research data analysis methods ppt

Quantitative Data Analysis 101

The lingo, methods and techniques, explained simply.

By: Derek Jansen (MBA)  and Kerryn Warren (PhD) | December 2020

Quantitative data analysis is one of those things that often strikes fear in students. It’s totally understandable – quantitative analysis is a complex topic, full of daunting lingo , like medians, modes, correlation and regression. Suddenly we’re all wishing we’d paid a little more attention in math class…

The good news is that while quantitative data analysis is a mammoth topic, gaining a working understanding of the basics isn’t that hard , even for those of us who avoid numbers and math . In this post, we’ll break quantitative analysis down into simple , bite-sized chunks so you can approach your research with confidence.

Quantitative data analysis methods and techniques 101

Overview: Quantitative Data Analysis 101

  • What (exactly) is quantitative data analysis?
  • When to use quantitative analysis
  • How quantitative analysis works

The two “branches” of quantitative analysis

  • Descriptive statistics 101
  • Inferential statistics 101
  • How to choose the right quantitative methods
  • Recap & summary

What is quantitative data analysis?

Despite being a mouthful, quantitative data analysis simply means analysing data that is numbers-based – or data that can be easily “converted” into numbers without losing any meaning.

For example, category-based variables like gender, ethnicity, or native language could all be “converted” into numbers without losing meaning – for example, English could equal 1, French 2, etc.

This contrasts against qualitative data analysis, where the focus is on words, phrases and expressions that can’t be reduced to numbers. If you’re interested in learning about qualitative analysis, check out our post and video here .

What is quantitative analysis used for?

Quantitative analysis is generally used for three purposes.

  • Firstly, it’s used to measure differences between groups . For example, the popularity of different clothing colours or brands.
  • Secondly, it’s used to assess relationships between variables . For example, the relationship between weather temperature and voter turnout.
  • And third, it’s used to test hypotheses in a scientifically rigorous way. For example, a hypothesis about the impact of a certain vaccine.

Again, this contrasts with qualitative analysis , which can be used to analyse people’s perceptions and feelings about an event or situation. In other words, things that can’t be reduced to numbers.

How does quantitative analysis work?

Well, since quantitative data analysis is all about analysing numbers , it’s no surprise that it involves statistics . Statistical analysis methods form the engine that powers quantitative analysis, and these methods can vary from pretty basic calculations (for example, averages and medians) to more sophisticated analyses (for example, correlations and regressions).

Sounds like gibberish? Don’t worry. We’ll explain all of that in this post. Importantly, you don’t need to be a statistician or math wiz to pull off a good quantitative analysis. We’ll break down all the technical mumbo jumbo in this post.

Need a helping hand?

research data analysis methods ppt

As I mentioned, quantitative analysis is powered by statistical analysis methods . There are two main “branches” of statistical methods that are used – descriptive statistics and inferential statistics . In your research, you might only use descriptive statistics, or you might use a mix of both , depending on what you’re trying to figure out. In other words, depending on your research questions, aims and objectives . I’ll explain how to choose your methods later.

So, what are descriptive and inferential statistics?

Well, before I can explain that, we need to take a quick detour to explain some lingo. To understand the difference between these two branches of statistics, you need to understand two important words. These words are population and sample .

First up, population . In statistics, the population is the entire group of people (or animals or organisations or whatever) that you’re interested in researching. For example, if you were interested in researching Tesla owners in the US, then the population would be all Tesla owners in the US.

However, it’s extremely unlikely that you’re going to be able to interview or survey every single Tesla owner in the US. Realistically, you’ll likely only get access to a few hundred, or maybe a few thousand owners using an online survey. This smaller group of accessible people whose data you actually collect is called your sample .

So, to recap – the population is the entire group of people you’re interested in, and the sample is the subset of the population that you can actually get access to. In other words, the population is the full chocolate cake , whereas the sample is a slice of that cake.

So, why is this sample-population thing important?

Well, descriptive statistics focus on describing the sample , while inferential statistics aim to make predictions about the population, based on the findings within the sample. In other words, we use one group of statistical methods – descriptive statistics – to investigate the slice of cake, and another group of methods – inferential statistics – to draw conclusions about the entire cake. There I go with the cake analogy again…

With that out the way, let’s take a closer look at each of these branches in more detail.

Descriptive statistics vs inferential statistics

Branch 1: Descriptive Statistics

Descriptive statistics serve a simple but critically important role in your research – to describe your data set – hence the name. In other words, they help you understand the details of your sample . Unlike inferential statistics (which we’ll get to soon), descriptive statistics don’t aim to make inferences or predictions about the entire population – they’re purely interested in the details of your specific sample .

When you’re writing up your analysis, descriptive statistics are the first set of stats you’ll cover, before moving on to inferential statistics. But, that said, depending on your research objectives and research questions , they may be the only type of statistics you use. We’ll explore that a little later.

So, what kind of statistics are usually covered in this section?

Some common statistical tests used in this branch include the following:

  • Mean – this is simply the mathematical average of a range of numbers.
  • Median – this is the midpoint in a range of numbers when the numbers are arranged in numerical order. If the data set makes up an odd number, then the median is the number right in the middle of the set. If the data set makes up an even number, then the median is the midpoint between the two middle numbers.
  • Mode – this is simply the most commonly occurring number in the data set.
  • In cases where most of the numbers are quite close to the average, the standard deviation will be relatively low.
  • Conversely, in cases where the numbers are scattered all over the place, the standard deviation will be relatively high.
  • Skewness . As the name suggests, skewness indicates how symmetrical a range of numbers is. In other words, do they tend to cluster into a smooth bell curve shape in the middle of the graph, or do they skew to the left or right?

Feeling a bit confused? Let’s look at a practical example using a small data set.

Descriptive statistics example data

On the left-hand side is the data set. This details the bodyweight of a sample of 10 people. On the right-hand side, we have the descriptive statistics. Let’s take a look at each of them.

First, we can see that the mean weight is 72.4 kilograms. In other words, the average weight across the sample is 72.4 kilograms. Straightforward.

Next, we can see that the median is very similar to the mean (the average). This suggests that this data set has a reasonably symmetrical distribution (in other words, a relatively smooth, centred distribution of weights, clustered towards the centre).

In terms of the mode , there is no mode in this data set. This is because each number is present only once and so there cannot be a “most common number”. If there were two people who were both 65 kilograms, for example, then the mode would be 65.

Next up is the standard deviation . 10.6 indicates that there’s quite a wide spread of numbers. We can see this quite easily by looking at the numbers themselves, which range from 55 to 90, which is quite a stretch from the mean of 72.4.

And lastly, the skewness of -0.2 tells us that the data is very slightly negatively skewed. This makes sense since the mean and the median are slightly different.

As you can see, these descriptive statistics give us some useful insight into the data set. Of course, this is a very small data set (only 10 records), so we can’t read into these statistics too much. Also, keep in mind that this is not a list of all possible descriptive statistics – just the most common ones.

But why do all of these numbers matter?

While these descriptive statistics are all fairly basic, they’re important for a few reasons:

  • Firstly, they help you get both a macro and micro-level view of your data. In other words, they help you understand both the big picture and the finer details.
  • Secondly, they help you spot potential errors in the data – for example, if an average is way higher than you’d expect, or responses to a question are highly varied, this can act as a warning sign that you need to double-check the data.
  • And lastly, these descriptive statistics help inform which inferential statistical techniques you can use, as those techniques depend on the skewness (in other words, the symmetry and normality) of the data.

Simply put, descriptive statistics are really important , even though the statistical techniques used are fairly basic. All too often at Grad Coach, we see students skimming over the descriptives in their eagerness to get to the more exciting inferential methods, and then landing up with some very flawed results.

Don’t be a sucker – give your descriptive statistics the love and attention they deserve!

Examples of descriptive statistics

Branch 2: Inferential Statistics

As I mentioned, while descriptive statistics are all about the details of your specific data set – your sample – inferential statistics aim to make inferences about the population . In other words, you’ll use inferential statistics to make predictions about what you’d expect to find in the full population.

What kind of predictions, you ask? Well, there are two common types of predictions that researchers try to make using inferential stats:

  • Firstly, predictions about differences between groups – for example, height differences between children grouped by their favourite meal or gender.
  • And secondly, relationships between variables – for example, the relationship between body weight and the number of hours a week a person does yoga.

In other words, inferential statistics (when done correctly), allow you to connect the dots and make predictions about what you expect to see in the real world population, based on what you observe in your sample data. For this reason, inferential statistics are used for hypothesis testing – in other words, to test hypotheses that predict changes or differences.

Inferential statistics are used to make predictions about what you’d expect to find in the full population, based on the sample.

Of course, when you’re working with inferential statistics, the composition of your sample is really important. In other words, if your sample doesn’t accurately represent the population you’re researching, then your findings won’t necessarily be very useful.

For example, if your population of interest is a mix of 50% male and 50% female , but your sample is 80% male , you can’t make inferences about the population based on your sample, since it’s not representative. This area of statistics is called sampling, but we won’t go down that rabbit hole here (it’s a deep one!) – we’ll save that for another post .

What statistics are usually used in this branch?

There are many, many different statistical analysis methods within the inferential branch and it’d be impossible for us to discuss them all here. So we’ll just take a look at some of the most common inferential statistical methods so that you have a solid starting point.

First up are T-Tests . T-tests compare the means (the averages) of two groups of data to assess whether they’re statistically significantly different. In other words, do they have significantly different means, standard deviations and skewness.

This type of testing is very useful for understanding just how similar or different two groups of data are. For example, you might want to compare the mean blood pressure between two groups of people – one that has taken a new medication and one that hasn’t – to assess whether they are significantly different.

Kicking things up a level, we have ANOVA, which stands for “analysis of variance”. This test is similar to a T-test in that it compares the means of various groups, but ANOVA allows you to analyse multiple groups , not just two groups So it’s basically a t-test on steroids…

Next, we have correlation analysis . This type of analysis assesses the relationship between two variables. In other words, if one variable increases, does the other variable also increase, decrease or stay the same. For example, if the average temperature goes up, do average ice creams sales increase too? We’d expect some sort of relationship between these two variables intuitively , but correlation analysis allows us to measure that relationship scientifically .

Lastly, we have regression analysis – this is quite similar to correlation in that it assesses the relationship between variables, but it goes a step further to understand cause and effect between variables, not just whether they move together. In other words, does the one variable actually cause the other one to move, or do they just happen to move together naturally thanks to another force? Just because two variables correlate doesn’t necessarily mean that one causes the other.

Stats overload…

I hear you. To make this all a little more tangible, let’s take a look at an example of a correlation in action.

Here’s a scatter plot demonstrating the correlation (relationship) between weight and height. Intuitively, we’d expect there to be some relationship between these two variables, which is what we see in this scatter plot. In other words, the results tend to cluster together in a diagonal line from bottom left to top right.

Sample correlation

As I mentioned, these are are just a handful of inferential techniques – there are many, many more. Importantly, each statistical method has its own assumptions and limitations .

For example, some methods only work with normally distributed (parametric) data, while other methods are designed specifically for non-parametric data. And that’s exactly why descriptive statistics are so important – they’re the first step to knowing which inferential techniques you can and can’t use.

Remember that every statistical method has its own assumptions and limitations,  so you need to be aware of these.

How to choose the right analysis method

To choose the right statistical methods, you need to think about two important factors :

  • The type of quantitative data you have (specifically, level of measurement and the shape of the data). And,
  • Your research questions and hypotheses

Let’s take a closer look at each of these.

Factor 1 – Data type

The first thing you need to consider is the type of data you’ve collected (or the type of data you will collect). By data types, I’m referring to the four levels of measurement – namely, nominal, ordinal, interval and ratio. If you’re not familiar with this lingo, check out the video below.

Why does this matter?

Well, because different statistical methods and techniques require different types of data. This is one of the “assumptions” I mentioned earlier – every method has its assumptions regarding the type of data.

For example, some techniques work with categorical data (for example, yes/no type questions, or gender or ethnicity), while others work with continuous numerical data (for example, age, weight or income) – and, of course, some work with multiple data types.

If you try to use a statistical method that doesn’t support the data type you have, your results will be largely meaningless . So, make sure that you have a clear understanding of what types of data you’ve collected (or will collect). Once you have this, you can then check which statistical methods would support your data types here .

If you haven’t collected your data yet, you can work in reverse and look at which statistical method would give you the most useful insights, and then design your data collection strategy to collect the correct data types.

Another important factor to consider is the shape of your data . Specifically, does it have a normal distribution (in other words, is it a bell-shaped curve, centred in the middle) or is it very skewed to the left or the right? Again, different statistical techniques work for different shapes of data – some are designed for symmetrical data while others are designed for skewed data.

This is another reminder of why descriptive statistics are so important – they tell you all about the shape of your data.

Factor 2: Your research questions

The next thing you need to consider is your specific research questions, as well as your hypotheses (if you have some). The nature of your research questions and research hypotheses will heavily influence which statistical methods and techniques you should use.

If you’re just interested in understanding the attributes of your sample (as opposed to the entire population), then descriptive statistics are probably all you need. For example, if you just want to assess the means (averages) and medians (centre points) of variables in a group of people.

On the other hand, if you aim to understand differences between groups or relationships between variables and to infer or predict outcomes in the population, then you’ll likely need both descriptive statistics and inferential statistics.

So, it’s really important to get very clear about your research aims and research questions, as well your hypotheses – before you start looking at which statistical techniques to use.

Never shoehorn a specific statistical technique into your research just because you like it or have some experience with it. Your choice of methods must align with all the factors we’ve covered here.

Time to recap…

You’re still with me? That’s impressive. We’ve covered a lot of ground here, so let’s recap on the key points:

  • Quantitative data analysis is all about  analysing number-based data  (which includes categorical and numerical data) using various statistical techniques.
  • The two main  branches  of statistics are  descriptive statistics  and  inferential statistics . Descriptives describe your sample, whereas inferentials make predictions about what you’ll find in the population.
  • Common  descriptive statistical methods include  mean  (average),  median , standard  deviation  and  skewness .
  • Common  inferential statistical methods include  t-tests ,  ANOVA ,  correlation  and  regression  analysis.
  • To choose the right statistical methods and techniques, you need to consider the  type of data you’re working with , as well as your  research questions  and hypotheses.

research data analysis methods ppt

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

77 Comments

Oddy Labs

Hi, I have read your article. Such a brilliant post you have created.

Derek Jansen

Thank you for the feedback. Good luck with your quantitative analysis.

Abdullahi Ramat

Thank you so much.

Obi Eric Onyedikachi

Thank you so much. I learnt much well. I love your summaries of the concepts. I had love you to explain how to input data using SPSS

MWASOMOLA, BROWN

Very useful, I have got the concept

Lumbuka Kaunda

Amazing and simple way of breaking down quantitative methods.

Charles Lwanga

This is beautiful….especially for non-statisticians. I have skimmed through but I wish to read again. and please include me in other articles of the same nature when you do post. I am interested. I am sure, I could easily learn from you and get off the fear that I have had in the past. Thank you sincerely.

Essau Sefolo

Send me every new information you might have.

fatime

i need every new information

Dr Peter

Thank you for the blog. It is quite informative. Dr Peter Nemaenzhe PhD

Mvogo Mvogo Ephrem

It is wonderful. l’ve understood some of the concepts in a more compréhensive manner

Maya

Your article is so good! However, I am still a bit lost. I am doing a secondary research on Gun control in the US and increase in crime rates and I am not sure which analysis method I should use?

Joy

Based on the given learning points, this is inferential analysis, thus, use ‘t-tests, ANOVA, correlation and regression analysis’

Peter

Well explained notes. Am an MPH student and currently working on my thesis proposal, this has really helped me understand some of the things I didn’t know.

Jejamaije Mujoro

I like your page..helpful

prashant pandey

wonderful i got my concept crystal clear. thankyou!!

Dailess Banda

This is really helpful , thank you

Lulu

Thank you so much this helped

wossen

Wonderfully explained

Niamatullah zaheer

thank u so much, it was so informative

mona

THANKYOU, this was very informative and very helpful

Thaddeus Ogwoka

This is great GRADACOACH I am not a statistician but I require more of this in my thesis

Include me in your posts.

