Getting the facts right

Besides pedagogy or psychology, it can be also relevant just to get the facts right. The Water-Candle experiment is an illustrative example. It is a situation where many different effects play together and where it is hard to figure out, which ones really matter. My own perspective about this experiment has shifted several times and comments of some who wrote me added valuable insight. Please look also towards the end of this page, where some interesting links are added and information like why the great Lavoisier himself replaced this experiment as it appeared to be too subtle.
Cover a burning candle with a pitcher so that the candle is in an air-tight room sealed by the water at the ground. After some time, the candle dims and goes out. Just before the candle dies, the water level rises to almost 1/10 th of pitcher height. No air bubbles are seen. The water level stays up for many few minutes more.
: oxygen O and C H react. The burning produces water H O and carbon dioxide C O . For n=1, we balance the equation as follows: + C H = C O + 2 H O
There are two different effects. Both a chemical and a physical reasoning are needed to explain what we can see. Both and matter. The initial cancellation effect can confuse the observer. plays a role when the chemical equations are balanced.

Photos of the experiment

An exhibit of explanations

What do we learn, appendix: the chemical equation for general n.

O + x C H = y C O + z H O
(1+3 n) O + 2 C H = 2 n C O + (2+2n) H O

Appendix: the ideal gas equation

p V = N k T

Added March 20, 2011

Added September 26, 2011

What is happening in this experiment? When we ignite the candle, the hydrocarbon reacts with oxygen (in excess) to produce carbon dioxide and water. The burning sets an air current which gives dome shape to candle flame and it helps to get complete combustion at the bottom and the outer surface of the flame. The hot air and products of combustion rise up above the flame. As soon as the gas jar comes over the flame, the hot gases moving upward enter the jar and air inside the jar expands pushing some of the air out of the jar. This process goes unnoticed. As soon as the jar touches the water, the burning occurs in a closed environment. Further pressing the jar into water helps to retain the air in jar which is less in quantity than at room temperature and pressure. However, due to thermal expansion, the pressure is higher than atmospheric pressure which is balanced by pressure from the water. The burning of hydrocarbon in the jar produces about 30% more molecules of carbon dioxide and water than the molecules of oxygen consumed in the reaction (see below the title expected chemical reaction). The increased heat and number of molecules increases the pressure in side as a result if not careful some bubbles of gas will escape from the jar. Over the time the oxygen in the jar is reduced and conditions for burning are changed. Burning under reduced oxygen may not produce carbon dioxide rather carbon monoxide (very little). When the candle is put out, the temperature decreases followed by also a decrease in pressure due to condensation of water vapour and decreased quantity of air due to thermal expansion during the process of placing the jar on the candle. The overall situation is a decrease in pressure inside the jar as compared to atmospheric pressure. Therefore, despite water is heavier that air, it is pulled into the jar. How much water rises as a result of dissolving of carbon dioxide? Very little practically negligible during 30 - 40 minutes, the time the experiment usually takes for performing in a classroom situation. If the number of candles is increased in the jar, the heat produced is more therefore more air is likely to escape from the jar due to thermal expansion during the process of pacing the jar over them. Therefore, more water will rise in the jar with more candles. The nature and quantity of the products will depend upon the composition of candle material. However, it is assumed that combustion of saturated hydrocarbons is taking place during burning. C H (s) + (1.5n+0.5) O (g) = n CO (g) + (n+1) H O(g) For n=1, two moles of oxygen reacts with a mole of CH to produce three moles of product molecules. Assuming that supply of methane was controlled and it is stopped as soon as the flame is put out, otherwise there will be an explosion. The number of moles of the product molecules is 1.50 times that of oxygen. As n increases, the multiple factor decreases from 1.50 and approaches 1.0 at n = ? For n=30 (a typical paraffin wax), the factor will be 1.34. The overall understanding of the experiment is that all the oxygen is not used up (I have rested the presence of oxygen after the candle is put out in our laboratory using yellow phosphorus) and the consumption of oxygen does not create empty space rather the number of product molecules in the jar increases over that of the consumed oxygen. Thus giving rise to an increase in overall pressure in the jar (see above equation). Moreover, almost equal number of molecules of CO and H2 are produced. A quick rise of water in the jar after the candle is extinguished is mainly due to a decrease in pressure as a result of a decrease in amount of air in the jar due to thermal expansion during the process of placing the jar on the candles, bubbles escaping (if any) through the water and may be the condensation of the water vapour. The amount of condensation of water will depend upon the temperature difference between initial and final temperature of the air in the jar. Since air is above water, therefore saturated water vapour pressure is considered in the beginning of the experiment. Increase in temperature, during the candle burning, will make air unsaturated to accommodate additional water vapours especially produced as a product of burning. A decrease in temperature over time after the candle is off to the initial temperature will help water vapour to condense. This condensation will decrease the pressure inside the jar and will help water rise in the jar. The amount of water vapours condensed during a small change of temperature as usually occurs in this experiment may even be small to notice. The amount of CO dissolved in water is minimal in the 30-40 minutes during which experiment is conducted.

