• EO Explorer

NASA

  • Global Maps
  • Making and Melting Ice at Earth’s Poles

nasa melting ice experiment

Making and Melting Ice at Earth’s Poles – download pdf (4 MB) January 2020

EO Kids is discovering more about sea ice and its effect on ecosystems and global climate by looking at how and when it forms across the globe. Plus, learn how different types of water freeze in our “DIY Science” activity: “Saltwater is Cool (Literally).”

Earth Observatory and NASA Stories Highlighted in this Issue

nasa melting ice experiment

Tags: atmosphere , Heat , snow and ice , water

nasa melting ice experiment

EO Kids is written for audiences aged 9 to 14. It is published with support from NASA’s Landsat, Terra, and Aqua missions.

We would appreciate any comments or feedback you could provide to us about this new publication (e.g., content, style, format):  Let us know what you think.

Mission Biomes

Mission: Biomes online interactive activity to support learning and awareness of seven terrestrial biomes.

  • Recent Issues
  • Dust: A World Traveler
  • Sipping Snow in the Sierras
  • Picturing Earth From the Space Station
  • Smoky Skies and Satellites
  • Keeping a Close Eye on the Storm: Hurricanes
  • Barrier Islands: Sands & Lands in Motion
  • Shifting Shapes of Sandy Scapes
  • The Ozone Hole: We Need More Sunscreen
  • Peeking at Penguins: Poop from Space
  • Night Vision: Learning from City Lights
  • The Shape of Farming: Water For Crops
  • Cleaning Up Our Air
  • Watching Wildfires from Space
  • From School to NASA Earth Scientist
  • A Place in Space: Earth Orbits
  • Greening Up Globally: Forests and Farms
  • All About That Tilt: Sun and Seasons
  • Water, Water, Everywhere!
  • Glaciers: Ice on the Move
  • Hide and Seek Sandstone: Geology by Satellite
  • Air Pollution: Seeing Small Specks from Space
  • Clouds or Snow? A Satellite Mystery
  • Sky High: Keeping Track of Volcano Plumes
  • Shrinking Shorelines and Developing Deltas
  • (Infra)Red Light, Green Light
  • 60 Years of Looking at Earth from Above
  • Ice on Earth: By Land & By Sea
  • Space Archaeology: Uncovering the Past
  • Ocean Green: Blooming Oceans
  • Landslides: Earth on the Move
  • Urban Heat Islands: Hot Times in the City
  • Fresh Water

NASA Logo

These Glaciers Melt at Your Fingertips

Screen shot from Greenland simulation

Icy barriers began melting away at the close of the last ice age, easing human passage into North America. Now scientists are piecing together some chilling details: how one corner of Arctic ice retreated over 12,000 years in response to a changing climate.

A new set of computer simulations seeks to capture the demise of the ice on the margins of southwestern Greenland. They include a public version that allows you to take control, change environmental conditions and watch the effect on the ice.

It’s an early step toward a big idea. Like workers tinkering together mechanical parts, these scientists hope eventually to create a detailed reconstruction of a vanished climate.

That could shed new light on ice loss today and in decades to come.

Using computer modeling to make predictions of how ice will melt over the coming century “is like going down a dark hallway with a candle,” said Joshua Cuzzone, an ice researcher at NASA’s Jet Propulsion Laboratory in Pasadena, California. “We kind of know where we’re going, but we don’t know the specifics.”

Part of the answer involves better understanding of the past. So Cuzzone is lead author of a new paper that seeks to illuminate ice melt since the early Holocene.

The coastal terrain of southwestern Greenland offered a nearly ideal platform for Cuzzone and his team to build and test their simulation. The coast is craggy enough, but not too craggy; and the geologic history can be seen clearly in the lines of rubble, called moraines, left behind as glaciers dwindled.

Modeling the Melt

These geological details provided the scaffolding for a powerful simulator called the Ice Sheet System Model, or ISSM. ISSM embodies, in a computer, the equations describing the thermal and mechanical physics of ice flowing on bedrock. Such computer models face a tradeoff: if they reproduce small features well – ice streams, marine-terminating glaciers, small bumps in bedrock – they cannot be run for long periods because of the excessive computer load they impose. Earlier models had to choose between detail and long simulations.

The amount of small-scale detail a model is able to reproduce is called “model resolution,” and that’s where ISSM departs from previous models. It is designed with resolution that varies spatially: more detail in areas of sharp topography, and less detail (coarser resolution) in others.

Imagine draping a flexible mesh over the landscape. It settles and conforms itself to the hills, valleys, ocean inlets and flats. Now imagine this flexible mesh having variable resolution, with threads that are closer together in some regions than in others. The closer threads better adapt to small-scale details of bedrock and ice flow – in other words, the mesh is finer for the craggy, complex parts of the landscape, including fjords, and much coarser for flatter, more featureless sections.

The model works in a similar fashion. The “mesh” defines the model’s variable resolution. Start the clock 12,000 years ago and the tiny, gridded spaces formed by the mesh begin to sink at varying rates, tracking contours as the ancient ice melts away.

While the main driver of climate change is very different today – human emission of heat-trapping gases versus slow-working, natural processes – the mechanics of ice melt are quite similar.

“If we are able to model the retreat history locked within the geological record, it might provide us with a better understanding of how sensitive these ice sheets are,” Cuzzone said. “We’ll be able to infer how anomalous our present-day ice-mass loss is compared to the past 12,000 years.”

That, in turn, could help create more precise forecasts of ice melt in the future, and corresponding rates of sea level rise.

Adapting the meshes, with high resolution for complex terrain and low resolution for the flats, yielded the best of both worlds: accurate modeling without a heavy burden on computer time. This approach allowed Cuzzone and his team to reproduce the large-scale, well-known retreat of the southwestern Greenland Ice Sheet during the Holocene, the geologic period that began some 11,650 years ago.

The next step will involve using state-of-the-art reconstructions of past climate, derived from work by paleoclimatologists at the University of Washington, as the environmental setting for the ice model to see how it responds through time.

“This will be the constraining model for past ice history across southwestern Greenland,” Cuzzone said. “We’re seeing how well it does. Using the fact that it actually does pretty well, we’ll be able to have confidence in making the claim of comparing past ice-mass loss to current ice-mass loss.”

Related Terms

  • Ice & Glaciers
  • Sea Level Rise

Explore More

nasa melting ice experiment

NASA JPL Developing Underwater Robots to Venture Deep Below Polar Ice

Called IceNode, the project envisions a fleet of autonomous robots that would help determine the melt rate of ice shelves. On a remote patch of the windy, frozen Beaufort Sea north of Alaska, engineers from NASA’s Jet Propulsion Laboratory in Southern California huddled together, peering down a narrow hole in a thick layer of sea […]

nasa melting ice experiment

NASA Returns to Arctic Studying Summer Sea Ice Melt

What happens in the Arctic doesn’t stay in the Arctic, and a new NASA mission is helping improve data modeling and increasing our understanding of Earth’s rapidly changing climate. Changing ice, ocean, and atmospheric conditions in the northernmost part of Earth have a large impact on the entire planet. That’s because the Arctic region acts […]

nasa melting ice experiment

NASA Mission Flies Over Arctic to Study Sea Ice Melt Causes

It’s not just rising air and water temperatures influencing the decades-long decline of Arctic sea ice. Clouds, aerosols, even the bumps and dips on the ice itself can play a role. To explore how these factors interact and impact sea ice melting, NASA is flying two aircraft equipped with scientific instruments over the Arctic Ocean […]

Discover More Topics From NASA

Explore Earth Science

nasa melting ice experiment

Earth Science in Action

Earth Action

Earth Science Data

The sum of Earth's plants, on land and in the ocean, changes slightly from year to year as weather patterns shift.

Facts About Earth

nasa melting ice experiment

Warming Seas and Melting Ice Sheets

nasa melting ice experiment

NASA is applying its unique capabilities to the challenge of understanding global sea level rise.

Sea level rise is a natural consequence of the warming of our planet.

We know this from basic physics. When water heats up, it expands. So when the ocean warms, sea level rises. When ice is exposed to heat, it melts. And when ice on land melts and water runs into the ocean, sea level rises.

For thousands of years, sea level has remained relatively stable and human communities have settled along the planet's coastlines. But now Earth's seas are rising. Globally, sea level has risen about eight inches (20 centimeters) since the beginning of the 20th century and more than two inches (5 centimeters) in the last 20 years alone.

All signs suggest that this rise is accelerating.

While NASA and other agencies continue to monitor the warming of the ocean and changes to the planet's land masses, the biggest concern is what will happen to the ancient ice sheets covering Greenland and Antarctica, which continue to send out alerts that a warming planet is affecting their stability.

"Given what we know now about how the ocean expands as it warms and how ice sheets and glaciers are adding water to the seas, it's pretty certain we are locked into at least 3 feet [0.9 meter] of sea level rise," said Steve Nerem of the University of Colorado, Boulder, and lead of the Sea Level Change Team. "But we don't know whether it will happen in 100 years or 200 years."

While the expansion of warmer ocean waters and tectonic movement of land masses play key roles in both global and local sea level changes, it's the fate of the polar ice sheets that will most determine how much coastlines change in the coming decades.

"We've seen from the paleoclimate record that sea level rise of as much as 10 feet [3 meters] in a century or two is possible, if the ice sheets fall apart rapidly," said Tom Wagner, the cryosphere program scientist at NASA Headquarters in Washington. "We're seeing evidence that the ice sheets are waking up, but we need to understand them better before we can say we're in a new era of rapid ice loss."

Finding the Level

NASA has been recording the height of the ocean surface from space since 1992. That year, NASA and the French space agency, CNES, launched the first of a series of spaceborne altimeters that have been making continuous measurements ever since. The first instrument, Topex/Poseidon, and its successors, Jason-1 and Jason-2, have recorded about 2.9 inches (7.4 centimeters) of rise in sea level, averaged over the globe.

In the 21st century, two new sensing systems have proven to be invaluable complements to the satellite altimetry record. In 2002, NASA and the German space agency launched the Gravity Recovery and Climate Experiment (GRACE) twin satellites. These measure the movement of mass, and hence gravity, around Earth every 30 days. Earth's land masses move very little in a month, but its water masses move through melting, evaporation, precipitation and other processes. GRACE records these movements of water around the globe. The other new system is the multinational Argo array, a network of more than 3,000 floating ocean sensors spread across the entire open ocean.

"To study sea level rise, the Jason series, GRACE, and Argo are the big three," said oceanographer Josh Willis of NASA's Jet Propulsion Laboratory, Pasadena, California, the project scientist for the upcoming Jason-3 altimetry mission.

Observations from the Jason series have revolutionized scientists' understanding of contemporary sea level rise and its causes. We know that today's sea level rise is about one-third the result of the warming of existing ocean water, with the remainder coming from melting land ice.