Alem Teshome

This is so great and fully useful. I would like to thank you again and again.

Mrinal

Glad to read this article. I’ve read lot of articles but this article is clear on all concepts. Thanks for sharing.

Emiola Adesina

Thank you so much. This is a very good foundation and intro into quantitative data analysis. Appreciate!

Josyl Hey Aquilam

You have a very impressive, simple but concise explanation of data analysis for Quantitative Research here. This is a God-send link for me to appreciate research more. Thank you so much!

Lynnet Chikwaikwai

Avery good presentation followed by the write up. yes you simplified statistics to make sense even to a layman like me. Thank so much keep it up. The presenter did ell too. i would like more of this for Qualitative and exhaust more of the test example like the Anova.

Adewole Ikeoluwa

This is a very helpful article, couldn’t have been clearer. Thank you.

Samih Soud ALBusaidi

Awesome and phenomenal information.Well done

Nūr

The video with the accompanying article is super helpful to demystify this topic. Very well done. Thank you so much.

Lalah

thank you so much, your presentation helped me a lot

Anjali

I don’t know how should I express that ur article is saviour for me 🥺😍

Saiqa Aftab Tunio

It is well defined information and thanks for sharing. It helps me a lot in understanding the statistical data.

Funeka Mvandaba

I gain a lot and thanks for sharing brilliant ideas, so wish to be linked on your email update.

Rita Kathomi Gikonyo

Very helpful and clear .Thank you Gradcoach.

Hilaria Barsabal

Thank for sharing this article, well organized and information presented are very clear.

AMON TAYEBWA

VERY INTERESTING AND SUPPORTIVE TO NEW RESEARCHERS LIKE ME. AT LEAST SOME BASICS ABOUT QUANTITATIVE.

Tariq

An outstanding, well explained and helpful article. This will help me so much with my data analysis for my research project. Thank you!

chikumbutso

wow this has just simplified everything i was scared of how i am gonna analyse my data but thanks to you i will be able to do so

Idris Haruna

simple and constant direction to research. thanks

Mbunda Castro

This is helpful

AshikB

Great writing!! Comprehensive and very helpful.

himalaya ravi

Do you provide any assistance for other steps of research methodology like making research problem testing hypothesis report and thesis writing?

Sarah chiwamba

Thank you so much for such useful article!

Lopamudra

Amazing article. So nicely explained. Wow

Thisali Liyanage

Very insightfull. Thanks

Melissa

I am doing a quality improvement project to determine if the implementation of a protocol will change prescribing habits. Would this be a t-test?

Aliyah

The is a very helpful blog, however, I’m still not sure how to analyze my data collected. I’m doing a research on “Free Education at the University of Guyana”

Belayneh Kassahun

tnx. fruitful blog!

Suzanne

So I am writing exams and would like to know how do establish which method of data analysis to use from the below research questions: I am a bit lost as to how I determine the data analysis method from the research questions.

Do female employees report higher job satisfaction than male employees with similar job descriptions across the South African telecommunications sector? – I though that maybe Chi Square could be used here. – Is there a gender difference in talented employees’ actual turnover decisions across the South African telecommunications sector? T-tests or Correlation in this one. – Is there a gender difference in the cost of actual turnover decisions across the South African telecommunications sector? T-tests or Correlation in this one. – What practical recommendations can be made to the management of South African telecommunications companies on leveraging gender to mitigate employee turnover decisions?

Your assistance will be appreciated if I could get a response as early as possible tomorrow

Like

This was quite helpful. Thank you so much.

kidane Getachew

wow I got a lot from this article, thank you very much, keep it up

FAROUK AHMAD NKENGA

Thanks for yhe guidance. Can you send me this guidance on my email? To enable offline reading?

Nosi Ruth Xabendlini

Thank you very much, this service is very helpful.

George William Kiyingi

Every novice researcher needs to read this article as it puts things so clear and easy to follow. Its been very helpful.

Adebisi

Wonderful!!!! you explained everything in a way that anyone can learn. Thank you!!

Miss Annah

I really enjoyed reading though this. Very easy to follow. Thank you

Reza Kia

Many thanks for your useful lecture, I would be really appreciated if you could possibly share with me the PPT of presentation related to Data type?

Protasia Tairo

Thank you very much for sharing, I got much from this article

Fatuma Chobo

This is a very informative write-up. Kindly include me in your latest posts.

naphtal

Very interesting mostly for social scientists

Boy M. Bachtiar

Thank you so much, very helpfull

You’re welcome 🙂

Dr Mafaza Mansoor

woow, its great, its very informative and well understood because of your way of writing like teaching in front of me in simple languages.

Opio Len

I have been struggling to understand a lot of these concepts. Thank you for the informative piece which is written with outstanding clarity.

Eric

very informative article. Easy to understand

Leena Fukey

Beautiful read, much needed.

didin

Always greet intro and summary. I learn so much from GradCoach

Mmusyoka

Quite informative. Simple and clear summary.

Jewel Faver

I thoroughly enjoyed reading your informative and inspiring piece. Your profound insights into this topic truly provide a better understanding of its complexity. I agree with the points you raised, especially when you delved into the specifics of the article. In my opinion, that aspect is often overlooked and deserves further attention.

Shantae

Absolutely!!! Thank you

Thazika Chitimera

Thank you very much for this post. It made me to understand how to do my data analysis.

lule victor

its nice work and excellent job ,you have made my work easier

Pedro Uwadum

Wow! So explicit. Well done.

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

SlidePlayer

  • My presentations

Auth with social network:

Download presentation

We think you have liked this presentation. If you wish to download it, please recommend it to your friends in any social system. Share buttons are a little bit lower. Thank you!

Presentation is loading. Please wait.

Data Analysis, Interpretation, and Presentation

Published by Benedict Brooks Modified over 4 years ago

Similar presentations

Presentation on theme: "Data Analysis, Interpretation, and Presentation"— Presentation transcript:

Data Analysis, Interpretation, and Presentation

Critical Reading Strategies: Overview of Research Process

research data analysis methods ppt

©2011 1www.id-book.com Data analysis, interpretation and presentation Chapter 8.

research data analysis methods ppt

Chapter 8 Data Analysis, Interpretation and Presentation.

research data analysis methods ppt

© Done by : Latifa Ebrahim Al Doy Chapter 8 Data analysis, interpretation and presentation and presentation.

research data analysis methods ppt

Research methods – Deductive / quantitative

research data analysis methods ppt

Data analysis and interpretation. Agenda Part 2 comments – Average score: 87 Part 3: due in 2 weeks Data analysis.

research data analysis methods ppt

Aaker, Kumar, Day Ninth Edition Instructor’s Presentation Slides

research data analysis methods ppt

SOWK 6003 Social Work Research Week 10 Quantitative Data Analysis

research data analysis methods ppt

Chapter 9 Principles of Analysis and Interpretation.

research data analysis methods ppt

More on Qualitative Data Collection and Data Analysis

research data analysis methods ppt

Marketing Research Aaker, Kumar, Day Seventh Edition Instructor’s Presentation Slides.

research data analysis methods ppt

CHAPTER 13, qualitative data analysis

research data analysis methods ppt

Chapter 10 Conducting & Reading Research Baumgartner et al Chapter 10 Qualitative Research.

research data analysis methods ppt

FOCUS GROUPS ANALYSIS OF QUALITATIVE DATA

research data analysis methods ppt

Research Methods in Computer Science Lecture: Quantitative and Qualitative Data Analysis | Department of Science | Interactive Graphics System.

research data analysis methods ppt

Data analysis, interpretation and presentation

research data analysis methods ppt

RESEARCH IN MATH EDUCATION-3

research data analysis methods ppt

Computer Science Department California Polytechnic State University San Luis Obispo, CA, U.S.A. Franz J. Kurfess CPE/CSC 484: User-Centered Design and.

research data analysis methods ppt

Some Insight into Qualitative Analysis N.I.Teufel-Shone, PhD College of Public Health University of Arizona SREP 2015.

research data analysis methods ppt

Qualitative and Quantitative Research Quantitative Deductive: transforms general theory into hypothesis suitable for testing Deductive: transforms general.

About project

© 2024 SlidePlayer.com Inc. All rights reserved.

  • Lecture 1: Course Overview
  • Lecture 2: Intro to R
  • Lecture 3: Data & Data Handling
  • Lecture 4: Data Wrangling
  • Lecture 5: Summary Statistics
  • Lecture 6: Plotting 1
  • Lecture 7: Plotting 2
  • Lecture 8: Probability Basics
  • Lecture 9: Models
  • Lecture 10: Parameter Estimation 1
  • Lecture 11: Classical Testing 1
  • Lecture 12: Classical Testing 2
  • Lecture 13: Classical Testing 3
  • Lecture 14: Impact of Statistical Practices (T. Roettger)
  • Lecture 15: Model Comparison
  • Lecture 16: Simple Regression
  • Tutorial 1: Using R, Data Handling / Wrangling
  • Tutorial 2: More R, Wrangling, Summary Stats
  • Tutorial 3: Summary statistics
  • Tutorial 4: Plotting
  • Tutorial 5: Probability calculus
  • Tutorial 6: Probability calculus, models
  • Tutorial 7: Parameter Estimation
  • Tutorial 8: Classical Testing
  • Tutorial 9: Hypothesis Testing
  • Tutorial 10: Bayesian Hypothesis Testing
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case AskWhy Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

research data analysis methods ppt

Home Market Research

Data Analysis in Research: Types & Methods

data-analysis-in-research

Content Index

Why analyze data in research?

Types of data in research, finding patterns in the qualitative data, methods used for data analysis in qualitative research, preparing data for analysis, methods used for data analysis in quantitative research, considerations in research data analysis, what is data analysis in research.

Definition of research in data analysis: According to LeCompte and Schensul, research data analysis is a process used by researchers to reduce data to a story and interpret it to derive insights. The data analysis process helps reduce a large chunk of data into smaller fragments, which makes sense. 

Three essential things occur during the data analysis process — the first is data organization . Summarization and categorization together contribute to becoming the second known method used for data reduction. It helps find patterns and themes in the data for easy identification and linking. The third and last way is data analysis – researchers do it in both top-down and bottom-up fashion.

LEARN ABOUT: Research Process Steps

On the other hand, Marshall and Rossman describe data analysis as a messy, ambiguous, and time-consuming but creative and fascinating process through which a mass of collected data is brought to order, structure and meaning.

We can say that “the data analysis and data interpretation is a process representing the application of deductive and inductive logic to the research and data analysis.”

Researchers rely heavily on data as they have a story to tell or research problems to solve. It starts with a question, and data is nothing but an answer to that question. But, what if there is no question to ask? Well! It is possible to explore data even without a problem – we call it ‘Data Mining’, which often reveals some interesting patterns within the data that are worth exploring.

Irrelevant to the type of data researchers explore, their mission and audiences’ vision guide them to find the patterns to shape the story they want to tell. One of the essential things expected from researchers while analyzing data is to stay open and remain unbiased toward unexpected patterns, expressions, and results. Remember, sometimes, data analysis tells the most unforeseen yet exciting stories that were not expected when initiating data analysis. Therefore, rely on the data you have at hand and enjoy the journey of exploratory research. 

Create a Free Account

Every kind of data has a rare quality of describing things after assigning a specific value to it. For analysis, you need to organize these values, processed and presented in a given context, to make it useful. Data can be in different forms; here are the primary data types.

  • Qualitative data: When the data presented has words and descriptions, then we call it qualitative data . Although you can observe this data, it is subjective and harder to analyze data in research, especially for comparison. Example: Quality data represents everything describing taste, experience, texture, or an opinion that is considered quality data. This type of data is usually collected through focus groups, personal qualitative interviews , qualitative observation or using open-ended questions in surveys.
  • Quantitative data: Any data expressed in numbers of numerical figures are called quantitative data . This type of data can be distinguished into categories, grouped, measured, calculated, or ranked. Example: questions such as age, rank, cost, length, weight, scores, etc. everything comes under this type of data. You can present such data in graphical format, charts, or apply statistical analysis methods to this data. The (Outcomes Measurement Systems) OMS questionnaires in surveys are a significant source of collecting numeric data.
  • Categorical data: It is data presented in groups. However, an item included in the categorical data cannot belong to more than one group. Example: A person responding to a survey by telling his living style, marital status, smoking habit, or drinking habit comes under the categorical data. A chi-square test is a standard method used to analyze this data.

Learn More : Examples of Qualitative Data in Education

Data analysis in qualitative research

Data analysis and qualitative data research work a little differently from the numerical data as the quality data is made up of words, descriptions, images, objects, and sometimes symbols. Getting insight from such complicated information is a complicated process. Hence it is typically used for exploratory research and data analysis .

Although there are several ways to find patterns in the textual information, a word-based method is the most relied and widely used global technique for research and data analysis. Notably, the data analysis process in qualitative research is manual. Here the researchers usually read the available data and find repetitive or commonly used words. 

For example, while studying data collected from African countries to understand the most pressing issues people face, researchers might find  “food”  and  “hunger” are the most commonly used words and will highlight them for further analysis.

LEARN ABOUT: Level of Analysis

The keyword context is another widely used word-based technique. In this method, the researcher tries to understand the concept by analyzing the context in which the participants use a particular keyword.  

For example , researchers conducting research and data analysis for studying the concept of ‘diabetes’ amongst respondents might analyze the context of when and how the respondent has used or referred to the word ‘diabetes.’

The scrutiny-based technique is also one of the highly recommended  text analysis  methods used to identify a quality data pattern. Compare and contrast is the widely used method under this technique to differentiate how a specific text is similar or different from each other. 

For example: To find out the “importance of resident doctor in a company,” the collected data is divided into people who think it is necessary to hire a resident doctor and those who think it is unnecessary. Compare and contrast is the best method that can be used to analyze the polls having single-answer questions types .

Metaphors can be used to reduce the data pile and find patterns in it so that it becomes easier to connect data with theory.

Variable Partitioning is another technique used to split variables so that researchers can find more coherent descriptions and explanations from the enormous data.

LEARN ABOUT: Qualitative Research Questions and Questionnaires

There are several techniques to analyze the data in qualitative research, but here are some commonly used methods,

  • Content Analysis:  It is widely accepted and the most frequently employed technique for data analysis in research methodology. It can be used to analyze the documented information from text, images, and sometimes from the physical items. It depends on the research questions to predict when and where to use this method.
  • Narrative Analysis: This method is used to analyze content gathered from various sources such as personal interviews, field observation, and  surveys . The majority of times, stories, or opinions shared by people are focused on finding answers to the research questions.
  • Discourse Analysis:  Similar to narrative analysis, discourse analysis is used to analyze the interactions with people. Nevertheless, this particular method considers the social context under which or within which the communication between the researcher and respondent takes place. In addition to that, discourse analysis also focuses on the lifestyle and day-to-day environment while deriving any conclusion.
  • Grounded Theory:  When you want to explain why a particular phenomenon happened, then using grounded theory for analyzing quality data is the best resort. Grounded theory is applied to study data about the host of similar cases occurring in different settings. When researchers are using this method, they might alter explanations or produce new ones until they arrive at some conclusion.

LEARN ABOUT: 12 Best Tools for Researchers

Data analysis in quantitative research

The first stage in research and data analysis is to make it for the analysis so that the nominal data can be converted into something meaningful. Data preparation consists of the below phases.

Phase I: Data Validation

Data validation is done to understand if the collected data sample is per the pre-set standards, or it is a biased data sample again divided into four different stages

  • Fraud: To ensure an actual human being records each response to the survey or the questionnaire
  • Screening: To make sure each participant or respondent is selected or chosen in compliance with the research criteria
  • Procedure: To ensure ethical standards were maintained while collecting the data sample
  • Completeness: To ensure that the respondent has answered all the questions in an online survey. Else, the interviewer had asked all the questions devised in the questionnaire.

Phase II: Data Editing

More often, an extensive research data sample comes loaded with errors. Respondents sometimes fill in some fields incorrectly or sometimes skip them accidentally. Data editing is a process wherein the researchers have to confirm that the provided data is free of such errors. They need to conduct necessary checks and outlier checks to edit the raw edit and make it ready for analysis.

