Writing an Abstract for Your Research Paper

Definition and Purpose of Abstracts

An abstract is a short summary of your (published or unpublished) research paper, usually about a paragraph (c. 6-7 sentences, 150-250 words) long. A well-written abstract serves multiple purposes:

  • an abstract lets readers get the gist or essence of your paper or article quickly, in order to decide whether to read the full paper;
  • an abstract prepares readers to follow the detailed information, analyses, and arguments in your full paper;
  • and, later, an abstract helps readers remember key points from your paper.

It’s also worth remembering that search engines and bibliographic databases use abstracts, as well as the title, to identify key terms for indexing your published paper. So what you include in your abstract and in your title are crucial for helping other researchers find your paper or article.

If you are writing an abstract for a course paper, your professor may give you specific guidelines for what to include and how to organize your abstract. Similarly, academic journals often have specific requirements for abstracts. So in addition to following the advice on this page, you should be sure to look for and follow any guidelines from the course or journal you’re writing for.

The Contents of an Abstract

Abstracts contain most of the following kinds of information in brief form. The body of your paper will, of course, develop and explain these ideas much more fully. As you will see in the samples below, the proportion of your abstract that you devote to each kind of information—and the sequence of that information—will vary, depending on the nature and genre of the paper that you are summarizing in your abstract. And in some cases, some of this information is implied, rather than stated explicitly. The Publication Manual of the American Psychological Association , which is widely used in the social sciences, gives specific guidelines for what to include in the abstract for different kinds of papers—for empirical studies, literature reviews or meta-analyses, theoretical papers, methodological papers, and case studies.

Here are the typical kinds of information found in most abstracts:

  • the context or background information for your research; the general topic under study; the specific topic of your research
  • the central questions or statement of the problem your research addresses
  • what’s already known about this question, what previous research has done or shown
  • the main reason(s) , the exigency, the rationale , the goals for your research—Why is it important to address these questions? Are you, for example, examining a new topic? Why is that topic worth examining? Are you filling a gap in previous research? Applying new methods to take a fresh look at existing ideas or data? Resolving a dispute within the literature in your field? . . .
  • your research and/or analytical methods
  • your main findings , results , or arguments
  • the significance or implications of your findings or arguments.

Your abstract should be intelligible on its own, without a reader’s having to read your entire paper. And in an abstract, you usually do not cite references—most of your abstract will describe what you have studied in your research and what you have found and what you argue in your paper. In the body of your paper, you will cite the specific literature that informs your research.

When to Write Your Abstract

Although you might be tempted to write your abstract first because it will appear as the very first part of your paper, it’s a good idea to wait to write your abstract until after you’ve drafted your full paper, so that you know what you’re summarizing.

What follows are some sample abstracts in published papers or articles, all written by faculty at UW-Madison who come from a variety of disciplines. We have annotated these samples to help you see the work that these authors are doing within their abstracts.

Choosing Verb Tenses within Your Abstract

The social science sample (Sample 1) below uses the present tense to describe general facts and interpretations that have been and are currently true, including the prevailing explanation for the social phenomenon under study. That abstract also uses the present tense to describe the methods, the findings, the arguments, and the implications of the findings from their new research study. The authors use the past tense to describe previous research.

The humanities sample (Sample 2) below uses the past tense to describe completed events in the past (the texts created in the pulp fiction industry in the 1970s and 80s) and uses the present tense to describe what is happening in those texts, to explain the significance or meaning of those texts, and to describe the arguments presented in the article.

The science samples (Samples 3 and 4) below use the past tense to describe what previous research studies have done and the research the authors have conducted, the methods they have followed, and what they have found. In their rationale or justification for their research (what remains to be done), they use the present tense. They also use the present tense to introduce their study (in Sample 3, “Here we report . . .”) and to explain the significance of their study (In Sample 3, This reprogramming . . . “provides a scalable cell source for. . .”).

Sample Abstract 1

From the social sciences.