And it has shown precisely that the sea, of course, is not actually level. It varies as much as six feet (two meters) from place to place. And it is not rising evenly, like a bathtub filling with water. Currently, regional differences in sea level rise are dominated by the effects of ocean currents and natural cycles such as the Pacific Ocean's El Niño phenomenon and Pacific Decadal Oscillation. As the ice sheets continue to melt, scientists predict their meltwater will overtake natural causes as the most significant source of regional variations and the most significant contributor to overall sea level rise.

Or as Willis put it: "You ain't seen nothing yet."

Watching Ice Melt

Not that long ago, in the early 1990s, scientists were not able to determine whether polar land ice was growing, shrinking or in balance. Satellite and airborne missions, complemented by field measurements, have not only answered that question, but also provided the means for scientists to determine the mechanisms that are contributing to the growth and shrinkage of polar ice.

These advances in observing the world's frozen regions have allowed scientists to accurately estimate annual ice losses from Greenland and Antarctica in only the last decade. We now know not only how much sea level is changing -- as measured by satellites for the past 23 years -- but we can also determine how much sea level rise is caused by the loss of land ice.

In addition to the launch of the GRACE satellites in 2002, NASA also deployed the Ice Cloud and land Elevation Satellite (ICESat) from 2003 to 2009 to map changes in the height of the polar ice sheets using laser pulses. Other space agencies have used radar instruments to measure glacier speeds, as well as surface topography, such as the European Space Agency's CryoSat-2 satellite. Airborne missions, like NASA's Operation IceBridge, complement these measurements with instruments that map the bedrock topography beneath the ice, determine ice thickness and characterize its internal layers, and detect the depth of overlying snow. Combining these relatively recent -- and unprecedented -- measurements with longer-term satellite records and reanalyses of regional climate data extends the record of ice sheet mass balance to more than 40 years.

Several studies have shown that different remote sensing methods for studying ice sheet mass balance agree well. GRACE's record, spanning over a decade, shows that the ice loss is accelerating in Greenland and West Antarctica. Greenland has shed, on average, 303 gigatons of ice every year since 2004, while Antarctica has lost, on average, 118 gigatons of ice per year, with most of the loss coming from West Antarctica. Greenland's ice loss has accelerated by 31 gigatons of ice per year every year since 2004, while West Antarctica has experienced an ice mass loss acceleration of 28 gigatons per year.

The Warming North

The Greenland Ice Sheet, spanning 660,000 square miles (1.7 million square kilometers) -- an area almost as big as Alaska -- and with a thickness at its highest point of almost 2 miles (3 kilometers), has the potential to raise the world's oceans by more than 20 feet (6 meters). Situated in the Arctic, which is warming at twice the rate of the rest of the planet, Greenland fell out of balance in the 1990s, and is now shedding more ice in the summer than it gains back in the winter.

"In Greenland, everything got warmer at the same time: the air, the ocean surface, the depths of the ocean," said Ian Joughin, a glaciologist at University of Washington, in Seattle. "We don't really understand which part of that warming is having the biggest effect on the glaciers."

What scientists do know is that warming Arctic temperatures -- and a darkening surface on the Greenland ice sheet -- are causing so much summer melting that it is now the dominant factor in Greenland's contribution to sea level rise.

Greenland's summer melt season now lasts 70 days longer than it did in the early 1970s. Every summer, warmer air temperatures cause melt over about half of the surface of the ice sheet -- although recently, 2012 saw an extreme event where 97 percent of the ice sheet experienced melt at its top layer.

Greenland's glaciers have sped up, too. Though many of the glaciers in the southeast, west and northwest of the island that experienced quick thinning from 2000 to 2006 have now slowed down, others haven't. A study last year showed that the northeast Greenland ice stream had increased its ice loss rate due to regional warming.

"The early 2000s was when some big things revealed themselves, such as when we saw the fastest glacier we knew of, the Jakobshavn ice stream in Greenland, double its speed," said Waleed Abdalati, director of the Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado, and former NASA chief scientist. "The subsequent surprise was that these changes could be sustained for a decade -- Jakobshavn is still going fast."

To answer the questions of how these glaciers will behave, how much they will contribute to sea level rise and how fast those changes will occur, scientists need better data on the bathymetry or geography of the ocean floor surrounding Greenland, said Eric Rignot, a glaciologist with JPL and the University of California, Irvine.

"Bathymetry is critical for understanding how ocean waters circulate around Greenland, for projections and for understanding what we've been observing in the past few decades," Rignot said.

Beginning with the deployment of research buoys in the waters around Greenland this summer, NASA is embarking on a three-year airborne and ship-based campaign to answer precisely these questions. OMG, Oceans Melting Greenland, seeks to understand the role of ocean currents and ocean temperatures in melting Greenland's ice from below -- and therefore better predict the speed at which the ice sheet will raise sea level.

Changes at the Southern End of the World

The Antarctic Ice Sheet covers nearly 5.4 million square miles (14 million square kilometers), an area larger than the United States and India combined, and contains enough ice to raise the ocean level by about 190 feet (58 meters). The Transantarctic Mountains split Antarctica into two major regions: West Antarctica and the much larger East Antarctica.

Though Antarctica's contribution to sea level rise is still at less than 0.02 inches (0.5 millimeters) per year, several events over the past decade and a half have prompted experts to start warning about an the possibility of more rapid changes in the upcoming century.

The mountainous horn of the continent, the Antarctic Peninsula, gave one of the earliest warnings on the impact of a changing climate in Antarctica, when warming air and ocean temperatures led to the dramatically fast breakup of the Larsen B ice shelf in 2002. In about a month, 1,250 square miles (3,240 square kilometers) of floating ice that had been stable for over 10,000 years were gone. In the following years, other ice shelves in the peninsula, including the last remainder of Larsen B, collapsed, speeding up in the flow of the glaciers they were buttressing.

In 2014, West Antarctica grabbed the spotlight when two studies focusing on the acceleration of the glaciers in the Amundsen Sea sector showed that its collapse is underway, and that the rest of West Antarctica will follow. While one of the studies said the demise could take 200 to 1,000 years, depending on how rapidly the ocean heats up, both studies concurred that the collapse is unstoppable and will add up to 12 feet (4 meters) of sea level rise.

For the West Antarctic Ice Sheet, which largely rests on a bed that lies below sea level, the main driver of ice loss is the ocean. The waters of the Southern Ocean are layered: on top and at the bottom, the temperatures are frigid, but the middle layer is warm. The westerlies, the winds that spin the ocean waters around Antarctica, have intensified during the last decade, pushing the cold, top layer away from the land. This allows the warmer, deeper waters to rise and spill over the border of the continental shelf, flowing all the way back to the base of many ice shelves. As the ice shelves weaken from underneath, the glaciers behind them speed up.

East Antarctica's massive ice sheet, as vast as the lower continental U.S., remains the main unknown in projections of sea level rise. Though it appears to be stable, a recent study on Totten Glacier, East Antarctica's largest and most rapidly thinning glacier, hints otherwise. The research found two deep troughs that could lead warm ocean water to the base of the glacier and melt it in a similar way to what's happening to the glaciers in West Antarctica. Other sectors grounded below sea level, such as the Cook Ice Shelf, Ninnis, Mertz and Frost glaciers, are also losing mass.

"The prevailing view among specialists has been that East Antarctica is stable, but I don't think we really know," said Rignot. "Some of the signs we see in the satellite data right now are kind of red flags that these glaciers might not be as stable as we once thought. There's always a lot of attention paid by the media to the changes we see now, but as scientists our priority remains what the changes could be tomorrow."

On the other hand, weather models and reanalyses of climate model data have shown that there has been an increase in snowfall along the coastline of Dronning Maud Land, which might counteract East Antarctica's ice loss. But this may be a temporary shift -- scientists can't tell, because obtaining accurate field measurements of snow in Antarctica is extremely difficult. There are few weather stations, and they might not provide representative measurements because snowfall in Antarctica doesn't distribute evenly; the strong katabatic winds wipe some areas clean and make snow pile up in others. And satellite readings are not yet precise enough to detect small accumulation changes that would represent a difference of gigatons of mass when spread over East Antarctica's huge surface.

As is the case for Greenland, researchers also working on Antarctica need better data on the Southern Ocean bathymetry and the pathways that warm waters can follow to reach the ice. And this kind of data, as well as snow accumulation and other ocean data, can't be obtained remotely with enough precision, according to Ted Scambos, lead scientist at the University of Colorado's National Snow and Ice Data Center in Boulder.

"We've learned so much from the satellites that we've been surfing the wave of new understanding for the last 20 years," Scambos said. "But now, to go further, we have to try to get instruments on the ground while maintaining the ability we have with airborne and satellite missions to watch the ice sheet from a global perspective."

News Media Contact

Written by Maria-Jose Viñas and Carol Rasmussen

818-354-0474

[email protected]

 / 

The edge of the Thwaites glacier in Antarctica. Felton Davis via Flickr

As ‘Doomsday’ Glacier Melts, Can an Artificial Barrier Save It?

Relatively warm ocean currents are weakening the base of Antarctica’s enormous Thwaites Glacier, whose demise could raise sea levels by as much as 7 feet. To separate the ice from those warmer ocean waters, scientists have put forward an audacious plan to erect a massive underwater curtain.

By Fred Pearce • August 26, 2024

They call it the Doomsday Glacier. A chunk of Antarctic ice as big as Florida and two thirds of a mile thick, the Thwaites Glacier disgorges into the ocean in a remote region of West Antarctica. Glaciologists say it may be on the verge of total collapse, which could swamp huge areas of low-lying coastal land around the world within a few decades. Now, ambitious plans to save it are set to become an early test of whether the world is prepared to enact massive geoengineering efforts to ward off the worst effects of climate change.

Recent monitoring by uncrewed submarines and satellites, along with ice-sheet modeling, suggest that the Thwaites Glacier and its adjacent smaller twin, the Pine Island Glacier, may already be in a death spiral — eaten up by the intensifying speed and warmth of the powerful Antarctic Circumpolar Current. If they are past a point of no return, say researchers involved in the studies, then only massive human intervention can save them.

Nothing is certain. A new modeling study published last week said the risk of unstoppable retreat of the glacier may be overblown. But there is no time to waste, argues the glaciologist orchestrating the call for action, John Moore of Lapland University, in northern Finland. Within two years, he and colleagues in Europe hope to be working in a Norwegian fjord, testing prototypes for a giant submarine curtain, up to 50 miles across, that could seal off the two glaciers from the remorseless Antarctic current.

Glaciologists have discussed scary prognoses for the rapid collapse of giant Antarctic glaciers for almost half a century.

Meanwhile, some of his collaborators, fearing the logistical complications of such a task, are pondering an even more mind-bending idea. They want to substitute the physical curtain with a giant “bubble curtain,” created by a constant injection of bubbles of air or cold surface water.