Phase III: Data Coding

Out of all three, this is the most critical phase of data preparation associated with grouping and assigning values to the survey responses . If a survey is completed with a 1000 sample size, the researcher will create an age bracket to distinguish the respondents based on their age. Thus, it becomes easier to analyze small data buckets rather than deal with the massive data pile.

LEARN ABOUT: Steps in Qualitative Research

After the data is prepared for analysis, researchers are open to using different research and data analysis methods to derive meaningful insights. For sure, statistical analysis plans are the most favored to analyze numerical data. In statistical analysis, distinguishing between categorical data and numerical data is essential, as categorical data involves distinct categories or labels, while numerical data consists of measurable quantities. The method is again classified into two groups. First, ‘Descriptive Statistics’ used to describe data. Second, ‘Inferential statistics’ that helps in comparing the data .

Descriptive statistics

This method is used to describe the basic features of versatile types of data in research. It presents the data in such a meaningful way that pattern in the data starts making sense. Nevertheless, the descriptive analysis does not go beyond making conclusions. The conclusions are again based on the hypothesis researchers have formulated so far. Here are a few major types of descriptive analysis methods.

Measures of Frequency

  • Count, Percent, Frequency
  • It is used to denote home often a particular event occurs.
  • Researchers use it when they want to showcase how often a response is given.

Measures of Central Tendency

  • Mean, Median, Mode
  • The method is widely used to demonstrate distribution by various points.
  • Researchers use this method when they want to showcase the most commonly or averagely indicated response.

Measures of Dispersion or Variation

  • Range, Variance, Standard deviation
  • Here the field equals high/low points.
  • Variance standard deviation = difference between the observed score and mean
  • It is used to identify the spread of scores by stating intervals.
  • Researchers use this method to showcase data spread out. It helps them identify the depth until which the data is spread out that it directly affects the mean.

Measures of Position

  • Percentile ranks, Quartile ranks
  • It relies on standardized scores helping researchers to identify the relationship between different scores.
  • It is often used when researchers want to compare scores with the average count.

For quantitative research use of descriptive analysis often give absolute numbers, but the in-depth analysis is never sufficient to demonstrate the rationale behind those numbers. Nevertheless, it is necessary to think of the best method for research and data analysis suiting your survey questionnaire and what story researchers want to tell. For example, the mean is the best way to demonstrate the students’ average scores in schools. It is better to rely on the descriptive statistics when the researchers intend to keep the research or outcome limited to the provided  sample  without generalizing it. For example, when you want to compare average voting done in two different cities, differential statistics are enough.

Descriptive analysis is also called a ‘univariate analysis’ since it is commonly used to analyze a single variable.

Inferential statistics

Inferential statistics are used to make predictions about a larger population after research and data analysis of the representing population’s collected sample. For example, you can ask some odd 100 audiences at a movie theater if they like the movie they are watching. Researchers then use inferential statistics on the collected  sample  to reason that about 80-90% of people like the movie. 

Here are two significant areas of inferential statistics.

  • Estimating parameters: It takes statistics from the sample research data and demonstrates something about the population parameter.
  • Hypothesis test: I t’s about sampling research data to answer the survey research questions. For example, researchers might be interested to understand if the new shade of lipstick recently launched is good or not, or if the multivitamin capsules help children to perform better at games.

These are sophisticated analysis methods used to showcase the relationship between different variables instead of describing a single variable. It is often used when researchers want something beyond absolute numbers to understand the relationship between variables.

Here are some of the commonly used methods for data analysis in research.

  • Correlation: When researchers are not conducting experimental research or quasi-experimental research wherein the researchers are interested to understand the relationship between two or more variables, they opt for correlational research methods.
  • Cross-tabulation: Also called contingency tables,  cross-tabulation  is used to analyze the relationship between multiple variables.  Suppose provided data has age and gender categories presented in rows and columns. A two-dimensional cross-tabulation helps for seamless data analysis and research by showing the number of males and females in each age category.
  • Regression analysis: For understanding the strong relationship between two variables, researchers do not look beyond the primary and commonly used regression analysis method, which is also a type of predictive analysis used. In this method, you have an essential factor called the dependent variable. You also have multiple independent variables in regression analysis. You undertake efforts to find out the impact of independent variables on the dependent variable. The values of both independent and dependent variables are assumed as being ascertained in an error-free random manner.
  • Frequency tables: The statistical procedure is used for testing the degree to which two or more vary or differ in an experiment. A considerable degree of variation means research findings were significant. In many contexts, ANOVA testing and variance analysis are similar.
  • Analysis of variance: The statistical procedure is used for testing the degree to which two or more vary or differ in an experiment. A considerable degree of variation means research findings were significant. In many contexts, ANOVA testing and variance analysis are similar.
  • Researchers must have the necessary research skills to analyze and manipulation the data , Getting trained to demonstrate a high standard of research practice. Ideally, researchers must possess more than a basic understanding of the rationale of selecting one statistical method over the other to obtain better data insights.
  • Usually, research and data analytics projects differ by scientific discipline; therefore, getting statistical advice at the beginning of analysis helps design a survey questionnaire, select data collection methods , and choose samples.

LEARN ABOUT: Best Data Collection Tools

  • The primary aim of data research and analysis is to derive ultimate insights that are unbiased. Any mistake in or keeping a biased mind to collect data, selecting an analysis method, or choosing  audience  sample il to draw a biased inference.
  • Irrelevant to the sophistication used in research data and analysis is enough to rectify the poorly defined objective outcome measurements. It does not matter if the design is at fault or intentions are not clear, but lack of clarity might mislead readers, so avoid the practice.
  • The motive behind data analysis in research is to present accurate and reliable data. As far as possible, avoid statistical errors, and find a way to deal with everyday challenges like outliers, missing data, data altering, data mining , or developing graphical representation.

LEARN MORE: Descriptive Research vs Correlational Research The sheer amount of data generated daily is frightening. Especially when data analysis has taken center stage. in 2018. In last year, the total data supply amounted to 2.8 trillion gigabytes. Hence, it is clear that the enterprises willing to survive in the hypercompetitive world must possess an excellent capability to analyze complex research data, derive actionable insights, and adapt to the new market needs.

LEARN ABOUT: Average Order Value

QuestionPro is an online survey platform that empowers organizations in data analysis and research and provides them a medium to collect data by creating appealing surveys.

MORE LIKE THIS

age gating

Age Gating: Effective Strategies for Online Content Control

Aug 23, 2024

research data analysis methods ppt

Customer Experience Lessons from 13,000 Feet — Tuesday CX Thoughts

Aug 20, 2024

insight

Insight: Definition & meaning, types and examples

Aug 19, 2024

employee loyalty

Employee Loyalty: Strategies for Long-Term Business Success 

Other categories.

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Tuesday CX Thoughts (TCXT)
  • Uncategorized
  • What’s Coming Up
  • Workforce Intelligence

Monograph Matters

Qualitative analysis: process and examples | powerpoint – 85.2.

Authors Laura Wray-Lake and Laura Abrams describe qualitative data analysis, with illustrative examples from their SRCD monograph,  Pathways to Civic Engagement Among Urban Youth of Color . This PowerPoint document includes presenter notes, making it an ideal resource for researchers learning about qualitative analysis and for instructors teaching about it in upper-level undergraduate or graduate courses.

Created by Laura Wray-Lake and Laura S. Abrams. All rights reserved.

Citation: Wray-Lake, L. & Abrams, L. S. (2020) Qualitative Analysis: Process and Examples [PowerPoint]. Retrieved from https://monographmatters.srcd.org/2020/05/12/teachingresources-qualitativeanalysis-powerpoint-85-2

Share this:

data types and quantitative data analysis

DATA TYPES AND QUANTITATIVE DATA ANALYSIS

Mar 21, 2019

3.56k likes | 7.71k Views

DATA TYPES AND QUANTITATIVE DATA ANALYSIS. PRESENTED TO THIRD-TRIMESTER YEAR 1. DATA. Information expressed qualitatively or quantitatively Data are measurements of characteristics Measurements are functions that assign values in quantitative or quantitative form

Share Presentation

  • data collection
  • sampling procedure
  • random sampling procedure
  • simple unrestricted random sampling

deo

Presentation Transcript

DATA TYPES AND QUANTITATIVE DATA ANALYSIS PRESENTED TO THIRD-TRIMESTER YEAR 1

DATA • Information expressed qualitatively or quantitatively • Data are measurements of characteristics • Measurements are functions that assign values in quantitative or quantitative form • Characteristics are referred to as variables Eg. Height, weight, sex, tribe, etc

VARIABLES AND DATA TYPES • Variable as characterization of event • Classification of Variables • Qualitative: usually categorical; values/members fall into one of a set of mutually exclusive & collectively exhaustive classes. eg. Sex, crop variety, animal breed, source of water, type of house • Quantitative: numeric values possessing an inherent order. • Discrete: eg. # of children/farmers/animals, etc • Continuous: height, weight, distance, etc • Random and Fixed

Data Types • Scales of measurements • Nominal • Ordinal • Interval • Ratio Levels of measurement distinguished on the basis of the following criteria: • Magnitude or size; Direction • Distance or interval; Origin • Equality of points; Ratios of intervals; Ratio of points

NOMINAL DATA • Example: Sex (Gender) coded M,F or 0,1 • ‘Numbers’ simply identify, classify, categorize or distinguish. • The score has nosize or magnitude • Score has equality because two subjects are similar (equal) if they have same number • Weakest level of measurement; poor • ArithmeticoperationsCANNOT be performed on nominal data types

ORDINAL DATA • Associated with qualitative random variables • Generated from ranked responses (or from a counting process). • Have properties of nominal-data, in addition to DIRECTION • Numeric or non-numeric • Next to nominal in terms of weakness • Arithmeticoperations must be avoided • Egs: knowledge (low, average, high), socio-economic status, attitude, opinion (like, dislike, strongly dislike), etc.

INTERVAL and RATIO INTERVAL • Numeric, have magnitude or size, direction, distance or interval, and origin • Interval scale has no absolute 0 that is NOT independent of system of measurement [0oC not same temperature as 0oF] • Eg. Temperature in degrees Fahrenheit or Celsius RATIO • Weight of cassava in kilogram or pounds weight • Numeric, have magnitude or size, direction, distance or interval, and origin • Absolute origin exists and not system dependent All arithmetic operations can be performed on such data types

DATA COLLECTION PROCESSES • Processes include (not mutually exclusive) • Routine Records; • Survey Data; • Experimental data;

ROUTINE (MONITORING) DATA • Data periodically recorded essentially for administrative use of the establishment and for studying trends or patterns. • Examples – medical records, meteorological data • Some statistical analysis of data possible on description and prescription • Cheap data, and planning could be haphazard

EXPERIMENTAL DATA • Treatments are the investigated factors of variation • Treatments are controlled by the designer • Treatment levels may be fixed, random, qualitative, quantitative • Comparative experimental data require inductive analysis • Emphasis on inference including estimation of effects and test of hypotheses.

SURVEY DATA COLLECTION • Information on characteristics, opinions, attitudes, tendencies, activities or operations of the individual units of the population • Based on a small set of the population • Can be planned; preference for random surveys • Researcher or investigator has no (or must not exercise) control over the respondent or data

Which procedure to use? • Depends on study objectives • All 3 procedures are possible while in the community • Monitoring and Survey procedures will be most used during the first year. • We discuss SURVEY further

SAMPLING (SURVEY) METHODS • Ensure units of population have same chance of being in the sample. Sampling Types • Probability sampling - the selection of sampling units is according to a probability (random & non-random) scheme. • Non-probability sampling - selection of samples not objectively made, but influenced a great deal by the sampler. Example – haphazard and use of volunteers • Preference is for probability sampling, but situation may determine otherwise

SYSTEMATIC SAMPLING Procedure • Sampling units are selected according to a pre-determined pattern. • For instance, given a sampling intensity of 10% from a population of 100 numbered trees or units (strips etc) might require your observing every 1 out of 10 trees (units, strips) in an ordered manner or sequence

Selection in Systematic Procedure • E.g. if by some process, random or non-random, the 3rd tree (unit or strip) is selected first, then the 13th, 23rd, 33rd, 43rd,..., 93rd trees (unit, strips) will accordingly be selected. Strictly, this type of selection as illustrated with the population of 100 trees (units) involves only one sample. • Improve by selecting 1st unit randomly from 1 to 10, or 1 to 100, and by MULTIPLE random starts

Applications of Systematic Sampling _ Population is unknown _ Baseline studies on spatial distribution patterns of population _ Baseline studies on extent/distribution of pests, pathogens, etc. _ Mapping purposes _ Regeneration studies

Advantages of Systematic Sampling _ Easy to set-up _ Relative speed in data collection _ Total coverage of population assured _ Good base for future designs, as position of characters can easily be mapped (with known coordinates) _ Demarcation of units not necessary, as sampling units are defined by first unit.

Disadvantages of Systematic Sampling • With only one random observation, sampling error not valid • Unknown trend(s) in population can influence results adversely [Examples: topography, season of sampling interval]

Avoiding the disadvantages • The first major disadvantage on sampling error can be rectified by introducing several multiple random starts through stratification of the population • The second problem of trend is more difficult but simply relates to the choice of the sampling interval.

Simple/Unrestricted Random Sampling • Unlike the systematic sampling, sampling units need not be equally spaced. • We shall define this as that sampling procedure which ensures equal probability for all samples of the same size (without any restriction imposed on the selection process).

Illustration of SRS • Given a pop. Size of N from which a sample of size n will be drawn, the number of possible ways of obtaining the sample is • Supposing a population is known to have 5 units, and a sample size of 3 is required. • From this population of 5 units, there are 10 possible ways of obtaining a sample of size 3. [The formula is 5C3= 5!/{(5-3)! 3!} = 10]. • Each of these combinations is unique and has the same chance (1/10) of being selected. • Thus SRS is a random sampling procedure where each sample of size n has the same probability of selection.

SRS selection process • (i) Select randomly one 'sample combination' from the number 1 to 10 (as there are 10 possible combinations). • (ii) Use the table of random numbers to select 3 numbers from 1 to 5 or select three numbers from a 'hat' containing all the five numbers. This option seems easier and more practicable than (i).

Summary - SRS • Application: Applied when the population is known to be homogeneous. Procedure is suitable for units defined by plot sizes. • Advantage: Easy to apply, though not as easy as the systematic procedure. • Disadvantage: Requires knowledge of all the units in the population (construction of the frame is necessary)

STRATIFIED RANDOM SAMPLING • Requires dividing the population into non-overlapping homogeneous units, which we are called STRATA. • SRS is then applied to each stratum, hence stratified random sampling (STRS). • Examples of strata types or criteria are ages of plantation, species types, aspect, topography/ altitude, farm types, habitat • Dividing the population into such homogeneous units usually leads to better estimates of the desired population parameters.

Where/when to apply Stratified RS • Very suitable for heterogeneous areas (or units) that can be identified and classified into homogeneous entities. • Supplementary information, e.g. rem sensing aerial photographs, useful for stratification. • Choice of strata should ensure variation between units within strata is less than the variation between strata.

Advantages/Disadvantages of STRS Advantages • Estimates are more precise • Separate estimates and inferences for strata are possible Disadvantages • Sample size depends on type of allocation to be used • Sampling likely to be efficient in some strata than others • Errors in strata classification affect overall estimate • Frame construction for each stratum is required.

Allocation of units (n) to strata • Equal allocation - Equal (same) number of units are collected from each stratum. • Proportional allocation - The number of units per strata is proportional to the size of the strata.