Reporting new findings about the reasons for increasing economic homogamy among spouses

Gonalons-Pons, Pilar, and Christine R. Schwartz. “Trends in Economic Homogamy: Changes in Assortative Mating or the Division of Labor in Marriage?” Demography , vol. 54, no. 3, 2017, pp. 985-1005.

“The growing economic resemblance of spouses has contributed to rising inequality by increasing the number of couples in which there are two high- or two low-earning partners. [Annotation for the previous sentence: The first sentence introduces the topic under study (the “economic resemblance of spouses”). This sentence also implies the question underlying this research study: what are the various causes—and the interrelationships among them—for this trend?] The dominant explanation for this trend is increased assortative mating. Previous research has primarily relied on cross-sectional data and thus has been unable to disentangle changes in assortative mating from changes in the division of spouses’ paid labor—a potentially key mechanism given the dramatic rise in wives’ labor supply. [Annotation for the previous two sentences: These next two sentences explain what previous research has demonstrated. By pointing out the limitations in the methods that were used in previous studies, they also provide a rationale for new research.] We use data from the Panel Study of Income Dynamics (PSID) to decompose the increase in the correlation between spouses’ earnings and its contribution to inequality between 1970 and 2013 into parts due to (a) changes in assortative mating, and (b) changes in the division of paid labor. [Annotation for the previous sentence: The data, research and analytical methods used in this new study.] Contrary to what has often been assumed, the rise of economic homogamy and its contribution to inequality is largely attributable to changes in the division of paid labor rather than changes in sorting on earnings or earnings potential. Our findings indicate that the rise of economic homogamy cannot be explained by hypotheses centered on meeting and matching opportunities, and they show where in this process inequality is generated and where it is not.” (p. 985) [Annotation for the previous two sentences: The major findings from and implications and significance of this study.]

Sample Abstract 2

From the humanities.

Analyzing underground pulp fiction publications in Tanzania, this article makes an argument about the cultural significance of those publications

Emily Callaci. “Street Textuality: Socialism, Masculinity, and Urban Belonging in Tanzania’s Pulp Fiction Publishing Industry, 1975-1985.” Comparative Studies in Society and History , vol. 59, no. 1, 2017, pp. 183-210.

“From the mid-1970s through the mid-1980s, a network of young urban migrant men created an underground pulp fiction publishing industry in the city of Dar es Salaam. [Annotation for the previous sentence: The first sentence introduces the context for this research and announces the topic under study.] As texts that were produced in the underground economy of a city whose trajectory was increasingly charted outside of formalized planning and investment, these novellas reveal more than their narrative content alone. These texts were active components in the urban social worlds of the young men who produced them. They reveal a mode of urbanism otherwise obscured by narratives of decolonization, in which urban belonging was constituted less by national citizenship than by the construction of social networks, economic connections, and the crafting of reputations. This article argues that pulp fiction novellas of socialist era Dar es Salaam are artifacts of emergent forms of male sociability and mobility. In printing fictional stories about urban life on pilfered paper and ink, and distributing their texts through informal channels, these writers not only described urban communities, reputations, and networks, but also actually created them.” (p. 210) [Annotation for the previous sentences: The remaining sentences in this abstract interweave other essential information for an abstract for this article. The implied research questions: What do these texts mean? What is their historical and cultural significance, produced at this time, in this location, by these authors? The argument and the significance of this analysis in microcosm: these texts “reveal a mode or urbanism otherwise obscured . . .”; and “This article argues that pulp fiction novellas. . . .” This section also implies what previous historical research has obscured. And through the details in its argumentative claims, this section of the abstract implies the kinds of methods the author has used to interpret the novellas and the concepts under study (e.g., male sociability and mobility, urban communities, reputations, network. . . ).]

Sample Abstract/Summary 3

From the sciences.