Opponents of the plans, including many glaciologists, say such outlandish proposals are a dangerous diversion from the real task of mitigating climate change by curbing carbon emissions. But advocates say the two glaciers can’t wait. “We can’t mitigate our way out of this,” says Moore. “We need other tools.”

Glaciologists have discussed scary prognoses for the rapid collapse of giant Antarctic glaciers for almost half a century. Glaciers in West Antarctica are particularly vulnerable because they are not sitting on solid land; they are surrounded by ocean and pinned precariously to the peaks of submarine mountains, between which the circumpolar current swirls.

Back in 1978, glaciologist John Mercer, of Ohio State University, warned of a “major disaster – a rapid five-meter rise in sea level, caused by deglaciation of West Antarctica” — should atmospheric levels of carbon dioxide continue to rise. Three years later, glaciologist Terry Hughes, of the University of Maine, identified a “weak underbelly” to the West Antarctic Ice Sheet, where the Thwaites and Pine Island glaciers drain into the Amundsen Sea, an arm of the Southern Ocean.

European Space Agency / Adapted by Yale Environment 360

These glaciers are two of the ice continent’s five largest and are the gateway to the ocean for nearly half of the ice sheet. Hughes warned that the glaciers could easily lose their grip on the submarine mountains as warmer water melts ice directly beneath them, leading to their disintegration within a few decades. Their meltwater would raise sea levels globally by as much as seven feet. That would rise to more than 12 feet if, as the pair suspected, the glaciers’ demise dragged down the rest of the ice sheet with it.

These fears remained a theoretical concern until 20 years ago, when NASA glaciologist Eric Rignot warned that the seaward flow of these two giant glaciers was accelerating rapidly. It also became clear that the waters lapping at their submerged edges were warming as a result of climate change, and that this melting effect was much greater than the effect of warming air.

Ted Scambos of the University of Colorado, who is a coordinator of the joint U.S.-UK International Thwaites Glacier Collaboration, says that now “the [Thwaites] glacier is flowing at over a mile per year,” nearly double the speed in the 1990s. The warm ocean current is “eroding the base of the ice, erasing it as an ice cube would disappear bobbing in a glass of water.”

Scambos believes the accelerated flow is bound to continue. “By flowing faster, the glacier pulls down the ice behind it.” While shallower ice grinds on the bedrock and gets held back, he explains, thicker ice is less constrained and so flows faster, “leading to more retreat.”

“Some say it is too late to prevent [Thwaites’] collapse,” says a glaciologist. “Others say we could have 200 years.”

This concern has only heightened with the recent publication of satellite radar images revealing that the height of the Thwaites Glacier rises and falls with the tides. Rignot, now at the University of California, Irvine, says this finding shows that the warm current is not just lapping at the front of the glacier but is penetrating several miles beneath the grounded ice, further loosening its contact with solid rock.

Modelers of the West Antarctic Ice Sheet caution against assuming the worst. Much remains unknown. Last week, Mathieu Morlighem of Dartmouth College, along with British colleagues, reported that one potential cause of collapse of the Thwaites Glacier — runaway instability of the ice cliff at the front of the glacier — was less likely than some propose, at least in the short term. But he said there was a “pressing need” for further research into these potentially devastating processes.

There is, Moore agrees, no consensus among glaciologists about whether the Thwaites Glacier is past a point of no return unless there is drastic intervention. “Some say it is too late to prevent its collapse; others say we could have 200 years. But it certainly could be beyond its tipping point, and we have to be prepared.”

Time-lapse satellite imagery of ice breaking off the Pine Island Glacier from 2015 to 2020.

Last month, Moore and an international team of researchers published a “research vision” for “glacial climate intervention.” It followed workshops held last year at Stanford and the University of Chicago with fellow glaciologists, and it warned that if tipping points at the two glaciers have or will soon be crossed, then whatever happens to greenhouse gas emissions in the future “will have little effect on preserving the ice sheet.”

Ice-sheet modeling last year by Kaitlin Naughten of the British Antarctic Survey concurred. “The opportunity to preserve the West Antarctic Ice Sheet in its present-day state has probably passed,” she concluded, “and policymakers should be prepared for several metres of sea level rise over the coming centuries.”

So what can be done? Last month’s “vision” did not directly advocate for geoengineering interventions but called for research into which of them may be viable. It highlighted a proposal for a series of giant overlapping plastic or fiber curtains tethered to concrete foundations. To hold the warm current at bay, the curtain would stretch for 50 miles across the entrance to the Amundsen Sea and extend upwards for much of the 2,000 feet from the sea floor to the surface.

Some experts are confident that giant undersea curtains can be built to withstand the forces they will face in the ocean.

Moore wants to get started on testing the idea, and he and his collaborators are seeking research funding. The first experiments in a large lab tank are expected to begin within a few weeks at Cambridge University’s Centre for Climate Repair, whose mission is to advance “climate repair projects that can be rolled out at scale within the next 5-10 years.”

Real-world experiments could follow quickly, says Moore. “Within two years, we could be working at a fjord in northern Norway, testing different designs in a marine setting.” He has identified a target fjord but won’t say where. “If that goes well, we would want to scale up to a curtain as much as a kilometer across.” He envisions this being tested among the glaciers of Svalbard, the Norwegian Arctic archipelago that has become an international center for polar research. “In 10-15 years, we should have something to deploy in Antarctica,” he says.

Moore is confident that such giant curtains can be built to withstand the forces they will face in the ocean. “And installation seems feasible with existing technology,” he says. Even so, deployment and maintenance would be a huge undertaking in an environmentally hostile region some 1,500 miles from the nearest ice-free land in South America. And potential impacts on local marine ecosystems from both installation and operation remain essentially unknown, he says.

So a diminished version might be tried at the start, says Michael Wolovick of the Alfred Wegener Institute for Polar and Marine Research in Bremerhaven, Germany. Much could be accomplished with a curtain just three miles wide stretching across a “choke point” in front of the most vulnerable part of the Thwaites Glacier.

Diagram of a proposed glacial curtain. Nature / Adapted by Yale Environment 360

Hugh Hunt, an engineering professor and deputy director of Cambridge’s Centre for Climate Repair, has another proposal. “We have been looking for ideas that involve less infrastructure,” he says. The most promising would replace a fabricated curtain with a more natural barrier. He proposes laying a pipe along the bed of the Amundsen Sea that would release a constant stream of either air bubbles or cold water pumped down from the surface. “A bubble barrier probably wouldn’t completely halt the flow of warm water,” he says. “But it would disturb that flow, creating turbulence that would force it to mix with the colder water above.”

Offshore civil engineering companies already use bubble barriers to contain silt and protect marine life from their operations, Hunt says. A giant bubble machine off Antarctica would require a continuous supply of energy, which would have to be renewable. “With no winter sunlight, solar power wouldn’t work,” he says. “But offshore wind farms would. And with long-distance submarine cabling improving all the time, we could even generate power far away.”

Moore calls the bubble barrier a “wild card.” But, he says, “it is great they are pursuing it, because the potential payoff is huge.” Its main problem right now, he says, is that it remains almost entirely unresearched.

An Antarctic curtain would be hugely expensive, but far less than the cost to protect coastlines from rising tides.

There are other glacier-protecting strategies that avoid the need for curtains or other barriers. Slawek Tulaczyk, a glaciologist at the University of California, Santa Cruz, has proposed stabilizing the two imperiled glaciers by draining the meltwaters that currently seep to their base, lubricating the pinning points and accelerating the glaciers’ seaward flow. By drilling holes through the glaciers and inserting pumps, engineers could dry up the lubricant and bring that flow to a halt. The extracted water could then be sprayed across the glacier surface, where it would freeze, helping to rebuild the glacier.

Are such ideas feasible, how much would they cost, and what are the ethics of all this? Moore puts the likely bill for erecting a curtain across the Amundsen Sea at up to $80 billion. That is a lot of money. But much less, he says, than the trillions of dollars that might be needed to protect coastlines from rising tides caused by the loss of the two glaciers.

Others question this analysis. “I don’t doubt we could spend a decade building the curtain,” says Twila Moon, a glaciologist at the National Snow and Ice Data Center at the University of Colorado. “It is a naturally attractive idea that one big project can make the difference. But curtains may just displace the heat elsewhere, melting other ice.” In any event, she says, sea-level rise would continue as a result of factors such as thermal warming of the oceans, land subsidence, and changes in ocean circulation, as well as the melting of other land ice, such as on Greenland. “So the question is whether this is the right place to put our resources, including limited research funding.”

The Thwaites Glacier, photographed on a research flight. U.S. Antarctic Program

Her Colorado colleague and Thwaites Glacier expert Scambos is more open to geoengineering research, but still skeptical. “I think the ideas are worth pursuing,” he says. “We could explore them at a meaningfully large scale in sites with low negative consequences if things don’t go well.” But, like Moon, he fears the impact on climate policymaking.

In an ideal world, Scambos says, “we could pursue engineering solutions for the poles while at the same time directly decarbonizing our societies.” But the world isn’t like that. Climate negotiators at the UN COP28 meeting last December “brought up the notion that decarbonizing could go slower now that these [geoengineering] ideas are out there,” Scambos says. “The idea that ‘scientists are working on the problem’ could be a death knell for the 22nd century.”

Moore has heard these criticisms. “Yes, there is opposition,” he says. “We need to address that. We need a social licence.” He agrees that there are other important causes of current and future sea-level rise. But “none of these other sources have the potential to raise sea level at the extreme rates and magnitudes that could be realized from a rapid marine ice sheet collapse.”

If the glaciers are past their tipping points, dooming the world’s coastal lands, he says, we may have no alternative but to bite the geoengineering bullet. And the sooner we get started, he says, the better.

Related Articles

With hotter, drier weather, california’s joshua trees are in trouble.

By Jim Robbins

E360 Film Contest Winner

In california, a solitary herder cares for his goats and the hills, e360 film contest, for 60,000 years, australia’s first nations have put fire to good use, more from e360, biodiversity, faced with heavier rains, cities scramble to control polluted runoff, in montana’s northern plains, swift foxes are back from the brink, as canadian river shrivels, northern communities call for a highway, in warming world, global heat deaths are grossly undercounted, the ‘internet of animals’ could transform what we know about wildlife, grim dilemma: should we kill one owl species to save another, on gulf coast, an activist rallies her community against gas exports, with co2 levels rising, world’s drylands are turning green.

You are using an outdated browser. Please upgrade your browser to improve your experience.

' class=

News | September 29, 2015

Warming seas and melting ice sheets.

