, there are broad categories of potential response, which we describe in greater detail here, that include alteration of dive behavior, alteration of foraging behavior, effects to breathing, interference with or alteration of vocalization, avoidance, and flight.

Changes in dive behavior can vary widely and may consist of increased or decreased dive times and surface intervals as well as changes in the rates of ascent and descent during a dive ( e.g., Frankel and Clark, 2000; Nowacek et al., 2004; Goldbogen et al., 2013a; Goldbogen et al., 2013b). Variations in dive behavior may reflect interruptions ( print page 66080) in biologically significant activities ( e.g., foraging) or they may be of little biological significance. The impact of an alteration to dive behavior resulting from an acoustic exposure depends on what the animal is doing at the time of the exposure and the type and magnitude of the response.

Disruption of feeding behavior can be difficult to correlate with anthropogenic sound exposure, so it is usually inferred by observed displacement from known foraging areas, the appearance of secondary indicators ( e.g., bubble nets or sediment plumes), or changes in dive behavior. As for other types of behavioral response, the frequency, duration, and temporal pattern of signal presentation, as well as differences in species sensitivity, are likely contributing factors to differences in response in any given circumstance ( e.g., Croll et al., 2001; Nowacek et al., 2004; Madsen et al., 2006; Yazvenko et al., 2007). A determination of whether foraging disruptions incur fitness consequences would require information on or estimates of the energetic requirements of the affected individuals and the relationship between prey availability, foraging effort and success, and the life history stage of the animal.

Variations in respiration naturally vary with different behaviors and alterations to breathing rate as a function of acoustic exposure can be expected to co-occur with other behavioral reactions, such as a flight response or an alteration in diving. However, respiration rates in and of themselves may be representative of annoyance or an acute stress response. Various studies have shown that respiration rates may either be unaffected or could increase, depending on the species and signal characteristics, again highlighting the importance in understanding species differences in the tolerance of underwater noise when determining the potential for impacts resulting from anthropogenic sound exposure ( e.g., Kastelein et al., 2005; Kastelein et al., 2006). For example, harbor porpoise' respiration rate increased in response to pile driving sounds at and above a received broadband SPL of 136 dB (zero-peak SPL: 151 dB re 1 μPa; SEL of a single strike: 127 dB re 1 μPa 2 -s) (Kastelein et al., 2013).

Marine mammals vocalize for different purposes and across multiple modes, such as whistling, echolocation click production, calling, and singing. Changes in vocalization behavior in response to anthropogenic noise can occur for any of these modes and may result from a need to compete with an increase in background noise or may reflect increased vigilance or a startle response. For example, in the presence of potentially masking signals, humpback whales and killer whales have been observed to increase the length of their songs (Miller et al., 2000; Fristrup et al., 2003) or vocalizations (Foote et al., 2004), respectively, while North Atlantic right whales ( Eubalaena glacialis ) have been observed to shift the frequency content of their calls upward while reducing the rate of calling in areas of increased anthropogenic noise (Parks et al., 2007). In some cases, animals may cease sound production during production of aversive signals (Bowles et al., 1994).

Avoidance is the displacement of an individual from an area or migration path as a result of the presence of a sound or other stressors, and is one of the most obvious manifestations of disturbance in marine mammals (Richardson et al., 1995). Avoidance may be short-term, with animals returning to the area once the noise has ceased ( e.g., Bowles et al., 1994; Morton and Symonds, 2002). Longer-term displacement is possible, however, which may lead to changes in abundance or distribution patterns of the affected species in the affected region if habituation to the presence of the sound does not occur ( e.g., Blackwell et al., 2004; Bejder et al., 2006).

A flight response is a dramatic change in normal movement to a directed and rapid movement away from the perceived location of a sound source. The flight response differs from other avoidance responses in the intensity of the response ( e.g., directed movement, rate of travel). Relatively little information on flight responses of marine mammals to anthropogenic signals exist, although observations of flight responses to the presence of predators have occurred (Connor and Heithaus, 1996; Bowers et al., 2018). The result of a flight response could range from brief, temporary exertion and displacement from the area where the signal provokes flight to, in extreme cases, marine mammal strandings (Evans and England, 2001). However, it should be noted that response to a perceived predator does not necessarily invoke flight (Ford and Reeves, 2008), and whether individuals are solitary or in groups may influence the response.

Behavioral disturbance can also impact marine mammals in more subtle ways. Increased vigilance may result in costs related to diversion of focus and attention ( i.e., when a response consists of increased vigilance, it may come at the cost of decreased attention to other critical behaviors such as foraging or resting). These effects have generally not been demonstrated for marine mammals, but studies involving fishes and terrestrial animals have shown that increased vigilance may substantially reduce feeding rates ( e.g., Beauchamp and Livoreil, 1997; Purser and Radford, 2011; Fritz et al., 2002). In addition, chronic disturbance can cause population declines through reduction of fitness ( e.g., decline in body condition) and subsequent reduction in reproductive success, survival, or both ( e.g., Daan et al., 1996; Bradshaw et al., 1998). However, Ridgway et al. (2006) reported that increased vigilance in bottlenose dolphins exposed to sound over a 5-day period did not cause any sleep deprivation or stress effects.

Many animals perform vital functions, such as feeding, resting, traveling, and socializing, on a diel cycle (24-hour cycle). Disruption of such functions resulting from reactions to stressors such as sound exposure are more likely to be significant if they last more than one diel cycle or recur on subsequent days (Southall et al., 2007). Consequently, a behavioral response lasting less than 1 day and not recurring on subsequent days is not considered particularly severe unless it could directly affect reproduction or survival (Southall et al., 2007). Note that there is a difference between multi-day substantive ( i.e., meaningful) behavioral reactions and multi-day anthropogenic activities. For example, just because an activity lasts for multiple days does not necessarily mean that individual animals are either exposed to activity-related stressors for multiple days or, further, exposed in a manner resulting in sustained multi-day substantive behavioral responses.

Behavioral Responses to Icebreaking Noise—Ringed seals on pack ice showed various behaviors when approached by an icebreaking vessel. A majority of seals dove underwater when the ship was within 0.93 km (0.5 nm) while others remained on the ice. However, as icebreaking vessels came closer to the seals, most dove underwater. Ringed seals have also been observed foraging in the wake of an icebreaking vessel (Richardson et al., 1995) and may have preferentially established breathing holes in the ship tracks after the ice-breaker moved through the area. Previous observations and studies using icebreaking ships provide a greater understanding in how seal behavior may be affected by a vessel transiting through the area.

Adult ringed seals spend up to 20 percent of the time in subnivean lairs during the winter season (Kelly et al., ( print page 66081) 2010a). Ringed seal pups spend about 50 percent of their time in the lair during the nursing period (Lydersen and Hammill, 1993). During the warm season ringed seals haul out on the ice. In a study of ringed seal haul out activity by Born et al. (2002), ringed seals spent 25-57 percent of their time hauled out in June, which is during their molting season. Ringed seal lairs are typically used by individual seals (haulout lairs) or by a mother with a pup (birthing lairs); large lairs used by many seals for hauling out are rare (Smith and Stirling, 1975). If the non-impulsive acoustic transmissions are heard and are perceived as a threat, ringed seals within subnivean lairs could react to the sound in a similar fashion to their reaction to other threats, such as polar bears (their primary predators), although the type of sound would be novel to them. Responses of ringed seals to a variety of human-induced sounds ( e.g., helicopter noise, snowmobiles, dogs, people, and seismic activity) have been variable; some seals entered the water and some seals remained in the lair. However, in all instances in which observed seals departed lairs in response to noise disturbance, they subsequently reoccupied the lair (Kelly et al., 1988).

Ringed seal mothers have a strong bond with their pups and may physically move their pups from the birth lair to an alternate lair to avoid predation, sometimes risking their lives to defend their pups from potential predators. If a ringed seal mother perceives the proposed acoustic sources as a threat, the network of multiple birth and haulout lairs allows the mother and pup to move to a new lair (Smith and Stirling, 1975; Smith and Hammill, 1981). The acoustic sources from this proposed action are not likely to impede a ringed seal from finding a breathing hole or lair, as captive seals have been found to primarily use vision to locate breathing holes and no effect to ringed seal vision would occur from the acoustic disturbance (Elsner et al., 1989; Wartzok et al., 1992). It is anticipated that a ringed seal would be able to relocate to a different breathing hole relatively easily without impacting their normal behavior patterns.

Stress responses—An animal's perception of a threat may be sufficient to trigger stress responses consisting of some combination of behavioral responses, autonomic nervous system responses, neuroendocrine responses, or immune responses ( e.g., Selye, 1950; Moberg, 2000). In many cases, an animal's first and sometimes most economical (in terms of energetic costs) response is behavioral avoidance of the potential stressor. Autonomic nervous system responses to stress typically involve changes in heart rate, blood pressure, and gastrointestinal activity. These responses have a relatively short duration and may or may not have a significant long-term effect on an animal's fitness.

Neuroendocrine stress responses often involve the hypothalamus-pituitary-adrenal system. Virtually all neuroendocrine functions that are affected by stress—including immune competence, reproduction, metabolism, and behavior—are regulated by pituitary hormones. Stress-induced changes in the secretion of pituitary hormones have been implicated in failed reproduction, altered metabolism, reduced immune competence, and behavioral disturbance ( e.g., Moberg, 1987; Blecha, 2000). Increases in the circulation of glucocorticoids are also equated with stress (Romano et al., 2004).