Reporting a new method for reprogramming adult mouse fibroblasts into induced cardiac progenitor cells

Lalit, Pratik A., Max R. Salick, Daryl O. Nelson, Jayne M. Squirrell, Christina M. Shafer, Neel G. Patel, Imaan Saeed, Eric G. Schmuck, Yogananda S. Markandeya, Rachel Wong, Martin R. Lea, Kevin W. Eliceiri, Timothy A. Hacker, Wendy C. Crone, Michael Kyba, Daniel J. Garry, Ron Stewart, James A. Thomson, Karen M. Downs, Gary E. Lyons, and Timothy J. Kamp. “Lineage Reprogramming of Fibroblasts into Proliferative Induced Cardiac Progenitor Cells by Defined Factors.” Cell Stem Cell , vol. 18, 2016, pp. 354-367.

“Several studies have reported reprogramming of fibroblasts into induced cardiomyocytes; however, reprogramming into proliferative induced cardiac progenitor cells (iCPCs) remains to be accomplished. [Annotation for the previous sentence: The first sentence announces the topic under study, summarizes what’s already known or been accomplished in previous research, and signals the rationale and goals are for the new research and the problem that the new research solves: How can researchers reprogram fibroblasts into iCPCs?] Here we report that a combination of 11 or 5 cardiac factors along with canonical Wnt and JAK/STAT signaling reprogrammed adult mouse cardiac, lung, and tail tip fibroblasts into iCPCs. The iCPCs were cardiac mesoderm-restricted progenitors that could be expanded extensively while maintaining multipo-tency to differentiate into cardiomyocytes, smooth muscle cells, and endothelial cells in vitro. Moreover, iCPCs injected into the cardiac crescent of mouse embryos differentiated into cardiomyocytes. iCPCs transplanted into the post-myocardial infarction mouse heart improved survival and differentiated into cardiomyocytes, smooth muscle cells, and endothelial cells. [Annotation for the previous four sentences: The methods the researchers developed to achieve their goal and a description of the results.] Lineage reprogramming of adult somatic cells into iCPCs provides a scalable cell source for drug discovery, disease modeling, and cardiac regenerative therapy.” (p. 354) [Annotation for the previous sentence: The significance or implications—for drug discovery, disease modeling, and therapy—of this reprogramming of adult somatic cells into iCPCs.]

Sample Abstract 4, a Structured Abstract

Reporting results about the effectiveness of antibiotic therapy in managing acute bacterial sinusitis, from a rigorously controlled study

Note: This journal requires authors to organize their abstract into four specific sections, with strict word limits. Because the headings for this structured abstract are self-explanatory, we have chosen not to add annotations to this sample abstract.

Wald, Ellen R., David Nash, and Jens Eickhoff. “Effectiveness of Amoxicillin/Clavulanate Potassium in the Treatment of Acute Bacterial Sinusitis in Children.” Pediatrics , vol. 124, no. 1, 2009, pp. 9-15.

“OBJECTIVE: The role of antibiotic therapy in managing acute bacterial sinusitis (ABS) in children is controversial. The purpose of this study was to determine the effectiveness of high-dose amoxicillin/potassium clavulanate in the treatment of children diagnosed with ABS.

METHODS : This was a randomized, double-blind, placebo-controlled study. Children 1 to 10 years of age with a clinical presentation compatible with ABS were eligible for participation. Patients were stratified according to age (<6 or ≥6 years) and clinical severity and randomly assigned to receive either amoxicillin (90 mg/kg) with potassium clavulanate (6.4 mg/kg) or placebo. A symptom survey was performed on days 0, 1, 2, 3, 5, 7, 10, 20, and 30. Patients were examined on day 14. Children’s conditions were rated as cured, improved, or failed according to scoring rules.

