• Open access
  • Published: 27 June 2011

The case study approach

  • Sarah Crowe 1 ,
  • Kathrin Cresswell 2 ,
  • Ann Robertson 2 ,
  • Guro Huby 3 ,
  • Anthony Avery 1 &
  • Aziz Sheikh 2  

BMC Medical Research Methodology volume  11 , Article number:  100 ( 2011 ) Cite this article

794k Accesses

1098 Citations

42 Altmetric

Metrics details

The case study approach allows in-depth, multi-faceted explorations of complex issues in their real-life settings. The value of the case study approach is well recognised in the fields of business, law and policy, but somewhat less so in health services research. Based on our experiences of conducting several health-related case studies, we reflect on the different types of case study design, the specific research questions this approach can help answer, the data sources that tend to be used, and the particular advantages and disadvantages of employing this methodological approach. The paper concludes with key pointers to aid those designing and appraising proposals for conducting case study research, and a checklist to help readers assess the quality of case study reports.

Peer Review reports

Introduction

The case study approach is particularly useful to employ when there is a need to obtain an in-depth appreciation of an issue, event or phenomenon of interest, in its natural real-life context. Our aim in writing this piece is to provide insights into when to consider employing this approach and an overview of key methodological considerations in relation to the design, planning, analysis, interpretation and reporting of case studies.

The illustrative 'grand round', 'case report' and 'case series' have a long tradition in clinical practice and research. Presenting detailed critiques, typically of one or more patients, aims to provide insights into aspects of the clinical case and, in doing so, illustrate broader lessons that may be learnt. In research, the conceptually-related case study approach can be used, for example, to describe in detail a patient's episode of care, explore professional attitudes to and experiences of a new policy initiative or service development or more generally to 'investigate contemporary phenomena within its real-life context' [ 1 ]. Based on our experiences of conducting a range of case studies, we reflect on when to consider using this approach, discuss the key steps involved and illustrate, with examples, some of the practical challenges of attaining an in-depth understanding of a 'case' as an integrated whole. In keeping with previously published work, we acknowledge the importance of theory to underpin the design, selection, conduct and interpretation of case studies[ 2 ]. In so doing, we make passing reference to the different epistemological approaches used in case study research by key theoreticians and methodologists in this field of enquiry.

This paper is structured around the following main questions: What is a case study? What are case studies used for? How are case studies conducted? What are the potential pitfalls and how can these be avoided? We draw in particular on four of our own recently published examples of case studies (see Tables 1 , 2 , 3 and 4 ) and those of others to illustrate our discussion[ 3 – 7 ].

What is a case study?

A case study is a research approach that is used to generate an in-depth, multi-faceted understanding of a complex issue in its real-life context. It is an established research design that is used extensively in a wide variety of disciplines, particularly in the social sciences. A case study can be defined in a variety of ways (Table 5 ), the central tenet being the need to explore an event or phenomenon in depth and in its natural context. It is for this reason sometimes referred to as a "naturalistic" design; this is in contrast to an "experimental" design (such as a randomised controlled trial) in which the investigator seeks to exert control over and manipulate the variable(s) of interest.

Stake's work has been particularly influential in defining the case study approach to scientific enquiry. He has helpfully characterised three main types of case study: intrinsic , instrumental and collective [ 8 ]. An intrinsic case study is typically undertaken to learn about a unique phenomenon. The researcher should define the uniqueness of the phenomenon, which distinguishes it from all others. In contrast, the instrumental case study uses a particular case (some of which may be better than others) to gain a broader appreciation of an issue or phenomenon. The collective case study involves studying multiple cases simultaneously or sequentially in an attempt to generate a still broader appreciation of a particular issue.

These are however not necessarily mutually exclusive categories. In the first of our examples (Table 1 ), we undertook an intrinsic case study to investigate the issue of recruitment of minority ethnic people into the specific context of asthma research studies, but it developed into a instrumental case study through seeking to understand the issue of recruitment of these marginalised populations more generally, generating a number of the findings that are potentially transferable to other disease contexts[ 3 ]. In contrast, the other three examples (see Tables 2 , 3 and 4 ) employed collective case study designs to study the introduction of workforce reconfiguration in primary care, the implementation of electronic health records into hospitals, and to understand the ways in which healthcare students learn about patient safety considerations[ 4 – 6 ]. Although our study focusing on the introduction of General Practitioners with Specialist Interests (Table 2 ) was explicitly collective in design (four contrasting primary care organisations were studied), is was also instrumental in that this particular professional group was studied as an exemplar of the more general phenomenon of workforce redesign[ 4 ].

What are case studies used for?

According to Yin, case studies can be used to explain, describe or explore events or phenomena in the everyday contexts in which they occur[ 1 ]. These can, for example, help to understand and explain causal links and pathways resulting from a new policy initiative or service development (see Tables 2 and 3 , for example)[ 1 ]. In contrast to experimental designs, which seek to test a specific hypothesis through deliberately manipulating the environment (like, for example, in a randomised controlled trial giving a new drug to randomly selected individuals and then comparing outcomes with controls),[ 9 ] the case study approach lends itself well to capturing information on more explanatory ' how ', 'what' and ' why ' questions, such as ' how is the intervention being implemented and received on the ground?'. The case study approach can offer additional insights into what gaps exist in its delivery or why one implementation strategy might be chosen over another. This in turn can help develop or refine theory, as shown in our study of the teaching of patient safety in undergraduate curricula (Table 4 )[ 6 , 10 ]. Key questions to consider when selecting the most appropriate study design are whether it is desirable or indeed possible to undertake a formal experimental investigation in which individuals and/or organisations are allocated to an intervention or control arm? Or whether the wish is to obtain a more naturalistic understanding of an issue? The former is ideally studied using a controlled experimental design, whereas the latter is more appropriately studied using a case study design.

Case studies may be approached in different ways depending on the epistemological standpoint of the researcher, that is, whether they take a critical (questioning one's own and others' assumptions), interpretivist (trying to understand individual and shared social meanings) or positivist approach (orientating towards the criteria of natural sciences, such as focusing on generalisability considerations) (Table 6 ). Whilst such a schema can be conceptually helpful, it may be appropriate to draw on more than one approach in any case study, particularly in the context of conducting health services research. Doolin has, for example, noted that in the context of undertaking interpretative case studies, researchers can usefully draw on a critical, reflective perspective which seeks to take into account the wider social and political environment that has shaped the case[ 11 ].

How are case studies conducted?

Here, we focus on the main stages of research activity when planning and undertaking a case study; the crucial stages are: defining the case; selecting the case(s); collecting and analysing the data; interpreting data; and reporting the findings.

Defining the case

Carefully formulated research question(s), informed by the existing literature and a prior appreciation of the theoretical issues and setting(s), are all important in appropriately and succinctly defining the case[ 8 , 12 ]. Crucially, each case should have a pre-defined boundary which clarifies the nature and time period covered by the case study (i.e. its scope, beginning and end), the relevant social group, organisation or geographical area of interest to the investigator, the types of evidence to be collected, and the priorities for data collection and analysis (see Table 7 )[ 1 ]. A theory driven approach to defining the case may help generate knowledge that is potentially transferable to a range of clinical contexts and behaviours; using theory is also likely to result in a more informed appreciation of, for example, how and why interventions have succeeded or failed[ 13 ].

For example, in our evaluation of the introduction of electronic health records in English hospitals (Table 3 ), we defined our cases as the NHS Trusts that were receiving the new technology[ 5 ]. Our focus was on how the technology was being implemented. However, if the primary research interest had been on the social and organisational dimensions of implementation, we might have defined our case differently as a grouping of healthcare professionals (e.g. doctors and/or nurses). The precise beginning and end of the case may however prove difficult to define. Pursuing this same example, when does the process of implementation and adoption of an electronic health record system really begin or end? Such judgements will inevitably be influenced by a range of factors, including the research question, theory of interest, the scope and richness of the gathered data and the resources available to the research team.

Selecting the case(s)

The decision on how to select the case(s) to study is a very important one that merits some reflection. In an intrinsic case study, the case is selected on its own merits[ 8 ]. The case is selected not because it is representative of other cases, but because of its uniqueness, which is of genuine interest to the researchers. This was, for example, the case in our study of the recruitment of minority ethnic participants into asthma research (Table 1 ) as our earlier work had demonstrated the marginalisation of minority ethnic people with asthma, despite evidence of disproportionate asthma morbidity[ 14 , 15 ]. In another example of an intrinsic case study, Hellstrom et al.[ 16 ] studied an elderly married couple living with dementia to explore how dementia had impacted on their understanding of home, their everyday life and their relationships.

For an instrumental case study, selecting a "typical" case can work well[ 8 ]. In contrast to the intrinsic case study, the particular case which is chosen is of less importance than selecting a case that allows the researcher to investigate an issue or phenomenon. For example, in order to gain an understanding of doctors' responses to health policy initiatives, Som undertook an instrumental case study interviewing clinicians who had a range of responsibilities for clinical governance in one NHS acute hospital trust[ 17 ]. Sampling a "deviant" or "atypical" case may however prove even more informative, potentially enabling the researcher to identify causal processes, generate hypotheses and develop theory.

In collective or multiple case studies, a number of cases are carefully selected. This offers the advantage of allowing comparisons to be made across several cases and/or replication. Choosing a "typical" case may enable the findings to be generalised to theory (i.e. analytical generalisation) or to test theory by replicating the findings in a second or even a third case (i.e. replication logic)[ 1 ]. Yin suggests two or three literal replications (i.e. predicting similar results) if the theory is straightforward and five or more if the theory is more subtle. However, critics might argue that selecting 'cases' in this way is insufficiently reflexive and ill-suited to the complexities of contemporary healthcare organisations.

The selected case study site(s) should allow the research team access to the group of individuals, the organisation, the processes or whatever else constitutes the chosen unit of analysis for the study. Access is therefore a central consideration; the researcher needs to come to know the case study site(s) well and to work cooperatively with them. Selected cases need to be not only interesting but also hospitable to the inquiry [ 8 ] if they are to be informative and answer the research question(s). Case study sites may also be pre-selected for the researcher, with decisions being influenced by key stakeholders. For example, our selection of case study sites in the evaluation of the implementation and adoption of electronic health record systems (see Table 3 ) was heavily influenced by NHS Connecting for Health, the government agency that was responsible for overseeing the National Programme for Information Technology (NPfIT)[ 5 ]. This prominent stakeholder had already selected the NHS sites (through a competitive bidding process) to be early adopters of the electronic health record systems and had negotiated contracts that detailed the deployment timelines.

It is also important to consider in advance the likely burden and risks associated with participation for those who (or the site(s) which) comprise the case study. Of particular importance is the obligation for the researcher to think through the ethical implications of the study (e.g. the risk of inadvertently breaching anonymity or confidentiality) and to ensure that potential participants/participating sites are provided with sufficient information to make an informed choice about joining the study. The outcome of providing this information might be that the emotive burden associated with participation, or the organisational disruption associated with supporting the fieldwork, is considered so high that the individuals or sites decide against participation.

In our example of evaluating implementations of electronic health record systems, given the restricted number of early adopter sites available to us, we sought purposively to select a diverse range of implementation cases among those that were available[ 5 ]. We chose a mixture of teaching, non-teaching and Foundation Trust hospitals, and examples of each of the three electronic health record systems procured centrally by the NPfIT. At one recruited site, it quickly became apparent that access was problematic because of competing demands on that organisation. Recognising the importance of full access and co-operative working for generating rich data, the research team decided not to pursue work at that site and instead to focus on other recruited sites.

Collecting the data

In order to develop a thorough understanding of the case, the case study approach usually involves the collection of multiple sources of evidence, using a range of quantitative (e.g. questionnaires, audits and analysis of routinely collected healthcare data) and more commonly qualitative techniques (e.g. interviews, focus groups and observations). The use of multiple sources of data (data triangulation) has been advocated as a way of increasing the internal validity of a study (i.e. the extent to which the method is appropriate to answer the research question)[ 8 , 18 – 21 ]. An underlying assumption is that data collected in different ways should lead to similar conclusions, and approaching the same issue from different angles can help develop a holistic picture of the phenomenon (Table 2 )[ 4 ].

Brazier and colleagues used a mixed-methods case study approach to investigate the impact of a cancer care programme[ 22 ]. Here, quantitative measures were collected with questionnaires before, and five months after, the start of the intervention which did not yield any statistically significant results. Qualitative interviews with patients however helped provide an insight into potentially beneficial process-related aspects of the programme, such as greater, perceived patient involvement in care. The authors reported how this case study approach provided a number of contextual factors likely to influence the effectiveness of the intervention and which were not likely to have been obtained from quantitative methods alone.

In collective or multiple case studies, data collection needs to be flexible enough to allow a detailed description of each individual case to be developed (e.g. the nature of different cancer care programmes), before considering the emerging similarities and differences in cross-case comparisons (e.g. to explore why one programme is more effective than another). It is important that data sources from different cases are, where possible, broadly comparable for this purpose even though they may vary in nature and depth.

Analysing, interpreting and reporting case studies

Making sense and offering a coherent interpretation of the typically disparate sources of data (whether qualitative alone or together with quantitative) is far from straightforward. Repeated reviewing and sorting of the voluminous and detail-rich data are integral to the process of analysis. In collective case studies, it is helpful to analyse data relating to the individual component cases first, before making comparisons across cases. Attention needs to be paid to variations within each case and, where relevant, the relationship between different causes, effects and outcomes[ 23 ]. Data will need to be organised and coded to allow the key issues, both derived from the literature and emerging from the dataset, to be easily retrieved at a later stage. An initial coding frame can help capture these issues and can be applied systematically to the whole dataset with the aid of a qualitative data analysis software package.

The Framework approach is a practical approach, comprising of five stages (familiarisation; identifying a thematic framework; indexing; charting; mapping and interpretation) , to managing and analysing large datasets particularly if time is limited, as was the case in our study of recruitment of South Asians into asthma research (Table 1 )[ 3 , 24 ]. Theoretical frameworks may also play an important role in integrating different sources of data and examining emerging themes. For example, we drew on a socio-technical framework to help explain the connections between different elements - technology; people; and the organisational settings within which they worked - in our study of the introduction of electronic health record systems (Table 3 )[ 5 ]. Our study of patient safety in undergraduate curricula drew on an evaluation-based approach to design and analysis, which emphasised the importance of the academic, organisational and practice contexts through which students learn (Table 4 )[ 6 ].

Case study findings can have implications both for theory development and theory testing. They may establish, strengthen or weaken historical explanations of a case and, in certain circumstances, allow theoretical (as opposed to statistical) generalisation beyond the particular cases studied[ 12 ]. These theoretical lenses should not, however, constitute a strait-jacket and the cases should not be "forced to fit" the particular theoretical framework that is being employed.

When reporting findings, it is important to provide the reader with enough contextual information to understand the processes that were followed and how the conclusions were reached. In a collective case study, researchers may choose to present the findings from individual cases separately before amalgamating across cases. Care must be taken to ensure the anonymity of both case sites and individual participants (if agreed in advance) by allocating appropriate codes or withholding descriptors. In the example given in Table 3 , we decided against providing detailed information on the NHS sites and individual participants in order to avoid the risk of inadvertent disclosure of identities[ 5 , 25 ].

What are the potential pitfalls and how can these be avoided?

The case study approach is, as with all research, not without its limitations. When investigating the formal and informal ways undergraduate students learn about patient safety (Table 4 ), for example, we rapidly accumulated a large quantity of data. The volume of data, together with the time restrictions in place, impacted on the depth of analysis that was possible within the available resources. This highlights a more general point of the importance of avoiding the temptation to collect as much data as possible; adequate time also needs to be set aside for data analysis and interpretation of what are often highly complex datasets.

Case study research has sometimes been criticised for lacking scientific rigour and providing little basis for generalisation (i.e. producing findings that may be transferable to other settings)[ 1 ]. There are several ways to address these concerns, including: the use of theoretical sampling (i.e. drawing on a particular conceptual framework); respondent validation (i.e. participants checking emerging findings and the researcher's interpretation, and providing an opinion as to whether they feel these are accurate); and transparency throughout the research process (see Table 8 )[ 8 , 18 – 21 , 23 , 26 ]. Transparency can be achieved by describing in detail the steps involved in case selection, data collection, the reasons for the particular methods chosen, and the researcher's background and level of involvement (i.e. being explicit about how the researcher has influenced data collection and interpretation). Seeking potential, alternative explanations, and being explicit about how interpretations and conclusions were reached, help readers to judge the trustworthiness of the case study report. Stake provides a critique checklist for a case study report (Table 9 )[ 8 ].

Conclusions

The case study approach allows, amongst other things, critical events, interventions, policy developments and programme-based service reforms to be studied in detail in a real-life context. It should therefore be considered when an experimental design is either inappropriate to answer the research questions posed or impossible to undertake. Considering the frequency with which implementations of innovations are now taking place in healthcare settings and how well the case study approach lends itself to in-depth, complex health service research, we believe this approach should be more widely considered by researchers. Though inherently challenging, the research case study can, if carefully conceptualised and thoughtfully undertaken and reported, yield powerful insights into many important aspects of health and healthcare delivery.

Yin RK: Case study research, design and method. 2009, London: Sage Publications Ltd., 4

Google Scholar  

Keen J, Packwood T: Qualitative research; case study evaluation. BMJ. 1995, 311: 444-446.

Article   CAS   PubMed   PubMed Central   Google Scholar  

Sheikh A, Halani L, Bhopal R, Netuveli G, Partridge M, Car J, et al: Facilitating the Recruitment of Minority Ethnic People into Research: Qualitative Case Study of South Asians and Asthma. PLoS Med. 2009, 6 (10): 1-11.

Article   Google Scholar  

Pinnock H, Huby G, Powell A, Kielmann T, Price D, Williams S, et al: The process of planning, development and implementation of a General Practitioner with a Special Interest service in Primary Care Organisations in England and Wales: a comparative prospective case study. Report for the National Co-ordinating Centre for NHS Service Delivery and Organisation R&D (NCCSDO). 2008, [ http://www.sdo.nihr.ac.uk/files/project/99-final-report.pdf ]

Robertson A, Cresswell K, Takian A, Petrakaki D, Crowe S, Cornford T, et al: Prospective evaluation of the implementation and adoption of NHS Connecting for Health's national electronic health record in secondary care in England: interim findings. BMJ. 2010, 41: c4564-

Pearson P, Steven A, Howe A, Sheikh A, Ashcroft D, Smith P, the Patient Safety Education Study Group: Learning about patient safety: organisational context and culture in the education of healthcare professionals. J Health Serv Res Policy. 2010, 15: 4-10. 10.1258/jhsrp.2009.009052.

Article   PubMed   Google Scholar  

van Harten WH, Casparie TF, Fisscher OA: The evaluation of the introduction of a quality management system: a process-oriented case study in a large rehabilitation hospital. Health Policy. 2002, 60 (1): 17-37. 10.1016/S0168-8510(01)00187-7.

Stake RE: The art of case study research. 1995, London: Sage Publications Ltd.

Sheikh A, Smeeth L, Ashcroft R: Randomised controlled trials in primary care: scope and application. Br J Gen Pract. 2002, 52 (482): 746-51.

PubMed   PubMed Central   Google Scholar  

King G, Keohane R, Verba S: Designing Social Inquiry. 1996, Princeton: Princeton University Press

Doolin B: Information technology as disciplinary technology: being critical in interpretative research on information systems. Journal of Information Technology. 1998, 13: 301-311. 10.1057/jit.1998.8.

George AL, Bennett A: Case studies and theory development in the social sciences. 2005, Cambridge, MA: MIT Press

Eccles M, the Improved Clinical Effectiveness through Behavioural Research Group (ICEBeRG): Designing theoretically-informed implementation interventions. Implementation Science. 2006, 1: 1-8. 10.1186/1748-5908-1-1.

Article   PubMed Central   Google Scholar  

Netuveli G, Hurwitz B, Levy M, Fletcher M, Barnes G, Durham SR, Sheikh A: Ethnic variations in UK asthma frequency, morbidity, and health-service use: a systematic review and meta-analysis. Lancet. 2005, 365 (9456): 312-7.