ANALYSING QUALITATIVE DATA • Qualitative data are essentially labels of a categorical variable • Statistical Analyses involve totals, percentages and conversion to pie-charts and bar charts (bar-graphs). • Sophisticated analyses include categorical modelling

You can have multiple bar graphs (i.e, can have more than one variable illustrated on a bar chart. Example is given below:

Contingency Table This involves count summaries for 2 or more categories placed in row-column format: Example of a 2 by 3 contingency table: Assess association between Gender & Group

ANALYSING QUANTITATIVE DATA • Basic analyses involve determining the CENTRE and SPREAD of data. • Inferential, probability and non-probability based

Measuring Centre Statistics include • MODE (most frequently occurring observation) • MEDIAN (observation lying at the centre of an ordered data) – best for INCOME data • MEAN (a sufficient, consistent, unbiased statistic, utilising ALL observations)

EXAMPLE • Consider that we selected RANDOMLY 10 houses out of 50, and observed the number of school-aged children who do not go to school as follows: 1 2 4 4 1 1 6 0 5 2 Find MEDIAN, MODE, MEAN

MODE: 1 as it appeared most often (most households have at least 1 child of school-going age not in school) • MEDIAN: Centremost observation after ordering data lies between the 4th and 5th data, i.e., between 2 and 2 (= 352) 0 1 1 1 2 2 4 4 5 6 Interpretation: 50% of the sampled population have up to 2 children of school-going age not in school) • MEAN: We use the arithmetic mean = sum of data divided by no. of observations, = (0+1+1+1+ 2+2+4+4+5+6)/10=2.6

Measuring Spread Statistics include • MINIMUM, MAXIMUM (ie EXTREME data) • RANGE (a single statistic calculated as MAXIMUM minus MINIMUM value) • MEAN of the sum of the ABSOLUTE DEVIATION • STANDARD DEVIATION (SD, but use the divisor n-1, not n as in most calculators). • STANDARD ERROR

EXAMPLE • Consider that we selected RANDOMLY 10 houses out of 50, and observed the number of school-aged children who do not go to school as follows: 1 2 4 4 1 1 6 0 5 2 Find STANDARD DEVIATION, STANDARD ERROR and CONFIDENCE LIMITS

CALCULATING SPREAD: STANDARD DEVIATION Standard Deviation: = 2.01 Approximate SD = = (6-0)/4 = 1.5 (valid if sample is large and distribution is normal)

Sampling fraction (f) and Finite Population Correction Factor (fpc) • Sampling fraction= f = n/N = 10/50 = 0.20 (represents the proportion of the population that is sampled, i.e. observed) • If f < 0.05, fpc is ignored. In our case, f > 0.5 (indeed equals 0.20), fpc must be calculated and used for the sampling errorcomputation fpc = (N-n)/N = 1– n/N = 1- 0.20 = 0.80

CALCULATING SPREAD: STANDARD ERROR = 0.57

Confidence (Fiducial) Limits • Given a level of significance, 5%, can obtain a 95% confidence limit on the mean number of non-school going children by multiplying SE by 1.96, that is: P(2.6-1.96*0.57 < true number < 2.6+1.96*0.57) =1-0.05= 0.95 P(1.5 < true number per household < 3.7) = 0.95 • Interpretation: 95% certain that true number of children in community who are of school-age but at home is between 1.5 (1) and 3.7 (4). OR can conclude (after multiplying by the total 50 households • 75 to 185 school-aged children in the community are not in school

Combining Spread and Centre BOX PLOT HISTOGRAM

Further Analysis of Quantitative Data • Histograms give idea of the distribution of the data; very useful for quantitative data • An excellent alternative to histogram is the stem-leaf diagram. • Measures of association – correlation analysis, dependence (cause-effect) relations (regression procedures) – 2006/2007

DATA ANALYSIS IS ENDLESS!!! • ENJOY YOUR TIME DURING TTFPP • END • KS Nokoe, PT Birteeb, IK Addai, M Agbolosu, L Kyei,

  • More by User

Quantitative Data Analysis

Quantitative Data Analysis

Quantitative Data Analysis. JN602 Week 10 Veal Ch 13 &amp; 14, SLT Chapter 11. Objectives. edit questionnaire and interview responses set up the coding key for the data set and code the data categorise data and create a data file

9.62k views • 59 slides

Quantitative Data Analysis

Quantitative Data Analysis. Assessment Committee 2009 Division of Campus Life, Emory University. Outline. What is quantitative data analysis? Types of quantitative data used in assessment Descriptive statistics Utilizing Microsoft Excel Introduction to inferential statistics

811 views • 22 slides

Quantitative Data Analysis

Quantitative Data Analysis. Definitions Examples of a data set Creating a data set Displaying and presenting data – frequency distributions Grouping and recoding Visual presentations Summary statistics, central tendency, variability. What do we analyze?.

1.53k views • 11 slides

Quantitative Data Analysis

Quantitative Data Analysis. Edouard Manet: In the Conservatory, 1879. Quantification of Data Introduction To conduct quantitative analysis, responses to open-ended questions in survey research and the raw data collected using qualitative methods must be coded numerically.

1.87k views • 103 slides

Quantitative data Analysis Experts

Quantitative data Analysis Experts

It is common to have a lot of work before you whenever you need to conduct a quantitative research. All you need to do is place an order at http://www.quantitativedataanalysis.net/ and your work will be done to the quality you could not have imagined.

165 views • 1 slides

Quantitative Data Analysis

Summarizing Data: variables; simple statistics; effect statistics and statistical models; complex models. Generalizing from Sample to Population: precision of estimate, confidence limits, statistical significance, p value, errors. Quantitative Data Analysis.

950 views • 20 slides

Quantitative data analysis

Quantitative data analysis

Quantitative data analysis. Module in research methods course for tourism program Reza Mortazavi 2014 Lecture 4. Relationship between variables. Correlation When two variables are linearly related (or covary ) we say they are correlated either positively or negatively.

767 views • 22 slides

Analysis of Quantitative Data

Analysis of Quantitative Data

Analysis of Quantitative Data. Descriptive Statistics. Reporting Data. The means by which data is reported is partially driven by the choice of measurement Nominal, ordinal = Lower levels of measurement Interval, ratio = Higher levels of measurement. Reporting Data.

280 views • 11 slides

Quantitative Data Analysis

Quantitative Data Analysis. SPSS, STATA, SAS, R Data is mostly numerical, although words can be used now: black, white, Latino, Catholic, etc. Don’t have to collect your own data SOURCES: GSS, NES, PEW, PPIC, ICPSR Let’s take a look. Qualitative Data Analysis.

399 views • 8 slides

Quantitative Data Analysis I.

Quantitative Data Analysis I.

UK FHS Historical sociology (2014). Quantitative Data Analysis I. Contingency tables : multivariate analysis and elaboration – introduction to third level of data sorting Jiří Šafr jiri.safr( AT )seznam.cz. updated 5 / 6 /2014.

503 views • 26 slides

Quantitative Data Analysis

Quantitative Data Analysis. Quantitative data Analysis. Numerical representation and manipulation of observations for the purpose of describing and explaining the phenomena that those observations reflect.

858 views • 33 slides

Quantitative data analysis

Quantitative data analysis. Please review weeks 7 &amp; 8 about quantitative research designs. Make sure you look at the outline for writing section 3. Most important is to get the research design right Non-experimental Pre-experimental Quasi-experimental True experimental. Then add specifics

410 views • 14 slides

Quantitative Data Analysis

Quantitative Data Analysis. Dr Ayaz Afsar. Introduction. Quantitative data analysis has no greater or lesser importance than qualitative analysis. Its use is entirely dependent on fitness for purpose.

881 views • 60 slides

QUANTITATIVE DATA ANALYSIS

QUANTITATIVE DATA ANALYSIS

QUANTITATIVE DATA ANALYSIS. Professor Lisa High University of Windsor Faculty of Nursing. Levels of Measurement. Quantitative measures: level of measurements Types : Nominal – Ordinal – Interval – Ration -. Descriptive Stats - Univariate. Frequency distributions –

320 views • 14 slides

Quantitative Data

Quantitative Data

Quantitative Data. Biology Scholars – 2010 Reflections from a Developmental Biologist. Research Design. Experimental vs. Correlational Selecting independent and dependent variables Choosing a design Selecting the appropriate statistical test. Statistics. Descriptive. Inferential.

167 views • 6 slides

Sampling Quantitative data analysis

Sampling Quantitative data analysis

Sampling is a significant process in your business research or your academic research that plays a vital role in simplifying your complete data collection work. Samples are extracting from the population. To learn more : https://bit.ly/2UPgQqB India: 91-8754446690 Email: [email protected]

72 views • 3 slides

DATA TYPES AND QUANTITATIVE DATA ANALYSIS

735 views • 44 slides

Quantitative Data Analysis I.

UK FHS Historical sociology (2014). Quantitative Data Analysis I. Contingency tables : bivariate analysis of categorical data – introduction Jiří Šafr jiri.safr( AT )seznam.cz. updated 22/10 /2014. Tables as technique of data description. What c a n a contingency table tell us?

464 views • 43 slides

Quantitative Data Analysis:  Statistics

Quantitative Data Analysis: Statistics

Quantitative Data Analysis: Statistics. Sherlock Holmes.

947 views • 89 slides

Quantitative Data Analysis

526 views • 20 slides

Quantitative Data Analysis

Quantitative Data Analysis. Social Research Methods 2109 &amp; 6507 Spring, 2006 March 6 2006. Quantitative Analysis: convert data to a numerical form and statistical analyses. quantification ( 量化 ): the process of converting data to a numerical format ( 將資料轉換成數字形式 ). Quantification of Data.

350 views • 23 slides

Quantitative Coding | Quantitative Data Analysis Services | Coding Quantitative Data  SPSS - Statswork

Quantitative Coding | Quantitative Data Analysis Services | Coding Quantitative Data SPSS - Statswork

Everything we do u2013 Primary, Secondary and mixed Data Collection using online surveys, direct interview or Skype Interview or using sources available through peer reviewed journals or other online sources. Statswork Is A Premier Statistics Consulting Company That Spearheaded Online Statistics Consultancy Service With Clientele Ranging From Educational Institutions, Academics, Corporations And Ngos. We Provide End-To-End Service And Assistance For Your Statistical Research And Analytical Needs From Data Collection, Data Mining, Data Analysis To Research Framework And Research Methodology. Why Statswork? Plagiarism Free | Unlimited Support | Prompt Turnaround Times | Subject Matter Expertise | Experienced Bio-statisticians & Statisticians | Statistics across Methodologies | Wide Range Of Tools & Technologies Supports | Tutoring Services | 24/7 Email Support | Recommended by Universities Contact Us: t Website: www.statswork.com Email: [email protected] UnitedKingdom: 44-1143520021 India: 91-4448137070 WhatsApp: 91-8754446690

113 views • 3 slides

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Indian J Anaesth
  • v.60(9); 2016 Sep

Basic statistical tools in research and data analysis

Zulfiqar ali.

Department of Anaesthesiology, Division of Neuroanaesthesiology, Sheri Kashmir Institute of Medical Sciences, Soura, Srinagar, Jammu and Kashmir, India

S Bala Bhaskar

1 Department of Anaesthesiology and Critical Care, Vijayanagar Institute of Medical Sciences, Bellary, Karnataka, India

Statistical methods involved in carrying out a study include planning, designing, collecting data, analysing, drawing meaningful interpretation and reporting of the research findings. The statistical analysis gives meaning to the meaningless numbers, thereby breathing life into a lifeless data. The results and inferences are precise only if proper statistical tests are used. This article will try to acquaint the reader with the basic research tools that are utilised while conducting various studies. The article covers a brief outline of the variables, an understanding of quantitative and qualitative variables and the measures of central tendency. An idea of the sample size estimation, power analysis and the statistical errors is given. Finally, there is a summary of parametric and non-parametric tests used for data analysis.

INTRODUCTION

Statistics is a branch of science that deals with the collection, organisation, analysis of data and drawing of inferences from the samples to the whole population.[ 1 ] This requires a proper design of the study, an appropriate selection of the study sample and choice of a suitable statistical test. An adequate knowledge of statistics is necessary for proper designing of an epidemiological study or a clinical trial. Improper statistical methods may result in erroneous conclusions which may lead to unethical practice.[ 2 ]

Variable is a characteristic that varies from one individual member of population to another individual.[ 3 ] Variables such as height and weight are measured by some type of scale, convey quantitative information and are called as quantitative variables. Sex and eye colour give qualitative information and are called as qualitative variables[ 3 ] [ Figure 1 ].

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g001.jpg

Classification of variables

Quantitative variables

Quantitative or numerical data are subdivided into discrete and continuous measurements. Discrete numerical data are recorded as a whole number such as 0, 1, 2, 3,… (integer), whereas continuous data can assume any value. Observations that can be counted constitute the discrete data and observations that can be measured constitute the continuous data. Examples of discrete data are number of episodes of respiratory arrests or the number of re-intubations in an intensive care unit. Similarly, examples of continuous data are the serial serum glucose levels, partial pressure of oxygen in arterial blood and the oesophageal temperature.

A hierarchical scale of increasing precision can be used for observing and recording the data which is based on categorical, ordinal, interval and ratio scales [ Figure 1 ].

Categorical or nominal variables are unordered. The data are merely classified into categories and cannot be arranged in any particular order. If only two categories exist (as in gender male and female), it is called as a dichotomous (or binary) data. The various causes of re-intubation in an intensive care unit due to upper airway obstruction, impaired clearance of secretions, hypoxemia, hypercapnia, pulmonary oedema and neurological impairment are examples of categorical variables.

Ordinal variables have a clear ordering between the variables. However, the ordered data may not have equal intervals. Examples are the American Society of Anesthesiologists status or Richmond agitation-sedation scale.

Interval variables are similar to an ordinal variable, except that the intervals between the values of the interval variable are equally spaced. A good example of an interval scale is the Fahrenheit degree scale used to measure temperature. With the Fahrenheit scale, the difference between 70° and 75° is equal to the difference between 80° and 85°: The units of measurement are equal throughout the full range of the scale.

Ratio scales are similar to interval scales, in that equal differences between scale values have equal quantitative meaning. However, ratio scales also have a true zero point, which gives them an additional property. For example, the system of centimetres is an example of a ratio scale. There is a true zero point and the value of 0 cm means a complete absence of length. The thyromental distance of 6 cm in an adult may be twice that of a child in whom it may be 3 cm.

STATISTICS: DESCRIPTIVE AND INFERENTIAL STATISTICS

Descriptive statistics[ 4 ] try to describe the relationship between variables in a sample or population. Descriptive statistics provide a summary of data in the form of mean, median and mode. Inferential statistics[ 4 ] use a random sample of data taken from a population to describe and make inferences about the whole population. It is valuable when it is not possible to examine each member of an entire population. The examples if descriptive and inferential statistics are illustrated in Table 1 .

Example of descriptive and inferential statistics

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g002.jpg

Descriptive statistics

The extent to which the observations cluster around a central location is described by the central tendency and the spread towards the extremes is described by the degree of dispersion.

Measures of central tendency

The measures of central tendency are mean, median and mode.[ 6 ] Mean (or the arithmetic average) is the sum of all the scores divided by the number of scores. Mean may be influenced profoundly by the extreme variables. For example, the average stay of organophosphorus poisoning patients in ICU may be influenced by a single patient who stays in ICU for around 5 months because of septicaemia. The extreme values are called outliers. The formula for the mean is

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g003.jpg

where x = each observation and n = number of observations. Median[ 6 ] is defined as the middle of a distribution in a ranked data (with half of the variables in the sample above and half below the median value) while mode is the most frequently occurring variable in a distribution. Range defines the spread, or variability, of a sample.[ 7 ] It is described by the minimum and maximum values of the variables. If we rank the data and after ranking, group the observations into percentiles, we can get better information of the pattern of spread of the variables. In percentiles, we rank the observations into 100 equal parts. We can then describe 25%, 50%, 75% or any other percentile amount. The median is the 50 th percentile. The interquartile range will be the observations in the middle 50% of the observations about the median (25 th -75 th percentile). Variance[ 7 ] is a measure of how spread out is the distribution. It gives an indication of how close an individual observation clusters about the mean value. The variance of a population is defined by the following formula:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g004.jpg

where σ 2 is the population variance, X is the population mean, X i is the i th element from the population and N is the number of elements in the population. The variance of a sample is defined by slightly different formula:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g005.jpg

where s 2 is the sample variance, x is the sample mean, x i is the i th element from the sample and n is the number of elements in the sample. The formula for the variance of a population has the value ‘ n ’ as the denominator. The expression ‘ n −1’ is known as the degrees of freedom and is one less than the number of parameters. Each observation is free to vary, except the last one which must be a defined value. The variance is measured in squared units. To make the interpretation of the data simple and to retain the basic unit of observation, the square root of variance is used. The square root of the variance is the standard deviation (SD).[ 8 ] The SD of a population is defined by the following formula:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g006.jpg

where σ is the population SD, X is the population mean, X i is the i th element from the population and N is the number of elements in the population. The SD of a sample is defined by slightly different formula:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g007.jpg

where s is the sample SD, x is the sample mean, x i is the i th element from the sample and n is the number of elements in the sample. An example for calculation of variation and SD is illustrated in Table 2 .