By Maria-Jose Viñas and Carol Rasmussen, NASA's Earth Science News Team

nasa melting ice experiment

An iceberg floats in Disko Bay, near Ilulissat, Greenland, on July 24, 2015. The massive Greenland ice sheet is shedding about 300 gigatons of ice a year into the ocean, making it the single largest source of sea level rise from melting ice. Credit: NASA/Saskia Madlener

Sea level rise is a natural consequence of the warming of our planet.

We know this from basic physics. When water heats up, it expands. So when the ocean warms, sea level rises. When ice is exposed to heat, it melts. And when ice on land melts and water runs into the ocean, sea level rises.

For thousands of years, sea level has remained relatively stable and human communities have settled along the planet's coastlines. But now Earth's seas are rising. Globally, sea level has risen about eight inches (20 centimeters) since the beginning of the 20th century and more than two inches (5 centimeters) in the last 20 years alone.

All signs suggest that this rise is accelerating.

While NASA and other agencies continue to monitor the warming of the ocean and changes to the planet's land masses, the biggest concern is what will happen to the ancient ice sheets covering Greenland and Antarctica, which continue to send out alerts that a warming planet is affecting their stability.

"Given what we know now about how the ocean expands as it warms and how ice sheets and glaciers are adding water to the seas, it's pretty certain we are locked into at least 3 feet [0.9 meter] of sea level rise," said Steve Nerem of the University of Colorado, Boulder, and lead of the Sea Level Change Team. "But we don't know whether it will happen in 100 years or 200 years."

While the expansion of warmer ocean waters and tectonic movement of land masses play key roles in both global and local sea level changes, it's the fate of the polar ice sheets that will most determine how much coastlines change in the coming decades.

"We've seen from the paleoclimate record that sea level rise of as much as 10 feet [3 meters] in a century or two is possible, if the ice sheets fall apart rapidly," said Tom Wagner, the cryosphere program scientist at NASA Headquarters in Washington. "We're seeing evidence that the ice sheets are waking up, but we need to understand them better before we can say we're in a new era of rapid ice loss."

Finding the level

NASA has been recording the height of the ocean surface from space since 1992. That year, NASA and the French space agency, CNES, launched the first of a series of spaceborne altimeters that have been making continuous measurements ever since. The first instrument, Topex/Poseidon, and its successors, Jason-1 and Jason-2, have recorded about 2.9 inches (7.4 centimeters) of rise in sea level, averaged over the globe.

In the 21st century, two new sensing systems have proven to be invaluable complements to the satellite altimetry record. In 2002, NASA and the German space agency launched the Gravity Recovery and Climate Experiment (GRACE) twin satellites. These measure the movement of mass, and hence gravity, around Earth every 30 days. Earth's land masses move very little in a month, but its water masses move through melting, evaporation, precipitation and other processes. GRACE records these movements of water around the globe. The other new system is the multinational Argo array, a network of more than 3,000 floating ocean sensors spread across the entire open ocean.

"To study sea level rise, the Jason series, GRACE, and Argo are the big three," said oceanographer Josh Willis of NASA's Jet Propulsion Laboratory, Pasadena, California, the project scientist for the upcoming Jason-3 altimetry mission.

Observations from the Jason series have revolutionized scientists' understanding of contemporary sea level rise and its causes. We know that today's sea level rise is about one-third the result of the warming of existing ocean water, with the remainder coming from melting land ice.

And it has shown precisely that the sea, of course, is not actually level. It varies as much as six feet (two meters) from place to place. And it is not rising evenly, like a bathtub filling with water. Currently, regional differences in sea level rise are dominated by the effects of ocean currents and natural cycles such as the Pacific Ocean's El Niño phenomenon and Pacific Decadal Oscillation. As the ice sheets continue to melt, scientists predict their meltwater will overtake natural causes as the most significant source of regional variations and the most significant contributor to overall sea level rise.

Or as Willis put it: "You ain't seen nothing yet."

Watching ice melt

Not that long ago, in the early 1990s, scientists were not able to determine whether polar land ice was growing, shrinking or in balance. Satellite and airborne missions, complemented by field measurements, have not only answered that question, but also provided the means for scientists to determine the mechanisms that are contributing to the growth and shrinkage of polar ice.

These advances in observing the world's frozen regions have allowed scientists to accurately estimate annual ice losses from Greenland and Antarctica in only the last decade. We now know not only how much sea level is changing — as measured by satellites for the past 23 years — but we can also determine how much sea level rise is caused by the loss of land ice.

In addition to the launch of the GRACE satellites in 2002, NASA also deployed the Ice Cloud and land Elevation Satellite (ICESat) from 2003 to 2009 to map changes in the height of the polar ice sheets using laser pulses. Other space agencies have used radar instruments to measure glacier speeds, as well as surface topography, such as the European Space Agency's CryoSat-2 satellite. Airborne missions, like NASA's Operation IceBridge, complement these measurements with instruments that map the bedrock topography beneath the ice, determine ice thickness and characterize its internal layers, and detect the depth of overlying snow. Combining these relatively recent — and unprecedented — measurements with longer-term satellite records and reanalyses of regional climate data extends the record of ice sheet mass balance to more than 40 years.

Several studies have shown that different remote sensing methods for studying ice sheet mass balance agree well. GRACE's record, spanning over a decade, shows that the ice loss is accelerating in Greenland and West Antarctica. Greenland has shed, on average, 303 gigatons of ice every year since 2004, while Antarctica has lost, on average, 118 gigatons of ice per year, with most of the loss coming from West Antarctica. Greenland's ice loss has accelerated by 31 gigatons of ice per year every year since 2004, while West Antarctica has experienced an ice mass loss acceleration of 28 gigatons per year.

The warming north

The Greenland Ice Sheet, spanning 660,000 square miles (1.7 million square kilometers) — an area almost as big as Alaska — and with a thickness at its highest point of almost 2 miles (3 kilometers), has the potential to raise the world's oceans by more than 20 feet (6 meters). Situated in the Arctic, which is warming at twice the rate of the rest of the planet, Greenland fell out of balance in the 1990s, and is now shedding more ice in the summer than it gains back in the winter.

"In Greenland, everything got warmer at the same time: the air, the ocean surface, the depths of the ocean," said Ian Joughin, a glaciologist at University of Washington, in Seattle. "We don't really understand which part of that warming is having the biggest effect on the glaciers."

What scientists do know is that warming Arctic temperatures — and a darkening surface on the Greenland ice sheet — are causing so much summer melting that it is now the dominant factor in Greenland's contribution to sea level rise.

Greenland's summer melt season now lasts 70 days longer than it did in the early 1970s. Every summer, warmer air temperatures cause melt over about half of the surface of the ice sheet — although recently, 2012 saw an extreme event where 97 percent of the ice sheet experienced melt at its top layer.

Greenland's glaciers have sped up, too. Though many of the glaciers in the southeast, west and northwest of the island that experienced quick thinning from 2000 to 2006 have now slowed down, others haven't. A study last year showed that the northeast Greenland ice stream had increased its ice loss rate due to regional warming.

"The early 2000s was when some big things revealed themselves, such as when we saw the fastest glacier we knew of, the Jakobshavn ice stream in Greenland, double its speed," said Waleed Abdalati, director of the Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado, and former NASA chief scientist. "The subsequent surprise was that these changes could be sustained for a decade — Jakobshavn is still going fast."

To answer the questions of how these glaciers will behave, how much they will contribute to sea level rise and how fast those changes will occur, scientists need better data on the bathymetry or geography of the ocean floor surrounding Greenland, said Eric Rignot, a glaciologist with JPL and the University of California, Irvine.

"Bathymetry is critical for understanding how ocean waters circulate around Greenland, for projections and for understanding what we've been observing in the past few decades," Rignot said.

Beginning with the deployment of research buoys in the waters around Greenland this summer, NASA is embarking on a three-year airborne and ship-based campaign to answer precisely these questions. OMG, Oceans Melting Greenland, seeks to understand the role of ocean currents and ocean temperatures in melting Greenland's ice from below — and therefore better predict the speed at which the ice sheet will raise sea level.

Changes at the southern end of the world

The Antarctic Ice Sheet covers nearly 5.4 million square miles (14 million square kilometers), an area larger than the United States and India combined, and contains enough ice to raise the ocean level by about 190 feet (58 meters). The Transantarctic Mountains split Antarctica into two major regions: West Antarctica and the much larger East Antarctica.

Though Antarctica's contribution to sea level rise is still at less than 0.02 inches (0.5 millimeters) per year, several events over the past decade and a half have prompted experts to start warning about an the possibility of more rapid changes in the upcoming century.

The mountainous horn of the continent, the Antarctic Peninsula, gave one of the earliest warnings on the impact of a changing climate in Antarctica, when warming air and ocean temperatures led to the dramatically fast breakup of the Larsen B ice shelf in 2002. In about a month, 1,250 square miles (3,240 square kilometers) of floating ice that had been stable for over 10,000 years were gone. In the following years, other ice shelves in the peninsula, including the last remainder of Larsen B, collapsed, speeding up in the flow of the glaciers they were buttressing.

In 2014, West Antarctica grabbed the spotlight when two studies focusing on the acceleration of the glaciers in the Amundsen Sea sector showed that its collapse is underway, and that the rest of West Antarctica will follow. While one of the studies said the demise could take 200 to 1,000 years, depending on how rapidly the ocean heats up, both studies concurred that the collapse is unstoppable and will add up to 12 feet (4 meters) of sea level rise.

For the West Antarctic Ice Sheet, which largely rests on a bed that lies below sea level, the main driver of ice loss is the ocean. The waters of the Southern Ocean are layered: on top and at the bottom, the temperatures are frigid, but the middle layer is warm. The westerlies, the winds that spin the ocean waters around Antarctica, have intensified during the last decade, pushing the cold, top layer away from the land. This allows the warmer, deeper waters to rise and spill over the border of the continental shelf, flowing all the way back to the base of many ice shelves. As the ice shelves weaken from underneath, the glaciers behind them speed up.

East Antarctica's massive ice sheet, as vast as the lower continental U.S., remains the main unknown in projections of sea level rise. Though it appears to be stable, a recent study on Totten Glacier, East Antarctica's largest and most rapidly thinning glacier, hints otherwise. The research found two deep troughs that could lead warm ocean water to the base of the glacier and melt it in a similar way to what's happening to the glaciers in West Antarctica. Other sectors grounded below sea level, such as the Cook Ice Shelf, Ninnis, Mertz and Frost glaciers, are also losing mass.

"The prevailing view among specialists has been that East Antarctica is stable, but I don't think we really know," said Rignot. "Some of the signs we see in the satellite data right now are kind of red flags that these glaciers might not be as stable as we once thought. There's always a lot of attention paid by the media to the changes we see now, but as scientists our priority remains what the changes could be tomorrow."