Added November 20, 2011

: theoretically, if you assume that the candles will burn up all the oxygen in the container, and assume the room is completely air tight and assume that both water and air incompressible, it does not matter. You will have the same water level at the end in both setups after the candles have burned out and the situation cooled down.

In real experiments, there are differences but they depend on the actual experiment:

Added January 23, 2012

Simo Tolvanan from Helsinki kindly informed me about the . explains things very well and also contains much history and references. This paper makes the story again interesting. It points to the fascinating story of Lavoisier, who first realized that the total does not change during this process and who noticed that only a fraction of the oxygen reacts before the candle goes out by demonstrating that a mouse still can breath afterwards. The authors of the article provide also The classical is compatible what is seen by everybody else and which matches the . The experiments demonstrate only a one percent increase. The authors conclude that bubbling and hot air trapping are responsible for the rising water. The setup for and the experiments are very different. In the later case, the candle burning is violent and the container is very long. Heavier CO (which the ignition already produces in the first moments) can kill the candle before much of the oxygen is out.
January 27 2012: the bubbling effect. Here is an illustration why many teachers report bubbles. If you place the pitcher flat on then bubbles escape initially. One can avoid this by tilting the glass first. We just want initially to have the same level of water and the same pressure inside and outside. The experiment starts then.

Candle experiment done carefully so that initially the water level inside is close to the water level outside. Bubbles which escape.

Added February 5, 2013

had a great idea to modify the experiment. He wrote: The stoichiometry for coal is different than for paraffin. In the case of only carbon, one has and one would indeed expect that the volume would stay the same. Since the pressure decreases afterwards, this could indicate that indeed some air has gone out when the heat has expanded the inside. After cooling, the plastic wrap collapses.

Peter Dureen again: I think this is more indication that some hot air has left the container before it started to cool down. I have repeated the experiments also with different type of containers and seen also some air, as other teachers have observed too. Faraday had been a fantastic experimenter and assisted as a chemist before for a long time. Lavoisier was definitely a great pioneer in this context.

Added January 21, 2014

sent the following interesting thoughts: . What do you think of this? This is a pretty good simplification. It defuses well the myth that the oxygen is burned away. The reason why the myth persists because the rise of water matches the amount of oxygen in the air. again: O produced in burning the candle wick was wet and hard to relight. Thus I decided that there was no way that Lavoisier could have learned much from this particular experiment. So I managed to locate . Note that he abandons the candle and water experiment as having potential flaws. He moves to mercury instead, and lights the candle after the jar is in place. What he ends up on is this: "In the middle of a glass stand, was placed a small wax candle; and on the top of the wick was fixed a small piece of Kunckel's phosphorus. The stand was then placed in a basin of mercury and covered with a jar. I made a piece of iron wire red hot then passed it through the mercury set fire to the little piece of phosphorous and by this means the candle was lighted." What he found was that the heated air initially pushed the mercury down, but when everything had cooled, there was a tiny loss in the volume of air, 1/300th the volume. But then he reacted the air with a CO absorber and the volume was reduced by 1/10. In other words he claims that the total volume was virtually unchanged, but (assuming air is 1/5 oxygen) about 1/2 the oxygen was converted into CO (with an unspecified amount turned into water. He may not have realized water was a byproduct yet). The combustion of paraffin is C H + 38 O => 25 CO + 26 H O. Depending on what fraction of the water remains as vapor, one goes from 38n moles to between 25n and 51n moles of CO +H O of vapor (with the rest in condensed H2O). Now it could be by chance that the C O+H O vapor happened to be near 38n, but that would be just chance. In your opinion, what fraction of the H O condenses? This should depend on the temperature and the humidity already present in the room. If we believe the account of Lavoisier, it could indeed be that things pretty much balances out when done as described. This makes the experiment so interesting. There are various effects which play a role: physical like temporary heating and cooling as well as condensation as well as chemical due to the reaction of paraffin with stochiometric computations which depending on the type of paraffin is used. The experiment depends on the size of the container, the surrounding temperature, air humidity present as well as on the experimenter (lightening the candle, allowing air to escape initially for example through bubbles or due to the expansion while removing the lightener).