The primary distinction between stress (which is adaptive and does not normally place an animal at risk) and “distress” is the cost of the response. During a stress response, an animal uses glycogen stores that can be quickly replenished once the stress is alleviated. In such circumstances, the cost of the stress response would not pose serious fitness consequences. However, when an animal does not have sufficient energy reserves to satisfy the energetic costs of a stress response, energy resources must be diverted from other functions. This state of distress will last until the animal replenishes its energetic reserves sufficient to restore normal function.

Relationships between these physiological mechanisms, animal behavior, and the costs of stress responses are well-studied through controlled experiments for both laboratory and free-ranging animals ( e.g., Holberton et al., 1996; Hood et al., 1998; Jessop et al., 2003; Krausman et al., 2004; Lankford et al., 2005). Stress responses due to exposure to anthropogenic sounds or other stressors and their effects on marine mammals have also been reviewed (Fair and Becker, 2000; Romano et al., 2002b) and, more rarely, studied in wild populations ( e.g., Romano et al., 2002a). For example, Rolland et al. (2012) found that noise reduction from reduced vessel traffic in the Bay of Fundy was associated with decreased stress in North Atlantic right whales. These and other studies lead to a reasonable expectation that some marine mammals will experience physiological stress responses upon exposure to acoustic stressors and that it is possible that some of these would be classified as “distress.” In addition, any animal experiencing TTS would likely also experience stress responses (NRC, 2003), however, distress is an unlikely result of the proposed project based on observations of marine mammals during previous, similar projects in the region.

Auditory Masking—Since many marine mammals rely on sound to find prey, moderate social interactions, and facilitate mating (Tyack, 2008), noise from anthropogenic sound sources can interfere with these functions, but only if the noise spectrum overlaps with the hearing sensitivity of the receiving marine mammal (Southall et al., 2007; Clark et al., 2009; Hatch et al., 2012). Chronic exposure to excessive, though not high-intensity, noise could cause masking at particular frequencies for marine mammals that utilize sound for vital biological functions (Clark et al., 2009). Acoustic masking is when other noises such as from human sources interfere with an animal's ability to detect, recognize, or discriminate between acoustic signals of interest ( e.g., those used for intraspecific communication and social interactions, prey detection, predator avoidance, navigation) (Richardson et al., 1995; Erbe et al., 2016). Therefore, under certain circumstances, marine mammals whose acoustical sensors or environment are being severely masked could also be impaired from maximizing their performance fitness in survival and reproduction. The ability of a noise source to mask biologically important sounds depends on the characteristics of both the noise source and the signal of interest ( e.g., signal-to-noise ratio, temporal variability, direction), in relation to each other and to an animal's hearing abilities ( e.g., sensitivity, frequency range, critical ratios, frequency discrimination, directional discrimination, age or TTS hearing loss), and existing ambient noise and propagation conditions (Hotchkin and Parks, 2013).

Under certain circumstances, marine mammals experiencing significant masking could also be impaired from maximizing their performance fitness in survival and reproduction. Therefore, when the coincident (masking) sound is human-made, it may be considered harassment when disrupting or altering critical behaviors. It is important to distinguish TTS and PTS, which persist after the sound exposure, from masking, which occurs during the sound exposure. Because masking (without resulting in TS) is not associated with abnormal physiological function, it is not considered a physiological effect, but rather a potential behavioral effect ( print page 66082) (though not necessarily one that would be associated with harassment).

The frequency range of the potentially masking sound is important in determining any potential behavioral impacts. For example, low-frequency signals may have less effect on high-frequency echolocation sounds produced by odontocetes but are more likely to affect detection of mysticete communication calls and other potentially important natural sounds such as those produced by surf and some prey species. The masking of communication signals by anthropogenic noise may be considered as a reduction in the communication space of animals ( e.g., Clark et al., 2009) and may result in energetic or other costs as animals change their vocalization behavior ( e.g., Miller et al., 2000; Foote et al., 2004; Parks et al., 2007; Di Iorio and Clark, 2010; Holt et al., 2009). Masking can be reduced in situations where the signal and noise come from different directions (Richardson et al., 1995), through amplitude modulation of the signal, or through other compensatory behaviors (Hotchkin and Parks, 2013). Masking can be tested directly in captive species ( e.g., Erbe, 2008), but in wild populations it must be either modeled or inferred from evidence of masking compensation. There are few studies addressing real-world masking sounds likely to be experienced by marine mammals in the wild ( e.g., Branstetter et al., 2013).

Marine mammals at or near the proposed project site may be exposed to anthropogenic noise which may be a source of masking. Vocalization changes may result from a need to compete with an increase in background noise and include increasing the source level, modifying the frequency, increasing the call repetition rate of vocalizations, or ceasing to vocalize in the presence of increased noise (Hotchkin and Parks, 2013). For example, in response to loud noise, beluga whales may shift the frequency of their echolocation clicks to prevent masking by anthropogenic noise (Eickmeier and Vallarta, 2023).

Masking is more likely to occur in the presence of broadband, relatively continuous noise sources such as vibratory pile driving. Energy distribution of pile driving covers a broad frequency spectrum, and sound from pile driving would be within the audible range of pinnipeds and cetaceans present in the proposed action area. While icebreaking during the ONR's proposed action may mask some acoustic signals that are relevant to the daily behavior of marine mammals, the short-term duration (up to 8 days) and limited areas affected make it very unlikely that the fitness of individual marine mammals would be impacted.

Potential Effects on Prey—The marine mammal species in the Study Area feed on marine invertebrates and fish. Studies of sound energy effects on invertebrates are few, and primarily identify behavioral responses. It is expected that most marine invertebrates would not sense the frequencies of the acoustic transmissions from the acoustic sources associated with the proposed action. Although acoustic sources used during the proposed action may briefly impact individuals, intermittent exposures to non-impulsive acoustic sources are not expected to impact survival, growth, recruitment, or reproduction of widespread marine invertebrate populations.

The fish species residing in the study area include those that are closely associated with the deep ocean habitat of the Beaufort Sea. Nearly 250 marine fish species have been described in the Arctic, excluding the larger parts of the sub-Arctic Bering, Barents, and Norwegian Seas (Mecklenburg et al., 2011). However, only about 30 are known to occur in the Arctic waters of the Beaufort Sea (Christiansen and Reist, 2013). Although hearing capability data only exist for fewer than 100 of the 32,000 named fish species, current data suggest that most species of fish detect sounds from 50 to 100 Hz, with few fish hearing sounds above 4 kHz (Popper, 2008). It is believed that most fish have the best hearing sensitivity from 100 to 400 Hz (Popper, 2003). Fish species in the study area are expected to hear the low-frequency sources associated with the proposed action, but most are not expected to detect sound from the mid-frequency sources. Human generated sound could alter the behavior of a fish in a manner than would affect its way of living, such as where it tries to locate food or how well it could find a mate. Behavioral responses to loud noise could include a startle response, such as the fish swimming away from the source, the fish “freezing” and staying in place, or scattering (Popper, 2003). Misund (1997) found that fish ahead of a ship showed avoidance reactions at ranges of 49-149 m (160-489 ft). Avoidance behavior of vessels, vertically or horizontally in the water column, has been reported for cod and herring, and was attributed to vessel noise. While acoustic sources associated with the proposed action may influence the behavior of some fish species, other fish species may be equally unresponsive. Overall effects to fish from the proposed action would be localized, temporary, and infrequent.

Effects to Physical and Foraging Habitat—Ringed seals haul out on pack ice during the spring and summer to molt (Reeves et al., 2002; Born et al., 2002). Additionally, some studies suggested that ringed seals might preferentially establish breathing holes in ship tracks after vessels move through the area (Alliston, 1980; Alliston, 1981). The amount of ice habitat disturbed by activities is small relative to the amount of overall habitat available and there will be no permanent or longer-term loss or modification of physical ice habitat used by ringed seals. Vessel movement would have minimal effect on physical beluga habitat as beluga habitat is solely within the water column. Furthermore, the deployed sources that would remain in use after the vessels have left the survey area have low duty cycles and lower source levels, and any impacts to the acoustic habitat of marine mammals would be minimal.

This section provides an estimate of the number of incidental takes proposed for authorization through the IHA, which will inform NMFS' consideration of the negligible impact determinations and impacts on subsistence uses.

Harassment is the only type of take expected to result from these activities. For this military readiness activity, the MMPA defines “harassment” as (i) Any act that injures or has the significant potential to injure a marine mammal or marine mammal stock in the wild (Level A harassment); or (ii) Any act that disturbs or is likely to disturb a marine mammal or marine mammal stock in the wild by causing disruption of natural behavioral patterns, including, but not limited to, migration, surfacing, nursing, breeding, feeding, or sheltering, to a point where the behavioral patterns are abandoned or significantly altered (Level B harassment).

Authorized takes would be by Level B harassment only, in the form of direct behavioral disturbances and/or TTS for individual marine mammals resulting from exposure to active acoustic transmissions and icebreaking. Based on the nature of the activity, Level A harassment is neither anticipated nor proposed to be authorized.

As described previously, no serious injury or mortality is anticipated or proposed to be authorized for this activity. Below we describe how the proposed take numbers are estimated.