Example of mean, variance, standard deviation

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g008.jpg

Normal distribution or Gaussian distribution

Most of the biological variables usually cluster around a central value, with symmetrical positive and negative deviations about this point.[ 1 ] The standard normal distribution curve is a symmetrical bell-shaped. In a normal distribution curve, about 68% of the scores are within 1 SD of the mean. Around 95% of the scores are within 2 SDs of the mean and 99% within 3 SDs of the mean [ Figure 2 ].

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g009.jpg

Normal distribution curve

Skewed distribution

It is a distribution with an asymmetry of the variables about its mean. In a negatively skewed distribution [ Figure 3 ], the mass of the distribution is concentrated on the right of Figure 1 . In a positively skewed distribution [ Figure 3 ], the mass of the distribution is concentrated on the left of the figure leading to a longer right tail.

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g010.jpg

Curves showing negatively skewed and positively skewed distribution

Inferential statistics

In inferential statistics, data are analysed from a sample to make inferences in the larger collection of the population. The purpose is to answer or test the hypotheses. A hypothesis (plural hypotheses) is a proposed explanation for a phenomenon. Hypothesis tests are thus procedures for making rational decisions about the reality of observed effects.

Probability is the measure of the likelihood that an event will occur. Probability is quantified as a number between 0 and 1 (where 0 indicates impossibility and 1 indicates certainty).

In inferential statistics, the term ‘null hypothesis’ ( H 0 ‘ H-naught ,’ ‘ H-null ’) denotes that there is no relationship (difference) between the population variables in question.[ 9 ]

Alternative hypothesis ( H 1 and H a ) denotes that a statement between the variables is expected to be true.[ 9 ]

The P value (or the calculated probability) is the probability of the event occurring by chance if the null hypothesis is true. The P value is a numerical between 0 and 1 and is interpreted by researchers in deciding whether to reject or retain the null hypothesis [ Table 3 ].

P values with interpretation

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g011.jpg

If P value is less than the arbitrarily chosen value (known as α or the significance level), the null hypothesis (H0) is rejected [ Table 4 ]. However, if null hypotheses (H0) is incorrectly rejected, this is known as a Type I error.[ 11 ] Further details regarding alpha error, beta error and sample size calculation and factors influencing them are dealt with in another section of this issue by Das S et al .[ 12 ]

Illustration for null hypothesis

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g012.jpg

PARAMETRIC AND NON-PARAMETRIC TESTS

Numerical data (quantitative variables) that are normally distributed are analysed with parametric tests.[ 13 ]

Two most basic prerequisites for parametric statistical analysis are:

  • The assumption of normality which specifies that the means of the sample group are normally distributed
  • The assumption of equal variance which specifies that the variances of the samples and of their corresponding population are equal.

However, if the distribution of the sample is skewed towards one side or the distribution is unknown due to the small sample size, non-parametric[ 14 ] statistical techniques are used. Non-parametric tests are used to analyse ordinal and categorical data.

Parametric tests

The parametric tests assume that the data are on a quantitative (numerical) scale, with a normal distribution of the underlying population. The samples have the same variance (homogeneity of variances). The samples are randomly drawn from the population, and the observations within a group are independent of each other. The commonly used parametric tests are the Student's t -test, analysis of variance (ANOVA) and repeated measures ANOVA.

Student's t -test

Student's t -test is used to test the null hypothesis that there is no difference between the means of the two groups. It is used in three circumstances:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g013.jpg

where X = sample mean, u = population mean and SE = standard error of mean

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g014.jpg

where X 1 − X 2 is the difference between the means of the two groups and SE denotes the standard error of the difference.

  • To test if the population means estimated by two dependent samples differ significantly (the paired t -test). A usual setting for paired t -test is when measurements are made on the same subjects before and after a treatment.

The formula for paired t -test is:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g015.jpg

where d is the mean difference and SE denotes the standard error of this difference.

The group variances can be compared using the F -test. The F -test is the ratio of variances (var l/var 2). If F differs significantly from 1.0, then it is concluded that the group variances differ significantly.

Analysis of variance

The Student's t -test cannot be used for comparison of three or more groups. The purpose of ANOVA is to test if there is any significant difference between the means of two or more groups.

In ANOVA, we study two variances – (a) between-group variability and (b) within-group variability. The within-group variability (error variance) is the variation that cannot be accounted for in the study design. It is based on random differences present in our samples.

However, the between-group (or effect variance) is the result of our treatment. These two estimates of variances are compared using the F-test.

A simplified formula for the F statistic is:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g016.jpg

where MS b is the mean squares between the groups and MS w is the mean squares within groups.

Repeated measures analysis of variance

As with ANOVA, repeated measures ANOVA analyses the equality of means of three or more groups. However, a repeated measure ANOVA is used when all variables of a sample are measured under different conditions or at different points in time.

As the variables are measured from a sample at different points of time, the measurement of the dependent variable is repeated. Using a standard ANOVA in this case is not appropriate because it fails to model the correlation between the repeated measures: The data violate the ANOVA assumption of independence. Hence, in the measurement of repeated dependent variables, repeated measures ANOVA should be used.

Non-parametric tests

When the assumptions of normality are not met, and the sample means are not normally, distributed parametric tests can lead to erroneous results. Non-parametric tests (distribution-free test) are used in such situation as they do not require the normality assumption.[ 15 ] Non-parametric tests may fail to detect a significant difference when compared with a parametric test. That is, they usually have less power.

As is done for the parametric tests, the test statistic is compared with known values for the sampling distribution of that statistic and the null hypothesis is accepted or rejected. The types of non-parametric analysis techniques and the corresponding parametric analysis techniques are delineated in Table 5 .

Analogue of parametric and non-parametric tests

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g017.jpg

Median test for one sample: The sign test and Wilcoxon's signed rank test

The sign test and Wilcoxon's signed rank test are used for median tests of one sample. These tests examine whether one instance of sample data is greater or smaller than the median reference value.

This test examines the hypothesis about the median θ0 of a population. It tests the null hypothesis H0 = θ0. When the observed value (Xi) is greater than the reference value (θ0), it is marked as+. If the observed value is smaller than the reference value, it is marked as − sign. If the observed value is equal to the reference value (θ0), it is eliminated from the sample.

If the null hypothesis is true, there will be an equal number of + signs and − signs.

The sign test ignores the actual values of the data and only uses + or − signs. Therefore, it is useful when it is difficult to measure the values.

Wilcoxon's signed rank test

There is a major limitation of sign test as we lose the quantitative information of the given data and merely use the + or – signs. Wilcoxon's signed rank test not only examines the observed values in comparison with θ0 but also takes into consideration the relative sizes, adding more statistical power to the test. As in the sign test, if there is an observed value that is equal to the reference value θ0, this observed value is eliminated from the sample.

Wilcoxon's rank sum test ranks all data points in order, calculates the rank sum of each sample and compares the difference in the rank sums.

Mann-Whitney test

It is used to test the null hypothesis that two samples have the same median or, alternatively, whether observations in one sample tend to be larger than observations in the other.

Mann–Whitney test compares all data (xi) belonging to the X group and all data (yi) belonging to the Y group and calculates the probability of xi being greater than yi: P (xi > yi). The null hypothesis states that P (xi > yi) = P (xi < yi) =1/2 while the alternative hypothesis states that P (xi > yi) ≠1/2.

Kolmogorov-Smirnov test

The two-sample Kolmogorov-Smirnov (KS) test was designed as a generic method to test whether two random samples are drawn from the same distribution. The null hypothesis of the KS test is that both distributions are identical. The statistic of the KS test is a distance between the two empirical distributions, computed as the maximum absolute difference between their cumulative curves.

Kruskal-Wallis test

The Kruskal–Wallis test is a non-parametric test to analyse the variance.[ 14 ] It analyses if there is any difference in the median values of three or more independent samples. The data values are ranked in an increasing order, and the rank sums calculated followed by calculation of the test statistic.

Jonckheere test

In contrast to Kruskal–Wallis test, in Jonckheere test, there is an a priori ordering that gives it a more statistical power than the Kruskal–Wallis test.[ 14 ]

Friedman test

The Friedman test is a non-parametric test for testing the difference between several related samples. The Friedman test is an alternative for repeated measures ANOVAs which is used when the same parameter has been measured under different conditions on the same subjects.[ 13 ]

Tests to analyse the categorical data

Chi-square test, Fischer's exact test and McNemar's test are used to analyse the categorical or nominal variables. The Chi-square test compares the frequencies and tests whether the observed data differ significantly from that of the expected data if there were no differences between groups (i.e., the null hypothesis). It is calculated by the sum of the squared difference between observed ( O ) and the expected ( E ) data (or the deviation, d ) divided by the expected data by the following formula:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g018.jpg

A Yates correction factor is used when the sample size is small. Fischer's exact test is used to determine if there are non-random associations between two categorical variables. It does not assume random sampling, and instead of referring a calculated statistic to a sampling distribution, it calculates an exact probability. McNemar's test is used for paired nominal data. It is applied to 2 × 2 table with paired-dependent samples. It is used to determine whether the row and column frequencies are equal (that is, whether there is ‘marginal homogeneity’). The null hypothesis is that the paired proportions are equal. The Mantel-Haenszel Chi-square test is a multivariate test as it analyses multiple grouping variables. It stratifies according to the nominated confounding variables and identifies any that affects the primary outcome variable. If the outcome variable is dichotomous, then logistic regression is used.

SOFTWARES AVAILABLE FOR STATISTICS, SAMPLE SIZE CALCULATION AND POWER ANALYSIS

Numerous statistical software systems are available currently. The commonly used software systems are Statistical Package for the Social Sciences (SPSS – manufactured by IBM corporation), Statistical Analysis System ((SAS – developed by SAS Institute North Carolina, United States of America), R (designed by Ross Ihaka and Robert Gentleman from R core team), Minitab (developed by Minitab Inc), Stata (developed by StataCorp) and the MS Excel (developed by Microsoft).

There are a number of web resources which are related to statistical power analyses. A few are:

  • StatPages.net – provides links to a number of online power calculators
  • G-Power – provides a downloadable power analysis program that runs under DOS
  • Power analysis for ANOVA designs an interactive site that calculates power or sample size needed to attain a given power for one effect in a factorial ANOVA design
  • SPSS makes a program called SamplePower. It gives an output of a complete report on the computer screen which can be cut and paste into another document.

It is important that a researcher knows the concepts of the basic statistical methods used for conduct of a research study. This will help to conduct an appropriately well-designed study leading to valid and reliable results. Inappropriate use of statistical techniques may lead to faulty conclusions, inducing errors and undermining the significance of the article. Bad statistics may lead to bad research, and bad research may lead to unethical practice. Hence, an adequate knowledge of statistics and the appropriate use of statistical tests are important. An appropriate knowledge about the basic statistical methods will go a long way in improving the research designs and producing quality medical research which can be utilised for formulating the evidence-based guidelines.

Financial support and sponsorship

Conflicts of interest.

There are no conflicts of interest.

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

Enter the email address you signed up with and we'll email you a reset link.

  • We're Hiring!
  • Help Center

paper cover thumbnail

Research Design, methods, and Data Analysis

Profile image of MOHD FADZIL ABDUL RASHID

Related Papers

Ponsian P R O T Ntui

research data analysis methods ppt

MD Ashikur Rahman

Williamson Sitorus

Daniel Kashikola

Princy Jain

Dr Sunarsih

Journal of Xidian University

Rahat Sabah

Background: Research process and data analysis has been studied widely in academic and business surrounding since its starting point but the most students do not care about the book learning of concept, need and direction of the research. To move the new area of exploration in every fields of life, the student need to acquire/develop awareness about recognition, description and solutions of the problems regarding decision making process. The aim of this study is to review the process of research and steps involved in data analysis. This study teaches how to select a research design, how to make conceptual framework, and how to plan analysis of data .This study guides to understand the evaluation of assumption of research, assess the fitness of model and interpretation of variables. This study provides proper knowledge about research plans and statistical software's such as AMOS, SPSS and EViews, which help the student and researchers to integrate the methods in all area of research process so that, they could successfully complete their research projects and articles. Purpose of the Research: The purpose of this study is to provide the familiarity and necessary skills for the students and researchers in completing their research project and decision making process .The main objective of this study is to put emphasis on the need of learning research process for the student of developing nations and help the students, managers, researchers and, policy makers to learn how to conduct research and prepare reports or present suggestions to solve the problems and improve the performance of their related filed. Design/Methodology/Approach: This is a literature based review study and articles and case studies have been reviewed for this study. Finding: This study gives emphasize the need of learning the process of research. A good student always think about all the problems present in him/her Society and look into all alternates than try to give best solution of these problems. This study give emphasizes to follow the research ethics though out our research work and help the students and researchers about how to explain the problem, how to define the purposes of the research, how to identify the variables and relate them with the objectives of the results as well as it teach how to collect and analyze the data to produce valuable suggestions from the results of your research work. Implications/Originality/Value: It is concluded that without learning an appropriate research mythology and data analysis, a student could not write a research project successfully and a manger may damage the performance of his/her organization by taking wrong decision. So this study motivate the reader to conduct research before decision making process, .it stress that

collins wetiatia

RELATED PAPERS

Lecture Outline

Abdulrahim Vijapur

Fred Ntedika Mvumbi

Skyfox Publishing Group

Dr. T. Vel murugan

Razieh Tadayon Nabavi

Said Sibouih

abasynuniv.edu.pk

Flora Maleki

Aksha Memon

Mercy Ndoro

Lena Bucatariu

Godwill Medukenya

Bakhtawer Zain

Xochitl Ortiz

Rekha Mudkanna

Catherine N . Mwai

James V Spickard

Raphael Sena

Yuanita Damayanti

Jaqueline Kidd

Saeed Anwar

Sasmitha Pramudya Machmud Machmud

Naveen Kumar

RELATED TOPICS

  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024

Home Blog Design Understanding Data Presentations (Guide + Examples)

Understanding Data Presentations (Guide + Examples)

Cover for guide on data presentation by SlideModel

In this age of overwhelming information, the skill to effectively convey data has become extremely valuable. Initiating a discussion on data presentation types involves thoughtful consideration of the nature of your data and the message you aim to convey. Different types of visualizations serve distinct purposes. Whether you’re dealing with how to develop a report or simply trying to communicate complex information, how you present data influences how well your audience understands and engages with it. This extensive guide leads you through the different ways of data presentation.

Table of Contents

What is a Data Presentation?

What should a data presentation include, line graphs, treemap chart, scatter plot, how to choose a data presentation type, recommended data presentation templates, common mistakes done in data presentation.

A data presentation is a slide deck that aims to disclose quantitative information to an audience through the use of visual formats and narrative techniques derived from data analysis, making complex data understandable and actionable. This process requires a series of tools, such as charts, graphs, tables, infographics, dashboards, and so on, supported by concise textual explanations to improve understanding and boost retention rate.

Data presentations require us to cull data in a format that allows the presenter to highlight trends, patterns, and insights so that the audience can act upon the shared information. In a few words, the goal of data presentations is to enable viewers to grasp complicated concepts or trends quickly, facilitating informed decision-making or deeper analysis.

Data presentations go beyond the mere usage of graphical elements. Seasoned presenters encompass visuals with the art of data storytelling , so the speech skillfully connects the points through a narrative that resonates with the audience. Depending on the purpose – inspire, persuade, inform, support decision-making processes, etc. – is the data presentation format that is better suited to help us in this journey.