Added March 30, 2021

My answer:

Added January 28, 2024

My answer:

Steve Spangler

Why Does the Water Rise?

A candle and some rising colored water reveal a hidden property of air that’s around you all the time.

Print this Experiment

candle cup water experiment

Watch closely and use everything you know about air pressure differences to explain the mystery of the rising water. Look for clues that explain why the water rises into the container. It may not be what you think it is so keep your eyes open as you collect data. The best part is that you’ll likely have to do the experiment several times to confirm how air pressure is involved.

Experiment Videos

Here's What You'll Need

Plate or shallow dish, clear, slender container, 1 cup (237 ml) of room temperature water, food coloring, adult supervision, let's try it.

candle cup water experiment

Add 2-3 drops of food coloring to the water. This will make the movement of the water easier to see later. It’s interesting to watch how the drops of coloring spread through the water before stirring it.

candle cup water experiment

Pour the colored water into the plate. You want about a half-inch (1 cm) deep puddle in the plate. More is OK.

candle cup water experiment

Set the candle straight up in the puddle in the center of the plate. To make sure everything will fit, place the slender container over the candle and into the water. Make sure its base is well above the candle wick and its top edge is submerged under the water. Add water if needed. When you’re happy with the setup, remove the container.

candle cup water experiment

When the candle is stable, the water is calm, and an adult is present, light the candle. The candle flame needs to burn brightly.

candle cup water experiment

There’s no need to rush this Step; there’s a lot to watch anyway. Turn the container over again and lower it over the burning candle. Place the container on the plate in the water and let go but don’t take your eyes off of the water level inside it. You may see bubbles coming from inside the container. At first, the candle stays burning and the water level rises slowly. About the time the candle goes out, the water rises quickly. This is the mystery: why does it rise?

Repeat the procedure several times so that you can write or draw an explanation as to why the water rises. HINT: The difference in air pressure inside and outside the container is important.

How Does It Work

A common misconception is that the consumption of oxygen by the flame in the container is a factor in the water rising. There may be a slight possibility that there would be a tiny rise in the water from the flame using up oxygen but it’s extremely small compared to the actual reason. Simply put, the water would rise imperceptibly at a steady rate as the oxygen were consumed. You likely saw the level rise almost all at once and pretty much after the flame went out.

At first, the flame heats the air inside the container and this hot air expands quickly. Some of the expanding air escapes from under the vase where you might have seen some bubbles. When the flame fades and goes out, the air in the container cools and cooler air contracts or takes up less space. That contraction creates a weak vacuum – or lower pressure – in the container. Where’s the higher pressure? Right! It’s outside the container pressing down on the water in the dish. The outside air pushes water into the container until the pressure is equalized inside and outside the container. The water stops rising when that pressure equalization is reached.

Related Experiments

candle cup water experiment

Soda Can Crusher

You could use your foot, your hands, or even your head (not advised) to crush a soda can. But nothing compares to the fun you’ll […]

candle cup water experiment

Balloon in a Bottle

Some things look so easy until you try them. Case in point… how hard would it be to inflate a balloon in a plastic soda […]

candle cup water experiment

Burping Bottle

Did you know that the majority of burps are simply caused by swallowed air? It’s true! Burping is a natural human phenomenon, but it’s also […]

candle cup water experiment

Egg in a Bottle Trick - Water Balloon Variation

The Egg in the Bottle trick is a science classic, dating back at least a hundred years. Here’s a variation that uses a water balloon […]

Browse more experiments by concept:

Go Science Girls

Burning Candle Rising Water Experiment

  • December 3, 2020
  • 5-6 Year Olds , 7-9 Year Olds , Chemistry , Fire Science , Physics , Rainy Day Science

In our previous experiment , we discussed the candle covered with glass. The basic science behind was the oxygen limitation that made the candle go off.

In an extension of that science activity, I am now going to share another experiment with you. It is also to do with candles and glass, but with a twist.