On the other hand, weather models and reanalyses of climate model data have shown that there has been an increase in snowfall along the coastline of Dronning Maud Land, which might counteract East Antarctica's ice loss. But this may be a temporary shift — scientists can't tell, because obtaining accurate field measurements of snow in Antarctica is extremely difficult. There are few weather stations, and they might not provide representative measurements because snowfall in Antarctica doesn't distribute evenly; the strong katabatic winds wipe some areas clean and make snow pile up in others. And satellite readings are not yet precise enough to detect small accumulation changes that would represent a difference of gigatons of mass when spread over East Antarctica's huge surface.

As is the case for Greenland, researchers also working on Antarctica need better data on the Southern Ocean bathymetry and the pathways that warm waters can follow to reach the ice. And this kind of data, as well as snow accumulation and other ocean data, can't be obtained remotely with enough precision, according to Ted Scambos, lead scientist at the University of Colorado's National Snow and Ice Data Center in Boulder.

"We've learned so much from the satellites that we've been surfing the wave of new understanding for the last 20 years," Scambos said. "But now, to go further, we have to try to get instruments on the ground while maintaining the ability we have with airborne and satellite missions to watch the ice sheet from a global perspective."

Related News

More

NASA Logo

Suggested Searches

Climate Change

  • Expedition 64
  • Mars perseverance
  • SpaceX Crew-2
  • International Space Station
  • View All Topics A-Z

Humans in Space

Earth & Climate

The solar system, the universe, aeronautics, learning resources, news & events.

There are three images. The top right is Cassiopeia A. This image of Cassiopeia A resembles a disk of electric light with red clouds, glowing white streaks, red and orange flames, and an area near the center of the remnant resembling a somewhat circular region of green lightning. X-rays from Chandra are blue and reveal hot gas, mostly from supernova debris from the destroyed star, and include elements like silicon and iron. X-rays are also present as thin arcs in the outer regions of the remnant. Infrared data from Webb is red, green, and blue. Webb highlights infrared emission from dust that is warmed up because it is embedded in the hot gas seen by Chandra, and from much cooler supernova debris. Hubble data shows a multitude of stars that permeate the field of view. The image on the bottom is 30 Doradus. This release features a composite image of 30 Doradus, otherwise known as the Tarantula Nebula, a region of active star formation in a neighboring galaxy. In the image, royal blue and purple gas clouds interact with red and orange gas clouds. Specks of light and large gleaming stars peek through the colourful clouds. The patches of royal blue and purple gas clouds represent X-ray data collected by the Chandra Observatory. The brightest and most prominent blue cloud appears at the center of the image, roughly shaped like an upward pointing triangle. Darker X-ray clouds can be found near the right and left edges of the image. The red and orange gas clouds represent infrared data from the James Webb Space Telescope. These patches resemble clouds of roiling fire. The brightest and most prominent infrared cloud appears at our upper left, roughly shaped like a downward pointing triangle. Wispy white clouds outline the upward pointing bright blue triangle in the center of the image. Inside this frame is a brilliant gleaming star with six long, thin, diffraction spikes. Beside it is a cluster of smaller bright specks showing young stars in the nebula. The final image is NGC 6872. In this composite image, a large spiral galaxy has some of its superheated gas stolen by a smaller, nearby neighbor. Centered in the frame, NGC 6872 is a large spiral galaxy with two elongated arms that stretch toward our upper right and lower left. Near the white dot at the heart of the galaxy, a cloud of neon purple tints the arms, which appear steel blue at the tips. The purple represents hot gas detected by Chandra. Just to the upper left of NGC 6872 is a second spiral galaxy. Its spiraling arms are much smaller, but the bright white dot at its core is quite large, suggesting a supermassive black hole. Some of the steel blue matter and gas from NGC 6872’s lower arm appears to be floating toward the smaller galaxy, likely pulled toward the supermassive black hole.

New NASA Sonifications Listen to the Universe’s Past

What’s Up: September 2024 Skywatching Tips from NASA

What’s Up: September 2024 Skywatching Tips from NASA

Still image from PREFIRE animation

NASA Mission Gets Its First Snapshot of Polar Heat Emissions

  • Search All NASA Missions
  • A to Z List of Missions
  • Upcoming Launches and Landings
  • Spaceships and Rockets
  • Communicating with Missions
  • James Webb Space Telescope
  • Hubble Space Telescope
  • Why Go to Space
  • Commercial Space
  • Destinations
  • Living in Space
  • Explore Earth Science
  • Earth, Our Planet
  • Earth Science in Action
  • Earth Multimedia
  • Earth Science Researchers
  • Pluto & Dwarf Planets
  • Asteroids, Comets & Meteors
  • The Kuiper Belt
  • The Oort Cloud
  • Skywatching
  • The Search for Life in the Universe
  • Black Holes
  • The Big Bang
  • Dark Energy & Dark Matter
  • Earth Science
  • Planetary Science
  • Astrophysics & Space Science
  • The Sun & Heliophysics
  • Biological & Physical Sciences
  • Lunar Science
  • Citizen Science
  • Astromaterials
  • Aeronautics Research
  • Human Space Travel Research
  • Science in the Air
  • NASA Aircraft
  • Flight Innovation
  • Supersonic Flight
  • Air Traffic Solutions
  • Green Aviation Tech
  • Drones & You
  • Technology Transfer & Spinoffs
  • Space Travel Technology
  • Technology Living in Space
  • Manufacturing and Materials
  • Science Instruments
  • For Kids and Students
  • For Educators
  • For Colleges and Universities
  • For Professionals
  • Science for Everyone
  • Requests for Exhibits, Artifacts, or Speakers
  • STEM Engagement at NASA
  • NASA's Impacts
  • Centers and Facilities
  • Directorates
  • Organizations
  • People of NASA
  • Internships
  • Our History
  • Doing Business with NASA
  • Get Involved

NASA en Español

  • Aeronáutica
  • Ciencias Terrestres
  • Sistema Solar
  • All NASA News
  • Video Series on NASA+
  • Newsletters
  • Social Media
  • Media Resources
  • Upcoming Launches & Landings
  • Virtual Guest Program
  • Image of the Day
  • Sounds and Ringtones
  • Interactives
  • STEM Multimedia

NASA'S Europa Clipper Spacecraft

NASA Invites Social Creators to Experience Launch of Europa Clipper Mission

NASA’s Mini BurstCube Mission Detects Mega Blast

NASA’s Mini BurstCube Mission Detects Mega Blast

nasa melting ice experiment

NASA Astronaut Don Pettit’s Science of Opportunity on Space Station

Technicians are building tooling in High Bay 2 at NASA Kennedy that will allow NASA and Boeing, the SLS core stage lead contractor, to vertically integrate the core stage.

NASA, Boeing Optimizing Vehicle Assembly Building High Bay for Future SLS Stage Production

nasa melting ice experiment

NASA Seeks Input for Astrobee Free-flying Space Robots

An aircraft is centered in the image facing the left. It is on a runway of dark gray concrete and the surroundings are primarily dry grass, with another runway at the top of the image.

NASA Earth Scientists Take Flight, Set Sail to Verify PACE Satellite Data

A green forested island sits in bright blue water, that turns teal as it touches land. IN the tip left of the picture, a white haze shows where rain is coming down.

Proyecto de la NASA en Puerto Rico capacita a estudiantes en biología marina

NASA, ESA Missions Help Scientists Uncover How Solar Wind Gets Energy

NASA, ESA Missions Help Scientists Uncover How Solar Wind Gets Energy

September’s Night Sky Notes: Marvelous Moons

September’s Night Sky Notes: Marvelous Moons

NASA’s Webb Reveals Distorted Galaxy Forming Cosmic Question Mark

NASA’s Webb Reveals Distorted Galaxy Forming Cosmic Question Mark

Hubble Zooms into the Rosy Tendrils of Andromeda

Hubble Zooms into the Rosy Tendrils of Andromeda

Leveraging Teacher Leaders to Share the Joy of NASA Heliophysics

Leveraging Teacher Leaders to Share the Joy of NASA Heliophysics

A four-engine turboprop aircraft in a red and white livery takes off from a runway on its way to be modified into a hybrid electric aircraft. Other airplanes can be seen in the distance.

Research Plane Dons New Colors for NASA Hybrid Electric Flight Tests 

A white Gulfstream IV airplane flies to the left of the frame over a tan desert landscape below and blue mountain ranges in the back of the image. The plane’s tail features the NASA logo, and its wings have winglets. Visible in the lower right third of the image, directly behind the airplane’s wingtip is the Mojave Air and Space Port in Mojave, California. 

NASA G-IV Plane Will Carry Next-Generation Science Instrument

A white helicopter with blue stripe and NASA logo sits inside of an aircraft hangar with grey cement floors and white roofing with metal beams. The helicopter has four grey blades and has a black base. A white cube is attached to the black base and holds wires and cameras. No one sits inside the helicopter, but the door is open, and a grey seat is shown along with four black, tinted windows. There is an American flag on the helicopter’s tail.

NASA Develops Pod to Help Autonomous Aircraft Operators 

A prototype of a robot built to access underwater areas where Antarctic ice shelves meet land is lowered through the ice during a field test north of Alaska in March.

NASA JPL Developing Underwater Robots to Venture Deep Below Polar Ice

First NASA-Supported Researcher to Fly on Suborbital Rocket in reclined chair handles tubes attached to his thighs while woman watches.

First NASA-Supported Researcher to Fly on Suborbital Rocket

Madyson Knox experiments with UV-sensitive beads.

How Do I Navigate NASA Learning Resources and Opportunities?

Carbon Nanotubes and the Search for Life on Other Planets

Carbon Nanotubes and the Search for Life on Other Planets

Portrait (1785) of William Herschel by Lemuel Francis Abbott

235 Years Ago: Herschel Discovers Saturn’s Moon Enceladus

A close up image of a set of massive solar arrays measuring about 46.5 feet (14.2 meters) long and about 13.5 feet (4.1 meters) high on NASA’s Europa Clipper spacecraft inside the agency’s Payload Hazardous Servicing Facility at Kennedy Space Center in Florida.

La NASA invita a los medios al lanzamiento de Europa Clipper

A man supporting the installation of the X-59 ejection seat.

El X-59 de la NASA avanza en las pruebas de preparación para volar

Technicians tested deploying a set of massive solar arrays

La NASA invita a creadores de las redes sociales al lanzamiento de la misión Europa Clipper

Jet propulsion laboratory, more about prefire, news media contacts.

The PREFIRE mission will help develop a more detailed understanding of how much heat the Arctic and Antarctica radiate into space and how this influences global climate.

NASA’s newest climate mission has started collecting data on the amount of heat in the form of far-infrared radiation that the Arctic and Antarctic environments emit to space. These measurements by the Polar Radiant Energy in the Far-Infrared Experiment ( PREFIRE ) are key to better predicting how climate change will affect Earth’s ice, seas, and weather — information that will help humanity better prepare for a changing world.