Sheikh A, Panesar SS, Lasserson T, Netuveli G: Recruitment of ethnic minorities to asthma studies. Thorax. 2004, 59 (7): 634-

CAS   PubMed   PubMed Central   Google Scholar  

Hellström I, Nolan M, Lundh U: 'We do things together': A case study of 'couplehood' in dementia. Dementia. 2005, 4: 7-22. 10.1177/1471301205049188.

Som CV: Nothing seems to have changed, nothing seems to be changing and perhaps nothing will change in the NHS: doctors' response to clinical governance. International Journal of Public Sector Management. 2005, 18: 463-477. 10.1108/09513550510608903.

Lincoln Y, Guba E: Naturalistic inquiry. 1985, Newbury Park: Sage Publications

Barbour RS: Checklists for improving rigour in qualitative research: a case of the tail wagging the dog?. BMJ. 2001, 322: 1115-1117. 10.1136/bmj.322.7294.1115.

Mays N, Pope C: Qualitative research in health care: Assessing quality in qualitative research. BMJ. 2000, 320: 50-52. 10.1136/bmj.320.7226.50.

Mason J: Qualitative researching. 2002, London: Sage

Brazier A, Cooke K, Moravan V: Using Mixed Methods for Evaluating an Integrative Approach to Cancer Care: A Case Study. Integr Cancer Ther. 2008, 7: 5-17. 10.1177/1534735407313395.

Miles MB, Huberman M: Qualitative data analysis: an expanded sourcebook. 1994, CA: Sage Publications Inc., 2

Pope C, Ziebland S, Mays N: Analysing qualitative data. Qualitative research in health care. BMJ. 2000, 320: 114-116. 10.1136/bmj.320.7227.114.

Cresswell KM, Worth A, Sheikh A: Actor-Network Theory and its role in understanding the implementation of information technology developments in healthcare. BMC Med Inform Decis Mak. 2010, 10 (1): 67-10.1186/1472-6947-10-67.

Article   PubMed   PubMed Central   Google Scholar  

Malterud K: Qualitative research: standards, challenges, and guidelines. Lancet. 2001, 358: 483-488. 10.1016/S0140-6736(01)05627-6.

Article   CAS   PubMed   Google Scholar  

Yin R: Case study research: design and methods. 1994, Thousand Oaks, CA: Sage Publishing, 2

Yin R: Enhancing the quality of case studies in health services research. Health Serv Res. 1999, 34: 1209-1224.

Green J, Thorogood N: Qualitative methods for health research. 2009, Los Angeles: Sage, 2

Howcroft D, Trauth E: Handbook of Critical Information Systems Research, Theory and Application. 2005, Cheltenham, UK: Northampton, MA, USA: Edward Elgar

Book   Google Scholar  

Blakie N: Approaches to Social Enquiry. 1993, Cambridge: Polity Press

Doolin B: Power and resistance in the implementation of a medical management information system. Info Systems J. 2004, 14: 343-362. 10.1111/j.1365-2575.2004.00176.x.

Bloomfield BP, Best A: Management consultants: systems development, power and the translation of problems. Sociological Review. 1992, 40: 533-560.

Shanks G, Parr A: Positivist, single case study research in information systems: A critical analysis. Proceedings of the European Conference on Information Systems. 2003, Naples

Pre-publication history

The pre-publication history for this paper can be accessed here: http://www.biomedcentral.com/1471-2288/11/100/prepub

Download references

Acknowledgements

We are grateful to the participants and colleagues who contributed to the individual case studies that we have drawn on. This work received no direct funding, but it has been informed by projects funded by Asthma UK, the NHS Service Delivery Organisation, NHS Connecting for Health Evaluation Programme, and Patient Safety Research Portfolio. We would also like to thank the expert reviewers for their insightful and constructive feedback. Our thanks are also due to Dr. Allison Worth who commented on an earlier draft of this manuscript.

Author information

Authors and affiliations.

Division of Primary Care, The University of Nottingham, Nottingham, UK

Sarah Crowe & Anthony Avery

Centre for Population Health Sciences, The University of Edinburgh, Edinburgh, UK

Kathrin Cresswell, Ann Robertson & Aziz Sheikh

School of Health in Social Science, The University of Edinburgh, Edinburgh, UK

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Sarah Crowe .

Additional information

Competing interests.

The authors declare that they have no competing interests.

Authors' contributions

AS conceived this article. SC, KC and AR wrote this paper with GH, AA and AS all commenting on various drafts. SC and AS are guarantors.

Rights and permissions

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article.

Crowe, S., Cresswell, K., Robertson, A. et al. The case study approach. BMC Med Res Methodol 11 , 100 (2011). https://doi.org/10.1186/1471-2288-11-100

Download citation

Received : 29 November 2010

Accepted : 27 June 2011

Published : 27 June 2011

DOI : https://doi.org/10.1186/1471-2288-11-100

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Case Study Approach
  • Electronic Health Record System
  • Case Study Design
  • Case Study Site
  • Case Study Report

BMC Medical Research Methodology

ISSN: 1471-2288

case study research often requires a holistic interpretation

The theory contribution of case study research designs

  • Original Research
  • Open access
  • Published: 16 February 2017
  • Volume 10 , pages 281–305, ( 2017 )

Cite this article

You have full access to this open access article

case study research often requires a holistic interpretation

  • Hans-Gerd Ridder 1  

171k Accesses

323 Citations

11 Altmetric

Explore all metrics

The objective of this paper is to highlight similarities and differences across various case study designs and to analyze their respective contributions to theory. Although different designs reveal some common underlying characteristics, a comparison of such case study research designs demonstrates that case study research incorporates different scientific goals and collection and analysis of data. This paper relates this comparison to a more general debate of how different research designs contribute to a theory continuum. The fine-grained analysis demonstrates that case study designs fit differently to the pathway of the theory continuum. The resulting contribution is a portfolio of case study research designs. This portfolio demonstrates the heterogeneous contributions of case study designs. Based on this portfolio, theoretical contributions of case study designs can be better evaluated in terms of understanding, theory-building, theory development, and theory testing.

Similar content being viewed by others

case study research often requires a holistic interpretation

Case Study Research

case study research often requires a holistic interpretation

Explore related subjects

  • Artificial Intelligence

Avoid common mistakes on your manuscript.

1 Introduction

Case study research scientifically investigates into a real-life phenomenon in-depth and within its environmental context. Such a case can be an individual, a group, an organization, an event, a problem, or an anomaly (Burawoy 2009 ; Stake 2005 ; Yin 2014 ). Unlike in experiments, the contextual conditions are not delineated and/or controlled, but part of the investigation. Typical for case study research is non-random sampling; there is no sample that represents a larger population. Contrary to quantitative logic, the case is chosen, because the case is of interest (Stake 2005 ), or it is chosen for theoretical reasons (Eisenhardt and Graebner 2007 ). For within-case and across-case analyses, the emphasis in data collection is on interviews, archives, and (participant) observation (Flick 2009 : 257; Mason 2002 : 84). Case study researchers usually triangulate data as part of their data collection strategy, resulting in a detailed case description (Burns 2000 ; Dooley 2002 ; Eisenhardt 1989 ; Ridder 2016 ; Stake 2005 : 454). Potential advantages of a single case study are seen in the detailed description and analysis to gain a better understanding of “how” and “why” things happen. In single case study research, the opportunity to open a black box arises by looking at deeper causes of the phenomenon (Fiss 2009 ). The case data can lead to the identification of patterns and relationships, creating, extending, or testing a theory (Gomm et al. 2000 ). Potential advantages of multiple case study research are seen in cross-case analysis. A systematic comparison in cross-case analysis reveals similarities and differences and how they affect findings. Each case is analyzed as a single case on its own to compare the mechanisms identified, leading to theoretical conclusions (Vaughan 1992 : 178). As a result, case study research has different objectives in terms of contributing to theory. On the one hand, case study research has its strength in creating theory by expanding constructs and relationships within distinct settings (e.g., in single case studies). On the other hand, case study research is a means of advancing theories by comparing similarities and differences among cases (e.g., in multiple case studies).

Unfortunately, such diverging objectives are often neglected in case study research. Burns ( 2000 : 459) emphasizes: “The case study has unfortunately been used as a ‘catch –all’ category for anything that does not fit into experimental, survey, or historical methods.”

Therefore, this paper compares case study research designs. Such comparisons have been conducted previously regarding their philosophical assumptions and orientations, key elements of case study research, their range of application, and the lacks of methodological procedures in publications. (Baxter and Jack 2008 ; Dooley 2002 ; Dyer and Wilkins 1991 ; Piekkari et al. 2009 ; Welch et al. 2011 ). This paper aims to compare case study research designs regarding their contributions to theory.

Case study research designs will be analyzed regarding their various strengths on a theory continuum. Edmondson and McManus ( 2007 ) initiated a debate on whether the stage of theory fits to research questions, style of data collection, and analyses. Similarly, Colquitt and Zapata-Phelan ( 2007 ) created a taxonomy capturing facets of empirical article’s theoretical contributions by distinguishing between theory-building and theory testing. Corley and Gioia ( 2011 ) extended this debate by focusing on the practicality of theory and the importance of prescience. While these papers consider the whole range of methodological approaches on a higher level, they treat case studies as relatively homogeneous. This paper aims to delve into a deeper level of analysis by solely focusing on case study research designs and their respective fit on this theory continuum. This approach offers a more fine-grained understanding that sheds light on the diversity of case study research designs in terms of their differential theory contributions. Such a deep level of analysis on case study research designs enables more rigor in theory contribution. To analyze alternative case study research designs regarding their contributions to theory, I engage into the following steps:

First, differences between case study research designs are depicted. I outline and compare the case study research designs with regard to the key elements, esp. differences in research questions, frameworks, sampling, data collection, and data analysis. These differences result in a portfolio of various case study research designs.

Second, I outline and substantiate a theory continuum that varies between theory-building, theory development, and testing theory. Based on this continuum, I analyze and discuss each of the case study research designs with regard to their location on the theory continuum. This analysis is based on a detailed differentiation of the phenomenon (inside or outside the theory), the status of the theory, research strategy, and methods.

As a result, the contribution to the literature is a portfolio of case study research designs explicating their unique contributions to theory. The contribution of this paper lies in a fine-grained analysis of the interplay of methods and theory (van Maanen et al. 2007 ) and the methodological fit (Edmondson and McManus 2007 ) of case study designs and the continuum of theory. It demonstrates that different designs have various strengths and that there is a fit between case study designs and different points on a theory continuum. If there is no clarity as to whether a case study design aims at creating, elaborating, extending, or testing theory, the contribution to theory is difficult to identify for authors, reviewers, and readers. Consequently, this paper aims to clarify at which point of the continuum of theory case study research designs can provide distinct contributions that can be identified beyond their traditionally claimed exploratory character.

2 Differences across case study design: a portfolio approach

Only few papers have compared case study research designs so far. In all of these comparisons, the number of designs differs as well as the issues under consideration. In an early debate between Dyer and Wilkins ( 1991 ) and Eisenhardt ( 1991 ), Dyer and Wilkins compared the case study research design by Eisenhardt ( 1989 ) with “classical” case studies. The core of the debate concerns a difference between in-depth single case studies (classical case study) to a focus on the comparison of multiple cases. Dyer and Wilkins ( 1991 : 614) claim that the essence of a case study lies in the careful study of a single case to identify new relationships and, as a result, question the Eisenhardt approach which puts a lot of emphasis on comparison of multiple cases. Eisenhardt, on the contrary, claims that multiple cases allow replication between cases and is, therefore, seen as a means of corroboration of propositions (Eisenhardt 1991 ). Classical case studies prefer deep descriptions of a single case, considering the context to reveal insights into the single case and by that elaborate new theories. The comparison of multiple cases, therefore, tends—in the opinion of Dyer and Wilkens—to surface descriptions. This weakens the possibility of context-related, rich descriptions. While, in classic case study, good stories are the aim, the development of good constructs and their relationships is aimed in Eisenhardt’s approach. Eisenhardt ( 1991 : 627) makes a strong plea on more methodological rigor in case study research, while Dyer and Wilkins ( 1991 : 613) criticize that the new approach “… includes many of the attributes of hypothesis-testing research (e.g., sampling and controls).”

Dooley ( 2002 : 346) briefly takes the case study research designs by Yin (1994) and Eisenhardt ( 1989 ) as exemplars of how the processes of case study research can be applied. The approach by Eisenhardt is seen as an exemplar that advances conceptualization and operationalization in the phases of theory-building, while the approach by Yin is seen as exemplar that advances minimally conceptualized and operationalized existing theory.

Baxter and Jack ( 2008 ) describe the designs by Yin (2003) and Stake ( 1995 ) to demonstrate key elements of qualitative case study. The authors outline and carefully compare the approaches by Yin and Stake in conducting the research process, neglecting philosophical differences and theoretical goals.

Piekkari et al. ( 2009 ) outline the methodological richness of case study research using the approaches of Yin et al. (1998), and Stake. They specifically exhibit the role of philosophical assumptions, establishing differences in conventionally accepted practices of case study research in published papers. The authors analyze 135 published case studies in four international business journals. The analysis reveals that, in contrast to the richness of case study approaches, the majority of published case studies draw on positivistic foundations and are narrowly declared as explorative with a lack of clarity of the theoretical purpose of the case study. Case studies are often designed as multiple case studies with cross-sectional designs based on interviews. In addition to the narrow use of case study research, the authors find out that “… most commonly cited methodological literature is not consistently followed” (Piekkari et al. 2009 : 567).

Welch et al. ( 2011 ) develop a typology of theorizing modes in case study methods. Based on the two dimensions “contextualization” and “causal explanation”, they differentiate in their typology between inductive theory-building (Eisenhardt), interpretive sensemaking (Stake), natural experiment (Yin), and contextualised explanation (Ragin/Bhaskar). The typology is used to analyze 199 case studies from three highly ranked journals over a 10-year period for whether the theorizing modes are exercised in the practice of publishing case studies. As a result, the authors identify a strong emphasis on the exploratory function of case studies, neglecting the richness of case study methods to challenge, refine, verify, and test theories (Welch et al. 2011 : 755). In addition, case study methods are not consistently related to theory contribution: “By scrutinising the linguistic elements of texts, we found that case researchers were not always clear and consistent in the way that they wrote up their theorising purpose and process” (Welch et al. 2011 : 756).

As a result, the comparisons reveal a range of case study designs which are rarely discussed. In contrast, published case studies are mainly introduced as exploratory design. Explanatory, interpretivist, and critical/reflexive designs are widely neglected, narrowing the possible applications of case study research. In addition, comparisons containing an analysis of published case studies reveal a low degree in accuracy when applying case study methods.

What is missing is a comparison of case study research designs with regard to differences in the contribution to theory. Case study designs have different purposes in theory contribution. Confusing these potential contributions by inconsistently utilizing the appropriate methods weakens the contribution of case studies to scientific progress and, by that, damages the reputation of case studies.

To conduct such a comparison, I consider the four case study research approaches of Yin, Eisenhardt, Burawoy, and Stake for the following reasons.

These approaches are the main representatives of case study research design outlined in the comparisons elaborated above (Baxter and Jack 2008 ; Dooley 2002 ; Dyer and Wilkins 1991 ; Piekkari et al. 2009 ; Welch et al. 2011 ). I follow especially the argument by Piekkari et al. ( 2009 ) that these approaches contain a broad spectrum of methodological foundations of exploratory, explanatory, interpretivist, and critical/reflexive designs. The chosen approaches have an explicit and detailed methodology which can be reconstructed and compared with regard to their theory contribution. Although there are variations in the application of the designs, to the best of my knowledge, the designs represent the spectrum of case study methodologies. A comparison of these methodologies revealed main distinguishable differences. To highlight these main differences, I summarized these differences into labels of “no theory first”; “gaps and holes”; “social construction of reality”; and “anomalies”.

I did not consider descriptions of case study research in text books which focus more or less on general descriptions of the common characteristics of case studies, but do not emphasize differences in methodologies and theory contribution. In addition, I did not consider so-called “home grown” designs (Eisenhardt 1989 : 534) which lack a systematic and explicit demonstration of the methodology and where “… the hermeneutic process of inference—how all these interviews, archival records, and notes were assembled into a coherent whole, what was counted and what was discounted—remains usually hidden from the reader” (Fiss 2009 : 425).

Finally, although often cited in the methodological section of case studies, books are not considered which concentrate on data analysis in qualitative research per se (Miles et al. 2014 ; Corbin and Strauss 2015 ). Therefore, to analyze the contribution of case study research to the scientific development, it needs to compare explicit methodology. This comparison will be outlined in the following sections with regard to main methodological steps: the role of the case, the collection of data, and the analysis of data.

2.1 Case study research design 1: no theory first

A popular template for building theory from case studies is a paper by Eisenhardt ( 1989 ). It follows a dramaturgy with a precise order of single steps for constructing a case study and is one of the most cited papers in methods sections (Ravenswood 2011 ). This is impressive for two reasons. On the one hand, Eisenhardt herself has provided a broader spectrum of case study research designs in her own empirical papers, for example, by combining theory-building and theory elaboration (Bingham and Eisenhardt 2011 ). On the other hand, she “updated” her design in a paper with Graebner (Eisenhardt and Graebner 2007 ), particularly by extending the range of inductive theory-building. These developments do not seem to be seriously considered by most authors, as differences and elaborations of this spectrum are rarely found in publications. Therefore, in the following, I focus on the standards provided by Eisenhardt ( 1989 ) and Eisenhardt and Graebner ( 2007 ) as exemplary guidelines.

Eisenhardt follows the ideal of ‘no theory first’ to capture the richness of observations without being limited by a theory. The research question may stem from a research gap meaning that the research question is of relevance. Tentative a priori constructs or variables guide the investigation, but no relationships between such constructs or variables are assumed so far: “Thus, investigators should formulate a research problem and possibly specify some potentially important variables, with some reference to extant literature. However, they should avoid thinking about specific relationships between variables and theories as much as possible, especially at the outset of the process” (Eisenhardt 1989 : 536).

Cases are chosen for theoretical reasons: for the likelihood that the cases offer insights into the phenomenon of interest. Theoretical sampling is deemed appropriate for illuminating and extending constructs and identifying relationships for the phenomenon under investigation (Eisenhardt and Graebner 2007 ). Cases are sampled if they provide an unusual phenomenon, replicate findings from other cases, use contrary replication, and eliminate alternative explanations.

With respect to data collection, qualitative data are the primary choice. Data collection is based on triangulation, where interviews, documents, and observations are often combined. A combination of qualitative data and quantitative data is possible as well (Eisenhardt 1989 : 538). Data analysis is conducted via the search for within-case patterns and cross-case patterns. Systematic procedures are conducted to compare the emerging constructs and relationships with the data, eventually leading to new theory.

A good exemplar for this design is the investigation of technology collaborations (Davis and Eisenhardt 2011 ). The purpose of this paper is to understand processes by which technology collaborations support innovations. Eight technology collaborations among ten firms were sampled for theoretical reasons. Qualitative and quantitative data were used from semi-structured interviews, public and private data, materials provided by informants, corporate intranets, and business publications. The data was measured, coded, and triangulated. Writing case histories was a basis for within-case and cross-case analysis. Iteration between cases and emerging theory and considering the relevant literature provided the basis for the development of a theoretical framework.

Another example is the investigation of what is learned in organizational processes (Bingham and Eisenhardt 2011 ). This paper demonstrates that the case study design is not only used for theory-building, but can also be combined with theory elaboration. Based on the lenses of the organizational knowledge literature, organizational routines literature, and heuristics literature, six technology-based ventures were chosen for theoretical reasons. Several data sources were used, especially quantitative and qualitative data from semi-structured interviews, archival data, observations, e-mails, phone calls, and follow-up interviews. Within-case analysis revealed what each firm has learned from process experience. Cross-case analysis revealed emerging patterns from which tentative constructs and propositions were formed. In replication logic constructs and propositions were refined across the cases. When mirroring the findings with the literature, both the emergences of the constructs were compared and unexpected types were considered. The iteration of theory and data as well as the consideration of related research sharpened the theoretical arguments, eventually leading to a theoretical framework. “Thus, we combined theory elaboration (Lee 1999 ) and theory generation (Eisenhardt 1989 )” (Bingham and Eisenhardt 2011 : 1448).