To nail your upcoming data presentation, ensure to count with the following elements:

  • Clear Objectives: Understand the intent of your presentation before selecting the graphical layout and metaphors to make content easier to grasp.
  • Engaging introduction: Use a powerful hook from the get-go. For instance, you can ask a big question or present a problem that your data will answer. Take a look at our guide on how to start a presentation for tips & insights.
  • Structured Narrative: Your data presentation must tell a coherent story. This means a beginning where you present the context, a middle section in which you present the data, and an ending that uses a call-to-action. Check our guide on presentation structure for further information.
  • Visual Elements: These are the charts, graphs, and other elements of visual communication we ought to use to present data. This article will cover one by one the different types of data representation methods we can use, and provide further guidance on choosing between them.
  • Insights and Analysis: This is not just showcasing a graph and letting people get an idea about it. A proper data presentation includes the interpretation of that data, the reason why it’s included, and why it matters to your research.
  • Conclusion & CTA: Ending your presentation with a call to action is necessary. Whether you intend to wow your audience into acquiring your services, inspire them to change the world, or whatever the purpose of your presentation, there must be a stage in which you convey all that you shared and show the path to staying in touch. Plan ahead whether you want to use a thank-you slide, a video presentation, or which method is apt and tailored to the kind of presentation you deliver.
  • Q&A Session: After your speech is concluded, allocate 3-5 minutes for the audience to raise any questions about the information you disclosed. This is an extra chance to establish your authority on the topic. Check our guide on questions and answer sessions in presentations here.

Bar charts are a graphical representation of data using rectangular bars to show quantities or frequencies in an established category. They make it easy for readers to spot patterns or trends. Bar charts can be horizontal or vertical, although the vertical format is commonly known as a column chart. They display categorical, discrete, or continuous variables grouped in class intervals [1] . They include an axis and a set of labeled bars horizontally or vertically. These bars represent the frequencies of variable values or the values themselves. Numbers on the y-axis of a vertical bar chart or the x-axis of a horizontal bar chart are called the scale.

Presentation of the data through bar charts

Real-Life Application of Bar Charts

Let’s say a sales manager is presenting sales to their audience. Using a bar chart, he follows these steps.

Step 1: Selecting Data

The first step is to identify the specific data you will present to your audience.

The sales manager has highlighted these products for the presentation.

  • Product A: Men’s Shoes
  • Product B: Women’s Apparel
  • Product C: Electronics
  • Product D: Home Decor

Step 2: Choosing Orientation

Opt for a vertical layout for simplicity. Vertical bar charts help compare different categories in case there are not too many categories [1] . They can also help show different trends. A vertical bar chart is used where each bar represents one of the four chosen products. After plotting the data, it is seen that the height of each bar directly represents the sales performance of the respective product.

It is visible that the tallest bar (Electronics – Product C) is showing the highest sales. However, the shorter bars (Women’s Apparel – Product B and Home Decor – Product D) need attention. It indicates areas that require further analysis or strategies for improvement.

Step 3: Colorful Insights

Different colors are used to differentiate each product. It is essential to show a color-coded chart where the audience can distinguish between products.

  • Men’s Shoes (Product A): Yellow
  • Women’s Apparel (Product B): Orange
  • Electronics (Product C): Violet
  • Home Decor (Product D): Blue

Accurate bar chart representation of data with a color coded legend

Bar charts are straightforward and easily understandable for presenting data. They are versatile when comparing products or any categorical data [2] . Bar charts adapt seamlessly to retail scenarios. Despite that, bar charts have a few shortcomings. They cannot illustrate data trends over time. Besides, overloading the chart with numerous products can lead to visual clutter, diminishing its effectiveness.

For more information, check our collection of bar chart templates for PowerPoint .

Line graphs help illustrate data trends, progressions, or fluctuations by connecting a series of data points called ‘markers’ with straight line segments. This provides a straightforward representation of how values change [5] . Their versatility makes them invaluable for scenarios requiring a visual understanding of continuous data. In addition, line graphs are also useful for comparing multiple datasets over the same timeline. Using multiple line graphs allows us to compare more than one data set. They simplify complex information so the audience can quickly grasp the ups and downs of values. From tracking stock prices to analyzing experimental results, you can use line graphs to show how data changes over a continuous timeline. They show trends with simplicity and clarity.

Real-life Application of Line Graphs

To understand line graphs thoroughly, we will use a real case. Imagine you’re a financial analyst presenting a tech company’s monthly sales for a licensed product over the past year. Investors want insights into sales behavior by month, how market trends may have influenced sales performance and reception to the new pricing strategy. To present data via a line graph, you will complete these steps.

First, you need to gather the data. In this case, your data will be the sales numbers. For example:

  • January: $45,000
  • February: $55,000
  • March: $45,000
  • April: $60,000
  • May: $ 70,000
  • June: $65,000
  • July: $62,000
  • August: $68,000
  • September: $81,000
  • October: $76,000
  • November: $87,000
  • December: $91,000

After choosing the data, the next step is to select the orientation. Like bar charts, you can use vertical or horizontal line graphs. However, we want to keep this simple, so we will keep the timeline (x-axis) horizontal while the sales numbers (y-axis) vertical.

Step 3: Connecting Trends

After adding the data to your preferred software, you will plot a line graph. In the graph, each month’s sales are represented by data points connected by a line.

Line graph in data presentation

Step 4: Adding Clarity with Color

If there are multiple lines, you can also add colors to highlight each one, making it easier to follow.

Line graphs excel at visually presenting trends over time. These presentation aids identify patterns, like upward or downward trends. However, too many data points can clutter the graph, making it harder to interpret. Line graphs work best with continuous data but are not suitable for categories.

For more information, check our collection of line chart templates for PowerPoint and our article about how to make a presentation graph .

A data dashboard is a visual tool for analyzing information. Different graphs, charts, and tables are consolidated in a layout to showcase the information required to achieve one or more objectives. Dashboards help quickly see Key Performance Indicators (KPIs). You don’t make new visuals in the dashboard; instead, you use it to display visuals you’ve already made in worksheets [3] .

Keeping the number of visuals on a dashboard to three or four is recommended. Adding too many can make it hard to see the main points [4]. Dashboards can be used for business analytics to analyze sales, revenue, and marketing metrics at a time. They are also used in the manufacturing industry, as they allow users to grasp the entire production scenario at the moment while tracking the core KPIs for each line.

Real-Life Application of a Dashboard

Consider a project manager presenting a software development project’s progress to a tech company’s leadership team. He follows the following steps.

Step 1: Defining Key Metrics

To effectively communicate the project’s status, identify key metrics such as completion status, budget, and bug resolution rates. Then, choose measurable metrics aligned with project objectives.

Step 2: Choosing Visualization Widgets

After finalizing the data, presentation aids that align with each metric are selected. For this project, the project manager chooses a progress bar for the completion status and uses bar charts for budget allocation. Likewise, he implements line charts for bug resolution rates.

Data analysis presentation example

Step 3: Dashboard Layout

Key metrics are prominently placed in the dashboard for easy visibility, and the manager ensures that it appears clean and organized.

Dashboards provide a comprehensive view of key project metrics. Users can interact with data, customize views, and drill down for detailed analysis. However, creating an effective dashboard requires careful planning to avoid clutter. Besides, dashboards rely on the availability and accuracy of underlying data sources.

For more information, check our article on how to design a dashboard presentation , and discover our collection of dashboard PowerPoint templates .

Treemap charts represent hierarchical data structured in a series of nested rectangles [6] . As each branch of the ‘tree’ is given a rectangle, smaller tiles can be seen representing sub-branches, meaning elements on a lower hierarchical level than the parent rectangle. Each one of those rectangular nodes is built by representing an area proportional to the specified data dimension.

Treemaps are useful for visualizing large datasets in compact space. It is easy to identify patterns, such as which categories are dominant. Common applications of the treemap chart are seen in the IT industry, such as resource allocation, disk space management, website analytics, etc. Also, they can be used in multiple industries like healthcare data analysis, market share across different product categories, or even in finance to visualize portfolios.

Real-Life Application of a Treemap Chart

Let’s consider a financial scenario where a financial team wants to represent the budget allocation of a company. There is a hierarchy in the process, so it is helpful to use a treemap chart. In the chart, the top-level rectangle could represent the total budget, and it would be subdivided into smaller rectangles, each denoting a specific department. Further subdivisions within these smaller rectangles might represent individual projects or cost categories.

Step 1: Define Your Data Hierarchy

While presenting data on the budget allocation, start by outlining the hierarchical structure. The sequence will be like the overall budget at the top, followed by departments, projects within each department, and finally, individual cost categories for each project.

  • Top-level rectangle: Total Budget
  • Second-level rectangles: Departments (Engineering, Marketing, Sales)
  • Third-level rectangles: Projects within each department
  • Fourth-level rectangles: Cost categories for each project (Personnel, Marketing Expenses, Equipment)

Step 2: Choose a Suitable Tool

It’s time to select a data visualization tool supporting Treemaps. Popular choices include Tableau, Microsoft Power BI, PowerPoint, or even coding with libraries like D3.js. It is vital to ensure that the chosen tool provides customization options for colors, labels, and hierarchical structures.

Here, the team uses PowerPoint for this guide because of its user-friendly interface and robust Treemap capabilities.

Step 3: Make a Treemap Chart with PowerPoint

After opening the PowerPoint presentation, they chose “SmartArt” to form the chart. The SmartArt Graphic window has a “Hierarchy” category on the left.  Here, you will see multiple options. You can choose any layout that resembles a Treemap. The “Table Hierarchy” or “Organization Chart” options can be adapted. The team selects the Table Hierarchy as it looks close to a Treemap.

Step 5: Input Your Data

After that, a new window will open with a basic structure. They add the data one by one by clicking on the text boxes. They start with the top-level rectangle, representing the total budget.  

Treemap used for presenting data

Step 6: Customize the Treemap

By clicking on each shape, they customize its color, size, and label. At the same time, they can adjust the font size, style, and color of labels by using the options in the “Format” tab in PowerPoint. Using different colors for each level enhances the visual difference.

Treemaps excel at illustrating hierarchical structures. These charts make it easy to understand relationships and dependencies. They efficiently use space, compactly displaying a large amount of data, reducing the need for excessive scrolling or navigation. Additionally, using colors enhances the understanding of data by representing different variables or categories.

In some cases, treemaps might become complex, especially with deep hierarchies.  It becomes challenging for some users to interpret the chart. At the same time, displaying detailed information within each rectangle might be constrained by space. It potentially limits the amount of data that can be shown clearly. Without proper labeling and color coding, there’s a risk of misinterpretation.

A heatmap is a data visualization tool that uses color coding to represent values across a two-dimensional surface. In these, colors replace numbers to indicate the magnitude of each cell. This color-shaded matrix display is valuable for summarizing and understanding data sets with a glance [7] . The intensity of the color corresponds to the value it represents, making it easy to identify patterns, trends, and variations in the data.

As a tool, heatmaps help businesses analyze website interactions, revealing user behavior patterns and preferences to enhance overall user experience. In addition, companies use heatmaps to assess content engagement, identifying popular sections and areas of improvement for more effective communication. They excel at highlighting patterns and trends in large datasets, making it easy to identify areas of interest.

We can implement heatmaps to express multiple data types, such as numerical values, percentages, or even categorical data. Heatmaps help us easily spot areas with lots of activity, making them helpful in figuring out clusters [8] . When making these maps, it is important to pick colors carefully. The colors need to show the differences between groups or levels of something. And it is good to use colors that people with colorblindness can easily see.

Check our detailed guide on how to create a heatmap here. Also discover our collection of heatmap PowerPoint templates .

Pie charts are circular statistical graphics divided into slices to illustrate numerical proportions. Each slice represents a proportionate part of the whole, making it easy to visualize the contribution of each component to the total.

The size of the pie charts is influenced by the value of data points within each pie. The total of all data points in a pie determines its size. The pie with the highest data points appears as the largest, whereas the others are proportionally smaller. However, you can present all pies of the same size if proportional representation is not required [9] . Sometimes, pie charts are difficult to read, or additional information is required. A variation of this tool can be used instead, known as the donut chart , which has the same structure but a blank center, creating a ring shape. Presenters can add extra information, and the ring shape helps to declutter the graph.

Pie charts are used in business to show percentage distribution, compare relative sizes of categories, or present straightforward data sets where visualizing ratios is essential.

Real-Life Application of Pie Charts

Consider a scenario where you want to represent the distribution of the data. Each slice of the pie chart would represent a different category, and the size of each slice would indicate the percentage of the total portion allocated to that category.

Step 1: Define Your Data Structure

Imagine you are presenting the distribution of a project budget among different expense categories.

  • Column A: Expense Categories (Personnel, Equipment, Marketing, Miscellaneous)
  • Column B: Budget Amounts ($40,000, $30,000, $20,000, $10,000) Column B represents the values of your categories in Column A.

Step 2: Insert a Pie Chart

Using any of the accessible tools, you can create a pie chart. The most convenient tools for forming a pie chart in a presentation are presentation tools such as PowerPoint or Google Slides.  You will notice that the pie chart assigns each expense category a percentage of the total budget by dividing it by the total budget.

For instance:

  • Personnel: $40,000 / ($40,000 + $30,000 + $20,000 + $10,000) = 40%
  • Equipment: $30,000 / ($40,000 + $30,000 + $20,000 + $10,000) = 30%
  • Marketing: $20,000 / ($40,000 + $30,000 + $20,000 + $10,000) = 20%
  • Miscellaneous: $10,000 / ($40,000 + $30,000 + $20,000 + $10,000) = 10%

You can make a chart out of this or just pull out the pie chart from the data.

Pie chart template in data presentation

3D pie charts and 3D donut charts are quite popular among the audience. They stand out as visual elements in any presentation slide, so let’s take a look at how our pie chart example would look in 3D pie chart format.

3D pie chart in data presentation

Step 03: Results Interpretation

The pie chart visually illustrates the distribution of the project budget among different expense categories. Personnel constitutes the largest portion at 40%, followed by equipment at 30%, marketing at 20%, and miscellaneous at 10%. This breakdown provides a clear overview of where the project funds are allocated, which helps in informed decision-making and resource management. It is evident that personnel are a significant investment, emphasizing their importance in the overall project budget.

Pie charts provide a straightforward way to represent proportions and percentages. They are easy to understand, even for individuals with limited data analysis experience. These charts work well for small datasets with a limited number of categories.

However, a pie chart can become cluttered and less effective in situations with many categories. Accurate interpretation may be challenging, especially when dealing with slight differences in slice sizes. In addition, these charts are static and do not effectively convey trends over time.

For more information, check our collection of pie chart templates for PowerPoint .

Histograms present the distribution of numerical variables. Unlike a bar chart that records each unique response separately, histograms organize numeric responses into bins and show the frequency of reactions within each bin [10] . The x-axis of a histogram shows the range of values for a numeric variable. At the same time, the y-axis indicates the relative frequencies (percentage of the total counts) for that range of values.

Whenever you want to understand the distribution of your data, check which values are more common, or identify outliers, histograms are your go-to. Think of them as a spotlight on the story your data is telling. A histogram can provide a quick and insightful overview if you’re curious about exam scores, sales figures, or any numerical data distribution.

Real-Life Application of a Histogram

In the histogram data analysis presentation example, imagine an instructor analyzing a class’s grades to identify the most common score range. A histogram could effectively display the distribution. It will show whether most students scored in the average range or if there are significant outliers.

Step 1: Gather Data

He begins by gathering the data. The scores of each student in class are gathered to analyze exam scores.

NamesScore
Alice78
Bob85
Clara92
David65
Emma72
Frank88
Grace76
Henry95
Isabel81
Jack70
Kate60
Liam89
Mia75
Noah84
Olivia92

After arranging the scores in ascending order, bin ranges are set.

Step 2: Define Bins

Bins are like categories that group similar values. Think of them as buckets that organize your data. The presenter decides how wide each bin should be based on the range of the values. For instance, the instructor sets the bin ranges based on score intervals: 60-69, 70-79, 80-89, and 90-100.