One of PREFIRE’s two shoebox-size cube satellites, or CubeSats, launched on May 25 from New Zealand, followed by its twin on June 5. The first CubeSat started sending back science data on July 1. The second CubeSat began collecting science data on July 25, and the mission will release the data after an issue with the GPS system on this CubeSat is resolved.

The PREFIRE mission will help researchers gain a clearer understanding of when and where the Arctic and Antarctica emit far-infrared radiation (wavelengths greater than 15 micrometers) to space. This includes how atmospheric water vapor and clouds influence the amount of heat that escapes Earth. Since clouds and water vapor can trap far-infrared radiation near Earth’s surface, they can increase global temperatures as part of a process known as the greenhouse effect . This is where gases in Earth’s atmosphere — such as carbon dioxide, methane, and water vapor — act as insulators, preventing heat emitted by the planet from escaping to space.

“We are constantly looking for new ways to observe the planet and fill in critical gaps in our knowledge. With CubeSats like PREFIRE, we are doing both,” said Karen St. Germain, director of the Earth Science Division at NASA Headquarters in Washington. “The mission, part of our competitively-selected Earth Venture program, is a great example of the innovative science we can achieve through collaboration with university and industry partners.”

Earth absorbs much of the Sun’s energy in the tropics; weather and ocean currents transport that heat toward the Arctic and Antarctica, which receive much less sunlight. The polar environment — including ice, snow, and clouds — emits a lot of that heat into space, much of which is in the form of far-infrared radiation. But those emissions have never been systematically measured, which is where PREFIRE comes in.

“It’s so exciting to see the data coming in,” said Tristan L’Ecuyer, PREFIRE’s principal investigator and a climate scientist at the University of Wisconsin, Madison. “With the addition of the far-infrared measurements from PREFIRE, we’re seeing for the first time the full energy spectrum that Earth radiates into space, which is critical to understanding climate change.”

This visualization of PREFIRE data (above) shows brightness temperatures — or the intensity of radiation emitted from Earth at several wavelengths, including the far-infrared. Yellow and red indicate more intense emissions originating from Earth’s surface, while blue and green represent lower emission intensities coinciding with colder areas on the surface or in the atmosphere.

The visualization starts by showing data on mid-infrared emissions (wavelengths between 4 to 15 micrometers) taken in early July during several polar orbits by the first CubeSat to launch. It then zooms in on two passes over Greenland. The orbital tracks expand vertically to show how far-infrared emissions vary through the atmosphere. The visualization ends by focusing on an area where the two passes intersect, showing how the intensity of far-infrared emissions changed over the nine hours between these two orbits.

The two PREFIRE CubeSats are in asynchronous, near-polar orbits, which means they pass over the same spots in the Arctic and Antarctic within hours of each other, collecting the same kind of data. This gives researchers a time series of measurements that they can use to study relatively short-lived phenomena like ice sheet melting or cloud formation and how they affect far-infrared emissions over time.

The PREFIRE mission was jointly developed by NASA and the University of Wisconsin-Madison. A division of Caltech in Pasadena, California, NASA’s Jet Propulsion Laboratory manages the mission for NASA’s Science Mission Directorate and provided the spectrometers. Blue Canyon Technologies built and now operates the CubeSats, and the University of Wisconsin-Madison is processing and analyzing the data collected by the instruments.

To learn more about PREFIRE, visit: https://science.nasa.gov/mission/prefire/

Jane J. Lee / Andrew Wang Jet Propulsion Laboratory, Pasadena, Calif. 818-354-0307 / 626-379-6874 [email protected] / [email protected]

Related Terms

  • PREFIRE (Polar Radiant Energy in the Far-InfraRed Experiment)

Explore More

nasa melting ice experiment

NASA Earth Science Education Collaborative Member Co-Authors Award-Winning Paper in Insects

On August 13, 2024, the publishers of the journal Insects notified authors of three papers…

Discover Related Topics

nasa melting ice experiment

Solar System

nasa melting ice experiment

share this!

September 3, 2024

This article has been reviewed according to Science X's editorial process and policies . Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

trusted source

NASA mission gets its first snapshot of polar heat emissions

NASA Mission Gets Its First Snapshot of Polar Heat Emissions

NASA's newest climate mission has started collecting data on the amount of heat in the form of far-infrared radiation that the Arctic and Antarctic environments emit to space. These measurements by the Polar Radiant Energy in the Far-Infrared Experiment (PREFIRE) are key to better predicting how climate change will affect Earth's ice, seas, and weather—information that will help humanity better prepare for a changing world.

One of PREFIRE's two shoebox-size cube satellites, or CubeSats, launched on May 25 from New Zealand, followed by its twin on June 5. The first CubeSat started sending back science data on July 1. The second CubeSat began collecting science data on July 25, and the mission will release the data after an issue with the GPS system on this CubeSat is resolved.

The PREFIRE mission will help researchers gain a clearer understanding of when and where the Arctic and Antarctica emit far-infrared radiation (wavelengths greater than 15 micrometers) to space. This includes how atmospheric water vapor and clouds influence the amount of heat that escapes Earth.

Since clouds and water vapor can trap far-infrared radiation near Earth's surface, they can increase global temperatures as part of a process known as the greenhouse effect. This is where gases in Earth's atmosphere—such as carbon dioxide , methane, and water vapor—act as insulators, preventing heat emitted by the planet from escaping to space.

"We are constantly looking for new ways to observe the planet and fill in critical gaps in our knowledge. With CubeSats like PREFIRE, we are doing both," said Karen St. Germain, director of the Earth Science Division at NASA Headquarters in Washington. "The mission, part of our competitively-selected Earth Venture program, is a great example of the innovative science we can achieve through collaboration with university and industry partners."

Earth absorbs much of the sun's energy in the tropics; weather and ocean currents transport that heat toward the Arctic and Antarctica, which receive much less sunlight. The polar environment—including ice, snow, and clouds—emits a lot of that heat into space, much of which is in the form of far-infrared radiation. But those emissions have never been systematically measured, which is where PREFIRE comes in.

"It's so exciting to see the data coming in," said Tristan L'Ecuyer, PREFIRE's principal investigator and a climate scientist at the University of Wisconsin, Madison. "With the addition of the far-infrared measurements from PREFIRE, we're seeing for the first time the full energy spectrum that Earth radiates into space, which is critical to understanding climate change."

This visualization of PREFIRE data shows brightness temperatures—or the intensity of radiation emitted from Earth at several wavelengths, including the far-infrared. Yellow and red indicate more intense emissions originating from Earth's surface, while blue and green represent lower emission intensities coinciding with colder areas on the surface or in the atmosphere.

The visualization starts by showing data on mid-infrared emissions (wavelengths between 4 to 15 micrometers) taken in early July during several polar orbits by the first CubeSat to launch. It then zooms in on two passes over Greenland. The orbital tracks expand vertically to show how far-infrared emissions vary through the atmosphere. The visualization ends by focusing on an area where the two passes intersect, showing how the intensity of far-infrared emissions changed over the nine hours between these two orbits.

The two PREFIRE CubeSats are in asynchronous, near-polar orbits, which means they pass over the same spots in the Arctic and Antarctic within hours of each other, collecting the same kind of data. This gives researchers a time series of measurements that they can use to study relatively short-lived phenomena like ice sheet melting or cloud formation and how they affect far-infrared emissions over time.

Provided by NASA

Explore further

Feedback to editors

nasa melting ice experiment

Small, harmless asteroid burns up in Earth's atmosphere over the Philippines

3 hours ago

nasa melting ice experiment

Novel metasurface enables temperature-adaptive radiative cooling

nasa melting ice experiment

Miniature treadmills accelerate studies of insects walking

14 hours ago

nasa melting ice experiment

City light pollution is shrinking spiders' brains, new study finds

nasa melting ice experiment

Nanostructures enable on-chip lightwave-electronic frequency mixer

16 hours ago

nasa melting ice experiment

Researcher helps develop new technique to explore oceanic microbes

nasa melting ice experiment

Soil treated with organic fertilizers stores more carbon, study finds

nasa melting ice experiment

Soil pollution surpasses climate change as top threat to underground biodiversity, study finds

nasa melting ice experiment

Optoelectronic diamond device reveals an unexpected phenomenon reminiscent of lightning in slow motion

17 hours ago

nasa melting ice experiment

Fetching in cats is more common than previously thought, researchers find

Relevant physicsforums posts, the secrets of prof. verschure's rosetta stones.

Aug 29, 2024

Alaska - Pedersen Glacier: Landslide Triggered Tsunami

Aug 23, 2024

Iceland warming up again - quakes swarming

Shiveluch volcano erupts on kamchatka peninsula.

Aug 18, 2024

A very puzzling rock or a pallasite / mesmosiderite or a nothing burger

Aug 14, 2024

M6.8 and M6.3 east of Mindanao, Philippines

Aug 13, 2024

More from Earth Sciences

Related Stories

nasa melting ice experiment

NASA launches second small climate satellite to study Earth's poles

Jun 5, 2024

nasa melting ice experiment

Five things to know about how NASA's tiny twin polar satellites will study the Arctic and Antarctic

May 15, 2024

nasa melting ice experiment

Twin NASA satellites are ready to help gauge Earth's energy balance

May 30, 2024

nasa melting ice experiment

Launch date set for NASA's PREFIRE mission to study polar energy loss

Apr 30, 2024

nasa melting ice experiment

Meet NASA's twin spacecraft headed to the ends of the Earth

Feb 12, 2024

nasa melting ice experiment

NASA launches ground-breaking climate change satellite

May 25, 2024

Recommended for you

nasa melting ice experiment

Scientists uncover hidden source of snow melt: Dark brown carbon

nasa melting ice experiment

Levels of one 'forever chemical' are increasing in groundwater, study finds

20 hours ago

nasa melting ice experiment

Uncollected waste and open burning major sources of plastic pollution, global study finds

nasa melting ice experiment

Study reveals shifting influence of El Niño on central Asia's rainfall

21 hours ago

nasa melting ice experiment

Organic phosphate isotopes method offers a new way to track pollutants in the environment

22 hours ago

nasa melting ice experiment

Beef industry can reduce emissions by up to 30%, says new research

Sep 3, 2024

Let us know if there is a problem with our content

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.

Newsletter sign up

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

More information Privacy policy

Donate and enjoy an ad-free experience

We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.

E-mail newsletter

' class=

News | August 25, 2015

Warming seas and melting ice sheets.

By Maria-Jose Viñas and Carol Rasmussen, NASA's Earth Science News Team

nasa melting ice experiment

An iceberg floats in Disko Bay, near Ilulissat, Greenland, on July 24, 2015. The massive Greenland ice sheet is shedding about 300 gigatons of ice a year into the ocean, making it the single largest source of sea level rise from melting ice. Credit: NASA/Saskia Madlener

Sea level rise is a natural consequence of the warming of our planet.