Candle Rising Water Experiments

Apart from the oxygen limitation that puts the candle off, there is also low pressure created in the glass that leads to a vacuum.

This will cause some effects and that looks like magic to kids but the science to all adults. So let us do this magic to our kids and also explain them some science.

Things required

Materials Required For Candle Rising Experiment

  • Ceramic or glass plates
  • Glass tumbler
  • Matchbox with stick

Steps involved

Fill the plate with water

Fill the plate with water.

candle cup water experiment

Place the candle on the plate and lit it. You can see the candle glowing brightly.

It may float or stand on the water in the plate based on the weight of the candle.

The presence of water does not make any difference to the candle at this stage.

Cover The Candle  with Glass Tumbler

After sometime invert the glass tumbler and place it on the glowing candle.

Covered Candle with Glass Tumbler

Imagine the glass will close the candle. In a few minutes, you can witness candle blowing off as the closed glass limits oxygen in the space surrounding the candle.

candle cup water experiment

Another thing you will witness is now the water in the plate enters the glass and you will see the level rising constantly.

Science Behind Candle Rising Water

The basic science here is the lack of oxygen puts off the candle in step 2. At the same time lack of oxygen also lowers the atmospheric pressure and creates a vacuum.

This leads to the water entering the glass from the plate. You can see this like the water level rises in the glass.

Candle Rising Water With Four Candles

Detailed science with chemical equations

The water level rises to 1/10th of the glass before the candles go off is importantly you must note.

There is no air bubble formed. The water level will stay for few minutes once the candle goes off completely.

So both the candle dies out and water rises happens concurrently.

Chemical equation

Oxygen + Candle (wax/paraffin) à Water and Carbon dioxide

O 2 + C n H 2n+2 à H 2 O + CO 2

I have an exercise for older kids here. Yes, ask your older kids to balance the chemical equation taking n as 1. Post the answers for learning.

The oxygen is 2 times more than the carbon dioxide released and hence the air volume reduces.

Let me also explain the physics behind this experiment for physics fans!

Rising Water Science Experiment

Physics facts

The burning candle produces heat which heats the air and thus expansion happens. This will cancel the oxygen depletion slowly and the water level remains down.

When oxygen gets saturated in the glass the candle goes off and the air begins to cool and volume decreases.

The reduction in air pressure will create a vacuum and hence water level rises.

Also, water initially is in the gas state when there is heat around and later it condenses and rises in level as water.

The same process or science is applied to how storms and hurricanes are formed.

When the sun heats up the air causing its density become low which is the reason for formation of wind and storms.

The high density air moves into the lower density air pockets. When there is enough wind referred to as ‘hurricanes’ causing the water rise and lifted up out of the ocean.

  • This experiment is magic for kids aged 3 to 5.
  • You can teach some science to kids 5 – 8 as they will know about oxygen etc.
  • 8 -12-year-old kids can benefit from the chemical equations and the detailed science of this experiment.

As I always alert you, please make sure to assist or monitor kids when they do this experiment.

It involves fire and you must be around to avoid any accident. Also, dealing with glass dishes needs support which you must provide.

Depending on the age of your kid you decide whether you must take their help or help them or just be around. However, we advise you to be present irrespective of the kid’s age.

Interested in More Air Pressure Experiments? Explore the list below

DIY Drip Drop Water Bottle

Balloon Powered Car

Make a Balloon Rocket

We have tried answering a few usual questions that might arise in the kid’s mind. My little one always ask questions upon which I fumble many times. So here you go with ready-made answers as well.

Twice the time of oxygen is burnt than the available CO2 that decreases the air pressure and hence water level rises. The air cools soon after flames go off and the molecules slow down making the water vapor condense to moisture.

The heat of the flame will start melting the wax near the wick and the liquid wax is drawn up to the wick due to capillary action. The flames heat will vaporize the wax and break them into molecules of oxygen and carbon.

The candle is put off by placing the lid on the candle that is lit. It is another way to extinguish the candle. The lid is placed on the flame which immediately cuts off the oxygen and thus puts off the candle.

The wick gets close to the glass the wax burns off and heats the glass. This might lead to the explosion of the glass. However, when water is kept on the glass this explosion is prevented.

As long as the pressure is low the water rises and when the pressure level equalizes the water level stops rising.