For acoustic impacts, generally speaking, we estimate take by considering: (1) acoustic thresholds ( print page 66083) above which NMFS believes the best available science indicates marine mammals will be behaviorally harassed or incur some degree of permanent hearing impairment; (2) the area or volume of water that will be ensonified above these levels in a day; (3) the density or occurrence of marine mammals within these ensonified areas; and, (4) the number of days of activities. We note that while these factors can contribute to a basic calculation to provide an initial prediction of potential takes, additional information that can qualitatively inform take estimates is also sometimes available ( e.g., previous monitoring results or average group size). Below, we describe the factors considered here in more detail and present the proposed take estimates.

NMFS recommends the use of acoustic thresholds that identify the received level of underwater sound above which exposed marine mammals would be reasonably expected to be behaviorally harassed (equated to Level B harassment) or to incur PTS of some degree (equated to Level A harassment). Thresholds have also been developed identifying the received level of in-air sound above which exposed pinnipeds would likely be behaviorally harassed.

Though significantly driven by received level, the onset of behavioral disturbance from anthropogenic noise exposure is also informed to varying degrees by other factors related to the source or exposure context ( e.g., frequency, predictability, duty cycle, duration of the exposure, signal-to-noise ratio, distance to the source), the environment ( e.g., bathymetry, other noises in the area, predators in the area), and the receiving animals (hearing, motivation, experience, demography, life stage, depth) and can be difficult to predict ( e.g., Southall et al., 2007; Southall et al., 2021; Ellison et al., 2012). Based on what the available science indicates and the practical need to use a threshold based on a metric that is both predictable and measurable for most activities, NMFS typically uses a generalized acoustic threshold based on received level to estimate the onset of behavioral harassment. NMFS generally predicts that marine mammals are likely to be behaviorally harassed in a manner considered to be Level B harassment when exposed to underwater anthropogenic noise above root-mean-squared pressure received levels (RMS SPL) of 120 dB re 1 μPa for continuous ( e.g., vibratory pile driving, drilling) and above RMS SPL 160 dB re 1 μPa for non-explosive impulsive ( e.g., seismic airguns) or intermittent ( e.g., scientific sonar) sources. Generally speaking, Level B harassment estimates based on these behavioral harassment thresholds are expected to include any likely takes by TTS as, in most cases, the likelihood of TTS occurs at distances from the source less than those at which behavioral harassment is likely. TTS of a sufficient degree can manifest as behavioral harassment, as reduced hearing sensitivity and the potential reduced opportunities to detect important signals (conspecific communication, predators, prey) may result in changes in behavior patterns that would not otherwise occur.

In this case, NMFS is proposing to adopt the ONR's approach to estimating incidental take by Level B harassment from the active acoustic sources for this action, which includes use of dose response functions. The ONR's dose response functions were developed to estimate take from sonar and similar transducers, but are not applicable to icebreaking. Multi-year research efforts have conducted sonar exposure studies for odontocetes and mysticetes (Miller et al., 2012; Sivle et al., 2012). Several studies with captive animals have provided data under controlled circumstances for odontocetes and pinnipeds (Houser et al., 2013b; Houser et al., 2013a). Moretti et al. (2014) published a beaked whale dose-response curve based on passive acoustic monitoring of beaked whales during U.S. Navy training activity at Atlantic Underwater Test and Evaluation Center during actual Anti-Submarine Warfare exercises. This information necessitated the update of the behavioral response criteria for the U.S. Navy's environmental analyses.

Southall et al. (2007), and more recently (Southall et al., 2019), synthesized data from many past behavioral studies and observations to determine the likelihood of behavioral reactions at specific sound levels. While in general, the louder the sound source the more intense the behavioral response, it was clear that the proximity of a sound source and the animal's experience, motivation, and conditioning were also critical factors influencing the response (Southall et al., 2007; Southall et al., 2019). After examining all of the available data, the authors felt that the derivation of thresholds for behavioral response based solely on exposure level was not supported because context of the animal at the time of sound exposure was an important factor in estimating response. Nonetheless, in some conditions, consistent avoidance reactions were noted at higher sound levels depending on the marine mammal species or group allowing conclusions to be drawn. Phocid seals showed avoidance reactions at or below 190 dB re 1 μPa at 1 m; thus, seals may actually receive levels adequate to produce TTS before avoiding the source.

Odontocete behavioral criteria for non-impulsive sources were updated based on controlled exposure studies for dolphins and sea mammals, sonar, and safety (3S) studies where odontocete behavioral responses were reported after exposure to sonar (Miller et al., 2011; Miller et al., 2012; Antunes et al., 2014; Miller et al., 2014; Houser et al., 2013b). For the 3S study, the sonar outputs included 1-2 kHz up- and down-sweeps and 6-7 kHz up-sweeps; source levels were ramped up from 152-158 dB re 1 μPa to a maximum of 198-214 re 1 μPa at 1 m. Sonar signals were ramped up over several pings while the vessel approached the mammals. The study did include some control passes of ships with the sonar off to discern the behavioral responses of the mammals to vessel presence alone versus active sonar.

The controlled exposure studies included exposing the Navy's trained bottlenose dolphins to mid-frequency sonar while they were in a pen. Mid-frequency sonar was played at six different exposure levels from 125-185 dB re 1 μPa (RMS). The behavioral response function for odontocetes resulting from the studies described above has a 50 percent probability of response at 157 dB re 1 μPa. Additionally, distance cutoffs (20 km for MF cetaceans) were applied to exclude exposures beyond which the potential of significant behavioral responses is considered to be unlikely.

The pinniped behavioral threshold was updated based on controlled exposure experiments on the following captive animals: hooded seal ( Cystophora cristata ), gray seal ( Halichoerus grypus ), and California sea lion (Götz et al., 2010; Houser et al., 2013a; Kvadsheim et al., 2010). Hooded seals were exposed to increasing levels of sonar until an avoidance response was observed, while the grey seals were exposed first to a single received level multiple times, then an increasing received level. Each individual California sea lion was exposed to the same received level ten times. These exposure sessions were combined into a single response value, with an overall response assumed if an animal responded in any single session. The resulting behavioral response function for pinnipeds has a 50 percent probability of response at 166 dB re 1 ( print page 66084) μPa. Additionally, distance cutoffs (10 km for pinnipeds) were applied to exclude exposures beyond which the potential of significant behavioral responses is considered unlikely. For additional information regarding marine mammal thresholds for PTS and TTS onset, please see NMFS (2018) and table 6.

Empirical evidence has not shown responses to non-impulsive acoustic sources that would constitute take beyond a few km from a non-impulsive acoustic source, which is why NMFS and the Navy conservatively set distance cutoffs for pinnipeds and mid-frequency cetaceans (U.S. Department of the Navy, 2017a). The cutoff distances for fixed sources are different from those for moving sources, as they are treated as individual sources in ONR's modeling given that the distance between them is significantly greater than the range to which environmental effects can occur. Fixed source cutoff distances used were 5 km (2.7 nm) for pinnipeds and 10 km (5.4 nm) for beluga whales (table 5). As some of the on-site drifting sources could come closer together, the drifting source cutoffs applied were 10 km (5.4 nm) for pinnipeds and 20 km (10.8 nm) for beluga whales (table 5). Regardless of the received level at that distance, take is not estimated to occur beyond these cutoff distances. Range to thresholds were calculated for the noise associated with icebreaking in the study area. These all fall within the same cutoff distances as non-impulsive acoustic sources; range to behavioral threshold for both beluga whales and ringed seal were under 5 km (2.7 nm), and range to TTS threshold for both under 15 m (49.2 ft) (table 5).

Table 5—Cutoff Distances and Acoustic Thresholds Identifying the Onset of Behavioral Disturbance, TTS, and PTS for Non-Impulsive Sound Sources

Hearing group Species Fixed source behavioral threshold cutoff distance  Drifting source behavioral threshold cutoff distance  Behavioral criteria: Non-impulsive acoustic sources Icebreaking source behavioral threshold cutoff distance  Behavioral criteria: icebreaking sources Physiological criteria: onset TTS Physiological criteria: onset PTS
Mid-frequency cetaceans Beluga whale 10 km (5.4 nm) 20 km (10.8 nm) Mid-frequency BRF dose-response function * 5 km (2.7 nm) 120 dB re 1 µPa step function 178 dB SEL 198 dB SEL .
Phocidae (in water) Ringed seal 5 km (2.7 nm) 10 km (5.4 nm) Pinniped dose-response function * 5 km (2.7 nm) 120 dB re 1 µPa step function 181 dB SEL 201 dB SEL .
The threshold values provided are assumed for when the source is within the animal's best hearing sensitivity. The exact threshold varies based on the overlap of the source and the frequency weighting (see figure 6-1 in IHA application).
 Take is not estimated to occur beyond these cutoff distances, regardless of the received level.
 Range to TTS threshold for both hearing groups for the noise associated with icebreaking in the Study Area is under 15 m (49.2 ft).

NMFS' Technical Guidance for Assessing the Effects of Anthropogenic Sound on Marine Mammal Hearing (Version 2.0) (Technical Guidance, 2018) identifies dual criteria to assess auditory injury (Level A harassment) to five different marine mammal groups (based on hearing sensitivity) as a result of exposure to noise from two different types of sources (impulsive or non-impulsive). The ONR's proposed action includes the use of non-impulsive (active sonar and icebreaking) sources; however, Level A harassment is not expected as a result of the proposed activities based on modeling, as described below, nor is it proposed to be authorized by NMFS.