We know this from basic physics. When water heats up, it expands. So when the ocean warms, sea level rises. When ice is exposed to heat, it melts. And when ice on land melts and water runs into the ocean, sea level rises.

All signs suggest that this rise is accelerating.

While NASA and other agencies continue to monitor the warming of the ocean and changes to the planet's land masses, the biggest concern is what will happen to the ancient ice sheets covering Greenland and Antarctica, which continue to send out alerts that a warming planet is affecting their stability.

While the expansion of warmer ocean waters and tectonic movement of land masses play key roles in both global and local sea level changes, it's the fate of the polar ice sheets that will most determine how much coastlines change in the coming decades.

"We've seen from the paleoclimate record that sea level rise of as much as 10 feet [3 meters] in a century or two is possible, if the ice sheets fall apart rapidly," said Tom Wagner, the cryosphere program scientist at NASA Headquarters in Washington. "We're seeing evidence that the ice sheets are waking up, but we need to understand them better before we can say we're in a new era of rapid ice loss."

Finding the level

NASA has been recording the height of the ocean surface from space since 1992. That year, NASA and the French space agency, CNES, launched the first of a series of spaceborne altimeters that have been making continuous measurements ever since. The first instrument, Topex/Poseidon, and its successors, Jason-1 and Jason-2, have recorded about 2.9 inches (7.4 centimeters) of rise in sea level, averaged over the globe.

In the 21st century, two new sensing systems have proven to be invaluable complements to the satellite altimetry record. In 2002, NASA and the German space agency launched the Gravity Recovery and Climate Experiment (GRACE) twin satellites. These measure the movement of mass, and hence gravity, around Earth every 30 days. Earth's land masses move very little in a month, but its water masses move through melting, evaporation, precipitation and other processes. GRACE records these movements of water around the globe. The other new system is the multinational Argo array, a network of more than 3,000 floating ocean sensors spread across the entire open ocean.

"To study sea level rise, the Jason series, GRACE, and Argo are the big three," said oceanographer Josh Willis of NASA's Jet Propulsion Laboratory, Pasadena, California, the project scientist for the upcoming Jason-3 altimetry mission.

Observations from the Jason series have revolutionized scientists' understanding of contemporary sea level rise and its causes. We know that today's sea level rise is about one-third the result of the warming of existing ocean water, with the remainder coming from melting land ice.

And it has shown precisely that the sea, of course, is not actually level. It varies as much as six feet (two meters) from place to place. And it is not rising evenly, like a bathtub filling with water. Currently, regional differences in sea level rise are dominated by the effects of ocean currents and natural cycles such as the Pacific Ocean's El Niño phenomenon and Pacific Decadal Oscillation. As the ice sheets continue to melt, scientists predict their meltwater will overtake natural causes as the most significant source of regional variations and the most significant contributor to overall sea level rise.

Or as Willis put it: "You ain't seen nothing yet."

Watching ice melt

Not that long ago, in the early 1990s, scientists were not able to determine whether polar land ice was growing, shrinking or in balance. Satellite and airborne missions, complemented by field measurements, have not only answered that question, but also provided the means for scientists to determine the mechanisms that are contributing to the growth and shrinkage of polar ice.

These advances in observing the world's frozen regions have allowed scientists to accurately estimate annual ice losses from Greenland and Antarctica in only the last decade. We now know not only how much sea level is changing — as measured by satellites for the past 23 years — but we can also determine how much sea level rise is caused by the loss of land ice.

Several studies have shown that different remote sensing methods for studying ice sheet mass balance agree well. GRACE's record, spanning over a decade, shows that the ice loss is accelerating in Greenland and West Antarctica. Greenland has shed, on average, 303 gigatons of ice every year since 2004, while Antarctica has lost, on average, 118 gigatons of ice per year, with most of the loss coming from West Antarctica. Greenland's ice loss has accelerated by 31 gigatons of ice per year every year since 2004, while West Antarctica has experienced an ice mass loss acceleration of 28 gigatons per year.

The warming north

The Greenland Ice Sheet, spanning 660,000 square miles (1.7 million square kilometers) — an area almost as big as Alaska — and with a thickness at its highest point of almost 2 miles (3 kilometers), has the potential to raise the world's oceans by more than 20 feet (6 meters). Situated in the Arctic, which is warming at twice the rate of the rest of the planet, Greenland fell out of balance in the 1990s, and is now shedding more ice in the summer than it gains back in the winter.

"In Greenland, everything got warmer at the same time: the air, the ocean surface, the depths of the ocean," said Ian Joughin, a glaciologist at University of Washington, in Seattle. "We don't really understand which part of that warming is having the biggest effect on the glaciers."

What scientists do know is that warming Arctic temperatures — and a darkening surface on the Greenland ice sheet — are causing so much summer melting that it is now the dominant factor in Greenland's contribution to sea level rise.

Greenland's summer melt season now lasts 70 days longer than it did in the early 1970s. Every summer, warmer air temperatures cause melt over about half of the surface of the ice sheet — although recently, 2012 saw an extreme event where 97 percent of the ice sheet experienced melt at its top layer.

Greenland's glaciers have sped up, too. Though many of the glaciers in the southeast, west and northwest of the island that experienced quick thinning from 2000 to 2006 have now slowed down, others haven't. A study last year showed that the northeast Greenland ice stream had increased its ice loss rate due to regional warming.

"The early 2000s was when some big things revealed themselves, such as when we saw the fastest glacier we knew of, the Jakobshavn ice stream in Greenland, double its speed," said Waleed Abdalati, director of the Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado, and former NASA chief scientist. "The subsequent surprise was that these changes could be sustained for a decade — Jakobshavn is still going fast."

To answer the questions of how these glaciers will behave, how much they will contribute to sea level rise and how fast those changes will occur, scientists need better data on the bathymetry or geography of the ocean floor surrounding Greenland, said Eric Rignot, a glaciologist with JPL and the University of California, Irvine.

"Bathymetry is critical for understanding how ocean waters circulate around Greenland, for projections and for understanding what we've been observing in the past few decades," Rignot said.

Beginning with the deployment of research buoys in the waters around Greenland this summer, NASA is embarking on a three-year airborne and ship-based campaign to answer precisely these questions. OMG, Oceans Melting Greenland, seeks to understand the role of ocean currents and ocean temperatures in melting Greenland's ice from below — and therefore better predict the speed at which the ice sheet will raise sea level.

Changes at the southern end of the world

The Antarctic Ice Sheet covers nearly 5.4 million square miles (14 million square kilometers), an area larger than the United States and India combined, and contains enough ice to raise the ocean level by about 190 feet (58 meters). The Transantarctic Mountains split Antarctica into two major regions: West Antarctica and the much larger East Antarctica.

Though Antarctica's contribution to sea level rise is still at less than 0.02 inches (0.5 millimeters) per year, several events over the past decade and a half have prompted experts to start warning about an the possibility of more rapid changes in the upcoming century.

The mountainous horn of the continent, the Antarctic Peninsula, gave one of the earliest warnings on the impact of a changing climate in Antarctica, when warming air and ocean temperatures led to the dramatically fast breakup of the Larsen B ice shelf in 2002. In about a month, 1,250 square miles (3,240 square kilometers) of floating ice that had been stable for over 10,000 years were gone. In the following years, other ice shelves in the peninsula, including the last remainder of Larsen B, collapsed, speeding up in the flow of the glaciers they were buttressing.

In 2014, West Antarctica grabbed the spotlight when two studies focusing on the acceleration of the glaciers in the Amundsen Sea sector showed that its collapse is underway, and that the rest of West Antarctica will follow. While one of the studies said the demise could take 200 to 1,000 years, depending on how rapidly the ocean heats up, both studies concurred that the collapse is unstoppable and will add up to 12 feet (4 meters) of sea level rise.

For the West Antarctic Ice Sheet, which largely rests on a bed that lies below sea level, the main driver of ice loss is the ocean. The waters of the Southern Ocean are layered: on top and at the bottom, the temperatures are frigid, but the middle layer is warm. The westerlies, the winds that spin the ocean waters around Antarctica, have intensified during the last decade, pushing the cold, top layer away from the land. This allows the warmer, deeper waters to rise and spill over the border of the continental shelf, flowing all the way back to the base of many ice shelves. As the ice shelves weaken from underneath, the glaciers behind them speed up.

East Antarctica's massive ice sheet, as vast as the lower continental U.S., remains the main unknown in projections of sea level rise. Though it appears to be stable, a recent study on Totten Glacier, East Antarctica's largest and most rapidly thinning glacier, hints otherwise. The research found two deep troughs that could lead warm ocean water to the base of the glacier and melt it in a similar way to what's happening to the glaciers in West Antarctica. Other sectors grounded below sea level, such as the Cook Ice Shelf, Ninnis, Mertz and Frost glaciers, are also losing mass.

"The prevailing view among specialists has been that East Antarctica is stable, but I don't think we really know," said Rignot. "Some of the signs we see in the satellite data right now are kind of red flags that these glaciers might not be as stable as we once thought. There's always a lot of attention paid by the media to the changes we see now, but as scientists our priority remains what the changes could be tomorrow."

On the other hand, weather models and reanalyses of climate model data have shown that there has been an increase in snowfall along the coastline of Dronning Maud Land, which might counteract East Antarctica's ice loss. But this may be a temporary shift — scientists can't tell, because obtaining accurate field measurements of snow in Antarctica is extremely difficult. There are few weather stations, and they might not provide representative measurements because snowfall in Antarctica doesn't distribute evenly; the strong katabatic winds wipe some areas clean and make snow pile up in others. And satellite readings are not yet precise enough to detect small accumulation changes that would represent a difference of gigatons of mass when spread over East Antarctica's huge surface.

As is the case for Greenland, researchers also working on Antarctica need better data on the Southern Ocean bathymetry and the pathways that warm waters can follow to reach the ice. And this kind of data, as well as snow accumulation and other ocean data, can't be obtained remotely with enough precision, according to Ted Scambos, lead scientist at the University of Colorado's National Snow and Ice Data Center in Boulder.

"We've learned so much from the satellites that we've been surfing the wave of new understanding for the last 20 years," Scambos said. "But now, to go further, we have to try to get instruments on the ground while maintaining the ability we have with airborne and satellite missions to watch the ice sheet from a global perspective."