Place the glass flat on the plate to prevent air bubble forming. In case if it is tilted, then the air bubbles will form due to the difference in the pressure level between the inside and outside surface.

When you observe the tall and short burning candles closed with a glass container, surprisingly the tall candle goes out first because the carbon dioxide released travels upwards and suffocates the tall candle making the cold air sink. The short candle utilizes the oxygen in this cold air and stays on for some more time. When all the oxygen is used up, the short candle also dies.

Yes, place a candle in the bowl containing water and lit it. Slowly it goes down melting the wax which forms a protected wax around the wick. This allows the candle to stay on for good amount of time even though the flame has reached the level lower than the water. And of course, after a while water gets into wick and turns the flame off.

Modifications you can try with this experiment

 Here are the few variations to further explore the scientific concepts in this experiment.

  • Change the amount of water taken in the plate and observe how does it affects the water level rise.
  • Discuss on what happened to the water when the candle is lit.
  • How does temperature changes happen when we use different types of colored water?
  • You can use colored water made of food coloring, milo, liquid dyes, powdered dye etc.
  • Experiment on hot water versus cold water and observe the temperature and air pressure changes.
  •  Also try the experiment using two candles versus one candle or more candles etc.
  • Use different liquids instead of water and check what are the changes and results.
  • Try with different candle weight and height
  • Change the glass to narrow and broad
  • Make colored water and also increase/lower the water level in the plate
  • Try not to lit a candle before and light it only after placing the glass. Yes, you need to lift it a bit and light it. Preheating is avoided to observe for any changes in the results.

Share the results with us that will let all our readers know what happens with all these modifications. In the meantime, I will also try different twists with my kids and post my experience.

Angela

Leave a Reply Cancel Reply

Your email address will not be published. Required fields are marked *

Name  *

Email  *

Add Comment  *

Save my name, email, and website in this browser for the next time I comment.

Post Comment

Get Your ALL ACCESS Shop Pass here →

Little bins for little hands logo

Rising Water Experiment

Light a fire under middle school science and heat it up! Place a burning candle in the water and watch what happens to the water. Explore how heat affects air pressure for an awesome middle school science experiment. This candle and rising water experiment is a great way to get the kiddos thinking about what is happening. We love  simple science experiment s; this one is super fun and easy!

candle cup water experiment

Candle in Water

This candle experiment is a great way to excite your kiddos about science! Who doesn’t love watching a candle? Remember, adult supervision is required, though! We love  simple science experiment s; this one is super fun and easy!

This science experiment asks a few questions:

  • How is the candle flame affected by placing a jar over the candle?
  • What happens to the air pressure inside the jar when the candle goes out?

💡 Make sure to check out all our chemistry experiments and physics experiments !

Click here to get your free printable STEM activities pack!

candle cup water experiment

Candle in a Jar Experiment

You need to change one variable if you want to extend this science experiment or use the  scientific method  for a science fair project .

EXTEND THE LEARNING: You could repeat the experiment with candles or jars of different sizes and observe the changes.

💡Learn more about the scientific method for kids here .

  • Middle School Science
  • Elementary Grades Science
  • Tea light candle
  • Bowl of water
  • Food coloring (optional)

Instructions:

STEP 1: Put about a half inch of water into a bowl or tray. Add food coloring to your water if you like.

candle cup water experiment

STEP 2: Set a tea candle in the water and light it.

ADULT IS SUPERVISION REQUIRED!

candle cup water experiment

STEP 3: Cover the candle with a glass, setting it in the bowl of water.

candle cup water experiment

Now watch what happens! Do you notice what happens to the level of water under the jar?

candle cup water experiment

Why Does the Water Rise?

Did you notice what happened to the candle and the water level? What’s happening?

The burning candle raises the air temperature under the jar, and it expands. The candle flame uses up all of the oxygen in the glass, and the candle goes out.

The air cools because the candle has gone out. This creates a vacuum that sucks up the water from the outside of the glass.

It then raises the candle up on the water that enters the inside of the glass.

What happens when you remove the jar or glass? Did you hear a pop or popping sound? You most likely listened to this because the air pressure created a vacuum seal, and by lifting the jar, you broke the seal, resulting in the pop!

More Fun Science Experiments

Why not also try one of these easy science experiments below?

candle cup water experiment

Printable Science Projects For Kids

If you’re looking to grab all of our printable science projects in one convenient place plus exclusive worksheets and bonuses like a STEAM Project pack, our Science Project Pack is what you need! Over 300+ Pages!