These thresholds are provided in the table below. The references, analysis, and methodology used in the development of the thresholds are described in NMFS' 2018 Technical Guidance, which may be accessed at: https://www.fisheries.noaa.gov/​national/​marine-mammal-protection/​marine-mammal-acoustic-technical-guidance .

Table 6—Thresholds Identifying the Onset of Permanent Threshold Shift

Hearing group PTS onset acoustic thresholds * (received level) Impulsive Non-impulsive Low-Frequency (LF) Cetaceans 219 dB; 183 dB 199 dB. Mid-Frequency (MF) Cetaceans 230 dB; : 185 dB 198 dB. High-Frequency (HF) Cetaceans 202 dB; 155 dB 173 dB. Phocid Pinnipeds (PW) (Underwater) 218 dB; 185 dB 201 dB. Otariid Pinnipeds (OW) (Underwater) 232 dB; 203 dB 219 dB. * Dual metric acoustic thresholds for impulsive sounds: Use whichever results in the largest isopleth for calculating PTS onset. If a non-impulsive sound has the potential of exceeding the peak sound pressure level thresholds associated with impulsive sounds, these thresholds should also be considered. Peak sound pressure ( ) has a reference value of 1 μPa, and cumulative sound exposure level ( ) has a reference value of 1 μPa s. In this table, thresholds are abbreviated to reflect American National Standards Institute (ANSI) standards. However, peak sound pressure is defined by ANSI as incorporating frequency weighting, which is not the intent for this Technical Guidance. Hence, the subscript “flat” is being included to indicate peak sound pressure should be flat weighted or unweighted within the generalized hearing range. The subscript associated with cumulative sound exposure level thresholds indicates the designated marine mammal auditory weighting function (LF, MF, and HF cetaceans, and PW and OW pinnipeds) and that the recommended accumulation period is 24 hours. The cumulative sound exposure level thresholds could be exceeded in a multitude of ways ( varying exposure levels and durations, duty cycle). When possible, it is valuable for action proponents to indicate the conditions under which these acoustic thresholds will be exceeded.

The Navy performed a quantitative analysis to estimate the number of marine mammals likely to be exposed to underwater acoustic transmissions above the previously described threshold criteria during the proposed action. Inputs to the quantitative analysis included marine mammal density estimates obtained from the Kaschner et al. (2006) habitat suitability model and (Cañadas et al., 2020), marine mammal depth occurrence (U.S. Department of the Navy, 2017b), oceanographic and mammal hearing data, and criteria and thresholds for levels of potential effects. The quantitative analysis consists of computer modeled estimates and a post-model analysis to determine the number of potential animal exposures. The model calculates sound energy propagation from the proposed non-impulsive acoustic sources, the sound received by animat (virtual animal) dosimeters representing marine mammals distributed in the area around the modeled activity, and whether the sound received by animats exceeds the thresholds for effects.

The Navy developed a set of software tools and compiled data for estimating acoustic effects on marine mammals without consideration of behavioral avoidance or mitigation. These tools and data sets serve as integral components of the Navy Acoustic Effects Model (NAEMO). In NAEMO, animats are distributed non-uniformly based on species-specific density, depth distribution, and group size information and animats record energy received at their location in the water column. A fully three-dimensional environment is used for calculating sound propagation and animat exposure in NAEMO. Site-specific bathymetry, sound speed profiles, wind speed, and bottom properties are incorporated into the propagation modeling process. NAEMO calculates the likely propagation for various levels of energy (sound or pressure) resulting from each source used during the training event.

NAEMO then records the energy received by each animat within the energy footprint of the event and calculates the number of animats having received levels of energy exposures that fall within defined impact thresholds. Predicted effects on the animats within a scenario are then tallied and the highest order effect (based on severity of criteria; e.g., PTS over TTS) predicted for a given animat is assumed. Each scenario, or each 24-hour period for scenarios lasting greater than 24 hours is independent of all others, and therefore, the same individual marine mammal (as represented by an animat in the model environment) could be impacted during each independent scenario or 24-hour period. In few instances, although the activities themselves all occur within the proposed study location, sound may propagate beyond the boundary of the study area. Any exposures occurring outside the boundary of the study area are counted as if they occurred within the study area boundary. NAEMO provides the initial estimated impacts on marine species with a static horizontal distribution ( i.e., animats in the model environment do not move horizontally).

There are limitations to the data used in the acoustic effects model, and the results must be interpreted within this context. While the best available data and appropriate input assumptions have been used in the modeling, when there is a lack of definitive data to support an aspect of the modeling, conservative modeling assumptions have been chosen ( i.e., assumptions that may result in an overestimate of acoustic exposures):

  • Animats are modeled as being underwater, stationary, and facing the source and therefore always predicted to receive the maximum potential sound level at a given location ( i.e., no porpoising or pinnipeds' heads above water);
  • Animats do not move horizontally (but change their position vertically within the water column), which may overestimate physiological effects such as hearing loss, especially for slow moving or stationary sound sources in the model;
  • Animats are stationary horizontally and therefore do not avoid the sound source, unlike in the wild where animals would most often avoid exposures at higher sound levels, especially those exposures that may result in PTS;
  • Multiple exposures within any 24-hour period are considered one continuous exposure for the purposes of calculating potential threshold shift, because there are not sufficient data to estimate a hearing recovery function for the time between exposures; and
  • Mitigation measures were not considered in the model. In reality, sound-producing activities would be reduced, stopped, or delayed if marine mammals are detected by visual monitoring.

Due to these inherent model limitations and simplifications, model-estimated results should be further analyzed, considering such factors as the range to specific effects, avoidance, and the likelihood of successfully implementing mitigation measures. This analysis uses a number of factors in addition to the acoustic model results to predict acoustic effects on marine mammals, as described below in the Marine Mammal Occurrence and Take Estimation section.

The underwater radiated noise signature for icebreaking in the central Arctic Ocean by CGC HEALY during different types of ice-cover was characterized in Roth et al. (2013). The radiated noise signatures were characterized for various fractions of ice cover. For modeling, the 8/10 and 3/10 ice cover were used. Each modeled day of icebreaking consisted of 16 hours of 8/10 ice cover and 8 hours of 3/10 ice cover. The sound signature of the 5/10 icebreaking activities, which would correspond to half-power icebreaking, was not reported in Roth et al. (2013); therefore, the full-power signature was used as a conservative proxy for the half-power signature. Icebreaking was modeled for 8 days total. Since ice forecasting cannot be predicted more than a few weeks in advance, it is unknown if icebreaking would be needed to deploy or retrieve the sources after 1 year of transmitting. Therefore, the potential for an icebreaking cruise on CGC HEALY was conservatively analyzed within the ONR's request for an IHA. As the R/V Sikuliaq is not capable of icebreaking, acoustic noise created by icebreaking is only modeled for the CGC HEALY. Figures 5a and 5b in Roth et al. (2013) depict the source spectrum level versus frequency for 8/10 and 3/10 ice cover, respectively. The sound signature of each of the ice coverage levels was broken into 1-octave bins (table 7). In the model, each bin was included as a separate source on the modeled vessel. When these independent sources go active concurrently, they simulate the sound signature of CGC HEALY. The modeled source level summed across these bins was 196.2 dB for the 8/10 signature and 189.3 dB for the 3/10 ice signature. These source levels are a good approximation of the icebreaker's observed source level (provided in figure 4b of Roth et al. (2013). Each frequency and source level was modeled as an independent source, and applied simultaneously to all of the animats within NAEMO. Each second was summed across frequency to estimate SPL RMS. Any animat exposed to sound levels greater than 120 dB was considered a take by Level B harassment. For PTS and TTS, determinations, sound exposure levels were summed over the duration of the ( print page 66086) test and the transit to the deep water deployment area. The method of quantitative modeling for icebreaking is considered to be a conservative approach; therefore, the number of takes estimated for icebreaking are likely an overestimate and would not be expected to reach that level.

Table 7—Modeled Bins for 8/10 Ice Coverage (Full Power) and 3/10 Ice Coverage (Quarter Power) Icebreaking on CGC HEALY

Frequency (Hz) 8/10 source level (dB) 3/10 source level (dB) 25 189 187 50 188 182 100 189 179 200 190 177 400 188 175 800 183 170 1,600 177 166 3,200 176 171 6,400 172 168 12,800 167 164

Most likely, individuals affected by acoustic transmission would move away from the sound source. Ringed seals may be temporarily displaced from their subnivean lairs in the winter, but a pinniped would have to be within 5 km (2.7 nm) of a moored source or within 10 km (5.4 nm) of a drifting source for any behavioral reaction. Any effects experienced by individual pinnipeds are anticipated to be short-term disturbance of normal behavior, or temporary displacement or disruption of animals that may be near elements of the proposed action.