2.2 Case study research design 2: gaps and holes

Contrary to “No Theory First”, case study research design can also aim at specifying gaps or holes in existing theory with the ultimate goal of advancing theoretical explanations (Ridder 2016 ). A well-known template for this case study research design is the book by Yin ( 2014 ). It is a method-orientated handbook of how to design single and multiple case studies with regard to this purpose. Such a case study research design includes: “A ‘how’ and ‘why’ question” (Yin 2014 : 14). Research questions can be identified and shaped using literature to narrow the interest in a specific topic, looking for key studies and identifying questions in these studies. According to Yin’s design, existing theory is the starting point of case study research. In addition, propositions or frameworks provide direction, reflect the theoretical perspective, and guide the search for relevant evidence.

There are different rationales for choosing a single case design (Yin 2014 : 51). Purposeful sampling is conducted if an extreme case or an unusual case is chosen and if rarely observable phenomena can be investigated with regard to unknown matters and their relationships. Common cases allow conclusions for a broader class of cases. Revelatory cases provide the opportunity to investigate into a previously inaccessible inquiry, and the longitudinal study enables one to investigate a single case at several points in time. A rationale for multiple case designs has its strength in replication logic (Yin 2014 : 56). In the case of literal replication, cases are selected to predict similar results. In the case of theoretical replication, cases are selected to predict contrasting results but for theoretical reasons. Yin provides several tactics to increase the reliability (protocol; data base) of the study.

Yin ( 2014 : 103) emphasizes that interviews are one of the most important sources of data collection but considers other sources of qualitative data as well. Data triangulation is designed to narrow problems of construct validity, as multiple sources of data provide multiple measures of the same phenomenon. Yin ( 2014 : 133) offers a number of data analysis strategies (e.g., case description; examining rival explanations) and analytic techniques which are apt to compare the proposed relationships with empirical patterns. Pattern-matching logic compares empirically based patterns with predicted patterns, enabling further data analysis techniques (explanation building, time series analysis, logic models, and cross-case synthesis). In analytical generalization, the theory is compared with the empirical results, leading to the modification or extension of the theory.

An appropriate model for this case study design can be identified in a paper by Ellonen et al. ( 2009 ). The paper is based on the emerging dynamic capability theory. The four cases were chosen for theoretical reasons to deliver an empirical contribution to the dynamic capability theory by investigating the relationship of dynamic capabilities and innovation outcomes. The authors followed a literal replication strategy and identified patterns between dynamic capabilities of the firms and their innovation outcomes.

Shane ( 2000 ) is an author who developed specific propositions from a framework and examined the propositions in eight entrepreneurial cases. Using several sources of interviews and archival data, the author compared the data with the propositions using the pattern-matching logic, which concluded in developing entrepreneurship theory.

2.3 Case study research design 3: social construction of reality

So far, the outlined case study research designs are based on positivist roots, but there is richness and variety in case study research stemming from different philosophical realms. The case study research design by Stake ( 1995 , 2000 , 2005 ), for example, is based on constructivist assumptions and aims to investigate the social construction of reality and meaning (Schwandt 1994 : 125).

According to this philosophical assumption, there is no unique “real world” that preexists independently of human mental activity and symbolic language. The world is a product of socially and historically related interchanges amongst people (social construction). The access to reality is given through social constructions, such as language and shared meanings: “The meaning-making activities themselves are of central interest to social constructionists/constructivists, simply because it is the meaning-making/sense making attributional activities that shape action or (inaction)” (Guba and Lincoln 2005 : 197). Therefore, the researcher is not looking for objective “facts”, nor does he aim at identifying and measuring patterns which can be generalized. Contrarily, the constructivist is researching into specific actions, in specific places, at specific times. The scientist tries to understand the construction and the sharing of meaning (Schwandt 1994 ).

According to Stake ( 2005 ), the direction of the case study is shaped by the interest in the case. In an intrinsic case study, the case itself is of interest. The purpose is not theory-building but curiosity in the case itself. In an instrumental case study, the case itself is of secondary interest. It plays a supportive role, as it facilitates the understanding of a research issue. The case can be typical of other cases. Multiple or collective case study research designs extend the instrumental case study. It is assumed that a number of cases will increase the understanding and support theorizing by comparison of the cases.

The differentiation by Stake ( 1995 , 2005 ) into intrinsic and instrumental cases guides the purposive sampling strategy. In intrinsic case studies, the case is, by definition, already selected. The researcher looks for specific characteristics, aiming for thick descriptions with the opportunity to learn. Representativeness or generalization is not considered. In instrumental case study design, purposive sampling leads to the phenomenon under investigation. In multiple case study designs, the ability to compare cases enhances the opportunity to theorize.

A case study requires an integrated, holistic comprehension of the case complexity. According to Stake ( 2005 ), the case study is constructed by qualitative data, such as observations, interviews, and documents. Triangulation first serves as clarification of meaning. Second, the researcher is interested in the diversity of perceptions.

Two methods of data analysis are considered in such qualitative case study design: direct interpretation and categorical aggregation (Stake 1995 : 74). The primary task of an intrinsic case study is to understand the case. This interpretation is offered to the reader, but the researcher has to provide the material in a sufficient way (thick descriptions), so that the reader can learn from the case as well as draw his or her own conclusions. Readers can thus make some generalizations based on personal and vicarious experiences (“naturalistic generalization”). In instrumental case studies, the understanding of phenomena and relationships leads to categorical aggregation, and the focus is on how the phenomenon exists across several cases.

Greenwood and Suddaby ( 2006 ), for example, used the instrumental case study design by Stake, combining network location theory and dialectical theory. They identified new dynamics creating a process model of elite institutional entrepreneurship.

Ituma et al. ( 2011 ) highlighted the social construction of reality in their study of career success. The majority of career studies have been conducted in Western countries and findings have been acknowledged as universally applicable. The authors demonstrated that realities of managers in other areas are constructed differently. As a result of their study, they provided a contextually sensitive frame for the analysis of career outcomes.

2.4 Case study research design 4: anomalies

Identifying anomalies as a basis for further research is common in management and organization research (Gilbert and Christensen 2005 ). In case study research, the extended case study method is used for this case study research design (Ridder 2016 ). Following Burawoy ( 1991 , 1998 , 2009 ), the research question derives from curiosity. Researchers normally look at what is “interesting” and what is “surprising” in a social situation that existing theory cannot explain. Initially, it is not important whether the expectations develop from some popular belief, stereotype, or from an academic theory. The extended case study research design is guided by anomalies that the previous theory was not able to explain through internal contradictions of theory, theoretical gaps, or silences. An anomaly does not reject theory, but rather demonstrates that the theory is incomplete. Theory is aimed to be improved by “… turning anomalies into exemplars” (Burawoy 1991 : 10).

The theoretical sampling strategy in this case study research design stems from the theoretical failure in confrontation with the site. According to the reflexive design, such cases do not favour individuals or isolated phenomena, but social situations in which a comparative strategy allows the tracing of differences across the cases to external forces.

In the extended case study, the researcher deals with qualitative data, but also considers the broader complex social situation. The researcher engages into a dialogue with the respondents (Burawoy ( 1991 , 1998 , 2009 ). An interview is an intervention into the life of a respondent. By means of mutual interaction it is possible to discover the social order under investigation. The observer has to unpack those situational experiences by means of participant observation and mutual interpretation. This situational comprehension aims at understanding divergent “voices”, reflecting the variety of respondents’ understandings of the social situation.

As in other sciences, these voices have to be aggregated. This aggregation of multiple readings of a single case is conducted by turning the aggregation into social processes: “The move from situation to process is accomplished differently in different reflexive methods, but it is always reliant on existing theory” (Burawoy 2009 : 41). Social processes are now traced to the external field as the conditions of the social processes. Consequently, this leads to the question concerning “… how those micro situations are shaped by wider structures” (Burawoy 1991 : 282). “Reflexive science insists, therefore, on studying the everyday world from the standpoint of its structuration, that is, by regarding it as simultaneously shaped by and shaping an external field of forces” (Burawoy 2009 : 42). Such social fields cannot be held constant, which undermines the idea of replication. The external field is in continuous flux. Accordingly, social forces that influence the social processes are identified, shaping the phenomenon under investigation. Extension of theory does not target representativeness as a relationship of sample and population. Generality in reflexive science is to reconstruct an existing theory: “We begin with our favorite theory but seek not confirmations but refutations that inspire us to deepen that theory. Instead of discovering grounded theory, we elaborate existing theory. We do not worry about the uniqueness of our case, since we are not as interested in its representativeness as its contribution to reconstructing theory. Our theoretical point of departure can range from the folk theory of participants to any abstract law. We consider only that the scientist consider it worth developing” (Burawoy 2009 : 43). Such elaboration stems from the identification of anomalies and offers new predictions with regard to the theory.

It is somewhat surprising that the extended case study design has been neglected in the management literature so far, and it appears that critical reflexive principles have to be resurrected as they have been in other disciplines (see the overview at Wadham and Warren 2014 ). Examples in the management and organization literature are rare. Danneels ( 2011 ) used the extended case study design to extend the dynamic capabilities theory. In his famous Smith Corona case, Danneels shows how a company tried to change its resource base. Based on detailed data, the Smith Corona case provides insights into the resource alteration processes and how dynamic capabilities operate. As a result, the paper fills a process gap in dynamic capability theory. Iterating between data collection and analysis, Danneels revealed resource cognition as an element not considered so far in dynamic capability theory. The use of the extended case study method is limited to the iteration of data and theory. First, there is “running exchange” (Burawoy 1991 : 10) between field notes and analysis. Second, there is iteration between analysis and existing theory. Unlike Burawoy, who aims to reconstruct existing theory on the basis of “emergent anomalies” (Burawoy 1991 : 11) considering social processes and external forces, Danneels confronts the dynamic capabilities literature with the Smith Corona case to extend the theory of dynamic capabilities.

2.5 A comparison of case study research processes

Commonalities and differences emerged from the comparison of the designs. Table  1 provides a brief summary of these main differences and the resulting portfolio of case study research designs which will be discussed in more detail.

There is an extensive range between the different designs regarding the research processes. In “no theory first”, there is a broad and tentative research question with some preliminary variables at the outset. The research question may be modified during the study as well as the variables. This design avoids any propositions regarding relationships.

On the contrary, the research question in “gaps and holes” is strongly related to existing theory, focusing on “how and why” questions. The existing theory contains research gaps which, once identified within the existing theory, lead accordingly to assumed relationships which are the basis for framework and propositions to be matched by empirical data. This broad difference is even more elaborated by a design that aims the “social construction of reality”. There is no research question at the outset, but a curiosity in the case or the case is a facilitator to understand a research issue. This is far away from curiosity in the “anomaly approach”. Here, the research question is inspired by questioning why an anomaly cannot be explained by the existing theory. What kind of gaps, silences, or internal contradictions demonstrates the insufficiency of the existing theory?

Various sampling strategies are used across these case study research designs, including theoretical sampling and purposeful sampling, which serve different objectives. Theoretical sampling in “no theory first” aims at selecting a case or cases that are appropriate to highlight new or extend preliminary constructs and reveal new relationships. There is a distinct difference from theoretical sampling in the “anomalies” approach. Such a sampling strategy aims to choose a case that is a demonstration of the failure of the theory. In “gaps and holes” sampling is highly focused on the purpose of the case study. Extreme and unusual cases have other purposes compared to common cases or revelatory cases. A single case may be chosen to investigate deeply into new phenomena. A multiple case study may serve a replication logic by which the findings have relevance beyond the cases under investigation. In “social construction of reality”, the sampling is purposeful as well, but for different reasons. Either the case is of interest per se or the case represents a good opportunity to understand a theoretical issue.

Although qualitative data are preferred in all of the designs, quantitative data are seen as a possible opportunity to strengthen cases by such data. Nevertheless, in “social construction of reality”, there is a strong emphasis on thick descriptions and a holistic understanding of the case. This is in contrast to a more construct- and variable- oriented collection of data in “no theory first” and “gaps and holes”. In addition, in contrast to that, the “anomaly” approach is the only design that receives data from dialogue between observer and participants and participant observation.

Finally, data analysis lies within a wide range. In “no theory first”, the research process is finalized by inspecting the emerging constructs within the case or across cases. Based on a priory constructs, systematic comparisons reveal patterns and relationships resulting in a tentative theory. On the contrary, in “gaps and holes”, a tentative theory exists. The final analysis concentrates on the matching of the framework or propositions with patterns from the data. While both of these approaches condense data, the approach of “social construction of reality” ends the research process with thick descriptions of the case to learn from the case or with categorical comparisons. In the “anomaly” approach, the data analysis is aggregation of data, but these aggregated data are related to its external field and their pressures and influences by structuration to reconstruct the theory.

As a result, it is unlikely that the specified case study designs contribute to theory in a homogeneous manner. This result will be discussed in light of the question regarding how these case study designs can inform theory at several points of a continuum of theory. This analysis will be outlined in the following sections. In a first step, I review the main elements of a theory continuum. In a second step, I discuss the respective contribution of the previously identified case study research designs to the theory continuum.

3 Elements of a theory continuum

What a theory is and what a theory is not is a classic debate (Sutton and Staw 1995 ; Weick 1995 ). Often, theories are described in terms of understanding relationships between phenomena which have not been or were not well understood before (Chiles 2003 ; Edmondson and McManus 2007 ; Shah and Corley 2006 ), but there is no overall acceptance as to what constitutes a theory. Theory can be seen as a final product or as a continuum, and there is an ongoing effort to define different stages of this continuum (Andersen and Kragh 2010 ; Colquitt and Zapata-Phelan 2007 ; Edmondson and McManus 2007 ; Snow 2004 ; Swedberg 2012 ). In the following section, basic elements of the theory and the construction of the theory continuum are outlined.

3.1 Basic elements of a theory

Most of the debate concerning what a theory is comprises three basic elements (Alvesson and Kärreman 2007 ; Bacharach 1989 ; Dubin 1978 ; Kaplan 1998 ; Suddaby 2010 ; Weick 1989 , 1995 ; Whetten 1989 ). A theory comprises components (concepts and constructs), used to identify the necessary elements of the phenomenon under investigation. The second is relationships between components (concepts and constructs), explaining the how and whys underlying the relationship. Third, temporal and contextual boundaries limit the generalizability of the theory. As a result, definitions of theory emphasize these components, relationships, and boundaries:

“It is a collection of assertions, both verbal and symbolic, that identifies what variables are important for what reasons, specifies how they are interrelated and why, and identifies the conditions under which they should be related or not related” (Campbell 1990 : 65).
“… a system of constructs and variables in which the constructs are related to each other by propositions and the variables are related to each other by hypotheses” (Bacharach 1989 : 498).
“Theory is about the connections among phenomena, a story about why acts, events, structure, and thoughts occur. Theory emphasizes the nature of causal relationships, identifying what comes first as well as the timing of such events” (Sutton and Staw 1995 : 378).
“… theory is a statement of concepts and their interrelationships that shows how and/or why a phenomenon occurs” (Corley and Gioia 2011 : 12).

The terms “constructs” and “concepts” are either used interchangeably or with different meanings. Positivists use “constructs” as a lens for the observation of a phenomenon (Suddaby 2010 ). Such constructs have to be operationalized and measured. Non-positivists often use the term “concept” as a more value neutral term in place of the term construct (Gioia et al. 2013 ; Suddaby 2010 : 354). Non-positivists aim at developing concepts on the basis of data that contain richness and complexity of the observed phenomenon instead of narrow definitions and operationalizations of constructs. Gioia et al. ( 2013 : 16) clarify the demarcation line between constructs and concepts as follows: “By ‘concept,’ we mean a more general, less well-specified notion capturing qualities that describe or explain a phenomenon of theoretical interest. Put simply, in our way of thinking, concepts are precursors to constructs in making sense of organizational worlds—whether as practitioners living in those worlds, researchers trying to investigate them, or theorists working to model them”.

In sum, theories are a systematic combination of components and their relationships within boundaries. The use of the terms constructs and concepts is related to different philosophical assumptions reflected in different types of case study designs.

3.2 Theory continuum

Weick ( 1995 ) makes an important point that theory is more a continuum than a product. In his view, theorizing is a process containing assumptions, accepted principles, and rules of procedures to explain or predict the behavior of a specified set of phenomena. In similar vein, Gilbert and Christensen ( 2005 ) demonstrate the process character of theory. In their view, a first step of theory building is a careful description of the phenomena. Having already observed and described the phenomena, researchers then classify the phenomena into similar categories. In this phase a framework defines categories and relationships amongst phenomena. In the third phase, researchers build theories to understand (causal) relationships, and in this phase, a model or theory asserts what factors drive the phenomena and under what circumstances. The categorization scheme enables the researchers to predict what they will observe. The “test” offers a confirmation under which circumstances the theory is useful. The early drafts of a theory may be vague in terms of the number and adequateness of factors and their relationships. At the end of the continuum, there may be more precise variables and predicted relationships. These theories have to be extended by boundaries considering time and space.

Across that continuum, different research strategies have various strengths. Several classifications in the literature intend to match research strategies to the different phases of a theory continuum (Andersen and Kragh 2010 ; Colquitt and Zapata-Phelan 2007 ; Edmondson and McManus 2007 ; Snow 2004 ; Swedberg 2012 ). These classifications, although there are differences in terms, comprise three phases with distinguishable characteristics.

3.2.1 Building theory

Here, the careful description of the phenomena is the starting point of theorizing. For example, Snow ( 2004 ) puts this phase as theory discovery, where analytic understandings are generated by means of detailed examination of data. Edmondson and McManus ( 2007 ) state the starting phase of a theory as nascent theory providing answers to new questions revealing new connections among phenomena. Therefore, research questions are open and researchers avoid hypotheses predicting relationships between variables. Swedberg ( 2012 ) highlights the necessity of observation and extensive involvement with the phenomenon at the early stage of theory-building. It is an attempt to understand something of interest by observing and interpreting social facts. Creativity and inspiration are necessary conditions to put observations into concepts and outline a tentative theory.

3.2.2 Developing theory

This tentative theory exists in the second phase of the continuum and has to be developed. Several possibilities exist. In theory extension, the preexisting constructs are extended to other groups or other contexts. In theoretical refinement, a modification of existing theoretical perspectives is conducted (Edmondson and McManus ( 2007 ). New antecedents, moderators, mediators, and outcomes are investigated, enhancing the explanation power of the tentative theory.

3.2.3 Test of theories

Constructs and relationships are well developed to a mature state; measures are precise and operationalized. Such theories are empirically tested with elaborate methods, and research questions are more precise. In the quantitative realm, testing of hypotheses is conducted and statistical analysis is the usual methodological foundation. Recently, researchers criticize that testing theories has become the major focus of scientists today (Delbridge and Fiss 2013 ); testing theories does not only happen to mature theory but to intermediate theory as well. The boundary between theory development and theory testing is not always so clear. While theory development is adding new components to a theory and elaborating the measures, testing a theory implies precise measures, variables, and predicted relationships considering time and space (Gilbert and Christensen ( 2005 ). It will be of interest whether case studies are eligible to test theories as well.

To summarize: there is a conversation as to where on a continuum of theory development, various methods are required to target different contributions to theory (methodological fit). In this discussion, case study research designs have been discussed as a homogeneous set that mostly contributes to theory-building in an exploratory manner. Hence, what is missing is a more differentiated analysis of how case study methodology fits into this conversation, particularly how case study research methodologically fits theory development and theory testing beyond its widely assumed explorative role. In the following section, the above types of case study research designs will be discussed with regard to their positions across the theory continuum.

This distinction adds to existing literature by demonstrating that case study research does not only contribute to theory-building, but also to the development of tentative theories and to the testing of theories. This distinction leads to the next question: is there any interplay between case study research designs and their contributions to the theory continuum? This paper aims at reconciling this interplay with regard to case study design by mirroring phases of a theory continuum with specific types of case study research designs as outlined above. The importance of the interplay between theory and method lies in the capacity to generate and shape theory, while theory can generate and shape method. “In this long march, theory and method surely matter, for they are the tools with which we build both our representations and understandings of organizational life and our reputations” (van Maanen et al. 2007 : 1145). Theory is not the same as methods, but a relationship of this interplay can broaden or restrict both parts of the equation (Swedberg 2012 : 7).

In the following, I discuss how the above-delineated case study research designs unfold their capacities and contribute differently to the theory continuum to build, develop, and test theory.

4 Discussion of the contribution of case study research to a theory continuum

Case study research is diverse with distinct contributions to the continuum of theory. The following table provides the main differences in terms of contributions to theory and specifically locates the case study research designs on the theory continuum (Table  2 ).