  • 90+ classic science activities  with journal pages, supply lists, set up and process, and science information.  NEW! Activity-specific observation pages!
  • Best science practices posters  and our original science method process folders for extra alternatives!
  • Be a Collector activities pack  introduces kids to the world of making collections through the eyes of a scientist. What will they collect first?
  • Know the Words Science vocabulary pack  includes flashcards, crosswords, and word searches that illuminate keywords in the experiments!
  • My science journal writing prompts  explore what it means to be a scientist!!
  • Bonus STEAM Project Pack:  Art meets science with doable projects!
  • Bonus Quick Grab Packs for Biology, Earth Science, Chemistry, and Physics

candle cup water experiment

Subscribe to receive a free 5-Day STEM Challenge Guide

~ projects to try now ~.

candle cup water experiment

Team Cartwright

Posted on Last updated: December 8, 2021 By: Author Kim

Categories STEM Activities

Rising Water Experiment – Magic Water Science Experiment

Rising Water Experiment: a magic rising water science experiment.

  • Ages: Preschool , PreK , Kindergarten, Elementary
  • Difficulty: Easy
  • Learning: STEM , Air Pressure, Ideal Gas Law, Charles’s Law

Did you know you can make water rise without touching it?

Nope, it isn’t magic. It’s science. Surprisingly simple science in fact. This science experiment comes together in minutes, but it will captivate your children.

Here is how to do the raising water experiment, simple glass and candle STEM magic.

Text: Rising Water Experiment Science for Kids. Picture: Shallow dish with blue water, upside down glass with water rising into it

What's In This Post?

Supplies for your Glass and Candle Experiment

How to do the rising water experiment, the science, the chemical component, the physical component, the big picture, what should children take away from this science experiment, conservation of matter, charles’s law, ideal gas law, ask a question, magic water science experiment, free printable raising water experiment instructions, instructions, rising water experiment.

This experiment uses at-home materials and is fascinating! It does require adult help, but adults will love it too.

You only need a few items to make this magic water STEM experiment work. Here is what you need to gather up:

  • Glass or Jar
  • Small Votive Candle
  • Shallow Dish
  • Food Coloring (Optional)
  • Matches or Lighter

Before we even get started please remember that an adult needs to be present for this experiment. We are using fire, which can be dangerous, so be smart.

Step 1: Take a sallow dish and fill it with water. You want just enough to cover the bottom.

Step 2: If you want, add food coloring to the water. This just makes it easier to see and is fun, so totally optional.

Step 3: Place your small votive in the middle of the dish.

Step 4: Light the candle, then quickly place the empty glass over the flame, touching the water. Now wait while the candle burns out.

Step 5: Watch as the water rises up into the glass!

Left picture: shallow dish with blue water. Lit candle in center of dish with glass upside down on top. Right picture: candle has burnt out and water level within glass has risen up

The number one safety tip here is to be careful with the flame! This experiment must be done with adult supervision at the bare minimum. With younger children, like preschoolers, this needs to be an adult-led experiment.

This STEM activity also uses glass, so it is a good idea to be careful in case it falls or breaks.

Clean-up for this activity is pretty simple. Slowly lift the bottle off of the candle.

Once the bottle is off, gently blow the candle out. Let the candle cool (or have an adult get it), remove it from the dish, and dump the water down the drain. That’s it!

More must do activities!

Text: Easy and Fun Fireworks Experiment Science for Kids. Top Picture: Star cookie cutter with fireworks reaction bubbling up with glitter. Bottom Picture: Butterfly and star cookie cutters in a dish with fireworks baking soda and vinegar experiment with glitter bursting up

How the Rising Water Experiment Works

This is a pretty cool experiment, but it is important to talk about what actually makes this happen. It’s fun to say it is magic, but as my kids tell me, ‘It’s better. It’s science.’

There are two main components of this experiment that cause the water to rise, a physical component and a chemical component. These two components work together to make this experiment happen.

The candle burning creates a chemical reaction. The flame burns both the paraffin (candle wax) and the oxygen under the glass. This reaction uses up oxygen and creates water and carbon dioxide as a result. Twice as much oxygen is burned than carbon dioxide produced, so the volume of air in the glass decreases.

(Note the total amount of matter in the jar remains the same. Conservation of matter tells us this. But some molecules are larger than others and take up more space in terms of volume.)