Of historical sightings registered in the Ocean Biodiversity Information System Spatial Ecological Analysis of Megavertebrate Populations (OBIS-SEAMAP database) (Halpin et al., 2009) in the ARA Study Area, nearly all (99 percent) occurred in summer and fall seasons. However, there is no documentation to prove that this is because ringed seals would all move out of the Study Area during the cold season, or if the lack of sightings is due to the harsh environment and ringed seal behavior being prohibitive factors for cold season surveying. OBIS-SEAMAP reports 542 animals sighted over 150 records in the ARA Study Area across all years and seasons. Taking the average of 542 animals in 150 records aligns with survey data from previous ARA cruises that show up to three ringed seals (or small, unidentified pinnipeds assumed to be ringed seals) per day sighted in the Study Area. To account for any unsighted animals, that number was rounded up to 4. Assuming that four animals would be present in the Study Area, a rough estimate of density can be calculated using the overall Study Area size:

4 ringed seals ÷ 48,725 km 2 = 0.00008209 ringed seals/km 2

The area of influence surrounding each moored source would be 78.5 km 2 , and the area of influence surrounding each drifting source would be 314 km 2 . The total area of influence on any given day from non-impulsive acoustic sources would be 942 km 2 . The number of ringed seals that could be taken daily can be calculated:

0.00008209 ringed seals/km 2 × 942 km 2 = 0.077 ringed seals/day

To be conservative, the ONR has assumed that one ringed seal would be exposed to acoustic transmissions above the threshold for Level B harassment, and that each would be exposed each day of the proposed action (365 days total). Unlike the NAEMO modeling approach used to estimate ringed seal takes in previous ARA IHAs, the occurrence method used in this ARA IHA request does not support the differentiation between behavioral or TTS exposures. Therefore, all takes are classified as Level B harassment and not further distinguished. Modeling for all previous years of ARA activities did not result in any estimated Level A harassment. NMFS has no reason to expect that the ARA activities during the effective dates of this IHA would be more likely to result in Level A harassment. Therefore, no Level A harassment is anticipated due to the proposed action.

In this section we provide information about the occurrence of marine mammals, including density or other relevant information which will inform the take calculations. We also describe how the marine mammal occurrence information is synthesized to produce a quantitative estimate of the take that is reasonably likely to occur and proposed for authorization.

The beluga whale density numbers utilized for quantitative acoustic modeling are from the Navy Marine Species Density Database (U.S. Department of the Navy, 2014). Where available ( i.e., June through 15 October over the continental shelf primarily), density estimates used were from Duke density modeling based upon line-transect surveys (Cañadas et al., 2020). The remaining seasons and geographic area were based on the habitat-based modeling by Kaschner (2004) and Kaschner et al. (2006). Density for beluga whales was not distinguished by stock and varied throughout the project area geographically and monthly; the range of densities in the Study Area is shown in table 8. The density estimates for ringed seals are based on the habitat suitability modeling by Kaschner (2004) and Kaschner et al. (2006) and shown in table 8.

Table 8—Density Estimates of Impacted Species

Common name Stock Density (animals/km ) Beluga whale Beaufort Sea 0.000506 to 0.5176 Beluga whale Eastern Chukchi Sea 0.000506 to 0.5176 Ringed seal Arctic 0.1108 to 0.3562

Take of all species would occur by Level B harassment only. NAEMO was previously used to produce a qualitative estimate of PTS, TTS, and behavioral exposures for ringed seals. For this proposed action, a new approach that utilizes sighting data from previous surveys conducted within the Study Area was used to estimate Level B harassment associated with non-impulsive acoustic sources (see section 6.4.3 of the IHA application). NAEMO modeling is still used to provide estimated takes of beluga whales associated with non-impulsive acoustic sources, as well as provide take estimations associated with icebreaking for both species. Table 9 shows the total number of requested takes by Level B harassment that NMFS proposes to authorize for both beluga whale stocks and the Arctic ringed seal stock based upon NAEMO modeled results. ( print page 66087)

Density estimates for beluga whales are equal as estimates were not distinguished by stock (Kaschner, 2004; Kaschner et al., 2006). The ranges of the Beaufort Sea and Eastern Chukchi Sea beluga whales vary within the study area throughout the year (Hauser et al., 2014). Based upon the limited information available regarding the expected spatial distributions of each stock within the study area, take has been apportioned equally to each stock (table 9). In addition, in NAEMO, animats do not move horizontally or react in any way to avoid sound, therefore, the current model may overestimate non-impulsive acoustic impacts.

Table 9—Proposed Take by Level B Harassment

Species Stock Active acoustics Icebreaking (behavioral) Icebreaking (TTS) Total proposed take SAR abundance Percentage of population
Beluga whale Beaufort Sea  177  21 0 99 39,258 <1
Beluga whale Chukchi Sea  177  21 0 99 13,305 <1
Ringed seal Arctic 365 538 1 904  UND (171, 418) <1
 Acoustic and icebreaking exposures to beluga whales were not modeled at the stock level as the density value is not distinguished by stock in the Arctic for beluga whales (U.S. Department of the Navy, 2014). Estimated take of beluga whales due to active acoustics is 177 and 21 due to icebreaking activities, totaling 198 takes of beluga whales. The total take was evenly distributed among the two stocks.
 A reliable population estimate for the entire Arctic stock of ringed seals is not available and NMFS SAR lists it as Undetermined (UND). Using a sub-sample of data collected from the U.S. portion of the Bering Sea (Conn 2014), an abundance estimate of 171,418 ringed seals has been calculated but this estimate does not account for availability bias due to seals in the water or in the shore-fast ice zone at the time of the survey. The actual number of ringed seals in the U.S. portion of the Bering Sea is likely much higher. Using the minimum population size (N = 158,507) based upon this negatively biased population estimate, the PBR is calculated to be 4,755 seals, although this is also a negatively biased estimate.

In order to issue an IHA under section 101(a)(5)(D) of the MMPA, NMFS must set forth the permissible methods of taking pursuant to the activity, and other means of effecting the least practicable impact on the species or stock and its habitat, paying particular attention to rookeries, mating grounds, and areas of similar significance, and on the availability of the species or stock for taking for certain subsistence uses. NMFS regulations require applicants for incidental take authorizations to include information about the availability and feasibility (economic and technological) of equipment, methods, and manner of conducting the activity or other means of effecting the least practicable adverse impact upon the affected species or stocks, and their habitat ( 50 CFR 216.104(a)(11) ). The 2004 NDAA amended the MMPA as it relates to military readiness activities and the incidental take authorization process such that “least practicable impact” shall include consideration of personnel safety, practicality of implementation, and impact on the effectiveness of the military readiness activity.

In evaluating how mitigation may or may not be appropriate to ensure the least practicable adverse impact on species or stocks and their habitat, as well as subsistence uses where applicable, NMFS considers two primary factors:

(1) The manner in which, and the degree to which, the successful implementation of the measure(s) is expected to reduce impacts to marine mammals, marine mammal species or stocks, and their habitat, as well as subsistence uses. This considers the nature of the potential adverse impact being mitigated (likelihood, scope, range). It further considers the likelihood that the measure will be effective if implemented (probability of accomplishing the mitigating result if implemented as planned), the likelihood of effective implementation (probability implemented as planned), and;

(2) The practicability of the measures for applicant implementation, which may consider such things as cost, impact on operations, and, in the case of a military readiness activity, personnel safety, practicality of implementation, and impact on the effectiveness of the military readiness activity.

The following measures are proposed for this IHA:

  • All vessels operated by or for the Navy must have personnel assigned to stand watch at all times while underway. Watch personnel must employ visual search techniques using binoculars. While underway and while using active acoustic sources/towed in-water devices, at least one person with access to binoculars is required to be on watch at all times.
  • Vessel captains and vessel personnel must remain alert at all times, proceed with extreme caution, and operate at a safe speed so that the vessel can take proper and effective action to avoid any collisions with marine mammals.
  • During moored and drifting acoustic source deployment and recovery, ONR must implement a mitigation zone of 55 m (180 ft) around the deployed source. Deployment and recovery must cease if a marine mammal is visually deterred within the mitigation zone. Deployment and recovery may recommence if any one of the following conditions are met:

○ The animal is observed exiting the mitigation zone;

○ The animal is thought to have exited the mitigation zone based on a determination of its course, speed, and movement relative to the sound source;

○ The mitigation zone has been clear from any additional sightings for a period of 15 minutes for pinnipeds and 30 minutes for cetaceans.

  • Vessels must avoid approaching marine mammals head-on and must maneuver to maintain a mitigation zone of 457 m (500 yards) around all observed cetaceans and 183 m (200 yards) around all other observed marine mammals, provided it is safe to do so.
  • Activities must cease if a marine mammal species for which take was not authorized, or a species for which authorization was granted but the authorized number of takes have been met, is observed approaching or within the mitigation zone (table 10). Activities must not resume until the animal is confirmed to have left the area.
  • Vessel captains must maintain at-sea communication with subsistence hunters to avoid conflict of vessel transit with hunting activity.

Table 10—Proposed Mitigation Zones

Activity and/or effort type Species Mitigation zone Acoustic source deployment and recovery, stationary Beluga whale 55 m (180 ft). ( print page 66088) Acoustic source deployment and recovery, stationary Ringed seal 55 m (180 ft). Transit Beluga whale 457 m (500 yards). Transit Ringed seal 183 m (200 yards).

Based on our evaluation of the applicant's proposed measures, NMFS has preliminarily determined that the proposed mitigation measures provide the means of effecting the least practicable impact on the affected species or stocks and their habitat, paying particular attention to rookeries, mating grounds, areas of similar significance, and on the availability of such species or stock for subsistence uses.

In order to issue an IHA for an activity, section 101(a)(5)(D) of the MMPA states that NMFS must set forth requirements pertaining to the monitoring and reporting of such taking. The MMPA implementing regulations at 50 CFR 216.104(a)(13) indicate that requests for authorizations must include the suggested means of accomplishing the necessary monitoring and reporting that will result in increased knowledge of the species and of the level of taking or impacts on populations of marine mammals that are expected to be present while conducting the activities. Effective reporting is critical both to compliance as well as ensuring that the most value is obtained from the required monitoring.