In the following, I outline how these specific contributions of case study designs provide better opportunities to enhance the rigor of building theory, developing theory, testing, and reconstructing theory.

4.1 Building theory

In building theory, the phenomenon is new or not understood so far. There is no theory which explains the phenomenon. At the very beginning of the theory continuum, there is curiosity in the phenomenon itself. I focus on the intrinsic case study design which is located in the social construction of reality approach on the very early phase of the theory continuum, as intrinsic case study research design is not theory-building per se but curiosity in the case itself. It is not the purpose of the intrinsic case study to identify abstract concepts and relationships; the specific research strategy lies in the observation and description of a case and the primary method is observation, enabling understanding from personal and vicarious experience. This meets long lasting complaints concerning the lack of (new) theory in management and organization research and signals that the gap between research and management practice is growing. It is argued that the complexity of the reality is not adequately captured (Suddaby et al. 2011 ). It is claimed that management and organization research systematically neglect the dialogue with practice and, as a result, miss new trends or recognize important trends with delay (Corley and Gioia 2011 ).

The specific case study research design’s contribution to theory is in building concrete, context-dependent knowledge with regard to the identification of new phenomena and trends. Openness with regard to the new phenomena, avoiding theoretical preconceptions but building insights out of data, enables the elaboration of meanings and the construction of realities in intrinsic case studies. Intrinsic case studies will enhance the understanding by researcher and reader concerning new phenomena.

The “No Theory First” case study research design is a classic and often cited candidate for building theory. As the phenomenon is new and in the absence of a theory, qualitative data are inspected for aggregation and interpretation. In instrumental case study design, a number of cases will increase the understanding and support building theories by description, aggregation, and interpretation (Stake 2000 ). New themes and concepts are revealed by case descriptions, interviews, documents, and observations, and the analysis of the data enables the specific contribution of the case study design through a constructivist perspective in theory-building.

Although the design by Eisenhardt ( 1989 ) stems from other philosophical assumptions and there are variations and developments in this design, there is still an overwhelming tendency to quote and to stick to her research strategy which aims developing new constructs and new relationships out of real-life cases. Data are collected mainly by interviews, documents, and observations. From within-site analysis and cross-case analysis, themes, concepts, and relationships emerge. Shaping hypotheses comprises: “… refining the definition of the construct and (…) building evidence which measures the construct in each case” (Eisenhardt 1989 : 541). Having identified the emerged constructs, the emergent relationships between constructs are verified in each case. The underlying logic is validation by replication. Cases are treated as experiments in which the hypotheses are replicated case by case. In replication logic cases that confirm the emergent relationships enhance confidence in the validity of the relationships. Disconfirmation of the relationships leads to refinement of the theory. This is similar to Yin’s replication logic, but targets the precision and measurement of constructs and the emerging relationships with regard to the emerging theory. The building of a theory concludes in an understanding of the dynamics underlying the relationship; the primary theoretical reasons for why the relationships exist (Huy 2012 ). Finally, a visual theory with “boxes and arrows” (Eisenhardt and Graebner 2007 ) may visually demonstrate the emerged theory. The theory-building process is finalized by iterating case data, emerging theory, and extant literature.

The “No Theory First” and “Social Construction of Reality” case study research designs, although they represent different philosophical assumptions, adequately fit the theory-building phase concerning new phenomena. The main contribution of case study designs in this phase of the theory continuum lies in the generation of tentative theories.

Case studies at this point of the theory continuum, therefore, have to demonstrate: why the phenomenon is new or of interest; that no previous theory that explains the phenomenon exists; how and why detailed descriptions enhance the understanding of the phenomenon; and how and why new concepts (constructs) and new relationships will enhance our understanding of the phenomenon.

As a result, it has to be demonstrated that the research strategy is in sync with an investigation of a new phenomenon, building a tentative theory.

4.2 Developing theory

In the “Gaps and Holes” case study research design, the phenomenon is partially understood. There is a tentative theory and the research strategy is theory driven. Compared to the theory-building phase, the existence and not the development of propositions differentiate this design along the continuum. The prediction comes first, out of an existing theory. The research strategy and the data have to be confronted by pattern-matching. Pattern-matching is a means to compare the theoretically based predictions with the data in the site: “For case study analysis, one of the most preferred techniques is to use a pattern-matching logic. Such a logic (…) compares an empirically based pattern–that is, one based on the findings from your case study–with a predicted one made before you collected your data (….)” (Yin 2014 : 143). The comparison of propositions and the rich case material is the ground for new elements or relationships within the tentative theory.

Such findings aim to enhance the scientific usefulness of the theory (Corley and Gioia 2011 ). To enhance the validity of the new elements or relationships of the tentative theory, literal replication is a means to confirm the new findings. By that, the theory is developed by new antecedents, moderators, mediators, or outcomes. This modification or extension of the theory contributes to the analytical generalization of the theory.

If new cases provide similar results, the search for regularities is based on more solid ground. Therefore, the strength of case study research in “Gaps and Holes” lies in search for mechanisms in their specific context which can reveal causes and effects more precisely.

The “Gaps and Holes” case study research design is an adequate candidate for this phase of the theory continuum. Case studies at this point of the theory continuum, therefore, have to outline the tentative theory; to demonstrate the lacks and gaps of the tentative theory; to specify how and why the tentative theory is aimed to be extended and/or modified; to develop theoretically based propositions which guide the investigation; and to evaluate new elements, relationships, and mechanisms related to the previous theory (analytical generalization).

As a result and compared to theory-building, a different research strategy exists. While in theory building the research strategy is based on the eliciting of concepts (constructs) and relationships out of data, in theory development, it has to be demonstrated that the research strategy aims to identify new elements and relationships within a tentative theory, identifying mechanisms which explain the phenomenon more precisely.

4.3 Test of theory

In “Gaps and Holes” and “Anomalies”, an extended theory exists. The phenomenon is understood. There is no search for additional components or relationships. Mechanisms seem to explain the functioning or processes of the phenomenon. The research strategy is focused on testing whether the theory holds under different circumstances or under different conditions. Such a test of theories is mainly the domain of experimental and quantitative studies. It is based on previously developed constructs and variables which are the foundation for stating specific testable hypotheses and testing the relations on the basis of quantitative data sets. As a result, highly sophisticated statistical tools enable falsification of the theory. Therefore, testing theory in “Gaps and Holes” is restricted on specific events.

Single case can serve as a test. There is a debate in case study research whether the test of theories is related to the falsification logic of Karl Popper (Flyvbjerg 2006 ; Tsang 2013 ). Another stream of the debate is related to theoretical generalizability (Hillebrand et al. 2001 ; Welch et al. 2011 ). More specifically, test in” Gaps and Holes” is analogous to a single experiment if a single case represents a critical case. If the theory has specified a clear set of propositions and defines the exact conditions within which the theory might explain the phenomena under investigation, a single case study, testing the theory, can confirm or challenge the theory. In sum Yin states: “Overall, the single-case design is eminently justifiable under certain conditions—where the case represents (a) a critical test of existing theory, …” (Yin 2014 : 56). In their survey in the field of International Business, Welch et al. conclude: “In addition, the widespread assumption that the role of the case study lies only in the exploratory, theory-building phase of research downplays its potential to propose causal mechanisms and linkages, and test existing theories” (Welch et al. 2011 : 755).

In multiple case studies, a theoretical replication is a test of theory by comparing the findings with new cases. If a series of cases have revealed pattern-matching between propositions and the data, theoretical replication can be revealed by new waves of cases with contrasting propositions. If the contrasting propositions reveal contrasting results, the findings of the first wave are confirmed. Several possibilities exist to test the initial findings of multiple case studies using different lenses from inside and outside the management realm (Corley and Gioia 2011 ; LePine and Wilcox-King 2010 ; Okhuysen and Bonardi 2011 ; Zahra and Newey 2009 ), but have not become a standard in case study research.

In rival explanations, rival theoretical propositions are developed as a test of the previous theory. This can be distinguished from theoretical replication where contrasting propositions aim to confirm the initial findings. This can, as well, be distinguished from developing theory where rival explanations might develop theory by the elimination of possible influences (interventions, implementations). The rich data enable one to identify internal and external interventions that might be responsible for the findings. Alternative explanations in a new series of cases enable to test, whether a theory “different from the original theory explains the results better (…)” (Yin 2014 : 141).

As a result, it astonishes that theoretical replication and rival explanations, being one of the strengths of case study research, are rarely used. Although the general debate about “lenses” has informed the discussion about theory contributions, this paper demonstrates that there is a wide range of possible integration of vertical or horizontal lenses in case study research design. Case study research designs aiming to test theories have to outline modes of replication and the elimination of rival explanations.

The “anomaly approach” is placed in the final phase of the theory testing, as well. In this approach, a theory exists, but the theory fails to explain anomalies. Burawoy goes a step further. While Yin ( 2014 ) sees a critical case as a test that challenges or contradicts a well formulated theory, in Burawoy’s approach, in contrast to falsification logic (Popper 2002 ), the theory is not rejected but reconstructed. Burawoy relates extended case study design to society and history. Existing theory is challenged by intervention into the social field. Identifying processes of historical roots and social circumstances and considering external forces by structuration lead to the reconstruction of the theory.

It is surprising that this design has been neglected so far in management research. Is there no need to reflect social tensions and distortions in management research? While case study research has, per definition, to investigate phenomena in its natural environment, it is hard to understand why this design has widely been ignored in management and organization research. As a result, testing theory in case study research has to demonstrate that an extended theory exists; a critical case or an anomaly can challenge the theory; theoretical replication and rival explanations will be means to contradict or confirm the theory; and societal circumstances and external forces explain the anomaly.

Compared to theory-building (new concepts/constructs and relationships out of data) and theory development (new elements and relationships within a tentative theory), testing theory challenges extended theory by empirical investigations into failures and anomalies that the current theory cannot explain.

5 Conclusion

Case studies provide a better understanding of phenomena regarding concrete context-dependent knowledge (Andersen and Kragh 2010 ; Flyvbjerg 2006 : 224), but as literature reviews indicate, there is still confusion regarding the adequate utilization of case study methodology (Welch et al. 2011 ). This can be interpreted in a way that authors and even reviewers are not always aware of the methodological fit in case study research. Case study research is mainly narrowed to its “explorative” function, neglecting the scope of possibilities that case study research provides. The claim for more homogeneity of specified rules in case study research misses the important aspect that a method is not a means in itself, but aims at providing improved theories (van Maanen et al. 2007 ). This paper contributes to the fit of case study research designs and the theory continuum regarding the following issues.

5.1 Heterogeneity of case study designs

Although case study research, overall, has similar characteristics, it incorporates various case study research designs that have heterogeneous theoretical goals and use various elements to reach these goals. The analysis revealed that the classical understanding, whereby case study research is adequate for the “exploration” of a theory and quantitative research is adequate for “testing” theory, is oversimplified. Therefore, the theoretical goals of case study research have to be outlined precisely. This study demonstrates that there is variety of case study research designs that have thus far been largely neglected. Case study researchers can utilize the entire spectrum, but have to consider how the phenomenon is related to the theory continuum.

Case study researchers have to demonstrate how they describe new or surprising phenomena, develop new constructs and relationships, add constructs (variables), antecedents, outcomes, moderators, or mediators to a tentative theory, challenge a theory by a critical case, theoretical replication or discarding rival explanations, and reconstruct a theory by tracking failures and anomalies to external circumstances.

5.2 Methodological fit

The rigor of the case study can be enhanced by considering the specific contribution of various case study research designs in each phase of the theory continuum. This paper provides a portfolio of case study research designs that enables researchers and reviewers to evaluate whether the case study arsenal has been adequately located:

At an early phase of the theory continuum, case studies have their strengths in rich descriptions and investigations into new or surprising empirical phenomena and trends. Researchers and readers can benefit from such rich descriptions in understanding and analyzing these phenomena.

Next, on the theory continuum, there is the well-known contribution of case study research in building tentative theory by eliciting constructs or concepts and their relationships out of data.

Third, development of theories is strongly related to literal replication. Strict comparisons, on the one hand, and controlled theoretical advancement, on the other hand, enable the identification of mechanisms, strengthen the notions of causality, and provide generalizable statements.

Fourth, there are specific circumstances under which case study approaches enable one to test theories. This is to confront the theory with a critical case, to test findings of pattern-matching by theoretical replication and discarding rival explanations. Therefore, “Gaps and Holes” provide the opportunity for developing and testing theories through case study design on the theory continuum.

Finally, testing and contradicting theory are not the final rejection of a theory, but is the basis for reconstructing theory by means of case study design. Anomalies can be traced to historical sources, social processes, and external forces.

This paper demonstrates that the precise interplay of case study research designs and theory contributions on the theory continuum is a prerequisite for the contribution of case study research to better theories. If case study research design is differentiated from qualitative research, the intended contribution to theory is stated and designs that fit the aimed contribution to theory are outlined and substantiated; this will critically enhance the rigor of case study research.

Alvesson, M., and D. Kärreman. 2007. Constructing mystery: Empirical matters in theory development. Academy of Management Review 32: 1265–1281.

Article   Google Scholar  

Andersen, P.H., and H. Kragh. 2010. Sense and sensibility: two approaches for using existing theory in theory-building qualitative research. Industrial Marketing Management 39: 49–55.

Bacharach, S.B. 1989. Organizational theories: some criteria for evaluation. Academy of Management Review 14: 496–515.

Google Scholar  

Baxter, P., and S. Jack. 2008. Qualitative case study methodology: study design and implementation for novice researchers. The Qualitative Report 13: 544–559.

Bingham, C.B., and K.M. Eisenhardt. 2011. Rational heuristics: the ‘simple rules’ that strategists learn from process experience. Strategic Management Journal 32: 1437–1464.

Burawoy, M. 1991. Ethnography unbound . Power and resistance in the modern metropolis: University of California Press.

Burawoy, M. 1998. The extended case method. Sociological Theory 16: 4–33.

Burawoy, M. 2009. The extended case method. Four countries, four decades, four great transformations, and one theoretical tradition . Berkeley: University of California Press.

Burns, R.B. 2000. Introduction to research methods . United States of America: SAGE publications.

Campbell, J.P. 1990. The role of theory in industrial and organizational psychology. In Handbook of industrial and organizational psychology , 2nd ed, ed. M.D. Dunnette, L.M. Hough, and H.C. Triandis, 39–73. Palo Alto: Consulting Psychologists Press.

Chiles, T.H. 2003. Process theorizing: too important to ignore in a kaleidic world. Academy of Management Learning & Education 2: 288–291.

Colquitt, J.A., and C.P. Zapata-Phelan. 2007. Trends in theory building and theory testing: a five-decade study of the Academy of Management Journal. Academy of Management Journal 50: 1281–1303.

Corbin, J.M., & Strauss, A.L. 2015. Basics of qualitative research: Techniques and procedures for developing grounded theory (4th ed). Los Angeles, CA: Sage Publications.

Corley, K.G., and D.A. Gioia. 2011. Building theory about theory building: what constitutes a theoretical contribution? Academy of Management Review 36: 12–32.

Danneels, E. 2011. Trying to become a different type of company: dynamic capability at Smith Corona. Strategic Management Journal 32: 1–31.

Davis, J.P., and K.M. Eisenhardt. 2011. Rotating leadership and collaborative innovation: recombination processes in symbiotic relationships. Administrative Science Quarterly 56: 159–201.

Delbridge, R., and P.C. Fiss. 2013. Editors’ comments: styles of theorizing and the social organization of knowledge. Academy of Management Review 38: 325–331.

Dooley, L.M. 2002. Case study research and theory building. Advances in Developing Human Resources 4: 335–354.

Dubin, R. 1978. Theory building . New York: Free Press.

Dyer, W.G., and A.L. Wilkins. 1991. Better stories, not better constructs, to generate better theory: a rejoinder to Eisenhardt. Academy of Management Review 16: 613–619.

Edmondson, A.C., and S.E. McManus. 2007. Methodological fit in management field research. Academy of Management Review 32: 1155–1179.

Eisenhardt, K.M. 1989. Building theories from case study research. Academy of Management Review 14: 532–550.

Eisenhardt, K.M. 1991. Better stories and better constructs: The case for rigor and comparative logic. Academy of Management Review , 16(3): 620–627.

Eisenhardt, K.M., and M.E. Graebner. 2007. Theory building from cases: opportunities and challenges. Academy of Management Journal 50: 25–32.

Ellonen, H.K., P. Wikström, and A. Jantunen. 2009. Linking dynamic-capability portfolios and innovation outcomes. Technovation 29: 753–762.

Fiss, P.C. 2009. Case studies and the configurational analysis of organizational phenomena. In The SAGE handbook of case-based methods , ed. D.S. Byrne, and C.C. Ragin, 424–440. London/Thousand Oaks: SAGE.

Chapter   Google Scholar  

Flick, U. 2009. An introduction to qualitative research , 4th ed. London: SAGE.

Flyvbjerg, B. (2006). Five misunderstandings about case-study research. Qualitative Inquiry , 12(2): 219–245.

Gilbert, C.G., and C.M. Christensen. 2005. Anomaly-seeking research: thirty years of development in resource allocation theory. In From resource allocation to strategy , ed. J.L. Bower, and C.G. Gilbert, 71–89. Oxford: University Press, Oxford.

Gioia, D.A., K.G. Corley, and A.L. Hamilton. 2013. Seeking qualitative rigor in inductive research: notes on the Gioia methodology. Organizational Research Methods 16: 15–31.

Gomm, R., M. Hammersley, and P. Foster. 2000. Case study method. Key issues, key texts . London/Thousand Oaks: Sage Publications.

Greenwood, R., and R. Suddaby. 2006. Institutional entrepreneurship in mature fields: the big five accounting firms. Academy of Management Journal 49: 27–48.

Guba, E.G., and Y.S. Lincoln. 2005. Paradigmatic controversies, contradictions, and emerging confluences. In The SAGE handbook of qualitative research , 3rd ed, ed. N.K. Denzin, and Y.S. Lincoln, 191–215. London, Thousand Oaks: Sage Publications.

Hillebrand, B., R.A.W. Kok, and W.G. Biemans. 2001. Theory-testing using case studies: a comment on Johnston, Leach, and Liu. Industrial Marketing Management 30: 651–657.

Huy, Q.N. 2012. Improving the odds of publishing inductive qualitative research in Premier Academic Journals. The Journal of Applied Behavioral Science 48: 282–287.

Ituma, A., R. Simpson, F. Ovadje, N. Cornelius, and C. Mordi. 2011. Four ‘domains’ of career success: how managers in Nigeria evaluate career outcomes. The International Journal of Human Resource Management 22: 3638–3660.

Kaplan, A. 1998. The conduct of inquiry. Methodology for behavioral science . New Brunswick, N.J.: Transaction Publishers.

Lee, T.W. 1999. Using qualitative methods in organizational research. Organizational research methods series . Thousand Oaks: Sage Publications.

LePine, J.A., and A. Wilcox-King. 2010. Editors´s comments: developing novel theoretical insight from reviews of existing rheory and research. Academy of Management Review 35: 506–509.

Mason, J. 2002. Qualitative researching , 2nd ed. London, Thousand Oaks: Sage Publications.

Miles, M.B., Huberman, M.A., & Saldana, J. 2014. Qualitative data analysis: A methods sourcebook (3rd ed). Los Angeles, CA: Sage Publications.

Okhuysen, G., and J.P. Bonardi. 2011. The challenges of building theory by combining lenses. Academy of Management Review 36: 6–11.

Piekkari, R., C. Welch, and E. Paavilainen. 2009. The case study as disciplinary convention: evidence from international business journals. Organizational Research Methods 12: 567–589.

Popper, K.R. 2002. Logik der Forschung . Tübingen: Mohr Siebeck.

Ravenswood, K. 2011. Eisenhardt’s impact on theory in case study research. Journal of Business Research 64: 680–686.

Ridder, H.G. 2016. Case study research. Approaches, methods, contribution to theory. Sozialwissenschaftliche Forschungsmethoden , vol. 12. München/Mering: Rainer Hampp Verlag.

Schwandt, T.A. 1994. Constructivist, interpretivist approaches to human inquiry. In Handbook of qualitative research , ed. N.K. Denzin, and Y.S. Lincoln, 118–137. Thousand Oaks: Sage Publications.