Picture of general chemical reaction of burning a fuel. Fuel + oxygen yields carbon dioxide and water. Reaction is general and unbalanced, components are labeled

The physical component is why the water level in the glass doesn’t rise as soon as the candle is covered. The candle warms the air, and this increases the air volume inside the glass.

When the candle burns out (because all the oxygen is used up), the temperature cools quickly. This temperature decrease means the volume also decreases, which lets the water rise to fill up that space. This is called Charles’s Law.

Charles’s Law tells us that the ratio of volume to temperature must remain the same, so if one goes down the other goes down too.

Charles's Law. Picture of Charles's law equation of Volume 1 over Temperature 1 equaling Volume 2 over Temperature 2. V=Volume T=Temperature

These two parts of the experiment work together. Both the volume change and temperature also affect the pressure in the system we created. When temperature decreases (the physical component) and the size of the matter decreases (the chemical component), the pressure of the gas inside the glass decreases too.

This lower pressure inside means the water can rise as well. This is explained by the Ideal Gas Law.

The idea of air pressure can be a bit challenging for young children to understand. It isn’t something they can clearly see, so that makes sense. But they can understand something changing size, in other words when volume changes.

If the air inside the glass takes up less space, it makes sense for the water to fill in that space and rise inside the glass.

Ideal Gas Law Equation. PV=nRT. V=Volume, T=Temperature, n=Moles, P=Pressure, R=Ideal Gas Law Constant

I understand that we went over a lot of more complicated concepts here. (And don’t worry, I’ve listed the definitions for the terms below to help out.) Am I really expecting young kids to understand and retain all this?

No. I mean, it would be cool if they did. And some might. But realistically that is not the point of this kind of science. The purpose of giving these explanations is so that you as a caregiver can quickly get the reasoning behind this project and interpret it for your children.

It is helpful for your children to see these experiments. Even if they don’t fully understand the details, this experience is adding to their understanding of how the world around them works. It builds their science base.

Using the vocabulary helps kids as well. First, it gives new words which are always helpful for communication skills. But I think, more importantly, it demystifies science later in life. Science can feel like a whole new language as we get older, and that can be very intimidating. If we have been exposed to these terms though, it’s less scary. We might not know exactly what they mean but we know that we have heard them before. This helps kids feel like science belongs to them. Because it does.

Text: Rising Water Experiment Science for Kids. Top Picture: shallow dish with blue water, candle in the middle with empty glass upside down on top. Bottom picture: candle has burned out and water level in the glass has gone up

Helpful Definitions

Here are a few helpful definitions for the raising water experiment.

The conservation of matter law states that matter is not destroyed or created. It can change forms, but the total amount stays the same.

Charles’s Law tells us that the volume of a gas is directly proportional to the temperature of the gas. As the volume decreases, the temperature decreases, for example.

The Ideal Gas Law describes the conditions a gas is under and how those conditions will vary as compared to each other. The pressure of the gas multiplied by the volume will always equal the number of moles multiplied by the temperature and ideal gas law constant.

The Scientific Method

Since an adult is needed to run do this experiment with kids (fire safety!), it is a great time to talk through the scientific method! Here is a guideline of what that can look like with this STEM experiment.

(And don’t forget to learn all the life lessons that come along with the scientific method here: Beyond the Science- What Kids Are Really Learning .)

Ask your child, what do they think is going to happen when we put the glass on the candle? The key here is to listen and let them think it through. No answer is too far out there or wrong at this step.

The observation step is key throughout any experiment, but take a moment and look at their components. What do they notice about them? How do they normally behave? What do they already know about them?

Narrow down your potential answers and decide on one or a couple of outcomes you think are most likely. This is your hypothesis.

Time to run the experiment! Encourage your children to keep watching what is happening. (In this particular observation, sight is going to be the key thing to focus on. Some touch is possible, watching out for the flame of course. And you can encourage smell and hearing for practice.

What did they observe? Now is the time for them to tell you everything they can about what just happened.

This is where we form the conclusions and apply the information we learned. Do they think this will always happen? How did the results match or differ from their hypothesis?

Real experiments always lead to more questions. What does your child want to try next? What would they change in the experiment? Does more water in the dish change anything? Can they try to suck up all the water? Would adding a different liquid change the results?