Monitoring and reporting requirements prescribed by NMFS should contribute to improved understanding of one or more of the following:

  • Occurrence of marine mammal species or stocks in the area in which take is anticipated ( e.g., presence, abundance, distribution, density);
  • Nature, scope, or context of likely marine mammal exposure to potential stressors/impacts (individual or cumulative, acute or chronic), through better understanding of: (1) action or environment ( e.g., source characterization, propagation, ambient noise); (2) affected species ( e.g., life history, dive patterns); (3) co-occurrence of marine mammal species with the activity; or (4) biological or behavioral context of exposure ( e.g., age, calving or feeding areas);
  • Individual marine mammal responses (behavioral or physiological) to acoustic stressors (acute, chronic, or cumulative), other stressors, or cumulative impacts from multiple stressors;
  • How anticipated responses to stressors impact either: (1) long-term fitness and survival of individual marine mammals; or (2) populations, species, or stocks;
  • Effects on marine mammal habitat ( e.g., marine mammal prey species, acoustic habitat, or other important physical components of marine mammal habitat); and,
  • Mitigation and monitoring effectiveness.

The Navy has coordinated with NMFS to develop an overarching program plan in which specific monitoring would occur. This plan is called the Integrated Comprehensive Monitoring Program (ICMP) (U.S. Department of the Navy, 2011). The ICMP has been developed in direct response to Navy permitting requirements established through various environmental compliance efforts. As a framework document, the ICMP applies by regulation to those activities on ranges and operating areas for which the Navy is seeking or has sought incidental take authorizations. The ICMP is intended to coordinate monitoring efforts across all regions and to allocate the most appropriate level and type of effort based on a set of standardized research goals, and in acknowledgement of regional scientific value and resource availability.

The ICMP is focused on Navy training and testing ranges where the majority of Navy activities occur regularly as those areas have the greatest potential for being impacted. ONR's ARA in comparison is a less intensive test with little human activity present in the Arctic. Human presence is limited to the deployment of sources that would take place over several weeks. Additionally, due to the location and nature of the testing, vessels and personnel would not be within the study area for an extended period of time. As such, more extensive monitoring requirements beyond the basic information being collected would not be feasible as it would require additional personnel and equipment to locate seals and a presence in the Arctic during a period of time other then what is planned for source deployment. However, ONR will record all observations of marine mammals, including the marine mammal's species identification, location (latitude/longitude), behavior, and distance from project activities. ONR will also record date and time of sighting. This information is valuable in an area with few recorded observations.

Marine mammal monitoring must be conducted in accordance with the Navy's ICMP and the proposed IHA:

  • While underway, all vessels must have at least one person trained through the U.S. Navy Marine Species Awareness Training Program on watch during all activities;
  • Watch personnel must use standardized data collection forms, whether hard copy or electronic. Watch personnel must distinguish between sightings that occur during transit or during deployment or recovery of acoustic sources. Data must be recorded on all days of activities, even if marine mammals are not sighted;
  • At minimum, the following information must be recorded:

○ Vessel name;

○ Watch personnel names and affiliation;

○ Effort type ( i.e., transit, deployment, recovery); and

○ Environmental conditions (at the beginning of watch stander shift and whenever conditions change significantly), including Beaufort Sea State (BSS) and any other relevant weather conditions, including cloud cover, fog, sun glare, and overall visibility to the horizon.

  • Upon visual observation of any marine mammal, the following information must be recorded:

○ Date/time of sighting;

○ Identification of animal ( e.g., genus/species, lowest possible taxonomic level, or unidentified) and the composition of the group if there is a mix of species;

○ Location (latitude/longitude) of sighting;

○ Estimated number of animals (high/low/best);

○ Description (as many distinguishing features as possible of each individual seen, including length, shape, color, pattern, scars or markings, shape and size of dorsal fin, shape of head, and blow characteristics);

○ Detailed behavior observations ( e.g., number of blows/breaths, number of surfaces, breaching, spyhopping, ( print page 66089) diving, feeding, traveling; as explicit and detailed as possible; length of time observed in the mitigation zone, note any observed changes in behavior);

○ Distance from vessel to animal;

○ Direction of animal's travel relative to the vessel;

○ Platform activity at time of sighting ( i.e., transit, deployment, recovery); and

○ Weather conditions ( i.e., BSS, cloud cover).

○ During icebreaking, the following information must be recorded:

○ Start and end time of icebreaking; and

○ Ice cover conditions.

  • During deployment and recovery of acoustic sources or UUVs, visual observation must begin 30 minutes prior to deployment or recovery and continue through 30 minutes following the source deployment or recovery.
  • The ONR must submit its draft report(s) on all monitoring conducted under the IHA within 90 calendar days of the completion of monitoring or 60 calendar days prior to the requested issuance of any subsequent IHA for research activities at the same location, whichever comes first. A final report must be prepared and submitted within 30 calendar days following receipt of any NMFS comments on the draft report. If no comments are received from NMFS within 30 calendar days of receipt of the draft report, the report shall be considered final.
  • All draft and final monitoring reports must be submitted to [email protected] and [email protected] .
  • The marine mammal report, at minimum, must include:

○ Dates and times (begin and end) of all marine mammal monitoring;

○ Acoustic source use or icebreaking;

○ Watch stander location(s) during marine mammal monitoring;

○ Environmental conditions during monitoring periods (at beginning and end of watch standing shift and whenever conditions change significantly), including BSS and any other relevant weather conditions including cloud cover, fog, sun glare, and overall visibility to the horizon, and estimated observable distance;

○ Upon observation of a marine mammal, the following information:

Name of watch stander who sighted the animal(s), the watch stander location, and activity at time of sighting;

Time of sighting;

Identification of the animal(s) ( e.g., genus/species, lowest possible taxonomic level, or unidentified), watch stander confidence in identification, and the composition of the group if there is a mix of species;

Distance and location of each observed marine mammal relative to the acoustic source or icebreaking for each sighting;

Estimated number of animals (min/max/best estimate);

Estimated number of animals by cohort (adults, juveniles, neonates, group composition, etc. );

Animal's closest point of approach and estimated time spent within the harassment zone; and

Description of any marine mammal behavioral observations ( e.g., observed behaviors such as feeding or traveling), including an assessment of behavioral responses thought to have resulted from the activity ( e.g., no response or changes in behavioral state such as ceasing feeding, changing direction, flushing, or breaching.

○ Number of shutdowns during monitoring, if any;

○ Marine mammal sightings (including the marine mammal's location (latitude/longitude));

○ Number of individuals of each species observed during source deployment, operation, and recovery; and

○ Detailed information about implementation of any mitigation ( e.g., shutdowns, delays), a description of specific actions that ensued, and resulting changes in behavior of the animal(s), if any.

  • The ONR must submit all watch stander data electronically in a format that can be queried, such as a spreadsheet or database ( i.e., digital images of data sheets are not sufficient).
  • Reporting injured or dead marine mammals:

○ In the event that personnel involved in the specified activities discover an injured or dead marine mammal, the ONR must report the incident to the Office of Protected Resources (OPR), NMFS ( [email protected] and [email protected] ) and to the Alaska regional stranding network (877-925-7773) as soon as feasible. If the death or injury was clearly caused by the specified activity, the ONR must immediately cease the activities until NMFS OPR is able to review the circumstances of the incident and determine what, if any, additional measures are appropriate to ensure compliance with the terms of this IHA. The ONR must not resume their activities until notified by NMFS.

○ The report must include the following information:

Time, date, and location (latitude/longitude) of the first discovery (and updated location information if known and applicable);

Species identification (if known) or description of the animal(s) involved;

Condition of the animal(s) (including carcass condition if the animal is dead);

Observed behaviors of the animal(s), if alive;

If available, photographs or video footage of the animal(s); and

General circumstances under which the animal was discovered.

  • Vessel Strike: In the event of a vessel strike of a marine mammal by any vessel involved in the activities covered by the authorization, the ONR shall report the incident to OPR, NMFS and to the Alaska regional stranding coordinator (877-925-7773) as soon as feasible. The report must include the following information:

○ Time, date, and location (latitude/longitude) of the incident;

○ Species identification (if known) or description of the animal(s) involved;

○ Vessel's speed during and leading up to the incident;

○ Vessel's course/heading and what operations were being conducted (if applicable);

○ Status of all sound sources in use;

○ Description of avoidance measures/requirements that were in place at the time of the strike and what additional measures were taken, if any, to avoid strike;

○ Environmental conditions ( e.g., wind speed and direction, BSS, cloud cover, visibility) immediately preceding the strike;

○ Estimated size and length of animal that was struck;

○ Description of the behavior of the marine mammal immediately preceding and following the strike;

○ If available, description of the presence and behavior of any other marine mammals immediately preceding the strike;

○ Estimated fate of the animal ( e.g., dead, injured but alive, injured and moving, blood or tissue observed in the water, status unknown, disappeared); and

○ To the extent practicable, photographs or video footage of the animal(s).