Shah, S.K., and K.G. Corley. 2006. Building better theory by bridging the quantitative–qualitative divide. Journal of Management Studies 43: 1821–1835.

Shane, S. 2000. Prior knowledge and the discovery of entrepreneurial opportunities. Organization Science 11: 448–469.

Snow, C.C. 2004. Thoughts on alternative pathways to theoretical development: Theory generation, extension, and refinement. In Workshop on scientific foundations of qualitative research , ed. C.C. Ragin, J. Nagel, and P. White, 133–136. Arlington, VA: National Science Foundation.

Stake, R.E. 1995. The art of case study research . London, Thousand Oaks: Sage Publications.

Stake, R.E. 2000. The case study and generalizability. In Case study method. Key issues, key texts , ed. R. Gomm, M. Hammersley, and P. Foster, 19–26. London/Thousand Oaks: Sage Publications.

Stake, R.E. 2005. Qualitative case studies. In The SAGE handbook of qualitative research , 3rd ed, ed. N.K. Denzin, and Y.S. Lincoln, 443–466. London, Thousand Oaks: Sage Publications.

Suddaby, R. 2010. Editor’s comments: construct clarity in theories of management and organization. Academy of Management Review 35: 346–357.

Suddaby, R., C. Hardy, and Q.N. Huy. 2011. Introduction to special topic forum: where are the new theories of organization? Academy of Management Review 36: 236–246.

Sutton, R.I., and B.M. Staw. 1995. What theory is not. Administrative Science Quarterly 40: 371–384.

Swedberg, R. 2012. Theorizing in sociology and social science: turning to the context of discovery. Theory and Society 41: 1–40.

Tsang, E.W.K. 2013. Generalizing from research findings: the merits of case studies. International Journal of Management Reviews 16: 369–383.

van Maanen, J., J.B. Sørensen, and T.R. Mitchell. 2007. The interplay between theory and method. Academy of Management Review 32: 1145–1154.

Vaughan, D. 1992. Theory elaboration: The heuristics of case analysis. In What is a case? , ed. C.C. Ragin, and H.S. Becker, 173–202. Exploring the foundations of social inquiry: Cambridge University Press, Cambridge, New York.

Wadham, H., and R.C. Warren. 2014. Telling organizational tales the extended case method in practice. Organizational Research Methods 17: 5–22.

Weick, K.E. 1989. Theory construction as disciplined imagination. Academy of Management Review 14: 516–531.

Weick, K.E. 1995. What theory is not, theorizing is. Administrative Science Quarterly 40: 385–390.

Welch, C., R. Piekkari, E. Plakoyiannaki, and E. Paavilainen-Mäntymäki. 2011. Theorising from case studies: towards a pluralist future for international business research. Journal of International Business Studies 42: 740–762.

Whetten, D.A. 1989. What constitutes a theoretical contribution? Academy of Management Review 14: 490–495.

Yin, R.K. 2014. Case study research. Design and methods , 5th ed. London, Thousand Oaks: Sage Publications.

Zahra, S.A., and L.R. Newey. 2009. Maximizing the Impact of Organization Science: theory-Building at the Intersection of Disciplines and/or Fields. Journal of Management Studies 46: 1059–1075.

Download references

Author information

Authors and affiliations.

Institute of Human Resource Management, Leibniz University of Hannover, Königsworther Platz 1, 30167, Hannover, Germany

Hans-Gerd Ridder

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Hans-Gerd Ridder .

Additional information

I thank two anonymous reviewers for their constructive comments. I am grateful for valuable thoughts generously provided by Ann Kristin Zobel.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Ridder, HG. The theory contribution of case study research designs. Bus Res 10 , 281–305 (2017). https://doi.org/10.1007/s40685-017-0045-z

Download citation

Received : 26 January 2016

Accepted : 06 February 2017

Published : 16 February 2017

Issue Date : October 2017

DOI : https://doi.org/10.1007/s40685-017-0045-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Case studies
  • Research design
  • Heterogeneity of case study designs
  • Theory continuum
  • Methodological fit
  • Contribution to theory
  • Find a journal
  • Publish with us
  • Track your research

case study research often requires a holistic interpretation

Forum Qualitative Sozialforschung / Forum: Qualitative Social Research (FQS)

ISSN 1438-5627

Creative Common License

Creative Commons Attribution 4.0 International License

  • Open access
  • Published: 10 November 2020

Case study research for better evaluations of complex interventions: rationale and challenges

  • Sara Paparini   ORCID: orcid.org/0000-0002-1909-2481 1 ,
  • Judith Green 2 ,
  • Chrysanthi Papoutsi 1 ,
  • Jamie Murdoch 3 ,
  • Mark Petticrew 4 ,
  • Trish Greenhalgh 1 ,
  • Benjamin Hanckel 5 &
  • Sara Shaw 1  

BMC Medicine volume  18 , Article number:  301 ( 2020 ) Cite this article

19k Accesses

46 Citations

35 Altmetric

Metrics details

The need for better methods for evaluation in health research has been widely recognised. The ‘complexity turn’ has drawn attention to the limitations of relying on causal inference from randomised controlled trials alone for understanding whether, and under which conditions, interventions in complex systems improve health services or the public health, and what mechanisms might link interventions and outcomes. We argue that case study research—currently denigrated as poor evidence—is an under-utilised resource for not only providing evidence about context and transferability, but also for helping strengthen causal inferences when pathways between intervention and effects are likely to be non-linear.

Case study research, as an overall approach, is based on in-depth explorations of complex phenomena in their natural, or real-life, settings. Empirical case studies typically enable dynamic understanding of complex challenges and provide evidence about causal mechanisms and the necessary and sufficient conditions (contexts) for intervention implementation and effects. This is essential evidence not just for researchers concerned about internal and external validity, but also research users in policy and practice who need to know what the likely effects of complex programmes or interventions will be in their settings. The health sciences have much to learn from scholarship on case study methodology in the social sciences. However, there are multiple challenges in fully exploiting the potential learning from case study research. First are misconceptions that case study research can only provide exploratory or descriptive evidence. Second, there is little consensus about what a case study is, and considerable diversity in how empirical case studies are conducted and reported. Finally, as case study researchers typically (and appropriately) focus on thick description (that captures contextual detail), it can be challenging to identify the key messages related to intervention evaluation from case study reports.

Whilst the diversity of published case studies in health services and public health research is rich and productive, we recommend further clarity and specific methodological guidance for those reporting case study research for evaluation audiences.

Peer Review reports

The need for methodological development to address the most urgent challenges in health research has been well-documented. Many of the most pressing questions for public health research, where the focus is on system-level determinants [ 1 , 2 ], and for health services research, where provisions typically vary across sites and are provided through interlocking networks of services [ 3 ], require methodological approaches that can attend to complexity. The need for methodological advance has arisen, in part, as a result of the diminishing returns from randomised controlled trials (RCTs) where they have been used to answer questions about the effects of interventions in complex systems [ 4 , 5 , 6 ]. In conditions of complexity, there is limited value in maintaining the current orientation to experimental trial designs in the health sciences as providing ‘gold standard’ evidence of effect.

There are increasing calls for methodological pluralism [ 7 , 8 ], with the recognition that complex intervention and context are not easily or usefully separated (as is often the situation when using trial design), and that system interruptions may have effects that are not reducible to linear causal pathways between intervention and outcome. These calls are reflected in a shifting and contested discourse of trial design, seen with the emergence of realist [ 9 ], adaptive and hybrid (types 1, 2 and 3) [ 10 , 11 ] trials that blend studies of effectiveness with a close consideration of the contexts of implementation. Similarly, process evaluation has now become a core component of complex healthcare intervention trials, reflected in MRC guidance on how to explore implementation, causal mechanisms and context [ 12 ].

Evidence about the context of an intervention is crucial for questions of external validity. As Woolcock [ 4 ] notes, even if RCT designs are accepted as robust for maximising internal validity, questions of transferability (how well the intervention works in different contexts) and generalisability (how well the intervention can be scaled up) remain unanswered [ 5 , 13 ]. For research evidence to have impact on policy and systems organisation, and thus to improve population and patient health, there is an urgent need for better methods for strengthening external validity, including a better understanding of the relationship between intervention and context [ 14 ].

Policymakers, healthcare commissioners and other research users require credible evidence of relevance to their settings and populations [ 15 ], to perform what Rosengarten and Savransky [ 16 ] call ‘careful abstraction’ to the locales that matter for them. They also require robust evidence for understanding complex causal pathways. Case study research, currently under-utilised in public health and health services evaluation, can offer considerable potential for strengthening faith in both external and internal validity. For example, in an empirical case study of how the policy of free bus travel had specific health effects in London, UK, a quasi-experimental evaluation (led by JG) identified how important aspects of context (a good public transport system) and intervention (that it was universal) were necessary conditions for the observed effects, thus providing useful, actionable evidence for decision-makers in other contexts [ 17 ].

The overall approach of case study research is based on the in-depth exploration of complex phenomena in their natural, or ‘real-life’, settings. Empirical case studies typically enable dynamic understanding of complex challenges rather than restricting the focus on narrow problem delineations and simple fixes. Case study research is a diverse and somewhat contested field, with multiple definitions and perspectives grounded in different ways of viewing the world, and involving different combinations of methods. In this paper, we raise awareness of such plurality and highlight the contribution that case study research can make to the evaluation of complex system-level interventions. We review some of the challenges in exploiting the current evidence base from empirical case studies and conclude by recommending that further guidance and minimum reporting criteria for evaluation using case studies, appropriate for audiences in the health sciences, can enhance the take-up of evidence from case study research.

Case study research offers evidence about context, causal inference in complex systems and implementation

Well-conducted and described empirical case studies provide evidence on context, complexity and mechanisms for understanding how, where and why interventions have their observed effects. Recognition of the importance of context for understanding the relationships between interventions and outcomes is hardly new. In 1943, Canguilhem berated an over-reliance on experimental designs for determining universal physiological laws: ‘As if one could determine a phenomenon’s essence apart from its conditions! As if conditions were a mask or frame which changed neither the face nor the picture!’ ([ 18 ] p126). More recently, a concern with context has been expressed in health systems and public health research as part of what has been called the ‘complexity turn’ [ 1 ]: a recognition that many of the most enduring challenges for developing an evidence base require a consideration of system-level effects [ 1 ] and the conceptualisation of interventions as interruptions in systems [ 19 ].

The case study approach is widely recognised as offering an invaluable resource for understanding the dynamic and evolving influence of context on complex, system-level interventions [ 20 , 21 , 22 , 23 ]. Empirically, case studies can directly inform assessments of where, when, how and for whom interventions might be successfully implemented, by helping to specify the necessary and sufficient conditions under which interventions might have effects and to consolidate learning on how interdependencies, emergence and unpredictability can be managed to achieve and sustain desired effects. Case study research has the potential to address four objectives for improving research and reporting of context recently set out by guidance on taking account of context in population health research [ 24 ], that is to (1) improve the appropriateness of intervention development for specific contexts, (2) improve understanding of ‘how’ interventions work, (3) better understand how and why impacts vary across contexts and (4) ensure reports of intervention studies are most useful for decision-makers and researchers.

However, evaluations of complex healthcare interventions have arguably not exploited the full potential of case study research and can learn much from other disciplines. For evaluative research, exploratory case studies have had a traditional role of providing data on ‘process’, or initial ‘hypothesis-generating’ scoping, but might also have an increasing salience for explanatory aims. Across the social and political sciences, different kinds of case studies are undertaken to meet diverse aims (description, exploration or explanation) and across different scales (from small N qualitative studies that aim to elucidate processes, or provide thick description, to more systematic techniques designed for medium-to-large N cases).

Case studies with explanatory aims vary in terms of their positioning within mixed-methods projects, with designs including (but not restricted to) (1) single N of 1 studies of interventions in specific contexts, where the overall design is a case study that may incorporate one or more (randomised or not) comparisons over time and between variables within the case; (2) a series of cases conducted or synthesised to provide explanation from variations between cases; and (3) case studies of particular settings within RCT or quasi-experimental designs to explore variation in effects or implementation.

Detailed qualitative research (typically done as ‘case studies’ within process evaluations) provides evidence for the plausibility of mechanisms [ 25 ], offering theoretical generalisations for how interventions may function under different conditions. Although RCT designs reduce many threats to internal validity, the mechanisms of effect remain opaque, particularly when the causal pathways between ‘intervention’ and ‘effect’ are long and potentially non-linear: case study research has a more fundamental role here, in providing detailed observational evidence for causal claims [ 26 ] as well as producing a rich, nuanced picture of tensions and multiple perspectives [ 8 ].

Longitudinal or cross-case analysis may be best suited for evidence generation in system-level evaluative research. Turner [ 27 ], for instance, reflecting on the complex processes in major system change, has argued for the need for methods that integrate learning across cases, to develop theoretical knowledge that would enable inferences beyond the single case, and to develop generalisable theory about organisational and structural change in health systems. Qualitative Comparative Analysis (QCA) [ 28 ] is one such formal method for deriving causal claims, using set theory mathematics to integrate data from empirical case studies to answer questions about the configurations of causal pathways linking conditions to outcomes [ 29 , 30 ].

Nonetheless, the single N case study, too, provides opportunities for theoretical development [ 31 ], and theoretical generalisation or analytical refinement [ 32 ]. How ‘the case’ and ‘context’ are conceptualised is crucial here. Findings from the single case may seem to be confined to its intrinsic particularities in a specific and distinct context [ 33 ]. However, if such context is viewed as exemplifying wider social and political forces, the single case can be ‘telling’, rather than ‘typical’, and offer insight into a wider issue [ 34 ]. Internal comparisons within the case can offer rich possibilities for logical inferences about causation [ 17 ]. Further, case studies of any size can be used for theory testing through refutation [ 22 ]. The potential lies, then, in utilising the strengths and plurality of case study to support theory-driven research within different methodological paradigms.

Evaluation research in health has much to learn from a range of social sciences where case study methodology has been used to develop various kinds of causal inference. For instance, Gerring [ 35 ] expands on the within-case variations utilised to make causal claims. For Gerring [ 35 ], case studies come into their own with regard to invariant or strong causal claims (such as X is a necessary and/or sufficient condition for Y) rather than for probabilistic causal claims. For the latter (where experimental methods might have an advantage in estimating effect sizes), case studies offer evidence on mechanisms: from observations of X affecting Y, from process tracing or from pattern matching. Case studies also support the study of emergent causation, that is, the multiple interacting properties that account for particular and unexpected outcomes in complex systems, such as in healthcare [ 8 ].

Finally, efficacy (or beliefs about efficacy) is not the only contributor to intervention uptake, with a range of organisational and policy contingencies affecting whether an intervention is likely to be rolled out in practice. Case study research is, therefore, invaluable for learning about contextual contingencies and identifying the conditions necessary for interventions to become normalised (i.e. implemented routinely) in practice [ 36 ].

The challenges in exploiting evidence from case study research

At present, there are significant challenges in exploiting the benefits of case study research in evaluative health research, which relate to status, definition and reporting. Case study research has been marginalised at the bottom of an evidence hierarchy, seen to offer little by way of explanatory power, if nonetheless useful for adding descriptive data on process or providing useful illustrations for policymakers [ 37 ]. This is an opportune moment to revisit this low status. As health researchers are increasingly charged with evaluating ‘natural experiments’—the use of face masks in the response to the COVID-19 pandemic being a recent example [ 38 ]—rather than interventions that take place in settings that can be controlled, research approaches using methods to strengthen causal inference that does not require randomisation become more relevant.

A second challenge for improving the use of case study evidence in evaluative health research is that, as we have seen, what is meant by ‘case study’ varies widely, not only across but also within disciplines. There is indeed little consensus amongst methodologists as to how to define ‘a case study’. Definitions focus, variously, on small sample size or lack of control over the intervention (e.g. [ 39 ] p194), on in-depth study and context [ 40 , 41 ], on the logic of inference used [ 35 ] or on distinct research strategies which incorporate a number of methods to address questions of ‘how’ and ‘why’ [ 42 ]. Moreover, definitions developed for specific disciplines do not capture the range of ways in which case study research is carried out across disciplines. Multiple definitions of case study reflect the richness and diversity of the approach. However, evidence suggests that a lack of consensus across methodologists results in some of the limitations of published reports of empirical case studies [ 43 , 44 ]. Hyett and colleagues [ 43 ], for instance, reviewing reports in qualitative journals, found little match between methodological definitions of case study research and how authors used the term.

This raises the third challenge we identify that case study reports are typically not written in ways that are accessible or useful for the evaluation research community and policymakers. Case studies may not appear in journals widely read by those in the health sciences, either because space constraints preclude the reporting of rich, thick descriptions, or because of the reported lack of willingness of some biomedical journals to publish research that uses qualitative methods [ 45 ], signalling the persistence of the aforementioned evidence hierarchy. Where they do, however, the term ‘case study’ is used to indicate, interchangeably, a qualitative study, an N of 1 sample, or a multi-method, in-depth analysis of one example from a population of phenomena. Definitions of what constitutes the ‘case’ are frequently lacking and appear to be used as a synonym for the settings in which the research is conducted. Despite offering insights for evaluation, the primary aims may not have been evaluative, so the implications may not be explicitly drawn out. Indeed, some case study reports might properly be aiming for thick description without necessarily seeking to inform about context or causality.

Acknowledging plurality and developing guidance

We recognise that definitional and methodological plurality is not only inevitable, but also a necessary and creative reflection of the very different epistemological and disciplinary origins of health researchers, and the aims they have in doing and reporting case study research. Indeed, to provide some clarity, Thomas [ 46 ] has suggested a typology of subject/purpose/approach/process for classifying aims (e.g. evaluative or exploratory), sample rationale and selection and methods for data generation of case studies. We also recognise that the diversity of methods used in case study research, and the necessary focus on narrative reporting, does not lend itself to straightforward development of formal quality or reporting criteria.

Existing checklists for reporting case study research from the social sciences—for example Lincoln and Guba’s [ 47 ] and Stake’s [ 33 ]—are primarily orientated to the quality of narrative produced, and the extent to which they encapsulate thick description, rather than the more pragmatic issues of implications for intervention effects. Those designed for clinical settings, such as the CARE (CAse REports) guidelines, provide specific reporting guidelines for medical case reports about single, or small groups of patients [ 48 ], not for case study research.

The Design of Case Study Research in Health Care (DESCARTE) model [ 44 ] suggests a series of questions to be asked of a case study researcher (including clarity about the philosophy underpinning their research), study design (with a focus on case definition) and analysis (to improve process). The model resembles toolkits for enhancing the quality and robustness of qualitative and mixed-methods research reporting, and it is usefully open-ended and non-prescriptive. However, even if it does include some reflections on context, the model does not fully address aspects of context, logic and causal inference that are perhaps most relevant for evaluative research in health.

Hence, for evaluative research where the aim is to report empirical findings in ways that are intended to be pragmatically useful for health policy and practice, this may be an opportune time to consider how to best navigate plurality around what is (minimally) important to report when publishing empirical case studies, especially with regards to the complex relationships between context and interventions, information that case study research is well placed to provide.

The conventional scientific quest for certainty, predictability and linear causality (maximised in RCT designs) has to be augmented by the study of uncertainty, unpredictability and emergent causality [ 8 ] in complex systems. This will require methodological pluralism, and openness to broadening the evidence base to better understand both causality in and the transferability of system change intervention [ 14 , 20 , 23 , 25 ]. Case study research evidence is essential, yet is currently under exploited in the health sciences. If evaluative health research is to move beyond the current impasse on methods for understanding interventions as interruptions in complex systems, we need to consider in more detail how researchers can conduct and report empirical case studies which do aim to elucidate the contextual factors which interact with interventions to produce particular effects. To this end, supported by the UK’s Medical Research Council, we are embracing the challenge to develop guidance for case study researchers studying complex interventions. Following a meta-narrative review of the literature, we are planning a Delphi study to inform guidance that will, at minimum, cover the value of case study research for evaluating the interrelationship between context and complex system-level interventions; for situating and defining ‘the case’, and generalising from case studies; as well as provide specific guidance on conducting, analysing and reporting case study research. Our hope is that such guidance can support researchers evaluating interventions in complex systems to better exploit the diversity and richness of case study research.