Related Stories

More

NASA "meatball" logo

SWOT-AVISO Level 3 KaRIn Low Rate Sea Surface Height Data Products, Version 1.0

Sassie arctic field campaign pals data fall 2022, sassie arctic field campaign summary ice concentration rankings from ml analysis of sband images fall 2022, merra2_cnn_haqast bias corrected global hourly surface total pm2.5 mass concentration, v1 (merra2_cnn_haqast_pm25) at ges disc, measures its_live greenland monthly 120 m ice sheet extent masks, 1972-2022 v001, measures its_live antarctic quarterly 1920 m ice shelf height change and basal melt rates, 1992-2017 v001, measures its_live antarctic annual 240 m ice sheet extent masks, 1997-2021 v001, integrated multi-mission ocean altimeter data for climate research version 5.2, cygnss level 3 mrg science data record version 3.2.1, high mountain asia 1 km modis-airs gap-filled ground temperatures and permafrost probability maps, 2003-2016 v001.

IMAGES

  1. Educator Guide: Melting Ice Experiment

    nasa melting ice experiment

  2. Educator Guide: Melting Ice Experiment

    nasa melting ice experiment

  3. Student Project: How Melting Ice Causes Sea Level Rise

    nasa melting ice experiment

  4. Educator Guide: Melting Ice Experiment

    nasa melting ice experiment

  5. NASA Reveals Shocking Ice Cap Melt in Antarctica After Record Heat

    nasa melting ice experiment

  6. First results from NASA’s ICESat-2 map 16 years of melting ice sheets

    nasa melting ice experiment

VIDEO

  1. "Ice Cream Melting Race" #shorts

  2. Is it quicker to freeze your ice cube tray using hot or cold water? #shortvideo #viral #water

  3. Melting Ice Experiment! Snow Play and Science Activity

  4. water facts//cold water facts//hot water facts//ice facts #amazingfacts #crazyfactz #factsinhindi

  5. Top 8 ice experiment by science

  6. Watch These Ice Cubes Melt In 10 Seconds #timelapse

COMMENTS

  1. Educator Guide: Melting Ice Experiment

    Measure and record the temperature. Gently place an ice cube in the dish and record how long it takes for the ice cube to melt. There should be enough water in the dish so the ice cube floats. Measure and record the water temperature after the ice has melted. Repeat the procedure using hot water.

  2. How Melting Ice Causes Sea Level Rise

    2. Make a prediction. On the data sheet or a blank piece of paper, write down your prediction for which type of ice - land ice or sea ice - contributes more to sea level rise. 3. Set up your experiment. Press equal amounts of clay into one side of both plastic containers, making a smooth, flat surface representing land rising out of the ocean.

  3. Warming Seas and Melting Ice Sheets

    Aug 26, 2015. Sea level rise is a natural consequence of the warming of our planet. We know this from basic physics. When water heats up, it expands. So when the ocean warms, sea level rises. When ice is exposed to heat, it melts. And when ice on land melts and water runs into the ocean, sea level rises. For thousands of years, sea level has ...

  4. What's Causing Sea-Level Rise? Land Ice Vs. Sea Ice

    Both thermal expansion and ice melt are the results of the rise in global average temperatures on land and sea known as climate change.Procedures. As a class, discuss sea-level rise and climate change. Tell students they're going to conduct an experiment to learn how melting ice contributes to sea-level rise.

  5. NASA Mission Flies Over Arctic to Study Sea Ice Melt Causes

    To explore how these factors interact and impact sea ice melting, NASA is flying two aircraft equipped with scientific instruments over the Arctic Ocean north of Greenland this summer. The first flights of the field campaign, called ARCSIX (Arctic Radiation Cloud Aerosol Surface Interaction Experiment), successfully began taking measurements on ...

  6. Learning Space: How Melting Ice Causes Sea Level Rise

    In this episode of Learning Space, you'll do an experiment to see how the melting of land ice and sea ice contributes to global sea level rise. Materials and...

  7. Ice Sheets

    Key Takeaway: Antarctica is losing ice mass (melting) at an average rate of about 150 billion tons per year, and Greenland is losing about 270 billion tons per year, adding to sea level rise. Data from NASA's GRACE and GRACE Follow-On satellites show that the land ice sheets in both Antarctica (upper chart) and Greenland (lower chart) have been ...

  8. Melting Ice Experiment

    Melting Ice Experiment In this activity, students will predict, observe, and compare melt rates of ice under different temperature conditions and in different solutions. Jun 15, 2023 • Knowledge

  9. Unlike Ice Cubes in a Glass

    Ice melting in a glass of water does not change the density, while ice melting in the ocean decreases the density of the salt water, raising the sea level slightly. Note: magnitude has been exaggerated for artistic effect. This process becomes important when accounting for the total sea level rise, said Gavin Schmidt, the director of NASA's ...

  10. NASA Returns to Arctic Studying Summer Sea Ice Melt

    NASA/Gary Banziger. "More sea ice makes that air conditioning effect more efficient. Less sea ice lessens the Arctic's cooling effect," says Patrick Taylor, a climate scientist at NASA's Langley Research Center in Hampton, Virginia. "Over the last 40 years, The Arctic has lost a significant amount of sea ice making the Arctic warm faster.

  11. The Secret Life of Melting Ice

    The Secret Life of Melting Ice. By Pat Brennan, NASA's Sea Level Change Team. Satellite image of a massive iceberg breaking away from the Larsen C ice shelf in the eastern Antarctic Peninsula. The false-color image was captured by the Landsat 8 thermal infrared sensor in July 2017. Image credit: Joshua Stevens, NASA Earth Observatory, using ...

  12. Melting Ice, Warming Ocean: Take Control in a New Simulation

    A new simulation from NASA's Jet Propulsion Laboratory allows you to take control of a melting Antarctica. ... You can take charge of the controls - ice melt caused by a warming ocean, snowfall, temperature, friction - and get a feel for how a warming world could diminish the frozen continent and raise sea levels over the coming century.

  13. PDF Melting Ice: Designing an Experiment

    Check the temperature of the buckets before you begin the experiment. Use ice cubes from a refrigerator icemaker if possible because they are very uniform. If you make them in ice cube trays, each cube should be only about 1⁄2 to 3⁄4 of the compartment. Use a syringe to fill them if necessary to make them uniform.

  14. PDF Climate Change Inquiry Labs: Melting Ice and Sea Level Rise

    3. Place the funnel in the top of the second graduated cylinder and put the same number of ice cubes in it as you did in the first cylinder. (Simulating land ice.) 4. Wait 15-30 minutes for the ice to melt and observe how much the water level has increased in both graduated cylinders. Rise in water level in sea ice graduated cylinder:

  15. PDF Climate Change Inquiry Labs: Sea Ice and Temperature

    If gradually warming temperatures melt sea ice over time, fewer bright surfaces are available to reflect sunlight back into space, more solar energy is absorbed at the surface, and ... (to represent sea ice) Procedure . 1. Set up the experiment as shown in the diagram at right. Make sure you use the same amount of water in each container, and

  16. EO Kids

    Making and Melting Ice at Earth's Poles - download pdf (4 MB) January 2020. EO Kids is discovering more about sea ice and its effect on ecosystems and global climate by looking at how and when it forms across the globe. Plus, learn how different types of water freeze in our "DIY Science" activity: "Saltwater is Cool (Literally)."

  17. EO Kids

    Making and Melting Ice at Earth's Poles - download pdf (4 MB) January 2020. EO Kids is discovering more about sea ice and its effect on ecosystems and global climate by looking at how and when it forms across the globe. Plus, learn how different types of water freeze in our "DIY Science" activity: "Saltwater is Cool (Literally).".

  18. STEM Lessons for Educators

    Explore standards-aligned lessons from NASA-JPL in science, technology, engineering and math for students for grades K-12. Engage students in NASA missions exploring Earth and space.

  19. These Glaciers Melt at Your Fingertips

    Welcome to our improved NASA website! If you don't find what you are looking for, please try searching above, give us feedback , or return to the main site . NASA explores the unknown in air and space, innovates for the benefit of humanity, and inspires the world through discovery. You control ice melt in Greenland in a new simulation.

  20. NASA Mission Gets Its First Snapshot of Polar Heat Emissions

    NASA's newest climate mission has started collecting data on the amount of heat in the form of far-infrared radiation that the Arctic and Antarctic environments emit to space. These measurements by the Polar Radiant Energy in the Far-Infrared Experiment ... relatively short-lived phenomena like ice sheet melting or cloud formation and how ...

  21. Warming Seas and Melting Ice Sheets

    Warming Seas and Melting Ice Sheets. An iceberg floats in Disko Bay, near Ilulissat, Greenland, on July 24, 2015. The massive Greenland ice sheet is shedding about 300 gigatons of ice a year into the ocean, making it the single largest source of sea level rise from melting ice. Credits: NASA/Saskia Madlener. NASA is providing an in-depth look ...

  22. NASA Sea Level Change Portal: Ice Sheets

    First, warmer temperatures at lower elevations along the ice sheet's edges melt ice, and the resulting meltwater flows into the ocean. Secondly, if the ice sheet is large enough, ice can extend to the coasts and flow into the ocean, where it breaks and floats away as icebergs.In some cases, ice will remain intact as it flows into the ocean, staying connected to the ice sheet and creating ...

  23. As 'Doomsday' Glacier Melts, Can an Artificial Barrier Save It?

    Relatively warm ocean currents are weakening the base of Antarctica's enormous Thwaites Glacier, whose demise could raise sea levels by as much as 7 feet. To separate the ice from those warmer ocean waters, scientists have put forward an audacious plan to erect a massive underwater curtain.

  24. Warming seas and melting ice sheets

    The massive Greenland ice sheet is shedding about 300 gigatons of ice a year into the ocean, making it the single largest source of sea level rise from melting ice. Credit: NASA/Saskia Madlener. Sea level rise is a natural consequence of the warming of our planet. We know this from basic physics. When water heats up, it expands.

  25. NASA Mission Gets Its First Snapshot of Polar Heat Emissions

    NASA's newest climate mission has started collecting data on the amount of heat in the form of far-infrared radiation that the Arctic and Antarctic environments emit to space. These measurements by the Polar Radiant Energy in the Far-Infrared Experiment ... relatively short-lived phenomena like ice sheet melting or cloud formation and how ...

  26. NASA mission gets its first snapshot of polar heat emissions

    NASA's newest climate mission has started collecting data on the amount of heat in the form of far-infrared radiation that the Arctic and Antarctic environments emit to space. These measurements ...

  27. Warming seas and melting ice sheets

    The massive Greenland ice sheet is shedding about 300 gigatons of ice a year into the ocean, making it the single largest source of sea level rise from melting ice. Credit: NASA/Saskia Madlener. Sea level rise is a natural consequence of the warming of our planet. We know this from basic physics. When water heats up, it expands.

  28. Search & Browse Page 2 of 1000

    This dataset contains ice concentration rankings of S-band images from the S-BAND marine navigation radar collected during the 2022 Salinity and Stratification at the Sea Ice Edge (SASSIE) campaign. SASSIE is a NASA experiment that aims to understand how salinity anomalies in the upper ocean generated by melting sea ice affect sea surface ...