NMFS has defined negligible impact as an impact resulting from the specified activity that cannot be reasonably expected to, and is not reasonably likely to, adversely affect the species or stock through effects on annual rates of recruitment or survival ( 50 CFR 216.103 ). A negligible impact finding is based on the lack of likely adverse effects on annual rates of ( print page 66090) recruitment or survival ( i.e., population-level effects). An estimate of the number of takes alone is not enough information on which to base an impact determination. In addition to considering estimates of the number of marine mammals that might be “taken” through harassment, NMFS considers other factors, such as the likely nature of any impacts or responses ( e.g., intensity, duration), the context of any impacts or responses ( e.g., critical reproductive time or location, foraging impacts affecting energetics), as well as effects on habitat, and the likely effectiveness of the mitigation. We also assess the number, intensity, and context of estimated takes by evaluating this information relative to population status. Consistent with the 1989 preamble for NMFS' implementing regulations ( 54 FR 40338 , September 29, 1989), the impacts from other past and ongoing anthropogenic activities are incorporated into this analysis via their impacts on the baseline ( e.g., as reflected in the regulatory status of the species, population size and growth rate where known, ongoing sources of human-caused mortality, or ambient noise levels).

To avoid repetition, the discussion of our analysis applies to beluga whales and ringed seals, given that the anticipated effects of this activity on these different marine mammal stocks are expected to be similar. Where there are meaningful differences between species or stocks, or groups of species, in anticipated individual responses to activities, impact of expected take on the population due to differences in population status, or impacts on habitat, they are described independently in the analysis below.

Underwater acoustic transmissions associated with the proposed ARA, as outlined previously, have the potential to result in Level B harassment of beluga seals and ringed seals in the form of behavioral disturbances. No serious injury, mortality, or Level A harassment are anticipated to result from these described activities. Effects on individual belugas or ringed seals taken by Level B harassment could include alteration of dive behavior and/or foraging behavior, effects to breathing rates, interference with or alteration of vocalization, avoidance, and flight. More severe behavioral responses are not anticipated due to the localized, intermittent use of active acoustic sources. Exposure duration is likely to be short-term and individuals will, most likely, simply be temporarily displaced by moving away from the acoustic source. Exposures are, therefore, unlikely to result in any significant realized decrease in fitness for affected individuals or adverse impacts to stocks as a whole.

Arctic ringed seals are listed as threatened under the ESA. The primary concern for Arctic ringed seals is the ongoing and anticipated loss of sea ice and snow cover resulting from climate change, which is expected to pose a significant threat to ringed seals in the future (Muto et al., 2021). In addition, Arctic ringed seals have also been experiencing a UME since 2019 although the cause of the UME is currently undetermined. As mentioned earlier, no mortality or serious injury to ringed seals is anticipated nor proposed to be authorized. Due to the short-term duration of expected exposures and required mitigation measures to reduce adverse impacts, we do not expect the proposed ARA to compound or exacerbate the impacts of the ongoing UME.

A small portion of the Study Area overlaps with ringed seal critical habitat. Although this habitat contains features necessary for ringed seal formation and maintenance of subnivean birth lairs, basking and molting, and foraging, these features are also available throughout the rest of the designated critical habitat area. Any potential limited displacement of ringed seals from the proposed ARA study area would not be expected to interfere with their ability to access necessary habitat features, given the availability of similar necessary habitat features nearby.

The Study Area also overlaps with beluga whale migratory and feeding BIAs. Due to the small amount of overlap between the BIAs and the proposed ARA study area as well as the low intensity and short-term duration of acoustic sources and required mitigation measures, we expect minimal impacts to migrating or feeding belugas. Shutdown zones are expected to avoid the potential for Level A harassment of belugas and ringed seals, and to minimize the severity of any Level B harassment. The requirements of trained dedicated watch personnel and speed restrictions will also reduce the likelihood of any ship strikes to migrating belugas.

In all, the proposed activities are expected to have minimal adverse effects on marine mammal habitat. While the activities may cause some fish to leave the area of disturbance, temporarily impacting marine mammals' foraging opportunities, this would encompass a relatively small area of habitat leaving large areas of existing fish and marine mammal foraging habitat unaffected. As such, the impacts to marine mammal habitat are not expected to impact the health or fitness of any marine mammals.

In summary and as described above, the following factors primarily support our preliminary determination that the impacts resulting from this activity are not expected to adversely affect any of the species or stocks through effects on annual rates of recruitment or survival:

  • No serious injury or mortality is anticipated or authorized;
  • Impacts would be limited to Level B harassment only;
  • Only temporary and relatively low-level behavioral disturbances are expected to result from these proposed activities; and
  • Impacts to marine mammal prey or habitat will be minimal and short term.

The anticipated and authorized take is not expected to impact the reproduction or survival of any individual marine mammals, much less rates of recruitment or survival. Based on the analysis contained herein of the likely effects of the specified activity on marine mammals and their habitat, and taking into consideration the implementation of the proposed monitoring and mitigation measures, NMFS preliminarily finds that the total marine mammal take from the proposed activity will have a negligible impact on all affected marine mammal species or stocks.

In order to issue an IHA, NMFS must find that the specified activity will not have an “unmitigable adverse impact” on the subsistence uses of the affected marine mammal species or stocks by Alaskan Natives. NMFS has defined “unmitigable adverse impact” in 50 CFR 216.103 as an impact resulting from the specified activity: (1) That is likely to reduce the availability of the species to a level insufficient for a harvest to meet subsistence needs by: (i) Causing the marine mammals to abandon or avoid hunting areas; (ii) Directly displacing subsistence users; or (iii) Placing physical barriers between the marine mammals and the subsistence hunters; and (2) That cannot be sufficiently mitigated by other measures to increase the availability of marine mammals to allow subsistence needs to be met.

Subsistence hunting is important for many Alaska Native communities. A study of the North Slope villages of Nuiqsut, Kaktovik, and Utqiaġvik identified the primary resources used for subsistence and the locations for harvest (Stephen R. Braund & Associates, 2010), including terrestrial mammals, birds, fish, and marine mammals (bowhead whale, ringed seal, ( print page 66091) bearded seal, and walrus). Ringed seals and beluga whales are likely located within the project area during this proposed action, yet the proposed action would not remove individuals from the population nor behaviorally disturb them in a manner that would affect their behavior more than 100 km farther inshore where subsistence hunting occurs. The permitted sources would be placed far outside of the range for subsistence hunting. The closest active acoustic source (fixed or drifting) within the proposed project site that is likely to cause Level B harassment is approximately 204 km (110 nm) from land. This ensures a significant standoff distance from any subsistence hunting area. The closest distance to subsistence hunting (130 km (70 nm)) is well beyond the largest distance from the sound sources in use at which behavioral harassment would be expected to occur (20 km (10.8 nm)) described above. Furthermore, there is no reason to believe that any behavioral disturbance of beluga whales or ringed seals that occurs far offshore (we do not anticipate any Level A harassment) would affect their subsequent behavior in a manner that would interfere with subsistence uses should those animals later interact with hunters.

In addition, ONR has been communicating with the Native communities about the proposed action. The ONR-sponsored chief scientist for AMOS gave a briefing on ONR research planned for 2024-2025 Alaska Eskimo Whaling Commission (AEWC) meeting on December 15, 2023 in Anchorage, Alaska. No questions were asked from the commissioners during the brief or in subsequent weeks afterwards. The AEWC consists of representatives from 11 whaling villages (Wainwright, Utqiaġvik, Savoonga, Point Lay, Nuiqut, Kivalina, Kaktovik, Wales, Point Hope, Little Diomede, and Gambell). These briefings have communicated the lack of any effect on subsistence hunting due to the distance of the sources from hunting areas. ONR-supported scientists also attend Arctic Waterways Safety Committee (AWSC) and AEWC meetings on a regular basis to discuss past, present, and future research activities. While no take is anticipated to result during transit, points of contact for at-sea communication will also be established between vessel captains and subsistence hunters to avoid any conflict of ship transit with hunting activity.

Based on the description of the specified activity, distance of the study area from subsistence hunting grounds, the measures described to minimize adverse effects on the availability of marine mammals for subsistence purposes, and the proposed mitigation and monitoring measures, NMFS has preliminarily determined that there will not be an unmitigable adverse impact on subsistence uses from ONR's proposed activities.

The MMPA requires that monitoring plans be independently peer reviewed where the proposed activity may affect the availability of a species or stock for taking for subsistence uses ( 16 U.S.C. 1371(a)(5)(D)(ii)(III) ). Given the factors discussed above, NMFS has also determined that the activity is not likely to affect the availability of any marine mammal species or stock for taking for subsistence uses, and therefore, peer review of the monitoring plan is not warranted for this project.

Section 7(a)(2) of the ESA of 1973 ( 16 U.S.C. 1531 et seq. ) requires that each Federal agency insure that any action it authorizes, funds, or carries out is not likely to jeopardize the continued existence of any endangered or threatened species or result in the destruction or adverse modification of designated critical habitat. To ensure ESA compliance for the issuance of IHAs, NMFS consults internally whenever we propose to authorize take for endangered or threatened species, in this case with the Alaska Regional Office (AKR).

NMFS is proposing to authorize take of ringed seals, which are listed under the ESA. The Permits and Conservation Division has requested initiation of section 7 consultation with the AKR for the issuance of this IHA. NMFS will conclude the ESA consultation prior to reaching a determination regarding the proposed issuance of the authorization.

As a result of these preliminary determinations, NMFS proposes to issue an IHA to the ONR for conducting a seventh year of ARA in the Beaufort and Chukchi Seas from September 2024 to September 2025, provided the previously mentioned mitigation, monitoring, and reporting requirements are incorporated. A draft of the proposed IHA can be found at: https://www.fisheries.noaa.gov/​national/​marine-mammal-protection/​incidental-take-authorizations-military-readiness-activities .