Step 3: Count Frequency

Now, he counts how many data points fall into each bin. This step is crucial because it tells you how often specific ranges of values occur. The result is the frequency distribution, showing the occurrences of each group.

Here, the instructor counts the number of students in each category.

  • 60-69: 1 student (Kate)
  • 70-79: 4 students (David, Emma, Grace, Jack)
  • 80-89: 7 students (Alice, Bob, Frank, Isabel, Liam, Mia, Noah)
  • 90-100: 3 students (Clara, Henry, Olivia)

Step 4: Create the Histogram

It’s time to turn the data into a visual representation. Draw a bar for each bin on a graph. The width of the bar should correspond to the range of the bin, and the height should correspond to the frequency.  To make your histogram understandable, label the X and Y axes.

In this case, the X-axis should represent the bins (e.g., test score ranges), and the Y-axis represents the frequency.

Histogram in Data Presentation

The histogram of the class grades reveals insightful patterns in the distribution. Most students, with seven students, fall within the 80-89 score range. The histogram provides a clear visualization of the class’s performance. It showcases a concentration of grades in the upper-middle range with few outliers at both ends. This analysis helps in understanding the overall academic standing of the class. It also identifies the areas for potential improvement or recognition.

Thus, histograms provide a clear visual representation of data distribution. They are easy to interpret, even for those without a statistical background. They apply to various types of data, including continuous and discrete variables. One weak point is that histograms do not capture detailed patterns in students’ data, with seven compared to other visualization methods.

A scatter plot is a graphical representation of the relationship between two variables. It consists of individual data points on a two-dimensional plane. This plane plots one variable on the x-axis and the other on the y-axis. Each point represents a unique observation. It visualizes patterns, trends, or correlations between the two variables.

Scatter plots are also effective in revealing the strength and direction of relationships. They identify outliers and assess the overall distribution of data points. The points’ dispersion and clustering reflect the relationship’s nature, whether it is positive, negative, or lacks a discernible pattern. In business, scatter plots assess relationships between variables such as marketing cost and sales revenue. They help present data correlations and decision-making.

Real-Life Application of Scatter Plot

A group of scientists is conducting a study on the relationship between daily hours of screen time and sleep quality. After reviewing the data, they managed to create this table to help them build a scatter plot graph:

Participant IDDaily Hours of Screen TimeSleep Quality Rating
193
228
319
4010
519
637
747
856
956
1073
11101
1265
1373
1482
1592
1647
1756
1847
1992
2064
2137
22101
2328
2456
2537
2619
2782
2846
2973
3028
3174
3292
33101
34101
35101

In the provided example, the x-axis represents Daily Hours of Screen Time, and the y-axis represents the Sleep Quality Rating.

Scatter plot in data presentation

The scientists observe a negative correlation between the amount of screen time and the quality of sleep. This is consistent with their hypothesis that blue light, especially before bedtime, has a significant impact on sleep quality and metabolic processes.

There are a few things to remember when using a scatter plot. Even when a scatter diagram indicates a relationship, it doesn’t mean one variable affects the other. A third factor can influence both variables. The more the plot resembles a straight line, the stronger the relationship is perceived [11] . If it suggests no ties, the observed pattern might be due to random fluctuations in data. When the scatter diagram depicts no correlation, whether the data might be stratified is worth considering.

Choosing the appropriate data presentation type is crucial when making a presentation . Understanding the nature of your data and the message you intend to convey will guide this selection process. For instance, when showcasing quantitative relationships, scatter plots become instrumental in revealing correlations between variables. If the focus is on emphasizing parts of a whole, pie charts offer a concise display of proportions. Histograms, on the other hand, prove valuable for illustrating distributions and frequency patterns. 

Bar charts provide a clear visual comparison of different categories. Likewise, line charts excel in showcasing trends over time, while tables are ideal for detailed data examination. Starting a presentation on data presentation types involves evaluating the specific information you want to communicate and selecting the format that aligns with your message. This ensures clarity and resonance with your audience from the beginning of your presentation.

1. Fact Sheet Dashboard for Data Presentation

research data analysis methods ppt

Convey all the data you need to present in this one-pager format, an ideal solution tailored for users looking for presentation aids. Global maps, donut chats, column graphs, and text neatly arranged in a clean layout presented in light and dark themes.

Use This Template

2. 3D Column Chart Infographic PPT Template

research data analysis methods ppt

Represent column charts in a highly visual 3D format with this PPT template. A creative way to present data, this template is entirely editable, and we can craft either a one-page infographic or a series of slides explaining what we intend to disclose point by point.

3. Data Circles Infographic PowerPoint Template

research data analysis methods ppt

An alternative to the pie chart and donut chart diagrams, this template features a series of curved shapes with bubble callouts as ways of presenting data. Expand the information for each arch in the text placeholder areas.

4. Colorful Metrics Dashboard for Data Presentation

research data analysis methods ppt

This versatile dashboard template helps us in the presentation of the data by offering several graphs and methods to convert numbers into graphics. Implement it for e-commerce projects, financial projections, project development, and more.

5. Animated Data Presentation Tools for PowerPoint & Google Slides

Canvas Shape Tree Diagram Template

A slide deck filled with most of the tools mentioned in this article, from bar charts, column charts, treemap graphs, pie charts, histogram, etc. Animated effects make each slide look dynamic when sharing data with stakeholders.

6. Statistics Waffle Charts PPT Template for Data Presentations

research data analysis methods ppt

This PPT template helps us how to present data beyond the typical pie chart representation. It is widely used for demographics, so it’s a great fit for marketing teams, data science professionals, HR personnel, and more.

7. Data Presentation Dashboard Template for Google Slides

research data analysis methods ppt

A compendium of tools in dashboard format featuring line graphs, bar charts, column charts, and neatly arranged placeholder text areas. 

8. Weather Dashboard for Data Presentation

research data analysis methods ppt

Share weather data for agricultural presentation topics, environmental studies, or any kind of presentation that requires a highly visual layout for weather forecasting on a single day. Two color themes are available.

9. Social Media Marketing Dashboard Data Presentation Template

research data analysis methods ppt

Intended for marketing professionals, this dashboard template for data presentation is a tool for presenting data analytics from social media channels. Two slide layouts featuring line graphs and column charts.

10. Project Management Summary Dashboard Template

research data analysis methods ppt

A tool crafted for project managers to deliver highly visual reports on a project’s completion, the profits it delivered for the company, and expenses/time required to execute it. 4 different color layouts are available.

11. Profit & Loss Dashboard for PowerPoint and Google Slides

research data analysis methods ppt

A must-have for finance professionals. This typical profit & loss dashboard includes progress bars, donut charts, column charts, line graphs, and everything that’s required to deliver a comprehensive report about a company’s financial situation.

Overwhelming visuals

One of the mistakes related to using data-presenting methods is including too much data or using overly complex visualizations. They can confuse the audience and dilute the key message.

Inappropriate chart types

Choosing the wrong type of chart for the data at hand can lead to misinterpretation. For example, using a pie chart for data that doesn’t represent parts of a whole is not right.

Lack of context

Failing to provide context or sufficient labeling can make it challenging for the audience to understand the significance of the presented data.

Inconsistency in design

Using inconsistent design elements and color schemes across different visualizations can create confusion and visual disarray.

Failure to provide details

Simply presenting raw data without offering clear insights or takeaways can leave the audience without a meaningful conclusion.

Lack of focus

Not having a clear focus on the key message or main takeaway can result in a presentation that lacks a central theme.

Visual accessibility issues

Overlooking the visual accessibility of charts and graphs can exclude certain audience members who may have difficulty interpreting visual information.

In order to avoid these mistakes in data presentation, presenters can benefit from using presentation templates . These templates provide a structured framework. They ensure consistency, clarity, and an aesthetically pleasing design, enhancing data communication’s overall impact.

Understanding and choosing data presentation types are pivotal in effective communication. Each method serves a unique purpose, so selecting the appropriate one depends on the nature of the data and the message to be conveyed. The diverse array of presentation types offers versatility in visually representing information, from bar charts showing values to pie charts illustrating proportions. 

Using the proper method enhances clarity, engages the audience, and ensures that data sets are not just presented but comprehensively understood. By appreciating the strengths and limitations of different presentation types, communicators can tailor their approach to convey information accurately, developing a deeper connection between data and audience understanding.

[1] Government of Canada, S.C. (2021) 5 Data Visualization 5.2 Bar Chart , 5.2 Bar chart .  https://www150.statcan.gc.ca/n1/edu/power-pouvoir/ch9/bargraph-diagrammeabarres/5214818-eng.htm

[2] Kosslyn, S.M., 1989. Understanding charts and graphs. Applied cognitive psychology, 3(3), pp.185-225. https://apps.dtic.mil/sti/pdfs/ADA183409.pdf

[3] Creating a Dashboard . https://it.tufts.edu/book/export/html/1870

[4] https://www.goldenwestcollege.edu/research/data-and-more/data-dashboards/index.html

[5] https://www.mit.edu/course/21/21.guide/grf-line.htm

[6] Jadeja, M. and Shah, K., 2015, January. Tree-Map: A Visualization Tool for Large Data. In GSB@ SIGIR (pp. 9-13). https://ceur-ws.org/Vol-1393/gsb15proceedings.pdf#page=15

[7] Heat Maps and Quilt Plots. https://www.publichealth.columbia.edu/research/population-health-methods/heat-maps-and-quilt-plots

[8] EIU QGIS WORKSHOP. https://www.eiu.edu/qgisworkshop/heatmaps.php

[9] About Pie Charts.  https://www.mit.edu/~mbarker/formula1/f1help/11-ch-c8.htm

[10] Histograms. https://sites.utexas.edu/sos/guided/descriptive/numericaldd/descriptiven2/histogram/ [11] https://asq.org/quality-resources/scatter-diagram

Like this article? Please share

Data Analysis, Data Science, Data Visualization Filed under Design

Related Articles

How To Make a Graph on Google Slides

Filed under Google Slides Tutorials • June 3rd, 2024

How To Make a Graph on Google Slides

Creating quality graphics is an essential aspect of designing data presentations. Learn how to make a graph in Google Slides with this guide.

How to Make a Presentation Graph

Filed under Design • March 27th, 2024

How to Make a Presentation Graph

Detailed step-by-step instructions to master the art of how to make a presentation graph in PowerPoint and Google Slides. Check it out!

Turning Your Data into Eye-opening Stories

Filed under Presentation Ideas • February 12th, 2024

Turning Your Data into Eye-opening Stories

What is Data Storytelling is a question that people are constantly asking now. If you seek to understand how to create a data storytelling ppt that will complete the information for your audience, you should read this blog post.

Leave a Reply

research data analysis methods ppt

Questions about FAFSA and CADAA?

Visit our Financial Aid and Scholarship Office for updated information, workshops and FAQs.

Earthquake Advisory

Campus closed until further notice

Prochaska, Fred

Site navigation, scwk 242 - research methods, data analysis, and evaluation - spring 2013.

  • Give to SJSU

Time: Wednesdays 6:00 pm to 8:45 pm

Location: BBC 126

Description

Basic concepts and models for research methodology applied to the analysis of data in social work. Emphasis is on quantitative analysis, using statistics software. Qualitative research is also incorporated. (Prerequisite: ScWk 240, 3 Units).

ScWk 242 Section 5 Syllabus (PDF)

Course outline for the Spring 2013 ScWk 242 Section 5 class

  • ScWk 242 Section 5 Course Outline Spring 2013 [PDF]

Weekly Session Overhead Slides

  • Session 1 Slides ppt - Introduction and Review [PPT]
  • Session 1 Slides pdf - Introduction and Review [PDF]
  • Session 2 Slides - Review of Qualitative Research and Analysis ppt [PPT]
  • Session 2 Slides - Review of Qualitative Research and Analysis pdf [PDF]
  • Session 3 Slides - Interviewing ppt version [PPT]
  • Session 3 Slides - Interviewing pdf version [PDF]
  • Transcultural Slides from HBSE (for Session 3 Reference Only) [PDF]
  • Session 4 Slides - Focus Groups ppt version [PPT]
  • Session 4 Slides - Focus Groups pdf version [PDF]
  • Session 5 Slides - Observation - pptx version [PPTX]
  • Session 5 Slides - Observation - pdf version [PDF]
  • Session 6 Slides - Intro to Quantitative Research & SPSS ppt version [PPT]
  • Session 6 Slides - Intro to Quantitative Research & SPSS pdf version [PDF]
  • Session 7 Slides - Quantitative Analysis - Chi-Square [PPT]
  • Session 7 Slides - Quantitative Analysis - Chi Square [PDF]
  • Session 8 Slides - Descriptive Statistics Using SPSS - ppt version [PPT]
  • Session 8 Slides - Descriptive Statistics Using SPSS - pdf version [PDF]
  • Session 9 Slides - Inferential Statistics and t-tests - ppt version [PPTX]
  • Session 9 Slides - Inferential Statistics and t-tests - pdf version [PDF]
  • Session 10 Slides - Evaluation Research and Logic Models - pptx version [PPTX]
  • Session 10 Slides - Evaluation Research and Logic Models - pdf version [PDF]
  • Session 11 Slides - Program Evaluation and Data Analysis - pptx version [PPTX]
  • Session 11 Slides - Program Evaluation and Analysis - pdf version [PDF]
  • April 17 Class Slides - ANOVA and Linear Regression - ppt version [PPT]
  • April 17 Class Slides - ANOVA and Linear Regression - pdf version [PDF]
  • Session 14 Slides - Final Paper - pptx version [PPTX]
  • Session 14 Slides - Final Paper - pdf version [PDF]
  • Session 16 Slides - Wrap UP - pptx version [PPTX]
  • Session 16 Slides - Wrap-Up - pdf version [PDF]

Online Reading Assignments

The attached word document includes links to all of the supplemental readings that are available online. The readings are listed weekly in chronological order.

  • Document with Weekly Online Reading Links [DOCX]
  • Session 2 Reading - Chapter 12 Qualitative Research [PDF]
  • Session 2 Reading - Chapter 12 Multiple Choice Q & A [PDF]
  • Session 2 Reading - Chapter 12 Study Q & A [PDF]
  • Session 2 Reading - Chapter 17 Qualitative Research [PDF]
  • Session 2 Reading - Chapter 17 Study Questions [PDF]
  • Session 2 Readings - Chapter 17 Study Question Answers [PDF]
  • Session 3 Reading - Turner - Qualitative Interview Guide [PDF]
  • Session 4 Reading - Utah Department of SA & MH - Focus Groups [PDF]
  • Session 4 Reading - New York State Teachers - Focus Groups [PDF]
  • Session 5 Reading - Duke University Field Observation Guide - pdf [PDF]
  • Weeks 10 & 11 Reading - Logic Model [PDF]
  • Weeks 10 & 11 Reading - United Way [PDF]

Assignments

  • Qualitative Analysis Lab 1 - Done on Class on 2/6 and due on 2/13 [DOCX]
  • Qualitative Analysis Lab 2 - Done in Class on 2/13 and Due on 2/20 [DOCX]
  • Qualitative Lab 3 - Done in Class on 2/20 [DOCX]
  • CASA Writing Assistance Flyer - Place and Times [DOC]
  • Quantitative Lab 1 Assignment: Chi-Square [DOC]
  • Sample Table Formats [DOC]
  • Session 8 - Class Exercise - Descriptive Statistics Using SPSS [DOCX]
  • Session 8 Class Exercise - Copy of Questionnaire [PDF]
  • Session 8 - Class Exercise SAMHSA Dataset [SAV]
  • Session 8 SAMHSA Frequency Tables [DOCX]
  • Lab 2 - Independent t-test - Done in-Class March 20 and due March 24 [DOC]
  • Program Evaluation Paper Assignment - Due on April 17 [DOCX]
  • Logic Model Template for Program Evaluation [DOC]
  • Session 10 In-Class Exercise - Program Evaluation - pptx version [PPTX]
  • Session 10 In-Class Exercise - Program Evaluation - pdf version [PDF]
  • Session 11 In-Class Group Assignment - Program Evaluation [DOCX]
  • April 17 In-Class Exercise - ANOVA [DOC]
  • Study Guide for In-Class Exam on May 1 [DOC]
  • Final Paper Assignment Instructors - Assignment Due on May 8 [DOC]

Online Resources

  • APA Formatting 6th Edition Summary [DOC]
  • Final Paper Self Grading/Evaluation Rubric [DOCX]
  • Writing Guide [DOC]
  • Writing Tips - Paraphrazing [DOCX]
  • Writing Tips - Paraphrazing 2 [DOCX]

SJSU Links and Resources

Information for.