Availability of data and materials

Not applicable (article based on existing available academic publications)

Abbreviations

Qualitative comparative analysis

Quasi-experimental design

Randomised controlled trial

Diez Roux AV. Complex systems thinking and current impasses in health disparities research. Am J Public Health. 2011;101(9):1627–34.

Article   Google Scholar  

Ogilvie D, Mitchell R, Mutrie N, M P, Platt S. Evaluating health effects of transport interventions: methodologic case study. Am J Prev Med 2006;31:118–126.

Walshe C. The evaluation of complex interventions in palliative care: an exploration of the potential of case study research strategies. Palliat Med. 2011;25(8):774–81.

Woolcock M. Using case studies to explore the external validity of ‘complex’ development interventions. Evaluation. 2013;19:229–48.

Cartwright N. Are RCTs the gold standard? BioSocieties. 2007;2(1):11–20.

Deaton A, Cartwright N. Understanding and misunderstanding randomized controlled trials. Soc Sci Med. 2018;210:2–21.

Salway S, Green J. Towards a critical complex systems approach to public health. Crit Public Health. 2017;27(5):523–4.

Greenhalgh T, Papoutsi C. Studying complexity in health services research: desperately seeking an overdue paradigm shift. BMC Med. 2018;16(1):95.

Bonell C, Warren E, Fletcher A. Realist trials and the testing of context-mechanism-outcome configurations: a response to Van Belle et al. Trials. 2016;17:478.

Pallmann P, Bedding AW, Choodari-Oskooei B. Adaptive designs in clinical trials: why use them, and how to run and report them. BMC Med. 2018;16:29.

Curran G, Bauer M, Mittman B, Pyne J, Stetler C. Effectiveness-implementation hybrid designs: combining elements of clinical effectiveness and implementation research to enhance public health impact. Med Care. 2012;50(3):217–26. https://doi.org/10.1097/MLR.0b013e3182408812 .

Moore GF, Audrey S, Barker M, Bond L, Bonell C, Hardeman W, et al. Process evaluation of complex interventions: Medical Research Council guidance. BMJ. 2015 [cited 2020 Jun 27];350. Available from: https://www.bmj.com/content/350/bmj.h1258 .

Evans RE, Craig P, Hoddinott P, Littlecott H, Moore L, Murphy S, et al. When and how do ‘effective’ interventions need to be adapted and/or re-evaluated in new contexts? The need for guidance. J Epidemiol Community Health. 2019;73(6):481–2.

Shoveller J. A critical examination of representations of context within research on population health interventions. Crit Public Health. 2016;26(5):487–500.

Treweek S, Zwarenstein M. Making trials matter: pragmatic and explanatory trials and the problem of applicability. Trials. 2009;10(1):37.

Rosengarten M, Savransky M. A careful biomedicine? Generalization and abstraction in RCTs. Crit Public Health. 2019;29(2):181–91.

Green J, Roberts H, Petticrew M, Steinbach R, Goodman A, Jones A, et al. Integrating quasi-experimental and inductive designs in evaluation: a case study of the impact of free bus travel on public health. Evaluation. 2015;21(4):391–406.

Canguilhem G. The normal and the pathological. New York: Zone Books; 1991. (1949).

Google Scholar  

Hawe P, Shiell A, Riley T. Theorising interventions as events in systems. Am J Community Psychol. 2009;43:267–76.

King G, Keohane RO, Verba S. Designing social inquiry: scientific inference in qualitative research: Princeton University Press; 1994.

Greenhalgh T, Robert G, Macfarlane F, Bate P, Kyriakidou O. Diffusion of innovations in service organizations: systematic review and recommendations. Milbank Q. 2004;82(4):581–629.

Yin R. Enhancing the quality of case studies in health services research. Health Serv Res. 1999;34(5 Pt 2):1209.

CAS   PubMed   PubMed Central   Google Scholar  

Raine R, Fitzpatrick R, Barratt H, Bevan G, Black N, Boaden R, et al. Challenges, solutions and future directions in the evaluation of service innovations in health care and public health. Health Serv Deliv Res. 2016 [cited 2020 Jun 30];4(16). Available from: https://www.journalslibrary.nihr.ac.uk/hsdr/hsdr04160#/abstract .

Craig P, Di Ruggiero E, Frohlich KL, E M, White M, Group CCGA. Taking account of context in population health intervention research: guidance for producers, users and funders of research. NIHR Evaluation, Trials and Studies Coordinating Centre; 2018.

Grant RL, Hood R. Complex systems, explanation and policy: implications of the crisis of replication for public health research. Crit Public Health. 2017;27(5):525–32.

Mahoney J. Strategies of causal inference in small-N analysis. Sociol Methods Res. 2000;4:387–424.

Turner S. Major system change: a management and organisational research perspective. In: Rosalind Raine, Ray Fitzpatrick, Helen Barratt, Gywn Bevan, Nick Black, Ruth Boaden, et al. Challenges, solutions and future directions in the evaluation of service innovations in health care and public health. Health Serv Deliv Res. 2016;4(16) 2016. https://doi.org/10.3310/hsdr04160.

Ragin CC. Using qualitative comparative analysis to study causal complexity. Health Serv Res. 1999;34(5 Pt 2):1225.

Hanckel B, Petticrew M, Thomas J, Green J. Protocol for a systematic review of the use of qualitative comparative analysis for evaluative questions in public health research. Syst Rev. 2019;8(1):252.

Schneider CQ, Wagemann C. Set-theoretic methods for the social sciences: a guide to qualitative comparative analysis: Cambridge University Press; 2012. 369 p.

Flyvbjerg B. Five misunderstandings about case-study research. Qual Inq. 2006;12:219–45.

Tsoukas H. Craving for generality and small-N studies: a Wittgensteinian approach towards the epistemology of the particular in organization and management studies. Sage Handb Organ Res Methods. 2009:285–301.

Stake RE. The art of case study research. London: Sage Publications Ltd; 1995.

Mitchell JC. Typicality and the case study. Ethnographic research: A guide to general conduct. Vol. 238241. 1984.

Gerring J. What is a case study and what is it good for? Am Polit Sci Rev. 2004;98(2):341–54.

May C, Mort M, Williams T, F M, Gask L. Health technology assessment in its local contexts: studies of telehealthcare. Soc Sci Med 2003;57:697–710.

McGill E. Trading quality for relevance: non-health decision-makers’ use of evidence on the social determinants of health. BMJ Open. 2015;5(4):007053.

Greenhalgh T. We can’t be 100% sure face masks work – but that shouldn’t stop us wearing them | Trish Greenhalgh. The Guardian. 2020 [cited 2020 Jun 27]; Available from: https://www.theguardian.com/commentisfree/2020/jun/05/face-masks-coronavirus .

Hammersley M. So, what are case studies? In: What’s wrong with ethnography? New York: Routledge; 1992.

Crowe S, Cresswell K, Robertson A, Huby G, Avery A, Sheikh A. The case study approach. BMC Med Res Methodol. 2011;11(1):100.

Luck L, Jackson D, Usher K. Case study: a bridge across the paradigms. Nurs Inq. 2006;13(2):103–9.

Yin RK. Case study research and applications: design and methods: Sage; 2017.

Hyett N, A K, Dickson-Swift V. Methodology or method? A critical review of qualitative case study reports. Int J Qual Stud Health Well-Being. 2014;9:23606.

Carolan CM, Forbat L, Smith A. Developing the DESCARTE model: the design of case study research in health care. Qual Health Res. 2016;26(5):626–39.

Greenhalgh T, Annandale E, Ashcroft R, Barlow J, Black N, Bleakley A, et al. An open letter to the BMJ editors on qualitative research. Bmj. 2016;352.

Thomas G. A typology for the case study in social science following a review of definition, discourse, and structure. Qual Inq. 2011;17(6):511–21.

Lincoln YS, Guba EG. Judging the quality of case study reports. Int J Qual Stud Educ. 1990;3(1):53–9.

Riley DS, Barber MS, Kienle GS, Aronson JK, Schoen-Angerer T, Tugwell P, et al. CARE guidelines for case reports: explanation and elaboration document. J Clin Epidemiol. 2017;89:218–35.

Download references

Acknowledgements

Not applicable

This work was funded by the Medical Research Council - MRC Award MR/S014632/1 HCS: Case study, Context and Complex interventions (TRIPLE C). SP was additionally funded by the University of Oxford's Higher Education Innovation Fund (HEIF).

Author information

Authors and affiliations.

Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK

Sara Paparini, Chrysanthi Papoutsi, Trish Greenhalgh & Sara Shaw

Wellcome Centre for Cultures & Environments of Health, University of Exeter, Exeter, UK

Judith Green

School of Health Sciences, University of East Anglia, Norwich, UK

Jamie Murdoch

Public Health, Environments and Society, London School of Hygiene & Tropical Medicin, London, UK

Mark Petticrew

Institute for Culture and Society, Western Sydney University, Penrith, Australia

Benjamin Hanckel

You can also search for this author in PubMed   Google Scholar

Contributions

JG, MP, SP, JM, TG, CP and SS drafted the initial paper; all authors contributed to the drafting of the final version, and read and approved the final manuscript.

Corresponding author

Correspondence to Sara Paparini .

Ethics declarations

Ethics approval and consent to participate, consent for publication, competing interests.

The authors declare that they have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Paparini, S., Green, J., Papoutsi, C. et al. Case study research for better evaluations of complex interventions: rationale and challenges. BMC Med 18 , 301 (2020). https://doi.org/10.1186/s12916-020-01777-6

Download citation

Received : 03 July 2020

Accepted : 07 September 2020

Published : 10 November 2020

DOI : https://doi.org/10.1186/s12916-020-01777-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Qualitative
  • Case studies
  • Mixed-method
  • Public health
  • Health services research
  • Interventions

BMC Medicine

ISSN: 1741-7015

case study research often requires a holistic interpretation

case study research often requires a holistic interpretation

The Ultimate Guide to Qualitative Research - Part 1: The Basics

case study research often requires a holistic interpretation

  • Introduction and overview
  • What is qualitative research?
  • What is qualitative data?
  • Examples of qualitative data
  • Qualitative vs. quantitative research
  • Mixed methods
  • Qualitative research preparation
  • Theoretical perspective
  • Theoretical framework
  • Literature reviews

Research question

  • Conceptual framework
  • Conceptual vs. theoretical framework

Data collection

  • Qualitative research methods
  • Focus groups
  • Observational research

What is a case study?

Applications for case study research, what is a good case study, process of case study design, benefits and limitations of case studies.

  • Ethnographical research
  • Ethical considerations
  • Confidentiality and privacy
  • Power dynamics
  • Reflexivity

Case studies

Case studies are essential to qualitative research , offering a lens through which researchers can investigate complex phenomena within their real-life contexts. This chapter explores the concept, purpose, applications, examples, and types of case studies and provides guidance on how to conduct case study research effectively.

case study research often requires a holistic interpretation

Whereas quantitative methods look at phenomena at scale, case study research looks at a concept or phenomenon in considerable detail. While analyzing a single case can help understand one perspective regarding the object of research inquiry, analyzing multiple cases can help obtain a more holistic sense of the topic or issue. Let's provide a basic definition of a case study, then explore its characteristics and role in the qualitative research process.

Definition of a case study

A case study in qualitative research is a strategy of inquiry that involves an in-depth investigation of a phenomenon within its real-world context. It provides researchers with the opportunity to acquire an in-depth understanding of intricate details that might not be as apparent or accessible through other methods of research. The specific case or cases being studied can be a single person, group, or organization – demarcating what constitutes a relevant case worth studying depends on the researcher and their research question .

Among qualitative research methods , a case study relies on multiple sources of evidence, such as documents, artifacts, interviews , or observations , to present a complete and nuanced understanding of the phenomenon under investigation. The objective is to illuminate the readers' understanding of the phenomenon beyond its abstract statistical or theoretical explanations.

Characteristics of case studies

Case studies typically possess a number of distinct characteristics that set them apart from other research methods. These characteristics include a focus on holistic description and explanation, flexibility in the design and data collection methods, reliance on multiple sources of evidence, and emphasis on the context in which the phenomenon occurs.

Furthermore, case studies can often involve a longitudinal examination of the case, meaning they study the case over a period of time. These characteristics allow case studies to yield comprehensive, in-depth, and richly contextualized insights about the phenomenon of interest.

The role of case studies in research

Case studies hold a unique position in the broader landscape of research methods aimed at theory development. They are instrumental when the primary research interest is to gain an intensive, detailed understanding of a phenomenon in its real-life context.

In addition, case studies can serve different purposes within research - they can be used for exploratory, descriptive, or explanatory purposes, depending on the research question and objectives. This flexibility and depth make case studies a valuable tool in the toolkit of qualitative researchers.

Remember, a well-conducted case study can offer a rich, insightful contribution to both academic and practical knowledge through theory development or theory verification, thus enhancing our understanding of complex phenomena in their real-world contexts.

What is the purpose of a case study?

Case study research aims for a more comprehensive understanding of phenomena, requiring various research methods to gather information for qualitative analysis . Ultimately, a case study can allow the researcher to gain insight into a particular object of inquiry and develop a theoretical framework relevant to the research inquiry.

Why use case studies in qualitative research?

Using case studies as a research strategy depends mainly on the nature of the research question and the researcher's access to the data.

Conducting case study research provides a level of detail and contextual richness that other research methods might not offer. They are beneficial when there's a need to understand complex social phenomena within their natural contexts.

The explanatory, exploratory, and descriptive roles of case studies

Case studies can take on various roles depending on the research objectives. They can be exploratory when the research aims to discover new phenomena or define new research questions; they are descriptive when the objective is to depict a phenomenon within its context in a detailed manner; and they can be explanatory if the goal is to understand specific relationships within the studied context. Thus, the versatility of case studies allows researchers to approach their topic from different angles, offering multiple ways to uncover and interpret the data .

The impact of case studies on knowledge development

Case studies play a significant role in knowledge development across various disciplines. Analysis of cases provides an avenue for researchers to explore phenomena within their context based on the collected data.

case study research often requires a holistic interpretation

This can result in the production of rich, practical insights that can be instrumental in both theory-building and practice. Case studies allow researchers to delve into the intricacies and complexities of real-life situations, uncovering insights that might otherwise remain hidden.

Types of case studies

In qualitative research , a case study is not a one-size-fits-all approach. Depending on the nature of the research question and the specific objectives of the study, researchers might choose to use different types of case studies. These types differ in their focus, methodology, and the level of detail they provide about the phenomenon under investigation.

Understanding these types is crucial for selecting the most appropriate approach for your research project and effectively achieving your research goals. Let's briefly look at the main types of case studies.

Exploratory case studies

Exploratory case studies are typically conducted to develop a theory or framework around an understudied phenomenon. They can also serve as a precursor to a larger-scale research project. Exploratory case studies are useful when a researcher wants to identify the key issues or questions which can spur more extensive study or be used to develop propositions for further research. These case studies are characterized by flexibility, allowing researchers to explore various aspects of a phenomenon as they emerge, which can also form the foundation for subsequent studies.

Descriptive case studies

Descriptive case studies aim to provide a complete and accurate representation of a phenomenon or event within its context. These case studies are often based on an established theoretical framework, which guides how data is collected and analyzed. The researcher is concerned with describing the phenomenon in detail, as it occurs naturally, without trying to influence or manipulate it.

Explanatory case studies

Explanatory case studies are focused on explanation - they seek to clarify how or why certain phenomena occur. Often used in complex, real-life situations, they can be particularly valuable in clarifying causal relationships among concepts and understanding the interplay between different factors within a specific context.

case study research often requires a holistic interpretation

Intrinsic, instrumental, and collective case studies

These three categories of case studies focus on the nature and purpose of the study. An intrinsic case study is conducted when a researcher has an inherent interest in the case itself. Instrumental case studies are employed when the case is used to provide insight into a particular issue or phenomenon. A collective case study, on the other hand, involves studying multiple cases simultaneously to investigate some general phenomena.

Each type of case study serves a different purpose and has its own strengths and challenges. The selection of the type should be guided by the research question and objectives, as well as the context and constraints of the research.

The flexibility, depth, and contextual richness offered by case studies make this approach an excellent research method for various fields of study. They enable researchers to investigate real-world phenomena within their specific contexts, capturing nuances that other research methods might miss. Across numerous fields, case studies provide valuable insights into complex issues.

Critical information systems research

Case studies provide a detailed understanding of the role and impact of information systems in different contexts. They offer a platform to explore how information systems are designed, implemented, and used and how they interact with various social, economic, and political factors. Case studies in this field often focus on examining the intricate relationship between technology, organizational processes, and user behavior, helping to uncover insights that can inform better system design and implementation.

Health research

Health research is another field where case studies are highly valuable. They offer a way to explore patient experiences, healthcare delivery processes, and the impact of various interventions in a real-world context.

case study research often requires a holistic interpretation

Case studies can provide a deep understanding of a patient's journey, giving insights into the intricacies of disease progression, treatment effects, and the psychosocial aspects of health and illness.

Asthma research studies

Specifically within medical research, studies on asthma often employ case studies to explore the individual and environmental factors that influence asthma development, management, and outcomes. A case study can provide rich, detailed data about individual patients' experiences, from the triggers and symptoms they experience to the effectiveness of various management strategies. This can be crucial for developing patient-centered asthma care approaches.

Other fields

Apart from the fields mentioned, case studies are also extensively used in business and management research, education research, and political sciences, among many others. They provide an opportunity to delve into the intricacies of real-world situations, allowing for a comprehensive understanding of various phenomena.

Case studies, with their depth and contextual focus, offer unique insights across these varied fields. They allow researchers to illuminate the complexities of real-life situations, contributing to both theory and practice.

case study research often requires a holistic interpretation

Whatever field you're in, ATLAS.ti puts your data to work for you

Download a free trial of ATLAS.ti to turn your data into insights.

Understanding the key elements of case study design is crucial for conducting rigorous and impactful case study research. A well-structured design guides the researcher through the process, ensuring that the study is methodologically sound and its findings are reliable and valid. The main elements of case study design include the research question , propositions, units of analysis, and the logic linking the data to the propositions.

The research question is the foundation of any research study. A good research question guides the direction of the study and informs the selection of the case, the methods of collecting data, and the analysis techniques. A well-formulated research question in case study research is typically clear, focused, and complex enough to merit further detailed examination of the relevant case(s).

Propositions

Propositions, though not necessary in every case study, provide a direction by stating what we might expect to find in the data collected. They guide how data is collected and analyzed by helping researchers focus on specific aspects of the case. They are particularly important in explanatory case studies, which seek to understand the relationships among concepts within the studied phenomenon.

Units of analysis

The unit of analysis refers to the case, or the main entity or entities that are being analyzed in the study. In case study research, the unit of analysis can be an individual, a group, an organization, a decision, an event, or even a time period. It's crucial to clearly define the unit of analysis, as it shapes the qualitative data analysis process by allowing the researcher to analyze a particular case and synthesize analysis across multiple case studies to draw conclusions.

Argumentation

This refers to the inferential model that allows researchers to draw conclusions from the data. The researcher needs to ensure that there is a clear link between the data, the propositions (if any), and the conclusions drawn. This argumentation is what enables the researcher to make valid and credible inferences about the phenomenon under study.

Understanding and carefully considering these elements in the design phase of a case study can significantly enhance the quality of the research. It can help ensure that the study is methodologically sound and its findings contribute meaningful insights about the case.

Ready to jumpstart your research with ATLAS.ti?

Conceptualize your research project with our intuitive data analysis interface. Download a free trial today.

Conducting a case study involves several steps, from defining the research question and selecting the case to collecting and analyzing data . This section outlines these key stages, providing a practical guide on how to conduct case study research.

Defining the research question

The first step in case study research is defining a clear, focused research question. This question should guide the entire research process, from case selection to analysis. It's crucial to ensure that the research question is suitable for a case study approach. Typically, such questions are exploratory or descriptive in nature and focus on understanding a phenomenon within its real-life context.

Selecting and defining the case

The selection of the case should be based on the research question and the objectives of the study. It involves choosing a unique example or a set of examples that provide rich, in-depth data about the phenomenon under investigation. After selecting the case, it's crucial to define it clearly, setting the boundaries of the case, including the time period and the specific context.

Previous research can help guide the case study design. When considering a case study, an example of a case could be taken from previous case study research and used to define cases in a new research inquiry. Considering recently published examples can help understand how to select and define cases effectively.