Even if you aren’t able to complete any of their additional experiment ideas, it is a good idea to think of ways to explore more. Plus it is amazingly fun to hear all the ideas kids have.

Text: Rising Water Experiment Science for Kids! Picture: shallow dish with blue water. Small votive candle in the center of the dish with glass upside down on top. Water level within glass has risen

This is a great experiment to do over and over. It’s fast, cheap and full of fun learning. It’s a must-do!

-Kim

Let’s find your next fun activity!

Links to: STEM activities for kids Text: STEM Picture: raincloud in a jar experiment

Raising Water Experiment

How to do the raising water experiment that will wow kids!

  • Food Coloring (optional)
  • Lighter or Matches
  • Fill your shallow dish with enough water to cover the bottom. Add food coloring. (optional)
  • Place your votive in the middle of the dish.
  • Light the votive candle.
  • Place the glass upside down over the candle.
  • Wait for the candle to burn out and watch the water rise!

This is a science experiment that needs adult supervision and help. It uses fire and needs an adult to be safe.

To clean up, gently pull the glass off the candle. Make sure the candle cools and the water can go down the drain.

How useful was this post?

Click on a star to rate it!

Let us improve this post!

Tell us how we can improve this post?

Text: Fireworks Experiment Science for Kids. Picture: Red star cookie cutter with chemical reaction creating bubbles with glitter bubbling up

* Checkbox GDPR is required

This site uses Akismet to reduce spam. Learn how your comment data is processed .

IMAGES

  1. Candle and Rising Water Science Experiment

    candle cup water experiment

  2. Candle and Rising Water Science Experiment

    candle cup water experiment

  3. Candle and Rising Water Science Experiment

    candle cup water experiment

  4. Burning Candle in Water Experiment

    candle cup water experiment

  5. Candle, cup, and water experiment

    candle cup water experiment

  6. Under Water Candle Experiment

    candle cup water experiment

VIDEO

  1. Candle cup process!

  2. Water And Candle Experiment #experiment #shorts

  3. Making a candle cup for a sconce #vintagetools #woodworking #tinplate #tinsmithing #candlestick

  4. Can I use a candle to raise the water?

  5. water candle experiment#illusion#image##shortsfeed #shorts

  6. Candle & Water Experiment |#shorts

COMMENTS

  1. Burning Candle Rising Water Experiment | Mombrite

    This burning candle in water is one of those science experiments that appear like magic. With just a few items and a few steps, you can demonstrate to your how to rise the water inside the cup or jar without ever touching it.

  2. Candle and Rising Water Science Experiment

    Grab a candle and a jar and try this rising water science experiment! Fun way to show the effects of heat on air pressure.

  3. The burning candle - rising water experiment - Harvard University

    Experiment: Cover a burning candle with a pitcher so that the candle is in an air-tight room sealed by the water at the ground. Observations: After some time, the candle dims and goes out. Just before the candle dies, the water level rises to almost 1/10 th of pitcher height.

  4. RISING WATER SECRET - Steve Spangler

    4. Put on your safety glasses and Light the candle. 5. Place the glass flask over the candle. Watch the water as it rises in the flask! The candle flame heats the air in the flask, and this hot air expands. Some of the expanding air escapes out from under the flask. That is why you might see bubbles.

  5. Why Does the Water Rise? - Steve Spangler

    Why Does the Water Rise? A candle and some rising colored water reveal a hidden property of air that’s around you all the time. Print this Experiment

  6. Why Does Water Rise? The Candle Experiment - Sally Ride ...

    The burning candle water experiment is something you can do at home. See what happens when the candle burns out. Think about what you know about air pressure and how that explains what you...

  7. Burning Candle Rising Water Experiment - Go Science Girls

    Explore Burning Candle Rising Water Experiment and Learn how Air pressure experiment causes burning candles to rise water once they are enclosed under a glass.

  8. Rising Water Experiment - Little Bins for Little Hands

    Place a burning candle in the water and watch what happens to the water. Explore how heat affects air pressure for an awesome middle school science experiment. This candle and rising water experiment is a great way to get the kiddos thinking about what is happening.

  9. Rising Water Experiment - Magic Water Science Experiment

    Here is how to do the raising water experiment, simple glass and candle STEM magic.

  10. Burning Candle in Rising Water Experiment w/ FREE Worksheet

    WOW your kids with a super EASY air pressure science experiment for kids! This simple rising water experiment uses a burning candle in water!