  • Current Students
  • Faculty and Staff
  • Future Students
  • Researchers
  • Engineering
  • Graduate Studies
  • Health and Human Sciences
  • Humanities and the Arts
  • Professional Education
  • Social Sciences

Quick Links

  • Budget Central
  • Careers and Jobs
  • Emergency Food & Housing
  • Faculty & Staff
  • Freedom of Speech
  • King Library
  • Land Acknowledgement
  • Parenting Students
  • Parking and Maps
  • Annual Security Report [pdf]
  • Contact Form
  • Doing Business with SJSU
  • File a Complaint
  • Report a Title IX Complaint

San José State University One Washington Square, San José, CA 95192

408-924-1000

Leeds Beckett University

Skills for Learning : Research Skills

Data analysis is an ongoing process that should occur throughout your research project. Suitable data-analysis methods must be selected when you write your research proposal. The nature of your data (i.e. quantitative or qualitative) will be influenced by your research design and purpose. The data will also influence the analysis methods selected.

We run interactive workshops to help you develop skills related to doing research, such as data analysis, writing literature reviews and preparing for dissertations. Find out more on the Skills for Learning Workshops page.

We have online academic skills modules within MyBeckett for all levels of university study. These modules will help your academic development and support your success at LBU. You can work through the modules at your own pace, revisiting them as required. Find out more from our FAQ What academic skills modules are available?

Quantitative data analysis

Broadly speaking, 'statistics' refers to methods, tools and techniques used to collect, organise and interpret data. The goal of statistics is to gain understanding from data. Therefore, you need to know how to:

  • Produce data – for example, by handing out a questionnaire or doing an experiment.
  • Organise, summarise, present and analyse data.
  • Draw valid conclusions from findings.

There are a number of statistical methods you can use to analyse data. Choosing an appropriate statistical method should follow naturally, however, from your research design. Therefore, you should think about data analysis at the early stages of your study design. You may need to consult a statistician for help with this.

Tips for working with statistical data

  • Plan so that the data you get has a good chance of successfully tackling the research problem. This will involve reading literature on your subject, as well as on what makes a good study.
  • To reach useful conclusions, you need to reduce uncertainties or 'noise'. Thus, you will need a sufficiently large data sample. A large sample will improve precision. However, this must be balanced against the 'costs' (time and money) of collection.
  • Consider the logistics. Will there be problems in obtaining sufficient high-quality data? Think about accuracy, trustworthiness and completeness.
  • Statistics are based on random samples. Consider whether your sample will be suited to this sort of analysis. Might there be biases to think about?
  • How will you deal with missing values (any data that is not recorded for some reason)? These can result from gaps in a record or whole records being missed out.
  • When analysing data, start by looking at each variable separately. Conduct initial/exploratory data analysis using graphical displays. Do this before looking at variables in conjunction or anything more complicated. This process can help locate errors in the data and also gives you a 'feel' for the data.
  • Look out for patterns of 'missingness'. They are likely to alert you if there’s a problem. If the 'missingness' is not random, then it will have an impact on the results.
  • Be vigilant and think through what you are doing at all times. Think critically. Statistics are not just mathematical tricks that a computer sorts out. Rather, analysing statistical data is a process that the human mind must interpret!

Top tips! Try inventing or generating the sort of data you might get and see if you can analyse it. Make sure that your process works before gathering actual data. Think what the output of an analytic procedure will look like before doing it for real.

(Note: it is actually difficult to generate realistic data. There are fraud-detection methods in place to identify data that has been fabricated. So, remember to get rid of your practice data before analysing the real stuff!)

Statistical software packages

Software packages can be used to analyse and present data. The most widely used ones are SPSS and NVivo.

SPSS is a statistical-analysis and data-management package for quantitative data analysis. Click on ‘ How do I install SPSS? ’ to learn how to download SPSS to your personal device. SPSS can perform a wide variety of statistical procedures. Some examples are:

  • Data management (i.e. creating subsets of data or transforming data).
  • Summarising, describing or presenting data (i.e. mean, median and frequency).
  • Looking at the distribution of data (i.e. standard deviation).
  • Comparing groups for significant differences using parametric (i.e. t-test) and non-parametric (i.e. Chi-square) tests.
  • Identifying significant relationships between variables (i.e. correlation).

NVivo can be used for qualitative data analysis. It is suitable for use with a wide range of methodologies. Click on ‘ How do I access NVivo ’ to learn how to download NVivo to your personal device. NVivo supports grounded theory, survey data, case studies, focus groups, phenomenology, field research and action research.

  • Process data such as interview transcripts, literature or media extracts, and historical documents.
  • Code data on screen and explore all coding and documents interactively.
  • Rearrange, restructure, extend and edit text, coding and coding relationships.
  • Search imported text for words, phrases or patterns, and automatically code the results.

Qualitative data analysis

Miles and Huberman (1994) point out that there are diverse approaches to qualitative research and analysis. They suggest, however, that it is possible to identify 'a fairly classic set of analytic moves arranged in sequence'. This involves:

  • Affixing codes to a set of field notes drawn from observation or interviews.
  • Noting reflections or other remarks in the margins.
  • Sorting/sifting through these materials to identify: a) similar phrases, relationships between variables, patterns and themes and b) distinct differences between subgroups and common sequences.
  • Isolating these patterns/processes and commonalties/differences. Then, taking them out to the field in the next wave of data collection.
  • Highlighting generalisations and relating them to your original research themes.
  • Taking the generalisations and analysing them in relation to theoretical perspectives.

        (Miles and Huberman, 1994.)

Patterns and generalisations are usually arrived at through a process of analytic induction (see above points 5 and 6). Qualitative analysis rarely involves statistical analysis of relationships between variables. Qualitative analysis aims to gain in-depth understanding of concepts, opinions or experiences.

Presenting information

There are a number of different ways of presenting and communicating information. The particular format you use is dependent upon the type of data generated from the methods you have employed.

Here are some appropriate ways of presenting information for different types of data:

Bar charts: These   may be useful for comparing relative sizes. However, they tend to use a large amount of ink to display a relatively small amount of information. Consider a simple line chart as an alternative.

Pie charts: These have the benefit of indicating that the data must add up to 100%. However, they make it difficult for viewers to distinguish relative sizes, especially if two slices have a difference of less than 10%.

Other examples of presenting data in graphical form include line charts and  scatter plots .

Qualitative data is more likely to be presented in text form. For example, using quotations from interviews or field diaries.

  • Plan ahead, thinking carefully about how you will analyse and present your data.
  • Think through possible restrictions to resources you may encounter and plan accordingly.
  • Find out about the different IT packages available for analysing your data and select the most appropriate.
  • If necessary, allow time to attend an introductory course on a particular computer package. You can book SPSS and NVivo workshops via MyHub .
  • Code your data appropriately, assigning conceptual or numerical codes as suitable.
  • Organise your data so it can be analysed and presented easily.
  • Choose the most suitable way of presenting your information, according to the type of data collected. This will allow your information to be understood and interpreted better.

Primary, secondary and tertiary sources

Information sources are sometimes categorised as primary, secondary or tertiary sources depending on whether or not they are ‘original’ materials or data. For some research projects, you may need to use primary sources as well as secondary or tertiary sources. However the distinction between primary and secondary sources is not always clear and depends on the context. For example, a newspaper article might usually be categorised as a secondary source. But it could also be regarded as a primary source if it were an article giving a first-hand account of a historical event written close to the time it occurred.

  • Primary sources
  • Secondary sources
  • Tertiary sources
  • Grey literature

Primary sources are original sources of information that provide first-hand accounts of what is being experienced or researched. They enable you to get as close to the actual event or research as possible. They are useful for getting the most contemporary information about a topic.

Examples include diary entries, newspaper articles, census data, journal articles with original reports of research, letters, email or other correspondence, original manuscripts and archives, interviews, research data and reports, statistics, autobiographies, exhibitions, films, and artists' writings.

Some information will be available on an Open Access basis, freely accessible online. However, many academic sources are paywalled, and you may need to login as a Leeds Beckett student to access them. Where Leeds Beckett does not have access to a source, you can use our  Request It! Service .

Secondary sources interpret, evaluate or analyse primary sources. They're useful for providing background information on a topic, or for looking back at an event from a current perspective. The majority of your literature searching will probably be done to find secondary sources on your topic.

Examples include journal articles which review or interpret original findings, popular magazine articles commenting on more serious research, textbooks and biographies.

The term tertiary sources isn't used a great deal. There's overlap between what might be considered a secondary source and a tertiary source. One definition is that a tertiary source brings together secondary sources.

Examples include almanacs, fact books, bibliographies, dictionaries and encyclopaedias, directories, indexes and abstracts. They can be useful for introductory information or an overview of a topic in the early stages of research.

Depending on your subject of study, grey literature may be another source you need to use. Grey literature includes technical or research reports, theses and dissertations, conference papers, government documents, white papers, and so on.

Artificial intelligence tools

Before using any generative artificial intelligence or paraphrasing tools in your assessments, you should check if this is permitted on your course.

If their use is permitted on your course, you must  acknowledge any use of generative artificial intelligence tools  such as ChatGPT or paraphrasing tools (e.g., Grammarly, Quillbot, etc.), even if you have only used them to generate ideas for your assessments or for proofreading.

  • Academic Honesty (Integrity) Module in MyBeckett
  • Assignment Calculator
  • Building on Feedback
  • Disability Advice
  • Essay X-ray tool
  • International Students' Academic Introduction
  • Manchester Academic Phrasebank
  • Quote, Unquote
  • Skills and Subject Suppor t
  • Turnitin Grammar Checker

{{You can add more boxes below for links specific to this page [this note will not appear on user pages] }}

  • Research Methods Checklist
  • Sampling Checklist

Skills for Learning FAQs

0113 812 1000

  • Service Alerts
  • Tell Us What You Think

Library & Student Services

  • University Disclaimer
  • Accessibility

IMAGES

  1. Data Analysis Methods PowerPoint and Google Slides Template

    research data analysis methods ppt

  2. Data Analysis Methods Research Ppt Powerpoint Presentation Graphics Cpb

    research data analysis methods ppt

  3. Data Analysis Methods PowerPoint and Google Slides Template

    research data analysis methods ppt

  4. Free Ppt Templates For Data Analysis

    research data analysis methods ppt

  5. Qualitative Data Analysis PowerPoint Template

    research data analysis methods ppt

  6. Qualitative Data Analysis PowerPoint Template

    research data analysis methods ppt

COMMENTS

  1. Quantitative Data Analysis Methods & Techniques 101

    Factor 1 - Data type. The first thing you need to consider is the type of data you've collected (or the type of data you will collect). By data types, I'm referring to the four levels of measurement - namely, nominal, ordinal, interval and ratio. If you're not familiar with this lingo, check out the video below.

  2. Data Analysis, Interpretation, and Presentation

    Chapter 9 Data Analysis, Interpretation, and Presentation. 2 Goals Discuss the difference between qualitative and quantitative data and analysis Enable you to analyze data gathered from: Questionnaires Interviews Observation studies Make you aware of software packages that are available to help your analysis Identify common pitfalls in data ...

  3. Slides

    Tutorial 1: Using R, Data Handling / Wrangling; Tutorial 2: More R, Wrangling, Summary Stats; Tutorial 3: Summary statistics; Tutorial 4: Plotting; Tutorial 5 ...

  4. PPT

    Quantitative Data Analysis. Edouard Manet: In the Conservatory, 1879. Quantification of Data Introduction To conduct quantitative analysis, responses to open-ended questions in survey research and the raw data collected using qualitative methods must be coded numerically.

  5. Data Analysis in Research: Types & Methods

    Definition of research in data analysis: According to LeCompte and Schensul, research data analysis is a process used by researchers to reduce data to a story and interpret it to derive insights. The data analysis process helps reduce a large chunk of data into smaller fragments, which makes sense. Three essential things occur during the data ...

  6. Data Analysis

    Data Analysis. Definition: Data analysis refers to the process of inspecting, cleaning, transforming, and modeling data with the goal of discovering useful information, drawing conclusions, and supporting decision-making. It involves applying various statistical and computational techniques to interpret and derive insights from large datasets.

  7. PDF PowerPoint Presentation

    2. Generating research hypotheses that can be tested using more quant.tat.ve approaches. 3. Stimulating new .deas and creative concepts. 4. Diagnosing the potential for prob ems with a new program, service, or product. 5. Generating impressions of products, programs, services, institutions, or other objects of interest.

  8. Qualitative Analysis: Process and Examples

    By Monograph Matters May 12, 2020 Teaching and Research Resources. Authors Laura Wray-Lake and Laura Abrams describe qualitative data analysis, with illustrative examples from their SRCD monograph, Pathways to Civic Engagement Among Urban Youth of Color. This PowerPoint document includes presenter notes, making it an ideal resource for ...

  9. A COURSE IN RESEARCH METHODOLOGY 2018.pptx

    Chapter-2: Literature Review Chapter-3: How to develop a Research Questions & Hypotheses Chapter-4: Research Methods and the Research Design Chapter-5: Concept of Variables, Levels and Scales of Measurements for Data collection Chapter-6: Data Analysis, Management and Presentation Chapter-7: Tips for Writing Research Report Chapter-8: Glossary ...

  10. PPT

    Quantitative Data Analysis. Quantitative Data Analysis. Social Research Methods 2109 &amp; 6507 Spring, 2006 March 6 2006. Quantitative Analysis: convert data to a numerical form and statistical analyses. quantification ( 量化 ): the process of converting data to a numerical format ( 將資料轉換成數字形式 ). Quantification of Data.

  11. A practical guide to data analysis in general literature reviews

    Below we present a step-by-step guide for analysing data for two different types of research questions. The data analysis methods described here are based on basic content analysis as described by Elo and Kyngäs 4 and Graneheim and Lundman, 5 and the integrative review as described by Whittemore and Knafl, 6 but modified to be applicable to ...

  12. Basic statistical tools in research and data analysis

    Statistical methods involved in carrying out a study include planning, designing, collecting data, analysing, drawing meaningful interpretation and reporting of the research findings. The statistical analysis gives meaning to the meaningless numbers, thereby breathing life into a lifeless data. The results and inferences are precise only if ...

  13. Research Design, methods, and Data Analysis

    The aim of this study is to review the process of research and steps involved in data analysis. This study teaches how to select a research design, how to make conceptual framework, and how to plan analysis of data .This study guides to understand the evaluation of assumption of research, assess the fitness of model and interpretation of ...

  14. Understanding Data Presentations (Guide + Examples)

    Step 1: Define Your Data Hierarchy. While presenting data on the budget allocation, start by outlining the hierarchical structure. The sequence will be like the overall budget at the top, followed by departments, projects within each department, and finally, individual cost categories for each project. Example:

  15. ScWk 242

    Basic concepts and models for research methodology applied to the analysis of data in social work. Emphasis is on quantitative analysis, using statistics software. Qualitative research is also incorporated. (Prerequisite: ScWk 240, 3 Units). ScWk 242 Section 5 Syllabus (PDF)

  16. The Library: Research Skills: Analysing and Presenting Data

    Overview. Data analysis is an ongoing process that should occur throughout your research project. Suitable data-analysis methods must be selected when you write your research proposal. The nature of your data (i.e. quantitative or qualitative) will be influenced by your research design and purpose. The data will also influence the analysis ...

  17. Efficient Intrusion Detection System Data Preprocessing Using Deep

    Likewise, the issues related to far above-the-ground computational for memory and storage also be the consideration for the researchers. Sah and Banerjee [] proposed a novel feature reduction with the methods such as support vector machine, random forest, KNN, and Naïve Bayes for IDS.The feature reduction with RF obtained good results for denial of service (DoS) attacks and obtained an ...