Developing a detailed case study protocol

A case study protocol outlines the procedures and general rules to be followed during the case study. This includes the data collection methods to be used, the sources of data, and the procedures for analysis. Having a detailed case study protocol ensures consistency and reliability in the study.

The protocol should also consider how to work with the people involved in the research context to grant the research team access to collecting data. As mentioned in previous sections of this guide, establishing rapport is an essential component of qualitative research as it shapes the overall potential for collecting and analyzing data.

Collecting data

Gathering data in case study research often involves multiple sources of evidence, including documents, archival records, interviews, observations, and physical artifacts. This allows for a comprehensive understanding of the case. The process for gathering data should be systematic and carefully documented to ensure the reliability and validity of the study.

Analyzing and interpreting data

The next step is analyzing the data. This involves organizing the data , categorizing it into themes or patterns , and interpreting these patterns to answer the research question. The analysis might also involve comparing the findings with prior research or theoretical propositions.

Writing the case study report

The final step is writing the case study report . This should provide a detailed description of the case, the data, the analysis process, and the findings. The report should be clear, organized, and carefully written to ensure that the reader can understand the case and the conclusions drawn from it.

Each of these steps is crucial in ensuring that the case study research is rigorous, reliable, and provides valuable insights about the case.

The type, depth, and quality of data in your study can significantly influence the validity and utility of the study. In case study research, data is usually collected from multiple sources to provide a comprehensive and nuanced understanding of the case. This section will outline the various methods of collecting data used in case study research and discuss considerations for ensuring the quality of the data.

Interviews are a common method of gathering data in case study research. They can provide rich, in-depth data about the perspectives, experiences, and interpretations of the individuals involved in the case. Interviews can be structured , semi-structured , or unstructured , depending on the research question and the degree of flexibility needed.

Observations

Observations involve the researcher observing the case in its natural setting, providing first-hand information about the case and its context. Observations can provide data that might not be revealed in interviews or documents, such as non-verbal cues or contextual information.

Documents and artifacts

Documents and archival records provide a valuable source of data in case study research. They can include reports, letters, memos, meeting minutes, email correspondence, and various public and private documents related to the case.

case study research often requires a holistic interpretation

These records can provide historical context, corroborate evidence from other sources, and offer insights into the case that might not be apparent from interviews or observations.

Physical artifacts refer to any physical evidence related to the case, such as tools, products, or physical environments. These artifacts can provide tangible insights into the case, complementing the data gathered from other sources.

Ensuring the quality of data collection

Determining the quality of data in case study research requires careful planning and execution. It's crucial to ensure that the data is reliable, accurate, and relevant to the research question. This involves selecting appropriate methods of collecting data, properly training interviewers or observers, and systematically recording and storing the data. It also includes considering ethical issues related to collecting and handling data, such as obtaining informed consent and ensuring the privacy and confidentiality of the participants.

Data analysis

Analyzing case study research involves making sense of the rich, detailed data to answer the research question. This process can be challenging due to the volume and complexity of case study data. However, a systematic and rigorous approach to analysis can ensure that the findings are credible and meaningful. This section outlines the main steps and considerations in analyzing data in case study research.

Organizing the data

The first step in the analysis is organizing the data. This involves sorting the data into manageable sections, often according to the data source or the theme. This step can also involve transcribing interviews, digitizing physical artifacts, or organizing observational data.

Categorizing and coding the data

Once the data is organized, the next step is to categorize or code the data. This involves identifying common themes, patterns, or concepts in the data and assigning codes to relevant data segments. Coding can be done manually or with the help of software tools, and in either case, qualitative analysis software can greatly facilitate the entire coding process. Coding helps to reduce the data to a set of themes or categories that can be more easily analyzed.

Identifying patterns and themes

After coding the data, the researcher looks for patterns or themes in the coded data. This involves comparing and contrasting the codes and looking for relationships or patterns among them. The identified patterns and themes should help answer the research question.

Interpreting the data

Once patterns and themes have been identified, the next step is to interpret these findings. This involves explaining what the patterns or themes mean in the context of the research question and the case. This interpretation should be grounded in the data, but it can also involve drawing on theoretical concepts or prior research.

Verification of the data

The last step in the analysis is verification. This involves checking the accuracy and consistency of the analysis process and confirming that the findings are supported by the data. This can involve re-checking the original data, checking the consistency of codes, or seeking feedback from research participants or peers.

Like any research method , case study research has its strengths and limitations. Researchers must be aware of these, as they can influence the design, conduct, and interpretation of the study.

Understanding the strengths and limitations of case study research can also guide researchers in deciding whether this approach is suitable for their research question . This section outlines some of the key strengths and limitations of case study research.

Benefits include the following:

  • Rich, detailed data: One of the main strengths of case study research is that it can generate rich, detailed data about the case. This can provide a deep understanding of the case and its context, which can be valuable in exploring complex phenomena.
  • Flexibility: Case study research is flexible in terms of design , data collection , and analysis . A sufficient degree of flexibility allows the researcher to adapt the study according to the case and the emerging findings.
  • Real-world context: Case study research involves studying the case in its real-world context, which can provide valuable insights into the interplay between the case and its context.
  • Multiple sources of evidence: Case study research often involves collecting data from multiple sources , which can enhance the robustness and validity of the findings.

On the other hand, researchers should consider the following limitations:

  • Generalizability: A common criticism of case study research is that its findings might not be generalizable to other cases due to the specificity and uniqueness of each case.
  • Time and resource intensive: Case study research can be time and resource intensive due to the depth of the investigation and the amount of collected data.
  • Complexity of analysis: The rich, detailed data generated in case study research can make analyzing the data challenging.
  • Subjectivity: Given the nature of case study research, there may be a higher degree of subjectivity in interpreting the data , so researchers need to reflect on this and transparently convey to audiences how the research was conducted.

Being aware of these strengths and limitations can help researchers design and conduct case study research effectively and interpret and report the findings appropriately.

case study research often requires a holistic interpretation

Ready to analyze your data with ATLAS.ti?

See how our intuitive software can draw key insights from your data with a free trial today.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Lippincott Open Access
  • PMC10464880

Logo of lwwopen

Effectiveness of holistic assessment–based interventions in improving outcomes in adults with multiple long-term conditions and/or frailty: an umbrella review protocol

Stella arakelyan.

1 Advanced Care Research Centre, Centre of Population Health Sciences, Usher Institute, University of Edinburgh, Edinburgh, UK

2 NHS Lothian, Royal Infirmary of Edinburgh, Edinburgh, UK

3 Centre for Cardiovascular Science, University of Edinburgh, UK

Nataysia Mikula-Noble

4 School of Medicine, The Chancellor's Building, University of Edinburgh, Edinburgh, UK

Marcus J Lyall

Luna de ferrari.

5 School of Informatics, Informatics Forum, University of Edinburgh, Edinburgh, UK

Stewart W. Mercer

Bruce guthrie.

This umbrella review will synthesize evidence on the effectiveness of holistic assessment–based interventions in improving health outcomes in adults (aged ≥18) with multiple long-term conditions and/or frailty.

Introduction:

Health systems need effective, evidence-based interventions to improve health outcomes for adults with multiple long-term conditions. Holistic assessment–based interventions are effective in older people admitted to hospital (usually called “comprehensive geriatric assessments” in that context); however, the evidence is inconclusive on whether similar interventions are effective in community settings.

Inclusion criteria:

We will include systematic reviews examining the effectiveness of community and/or hospital holistic assessment–based interventions in improving health outcomes for community-dwelling and hospitalized adults aged ≥ 18 with multiple long-term conditions and/or frailty.

The review will follow the JBI methodology for umbrella reviews. MEDLINE, Embase, PsycINFO, CINAHL Plus, Scopus, ASSIA, Cochrane Library, and the TRIP Medical Database will be searched to identify reviews published in English from 2010 till the present. This will be followed by a manual search of reference lists of included reviews to identify additional reviews. Two reviewers will independently screen titles and abstracts against the selection criteria, followed by screening of full texts. Methodological quality will be assessed using the JBI critical appraisal checklist for systematic reviews and research syntheses and data will be extracted using an adapted and piloted JBI data extraction tool. The summary of findings will be presented in tabular format, with narrative descriptions and visual indications. The citation matrix will be generated and the corrected covered area calculated to analyze the overlap in primary studies across the reviews.

Review registration:

PROSPERO CRD42022363217

Introduction

As the global population ages, the burden of multiple long-term conditions (MLTCs) is also on the rise. 1 – 5 An estimated 42% (95% CI 38.9%–46.0%) of the global adult population has MLTCs, with no significant difference in prevalence rates observed between low- or middle-income (36.8%) and high-income countries (44.3%). 2 In the US, around 32.9% of adults report receiving treatment for ≥2 long-term conditions annually, with 20.7% having ≥3, and 12.3% having ≥4 long-term conditions. 3 The prevalence rates in the UK are around 23% to 27%, with higher rates observed among the elderly and the less affluent. 4 – 6 Over 60% of older adults (aged >65) in the UK are affected by MLTCs, 5 , 7 with predictions suggesting a doubling of rates of older people with ≥4 long-term conditions by 2035. 8

MLTCs are associated with functional declines and contribute to frailty. 9 , 10 Frailty is an age-related progressive decline in physiological reserves and functions across multiple organ systems, leading to a vulnerable state of health due to poor homeostatic resources. 11 An estimated 72% of people with frailty have MLTCs, and 16% of people with MLTCs are also frail. 9 Frailty is associated with decreased resistance to stressors, resulting in rapid changes in health status following a minor event. Frailty-related health deterioration may lead to the development of comorbidities and MLTCs. 9 , 10

People with MLTCs and/or frailty are at increased risk of adverse events, including unscheduled hospital admissions, adverse drug events, and premature death. 1 This is, in part, because people with MLTCs and/or frailty require access to comprehensive care, but often experience single disease-oriented, fragmented, and poorly coordinated care. 12 They often require complex treatments resulting in polypharmacy, which puts them at risk of adverse drug events. 13 They often attend multiple appointments, self-manage their conditions, and adhere to lifestyle changes, resulting in a treatment burden. Given that the presence of MLTCs is socially patterned, the effects are worse in adults from disadvantaged communities among whom earlier onset, more complex needs, 14 and higher treatment burden 15 are observed. The experiences and care needs of people with MLTCs are heterogeneous, which adds to the challenges of providing effective care.

MLTCs are one of the major challenges facing health services. 1 , 13 Health systems urgently need evidence-based, effective interventions to improve health outcomes (eg, quality of life; physical, mental and cognitive functions; outpatient and inpatient services utilization rate; treatment burden) for people with MLTCs and/or frailty who need additional support services. 12 , 13 , 16 Holistic assessment–based interventions (HABIs), which consider individuals’ health, functional, and social conditions, followed by the formulation of personalized care and follow-up, 17 are viewed as a promising model of care provision for this population. 4 Hospital HABIs are commonly used in geriatric practice with frail older adults, 4 , 18 referred to as comprehensive geriatric assessments (CGAs). 19 A CGA is a form of integrated care delivered by a multidisciplinary team based on the holistic assessment of older people’s unique needs in terms of function, cognition, depression, nutrition, and medication use. 19 A Cochrane review on the effectiveness of hospital CGAs found that initiating a CGA upon hospital admission increases the likelihood of older adults returning home compared with those receiving standard care. 20 The UK NICE guidance on the management of MLTCs (2016) 4 suggests that low-intensity, community HABIs are effective in improving health outcomes in older adults (aged>65) with MLTCs and frailty. A recent systematic review by Sum et al. 18 found evidence of the effectiveness of CGAs in improving functional status, frailty, fall, and mental health outcomes, as well as self-rated health and quality of life in community-dwelling older adults (aged ≥75). The effectiveness of community HABIs in improving patient-centered health outcomes and reducing the risk of adverse events in adults (aged ≥18) with MLTCs is unclear.

A systematic review by Smith et al. 16 found that community interventions led by multidisciplinary teams and targeted at better care coordination, self-management support, and medicine review have the potential to improve experiences of care and health behaviors in older people with MLTCs. However, there is no conclusive evidence that these interventions are effective in improving quality of life and mental health or in reducing health care utilization rates. For example, a phase 3 randomized control trial (the 3D Study) incorporating patient-centered strategies that reflect international consensus on optimal management of MLTCs, found positive effects on patients’ experience of, and satisfaction with, care. At 15 months of follow-up, however, no effects were observed in relation to the primary outcome of quality of life, or on mental health, polypharmacy, and mortality. 21 In contrast, a phase 2 randomized control trial (the CARE Plus Study), targeting adults with MLTCs from deprived communities, found some evidence of the benefits of a whole-system, primary-care complex intervention in improving patients’ well-being and quality of life. This intervention included longer GP consultations to allow for structured holistic assessment, relational continuity, practitioner training and support, and patient self-management support. 22 A Cochrane review evaluating community interventions for people with MLTCs established no clear evidence of benefit in clinical outcomes 23 ; however, the included studies had to be targeted at people with MLTCs. This means that potentially relevant interventions from other disciplines using different terminology (including literature on CGAs) were not included.

Recent reviews highlight that uncertainties remain about effective models of care and interventions for adults (aged≥18) with MLTCs, 16 , 23 calling for further research into complex interventions prioritizing patient-identified needs and outcomes. The NICE guidelines specifically called for research evaluating the effectiveness of “holistic assessment and intervention,” (p.19) reflecting that this is often a core component of complex interventions in this field but with variations in implementation modalities and other elements included. 13 Further, interventions targeting people with MLTCs with very similar components (eg, multidisciplinary review with a whole-person focus) can be included or excluded by reviews based on how they are named. Therefore, this umbrella review aims to comprehensively evaluate the evidence-based literature on holistic assessment–based complex interventions targeted at adults with MLTCs and/or frailty. A preliminary search of JBI Evidence Synthesis , the Cochrane Database, JBI Library, and PROSPERO was conducted, and no current or in-progress umbrella reviews on the topic were identified.

Review questions

  • What is the effectiveness of community HABIs in improving outcomes in adults (aged≥18) with MLTCs and/or frailty?
  • What is the effectiveness of hospital HABIs in improving outcomes in adults (aged≥18) with MLTCs and/or frailty?

Inclusion criteria

Participants.

We will include systematic reviews that focus on community-dwelling and hospitalized adults aged≥18 with MLTCs and/or frailty. MLTCs (or multimorbidity) will be operationalized based on the NICE guideline definition 13 as the presence of 2 or more long-term health conditions in an individual, including i) physical and mental health conditions; ii) ongoing conditions such as a learning disability; iii) symptom complexes such as frailty or chronic pain; iv) sensory impairments such as sight or hearing loss; and v) alcohol and substance misuse. We will adopt the World Health Organization’s definition of long-term conditions, which are described as persistent “health problems that require ongoing management over a period of years or decades.” 24 (p.11) Frailty is not an easily described syndrome, and there is no universal consensus on its operational definition. 11 Further, tools and assessments of frailty vary in their complexity. Therefore, we will include systematic reviews considering both the phenotype of frailty (weight loss, exhaustion, weakness, low physical activity, slowness) and/or the accumulation of deficits approach (loss in ≥1 domain of human functioning, such as physical, psychological, or social domains), using a multidimensional specific frailty validated scale, measurement, or index. We will exclude reviews that focus on children or young people aged < 18, adults aged ≥18 receiving end-of-life care, adults aged ≥18 who have a single long-term condition, or those focusing on people with a single long-term condition with an interest in comorbidity.

Interventions

We will include studies that evaluate HABIs in the community (home, primary care, outpatient clinic, care, or nursing home), hospital (acute care, general medicine, and geriatric care) or both settings. A holistic assessment is broadly defined as a multidimensional process based on the assessment of an individual’s medical, psychological, and social needs and functional capabilities in order to develop personalized care and follow-up. Holistic assessment is a complex intervention that responds to all factors relevant to the health or illness of a person. 17 The terminology used to describe HABIs may differ across disciplines; we will therefore consider reviews describing interventions based on the assessment of needs in 2 or more domains of health, and using alternative terminology to describe holistic interventions. Table ​ Table1 1 presents detailed descriptions of the selection criteria.

Review selection criteria

DomainInclusion criteriaExclusion criteria
Publication typePeer-reviewed systematic review publications in English.Conference proceedings, abstracts, and meta-analyses published in the letter-to-editor format, scoping reviews, narrative reviews or overviews, systematic review protocols, and gray literature.
Publication timelinePublished between January 2010 and September 2022.Published before 2010.
PopulationCommunity-dwelling or hospitalized adults (aged ≥ 18) with MLTCs and/or frailty.Children and/or young people (aged < 18) with multimorbidity.
People with only 2 or more mental health problems and no physical health condition.
People who receive end-of-life or palliative care.
People with a single long-term health condition.
People with a single long-term condition with an interest in comorbidity (eg, cancer comorbidities).
InterventionHABI that has ≥2 assessment domains.
Assessed domains may include physical health, psychological, or mental health status, functional status, or cognitive status.
Terminology for HABI can be explicit or not.
Alternative terminology may include , or , or , or .
HABI with <2 assessment domains.
Complex interventions not including holistic assessment as a component.
ComparatorAny context-specific, standard, or usual care.Complementary and/or alternative care (care that falls outside of mainstream health care).
Primary outcomesHealth-related quality of life, physical and/or cognitive function, mortality, unscheduled hospital admission, unscheduled care attendance, care home admission.Adverse events not associated with health care (eg, air/rail/road traffic injuries, occupational injuries).
Secondary outcomesAdverse drug events, length of hospital stay (bed days/year), “geriatric syndrome” (eg, frailty, falls, delirium).
ContextCommunity setting (community home, primary care, outpatient clinic, care or nursing home).
Hospital setting (acute hospital or emergency care, general medicine or geriatric care).
Hospice, end-of-life care settings.
Study designsSystematic reviews (with or without meta-analyses) reporting on randomized controlled trials, non-randomized controlled trials, controlled before-after studies, interrupted time series studies.
Mixed-methods, combined, or integrative systematic reviews (with or without meta-analyses), including randomized controlled trials, non-randomized controlled trials, controlled before-after studies, and interrupted time series studies.
Systematic reviews including only observational study designs not acceptable to Cochrane EPOC (case series, individual case reports, descriptive cross-sectional studies, case-control, and cohort studies) and pharmacological studies.
Systematic reviews reporting qualitative meta-synthesis only.
Systematic reviews reporting theoretical studies or published opinions only.

EPOC, effective practice and organisation of care; HABI, holistic assessment–based interventions; MLTC, multiple long-term conditions

Comparators

We will consider reviews reporting on any type of comparator intervention, including context-specific standard, or usual care.

We will consider systematic reviews reporting on health outcomes important to people with MLTCs 25 and/or frailty. 26 Guided by a consensus-based, core set of outcomes for MLTCs (COSmm) 25 and frailty (FOCUS), 26 the primary outcomes of interest will be health-related quality of life, physical and cognitive function, mortality, unscheduled hospital admission (times/year), unscheduled care attendance (provider visits/year), and care home admission (yes/no), measured by validated instruments or any clinically meaningful metrics. Secondary outcomes will be adverse drug events, length of hospital stay (bed days/year), and “geriatric syndromes” (eg, frailty, falls, delirium). We will consider reviews reporting on key outcomes of interest assessed using validated measures, including i) health-related quality of life: EuroQol Five-Dimension (EQ-5D); Short Form Health Survey (SF-12 or SF-36); Global quality of life (WHOQOL-BREF); Assessment of Quality of Life (AQoL 8); ii) cognitive function: Mini-Mental State Exam (MMSE); General Practitioner Assessment of Cognition (GPCOG); Memory Impairment Screen (MIS); Mini-Cog TM ; and iii) physical function: Sheehan Disability Scale (SDS); Sherbrooke Postal Q; Frenchay Activities Index (FAI); Activities of Daily Living (ADL) or Instrumental Activities of Daily Living (IADL) Scales; Barthel’s Index (BI); PROMIS Physical Function. This list is not exhaustive and other validated measures of outcomes will also be considered.