We request comment on our analyses, the proposed authorization, and any other aspect of this notice of proposed IHA for the proposed ARA. We also request comment on the potential renewal of this proposed IHA as described in the paragraph below. Please include with your comments any supporting data or literature citations to help inform decisions on the request for this IHA or a subsequent renewal IHA.

On a case-by-case basis, NMFS may issue a one-time, 1-year renewal IHA following notice to the public providing an additional 15 days for public comments when (1) up to another year of identical or nearly identical activities as described in the Description of Proposed Activity section of this notice is planned or (2) the activities as described in the Description of Proposed Activity section of this notice would not be completed by the time the IHA expires and a renewal would allow for completion of the activities beyond that described in the Dates and Duration section of this notice, provided all of the following conditions are met:

  • A request for renewal is received no later than 60 days prior to the needed renewal IHA effective date (recognizing that the renewal IHA expiration date cannot extend beyond 1 year from expiration of the initial IHA).
  • The request for renewal must include the following:

(1) An explanation that the activities to be conducted under the requested renewal IHA are identical to the activities analyzed under the initial IHA, are a subset of the activities, or include changes so minor ( e.g., reduction in pile size) that the changes do not affect the previous analyses, mitigation and monitoring requirements, or take estimates (with the exception of reducing the type or amount of take).

(2) A preliminary monitoring report showing the results of the required monitoring to date and an explanation showing that the monitoring results do not indicate impacts of a scale or nature not previously analyzed or authorized.

  • Upon review of the request for renewal, the status of the affected species or stocks, and any other pertinent information, NMFS determines that there are no more than minor changes in the activities, the mitigation and monitoring measures will remain the same and appropriate, and the findings in the initial IHA remain valid.

Dated: August 8, 2024.

Kimberly Damon-Randall,

Director, Office of Protected Resources, National Marine Fisheries Service.

[ FR Doc. 2024-18130 Filed 8-13-24; 8:45 am]

BILLING CODE 3510-22-P

  • Executive Orders

Reader Aids

Information.

  • About This Site
  • Legal Status
  • Accessibility
  • No Fear Act
  • Continuity Information

IMAGES

  1. 14+ Research Plan Templates

    background research plan

  2. Research Design Plan Template Five Ingenious Ways You Can Do With

    background research plan

  3. Research Plan Example For Science Project

    background research plan

  4. 💣 Example of research background. How to write the background of the

    background research plan

  5. 11+ Sample Research Plan Templates

    background research plan

  6. Research Plan

    background research plan

COMMENTS

  1. Science Fair Project Background Research Plan

    To make a background research plan — a roadmap of the research questions you need to answer — follow these steps: Identify the keywords in the question for your science fair project. Brainstorm additional keywords and concepts. Use a table with the "question words" (why, how, who, what, when, where) to generate research questions from your ...

  2. Background Research Plan for an Engineering Design Project

    Background research is especially important for engineering design projects, because you can learn from the experience of others rather than blunder around and repeat their mistakes. To make a background research plan — a roadmap of the research questions you need to answer -- follow these steps: Identify questions to ask about your target ...

  3. How to Write a Research Plan: A Step by Step Guide

    Discover the key steps to creating an effective research plan for your business or project, from understanding your objectives and setting timelines to staying organized.

  4. Background of The Study

    Background of the study refers to the context, circumstances, and history that led to the research problem or topic being studied. It provides the reader with a comprehensive understanding of the subject matter and the significance of the study.

  5. Start Building a Research Plan: Project Background, Research ...

    The success of any research study hinges on a well-crafted research plan, where the project background, research goals, and research…

  6. What is the Background of a Study and How to Write It

    Background of the study is an essential element of a research manuscript. Get insights on how to write an impactful background of the study that can promote confidence in the overall quality of your research analysis and its findings. Read the full article to know all about writing a background of the study that can create an impact!

  7. How To Write a Research Plan (With Template and Examples)

    Learn more about extensive research by exploring how to write a research plan with a step-by-step guide and some examples to help you get started.

  8. PDF Science Buddies Background Research Plan Worksheet

    Background Research Plan Worksheet. 1. Define the problem you intend to solve. [Who] need(s) [what] because [why]: 2. List the keywords and phrases from your problem and the topic in general. (Hint: Use an encyclopedia to help you.) 3. Now use your keywords to build some questions to guide your background research.

  9. How to Write a Research Proposal

    A research proposal aims to show why your project is worthwhile. It should explain the context, objectives, and methods of your research.

  10. Background Information

    Learn how to find and use background information for your social sciences research paper, such as definitions, concepts, and theories.

  11. How to Write an Effective Background of the Study

    The background of the study is placed at the beginning of a research paper. It provides the context, circumstances, and history that led to your research.

  12. How to Write a Research Proposal

    Before you conduct your research, learn how to write an effective proposal for your project with our helpful guide on what to include and tips for writing.

  13. Writing a Research Proposal

    A proposal should contain all the key elements involved in designing a completed research study, with sufficient information that allows readers to assess the validity and usefulness of your proposed study. The only elements missing from a research proposal are the findings of the study and your analysis of those findings. Finally, an effective proposal is judged on the quality of your writing ...

  14. What is the Background of a Study and How Should it be Written?

    The background of a study is the first section of the paper and establishes the context underlying the research. It contains the rationale, the key problem statement, and a brief overview of research questions that are addressed in the rest of the paper. The background forms the crux of the study because it introduces an unaware audience to the ...

  15. User Research Plans: How-To Write [with Template]

    The 7 core components of a user research plan: The background of the research project detailing why we are conducting this study. This can also include the internal stakeholders involved. The objectives and goals of the research, what the teams want to learn from the research, or what they would like the outcome to be.

  16. Write Your Research Plan

    Write Your Research Plan In this part, we give you detailed information about writing an effective Research Plan. We start with the importance and parameters of significance and innovation.

  17. Background Research

    Background research (or pre-research) is the research that you do before you start writing your paper or working on your project. Sometimes background research happens before you've even chosen a topic. The purpose of background research is to make the research that goes into your paper or project easier and more successful.

  18. How to Write a Research Proposal: (with Examples & Templates)

    Find out what a research proposal is and when you should write it. This article also has expert tips and advice on how to write one, along with research proposal examples.

  19. What Is Background in a Research Paper?

    Discover the role of background information in a research paper, shaping context and reinforcing your article with relevant studies.

  20. Writing a Research Paper Introduction

    The introduction to a research paper presents your topic, provides background, and details your research problem.

  21. Q: How do I write the background to my research proposal?

    So, firstly, the background has to set the context for your proposal. It has to talk about why you are undertaking this research - not so much your personal motivation (though that could be a factor too), but the social or socio-psychological factors prompting the research. As your angle is quite specific, you may want to talk about how being ...

  22. PDF DRAFT Five Year Research Growth Plan, 2022-2027

    FIVE YEAR PLAN: 2022-2027 STRATEGIES ENABLING ELEMENTS 1.Accelerate Hiring & Retaining Research Intensive Faculty 2.Grow Research Strengths: Centers of Excellence, Growth Areas 3.Establish Research Growth as a SLU-wide Priority 4.Solidify SLU's Role as a Leading St. Louis Research University A.Increase Faculty Research Support

  23. PDF Science FairBackground Project Research Plan

    Background research is necessary so that you know how to design and understand your experiment. To make a background research plan—a roadmap of the research questions you need to answer—follow these steps: 1. Identify the keywords in the question for your science fair project. Brainstorm additional keywords and concepts.

  24. 2024 Open Enrollment Benefits Information

    Open Enrollment is the annual opportunity for you to evaluate your benefit options and make elections for the upcoming year. Open Enrollment for the 2024 benefit plan year is November 1-15, 2023. We strongly encourage you to visit the Open Enrollment website and benefits eligibility page to select options that best fit your needs.

  25. Writing a Research Paper for Your Science Fair Project

    The short answer is that the research paper is a report summarizing the answers to the research questions you generated in your background research plan. It's a review of the relevant publications (books, magazines, websites) discussing the topic you want to investigate.

  26. Research Coordination Network for a University-Community Climate Action

    background The expertise of the Ambassadors will span climate action strategies across all areas of science and engineering for mitigation (including circular design and circular economy principles), resiliency, and/or adaptation, resulting in a new multi-disciplinary, multi-sector Research Coordination Network (RCN) called a U niversity- C ...

  27. Medicare Advantage in 2024: Premiums, Out-of-Pocket Limits

    This brief provides information about Medicare Advantage plans in 2024, including premiums, out-of-pocket limits, supplemental benefits, and prior authorization, as well as trends over time.

  28. PDF Background Research Plan Worksheet

    3. Now use your keywords to build some questions to guide your background research. Develop at least two or three from each "question word.". Don't worry about whether you already know the answer to the question—you'll find the answers when you do your background research. And don't forget to "network" with knowledgeable adults ...

  29. Takes of Marine Mammals Incidental to Specified Activities; Taking

    NMFS has received a request from the Office of Naval Research (ONR) for authorization to take marine mammals incidental to Arctic Research Activities (ARA) in the Beaufort Sea and eastern Chukchi Sea. Pursuant to the Marine Mammal Protection Act (MMPA), NMFS is requesting comments on its proposal...