Types of studies

We define a systematic review as a synthesis of evidence that has a clearly stated set of objectives with pre-defined eligibility criteria for study selection; an explicit, reproducible methodology; a systematic search to identify all studies meeting the eligibility criteria; an assessment of the validity of the findings of the included studies; and a systematic synthesis of the characteristics and findings of the included studies. We will include systematic reviews of various types (eg, integrative systematic reviews, mixed-methods systematic reviews, combined scoping and systematic intervention reviews), with or without meta-analyses, reporting on experimental and quasi-experimental study designs, such as randomized controlled trials, non-randomized controlled trials, controlled before-after studies, and interrupted time series study designs. Based on the Cochrane Effective Practice and Organisation of Care (EPOC) group criteria, these study designs are acceptable for evaluating the effectiveness of organizational interventions. We will exclude systematic reviews that report only on observational study designs (eg, case series, individual case reports, descriptive cross-sectional studies, case-control studies, cohort studies) and pharmacological studies. We will also exclude narrative reviews without a formal systematic search, screening, quality appraisal, extraction, and synthesis of evidence, as well as systematic reviews reporting on qualitative or theoretical studies or published opinions only (see Table ​ Table1 1 ).

This protocol was developed according to the JBI methodology for umbrella reviews, 27 the reporting guideline for overviews of reviews of health care interventions (PRIOR), 28 and the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) guidelines. 29 The protocol was registered with PROSPERO (CRD42022363217).

Search strategy

Systematic searches will be performed in MEDLINE (Ovid), Embase (Ovid), PsycINFO (Ovid), CINAHL Plus (EBSCO), Scopus, ASSIA (ProQuest), Cochrane Library, and TRIP Medical Database for peer-reviewed literature published since 2010. The date limit is applied to capture the most recent and relevant intervention reviews, given that MLCTs and integrated holistic care are relatively new concepts in health care. The search strategy will apply subject terms and keywords relating to the target population and intervention. The search terms will be combined with the Scottish Intercollegiate Guidelines Network (SIGN) database-specific filters for systematic reviews, with no language restrictions for the search. An information specialist will be consulted to finalize the search strategy, which will be tailored to each database. A search strategy used in MEDLINE (Ovid) is provided in Appendix I . In addition, we will manually search the reference lists of included reviews for other eligible reviews.

Study selection

The retrieved records will be imported to EndNote v20.3 (Clarivate Analytics, PA, USA) for de-duplication. The de-duplicated RIS file will be transferred into Covidence (Veritas Health Innovation, Melbourne, Australia) for screening. Two reviewers will independently screen the retrieved records against the inclusion criteria, initially based on the titles and abstracts, followed by full-text screening. At the full-text screening stage, only reviews in English will be included due to lack of resources and to time constraints. Reasons for the exclusion of full-text studies will be recorded. Disagreement between the 2 reviewers will be resolved by discussion or via a third reviewer. The search and screening results will be presented in a PRISMA flow diagram. 29

Data collection

We will extract data using an adapted and piloted JBI data extraction tool 27 (see Appendix II ). Data will be extracted on i) systematic review characteristics (title, first author, country, year of publication, objective); ii) included populations (age, gender, number of conditions, definitions, and measures used); iii) search strategy; iv) complex interventions (names/types of interventions, country in which interventions were tested, intervention components, holistic assessment domains [if reported], who led assessments [if reported], type of controls, total sample sizes, number of meta-analyses); v) setting (community, hospital, or both); and vi) analysis, health outcomes (types/measures used), and results. For reviews with no meta-analysis, a summary of the authors’ primary interpretation of findings will be extracted. For meta-analyses, we will extract data on pooled effect sizes (eg, rate ratio, risk ratio, odds ratio for dichotomous data, and mean difference or standardized mean difference for continuous data), as well as the corresponding 95% CIs and P values. For integrative systematic reviews, mixed-methods systematic reviews, and combined scoping and systematic intervention reviews reporting on experimental and quasi-experimental study designs, we will extract data on pooled effect sizes, 95% CIs, P values, and/or a statement summarizing the authors’ primary interpretation of the results.

Systematic reviews exploring similar topics may have considerable overlap in included primary studies. We will create a citation matrix and calculate the corrected covered area (CCA) index to analyse the overlap in primary studies included in reviews. 30 Based on the guidance of Hennessy and Johnson (2020), 31 we will further examine the reasons for overlap based on CCA value (see Appendix III for details). The reviews with complete/near complete overlap will be examined for reasons of high overlap and considered for exclusion; higher quality (eg, Cochrane reviews) and/or most recent reviews (if ratings are similar) will be retained.

Assessment of methodological quality

Methodological quality will be appraised by 2 reviewers using the JBI critical appraisal checklist for systematic reviews and research syntheses (CACSRRS). 27 The tool comprises 11 items evaluating: i) clarity of the review question; ii) appropriateness of the inclusion criteria; iii) appropriateness of the search strategy; iv) adequacy of sources and resources used to search for studies; v) appropriateness of appraisal criteria; vi) duplicate conduct of quality appraisal; vii) applications used to minimize errors in data extraction; viii) appropriateness of methods used to combine the studies; ix) assessment of publication bias; x) soundness of recommendations for policy and practice; and xi) appropriateness of proposed new research directions. The items are scored based on the checklist as “Y=met,” “N=not met,” “?=unclear,” and “NA=not applicable.”

The JBI CACSRRS tool is not intended to generate an overall score, and the rating of overall quality may be based on certain criteria being met. 27 We differentiated items 1–3 and 5–10 as critical domains (see Appendix IV ). Rating the confidence of review results will be based on weaknesses in critical domains, ranging from “high” (no or one non-critical weakness), “moderate” (more than one non-critical weakness), “low” (one critical flaw with or without non-critical weaknesses), and “critically low” (more than one critical flaw with or without non-critical weaknesses). The results of the critical appraisal will be reported in a table with an accompanying narrative. All studies will undergo data extraction and synthesis; however, depending on the overall results of the critical appraisal, sensitivity analyses may be performed to test the robustness of our conclusions.

Data summary

The extracted data will be synthesized manually. The summary of findings will be presented in tabular format, with narrative descriptions and visual indications accompanying the tabulated results. Where possible, analysis will be stratified by setting. We will classify interventions using an existing taxonomy of health interventions (eg, EPOC) and use a stop light visual indicator to summarize the effectiveness of interventions. 27 We will collate the pooled estimates reported in each meta-analysis, providing narrative synthesis to these findings.

In summarizing findings across the reviews, we will use the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) 32 principles for an overall assessment of the quality of evidence across the reviews for outcomes of interest. 27 The quality of evidence for a given outcome will be graded as high, moderate, or low based on the overall quality of the systematic reviews and risk of bias in primary studies as well as consistency of results in relation to an outcome (see Appendix V ).

This study is funded by the National Institute for Health and Care Research (NIHR) under its Artificial Intelligence for Multiple and Long-Term Conditions Programme (NIHR202639). The views expressed are those of the author and not necessarily those of the NIHR or the Department of Health and Social Care.

Acknowledgments

Ruth Jenkins, information specialist, for assistance with the search strategy.

Author contributions

SA, NL, AA, ML, LF, NM, SM, and BG conceptualized the umbrella review. BG, SM, NL, ML, and AA secured funding. SA and BG developed the search strategy. SA and BG developed the first draft of the manuscript. All co-authors contributed to the review and editing of the final manuscript.

Appendix I: Search strategy

Medline (ovid).

Search conducted on September 26, 2022, returning 1909 results.

1. Multimorbidity/
2. Chronic Disease/
3. Comorbidity/
4. (multimorbid* or multi-morbid* or chronic disease$ or comorbid* or co-morbid* or polymorbid* or poly-morbid* or multidisease* or multi-disease* or disease cluster* or multiple long-term condition* or multiple chronic disease$).tw.
5. ((coocur* or co-ocur* or coexist* or co-exist* or multipl* or concord* or discord*) adj3 (disease$ or ill* or care or condition$ or disorder* or health* or symptom* or syndrom*)).tw.
6. or/1-5
7. Frailty/
8. Frail Elderly/
9. Frailty Syndrome/
10. (frail* or frail* syndrome or geriatric* syndrom* or vulnerabil* or function*).tw.
11. or/7-10
12. 6 or 11
13. Adult/
14. Young adult/
15. Middle aged/
16. Aged/
17. (adult* or young adult* or middle aged or old* or elder* or geriatric* or gerontol* or ageing or aged).tw.
18. or/13-17
19. Needs assessment/
20. Geriatric assessment/
21. Risk Assessment/
22. Patient-centered Care/
23. Health Services/
24. health services for the aged/
25. Delivery of Health Care, Integrated/
26. ((holistic or whole or comprehens* or complet*) adj3 (assess* or evaluat* or consult* or manag*)).tw.
27. ((integrat* or co-ordinat* or multidisciplin* or patient-centr* or person-centr*) adj2 (care or service$)).tw.
28. ((geriatric or aged or elderly or old age) adj3 (assess* or evaluat* or consult*)).tw.
29. (team$ adj2 (care or treat* or assess* or consult*)).tw.
30. (multidiscipline* adj3 assess*).tw.
31. or/19-30
32. Meta-Analysis as Topic/
33. meta analy$.tw.
34. metaanaly$.tw.
35. Meta-Analysis/
36. (systematic adj (review$1 or overview$1)).tw.
37. exp Review Literature as Topic/
38. or/32-37
39. cochrane.ab.
40. embase.ab.
41. (psychlit or psyclit).ab.
42. (psychinfo or psycinfo).ab.
43. (cinahl or cinhal).ab.
44. science citation index.ab.
45. bids.ab.
46. cancerlit.ab.
47. or/39-46
48. reference list$.ab.
49. bibliograph$.ab.
50. hand-search$.ab.
51. relevant journals.ab.
52. manual search$.ab.
53. or/48-52
54. selection criteria.ab.
55. data extraction.ab
56. 54 or 55
57. Review/
58. 56 and 57
59. Comment/
60. Letter/
61. Editorial/
62. animal/
63. human/
64. 62 not (62 and 63)
65. or/59-61,64
66. 38 or 47 or 53 or 58
67. 66 not 65
68. 12 and 18 and 31 and 67
69. limit 68 to yr=“2010 -Current”

Appendix II: Draft data extraction instrument

Systematic review details
Title
First author/year
Country
Objective
Age (mean, SD)
Gender
Number of conditions
Definitions/measures used
Total number of participants
Sources searched
Range (years) of included studies
Number of studies included
Type of studies included
Country of origin of included studies
Names
Types included in a meta-analysis
Intervention components
Holistic assessment domains (if reported)
Multidisciplinary teams/who led the assessments (if reported)
Type of controls
Total sample sizes
Number of meta-analyses
Setting/context
Methods of analysis
Outcomes assessed (measures used)
Results
Significance/direction
Heterogeneity

Appendix III: Analysis of the degree of overlap in primary studies

Step 1: create citation matrix (cm).

The citation matrix (CM) will allow for assessing the amount of overlap at the review level as opposed to the outcome level. The CM will list all primary studies ( r =rows) included for each review ( c =columns). The duplicate rows will be removed to ensure that a primary study appearing across reviews is noted in a line. The first occurrence of a primary study will be defined as an index publication (see Table A ).

Citation matrix

Review 1Review 2Review 3
Primary study 1xx
Primary study 2xx
Primary study 3xx
Primary study 4xxx

Step 2: Calculate corrected covered area (CCA) across the matrix

The overlap in studies across the matrix will be calculated based on the CCA method 30 by dividing the frequency of repeated occurrences of the index publication in other reviews by the product of index publications and reviews, reduced by the number of index publications (see below).

N is the number of included publications (irrespective of overlaps) in evidence synthesis (this is the sum of the ticked boxes in the citation matrix); r is the number of rows (number of index publications), and c is the number of columns (number of reviews).

The degree of overlap across the matrix can vary from 0–5% slight overlap, 6–10% moderate overlap, 11–15% high overlap, to>15% very high overlap. Depending on the CCA value, a decision tree developed by Hennessy and Johnson (2020) 31 will be used to guide our further steps.

Step 3: Examine the CM for reviews with complete/near complete overlap

The reviews with complete/near complete overlap will be examined for reasons of high overlap and considered for exclusion; higher quality (eg, Cochrane reviews) and/or most recent reviews (if ratings are similar) will be retained.

Appendix IV: Quality appraisal instrument

JBI critical appraisal checklist for systematic reviews and research syntheses

Reviewer: Author:Date: Year: Record Number:
YesNoUnclearNA
1Is the review question clearly and explicitly stated?
2Were the inclusion criteria appropriate for the review question?
3Was the search strategy appropriate?
4Were the sources and resources used to search for studies adequate?
5Were the criteria for appraising studies appropriate?
6Was critical appraisal conducted by 2 or more reviewers independently?
7Were there methods to minimize errors in data extraction?
8Were the methods used to combine studies appropriate?
9Was the likelihood of publication bias assessed?
10Were the recommendations for policy/and or practice supported by the reported data?
11Were the specific directives for new research appropriate?
High (no or one non-critical weakness) Moderate (more than one non-critical weakness) Low (one critical flaw with or without non-critical weaknesses) Critically low (more than one critical flaw with or without non-critical weaknesses)

*Critical domains: Items 1–3, 5–10.

Appendix V: Quality of evidence across systematic reviews for the outcome*

Quality of evidenceCriteria
High-quality evidenceOne or more updated (published within the last 3 years), high-quality systematic reviews that are based on at least 2 high-quality primary studies with consistent results.
Moderate-quality evidenceOne or more updated (published within the last 3 years) systematic reviews of high or moderate quality, based on at least:
Low-quality evidenceOne or more systematic reviews of variable quality, based on:

* Based on the GRADE principles.

The authors declare no conflict of interest.

IMAGES

  1. 5.1: Holistic Research Process

    case study research often requires a holistic interpretation

  2. PPT

    case study research often requires a holistic interpretation

  3. PPT

    case study research often requires a holistic interpretation

  4. Case study research method

    case study research often requires a holistic interpretation

  5. PPT

    case study research often requires a holistic interpretation

  6. Case Study Research Method in Psychology

    case study research often requires a holistic interpretation

COMMENTS

  1. Case Study Methodology of Qualitative Research: Key Attributes and

    A case study is one of the most commonly used methodologies of social research. This article attempts to look into the various dimensions of a case study research strategy, the different epistemological strands which determine the particular case study type and approach adopted in the field, discusses the factors which can enhance the effectiveness of a case study research, and the debate ...

  2. Continuing to enhance the quality of case study methodology in health

    Purpose of case study methodology. Case study methodology is often used to develop an in-depth, holistic understanding of a specific phenomenon within a specified context. 11 It focuses on studying one or multiple cases over time and uses an in-depth analysis of multiple information sources. 16,17 It is ideal for situations including, but not limited to, exploring under-researched and real ...

  3. Toward Developing a Framework for Conducting Case Study Research

    Gummesson (1988) argues that an important advantage of case study research is the opportunity for a holistic view of the process: "The detailed observations entailed in the case study method enable us to study many different aspects, examine them in relation to each other, view the process within its total environment and also use the ...

  4. Methodology or method? A critical review of qualitative case study

    Definitions of qualitative case study research. Case study research is an investigation and analysis of a single or collective case, intended to capture the complexity of the object of study (Stake, 1995).Qualitative case study research, as described by Stake (), draws together "naturalistic, holistic, ethnographic, phenomenological, and biographic research methods" in a bricoleur design ...

  5. PDF Embedded Case Study Methods TYPES OF CASE STUDIES

    A crucial distinction must be made between holistic and embedded case studies (Yin, 1994, p. 41). A holistic case study is shaped by a thoroughly qualitative approach that relies on narrative, phenomenological descriptions. Themes and hypotheses may be important but should remain subordinate to the understanding of the case (Stake, 1976, p. 8 ...

  6. 22 Case Study Research: In-Depth Understanding in Context

    Abstract. This chapter explores case study as a major approach to research and evaluation. After first noting various contexts in which case studies are commonly used, the chapter focuses on case study research directly Strengths and potential problematic issues are outlined and then key phases of the process.

  7. (PDF) Qualitative Case Study Methodology: Study Design and

    McMaster University, West Hamilton, Ontario, Canada. Qualitative case study methodology prov ides tools for researchers to study. complex phenomena within their contexts. When the approach is ...

  8. 23 Case Study Research: In-Depth Understanding in Context

    This chapter explores case study as a major approach to research and evaluation using primarily qualitative methods, as well as documentary sources, contemporaneous or historical. However, this is not the only way in which case study can be conceived. No one has a monopoly on the term. While sharing a focus on the singular in a particular context, case study has a wide variety of uses, not all ...

  9. Case Study

    Defnition: A case study is a research method that involves an in-depth examination and analysis of a particular phenomenon or case, such as an individual, organization, community, event, or situation. It is a qualitative research approach that aims to provide a detailed and comprehensive understanding of the case being studied.

  10. The case study approach

    A case study is a research approach that is used to generate an in-depth, multi-faceted understanding of a complex issue in its real-life context. It is an established research design that is used extensively in a wide variety of disciplines, particularly in the social sciences. A case study can be defined in a variety of ways (Table 5 ), the ...

  11. Case Study Method: A Step-by-Step Guide for Business Researchers

    Although case studies have been discussed extensively in the literature, little has been written about the specific steps one may use to conduct case study research effectively (Gagnon, 2010; Hancock & Algozzine, 2016).Baskarada (2014) also emphasized the need to have a succinct guideline that can be practically followed as it is actually tough to execute a case study well in practice.

  12. (PDF) The case study as a type of qualitative research

    Learn how to conduct and analyze a case study as a qualitative research method. Download the PDF article from ResearchGate and explore related topics.

  13. The theory contribution of case study research designs

    The objective of this paper is to highlight similarities and differences across various case study designs and to analyze their respective contributions to theory. Although different designs reveal some common underlying characteristics, a comparison of such case study research designs demonstrates that case study research incorporates different scientific goals and collection and analysis of ...

  14. Case Study Research: Foundations and Methodological Orientations

    Volume 18, No. 1, Art. 19 - January 2017 . Case Study Research: Foundations and Methodological Orientations. Helena Harrison, Melanie Birks, Richard Franklin & Jane Mills. Abstract: Over the last forty years, case study research has undergone substantial methodological development.This evolution has resulted in a pragmatic, flexible research approach, capable of providing comprehensive in ...

  15. PDF DEFINING THE CASE STUDY

    Five elements of a research design: Identify data to be collected— define: 1. question: case studies most useful for answering how, why. 2. propositions, if any to help problematize your question (e.g., organizations collaborate because they derive mutual benefit).

  16. (PDF) Case Study Research Defined [White Paper]

    conducted into an individual, group, or event to gain an understanding of. a real-life phenomenon. It is often. used in the social sciences and. humanities to explore complex issues. and to ...

  17. Case study research for better evaluations of complex interventions

    The need for methodological development to address the most urgent challenges in health research has been well-documented. Many of the most pressing questions for public health research, where the focus is on system-level determinants [1, 2], and for health services research, where provisions typically vary across sites and are provided through interlocking networks of services [], require ...

  18. The case study approach

    A case study is a research approach that is used to generate an in-depth, multi-faceted understanding of a complex issue in its real-life context. It is an established research design that is used extensively in a wide variety of disciplines, particularly in the social sciences. A case study can be defined in a variety of ways (Table 5 ), the ...

  19. How to Conduct a Case Study: A Guide for Novice Researchers

    Stake's book describes the "naturalistic, holistic, ethnographic, phenomenological, and biographic research methods" (Stake, 1995, p. xi) as the interpretive orientation of the study case approach. Sharan Merriam, the case study approach's third major contributor, expanded on the work of both Stake and Yin.

  20. What is a Case Study?

    Case studies play a significant role in knowledge development across various disciplines. Analysis of cases provides an avenue for researchers to explore phenomena within their context based on the collected data. Analysis of qualitative data from case study research can contribute to knowledge development.

  21. Holistic vs Embedded Case Studies: How to Choose

    4 Tips for choosing between holistic and embedded. When deciding between a holistic or embedded case study for your research, it is important to be clear about your research purpose and question ...

  22. How organizational culture influences holistic review: a qualitative

    During a final phase of analysis, data from each case were organized into matrices, or data displays, to facilitate the classic techniques of case study research: within-case and cross-case comparisons of similarities and differences, development of propositions for further testing, and additional evaluation of data relevance to the conceptual ...

  23. Effectiveness of holistic assessment-based interventions in improving

    The NICE guidelines specifically called for research evaluating the effectiveness of "holistic assessment and intervention," (p.19) reflecting that this is often a core component of complex interventions in this field but with variations in implementation modalities and other elements included. 13 Further, interventions targeting people ...