RESULTS: Two thousand one hundred thirty-five children with respiratory complaints were screened for enrollment; 139 (6.5%) had ABS. Fifty-eight patients were enrolled, and 56 were randomly assigned. The mean age was 6630 months. Fifty (89%) patients presented with persistent symptoms, and 6 (11%) presented with nonpersistent symptoms. In 24 (43%) children, the illness was classified as mild, whereas in the remaining 32 (57%) children it was severe. Of the 28 children who received the antibiotic, 14 (50%) were cured, 4 (14%) were improved, 4(14%) experienced treatment failure, and 6 (21%) withdrew. Of the 28children who received placebo, 4 (14%) were cured, 5 (18%) improved, and 19 (68%) experienced treatment failure. Children receiving the antibiotic were more likely to be cured (50% vs 14%) and less likely to have treatment failure (14% vs 68%) than children receiving the placebo.

CONCLUSIONS : ABS is a common complication of viral upper respiratory infections. Amoxicillin/potassium clavulanate results in significantly more cures and fewer failures than placebo, according to parental report of time to resolution.” (9)

Some Excellent Advice about Writing Abstracts for Basic Science Research Papers, by Professor Adriano Aguzzi from the Institute of Neuropathology at the University of Zurich:

abstract for research paper sample

Academic and Professional Writing

This is an accordion element with a series of buttons that open and close related content panels.

Analysis Papers

Reading Poetry

A Short Guide to Close Reading for Literary Analysis

Using Literary Quotations

Play Reviews

Writing a Rhetorical Précis to Analyze Nonfiction Texts

Incorporating Interview Data

Grant Proposals

Planning and Writing a Grant Proposal: The Basics

Additional Resources for Grants and Proposal Writing

Job Materials and Application Essays

Writing Personal Statements for Ph.D. Programs

  • Before you begin: useful tips for writing your essay
  • Guided brainstorming exercises
  • Get more help with your essay
  • Frequently Asked Questions

Resume Writing Tips

CV Writing Tips

Cover Letters

Business Letters

Proposals and Dissertations

Resources for Proposal Writers

Resources for Dissertators

Research Papers

Planning and Writing Research Papers

Quoting and Paraphrasing

Writing Annotated Bibliographies

Creating Poster Presentations

Thank-You Notes

Advice for Students Writing Thank-You Notes to Donors

Reading for a Review

Critical Reviews

Writing a Review of Literature

Scientific Reports

Scientific Report Format

Sample Lab Assignment

Writing for the Web

Writing an Effective Blog Post

Writing for Social Media: A Guide for Academics

Generate accurate APA citations for free

  • Knowledge Base
  • APA Style 7th edition
  • How to write and format an APA abstract

APA Abstract (2020) | Formatting, Length, and Keywords

Published on November 6, 2020 by Raimo Streefkerk . Revised on January 17, 2024.

An APA abstract is a comprehensive summary of your paper in which you briefly address the research problem , hypotheses , methods , results , and implications of your research. It’s placed on a separate page right after the title page and is usually no longer than 250 words.

Most professional papers that are submitted for publication require an abstract. Student papers typically don’t need an abstract, unless instructed otherwise.

Instantly correct all language mistakes in your text

Upload your document to correct all your mistakes in minutes

upload-your-document-ai-proofreader

Table of contents

How to format the abstract, how to write an apa abstract, which keywords to use, frequently asked questions, apa abstract example.

APA abstract (7th edition)

Formatting instructions

Follow these five steps to format your abstract in APA Style:

  • Insert a running head (for a professional paper—not needed for a student paper) and page number.
  • Set page margins to 1 inch (2.54 cm).
  • Write “Abstract” (bold and centered) at the top of the page.
  • Do not indent the first line.
  • Double-space the text.
  • Use a legible font like Times New Roman (12 pt.).
  • Limit the length to 250 words.
  • Indent the first line 0.5 inches.
  • Write the label “Keywords:” (italicized).
  • Write keywords in lowercase letters.
  • Separate keywords with commas.
  • Do not use a period after the keywords.

Are your APA in-text citations flawless?

The AI-powered APA Citation Checker points out every error, tells you exactly what’s wrong, and explains how to fix it. Say goodbye to losing marks on your assignment!

Get started!

abstract for research paper sample

The abstract is a self-contained piece of text that informs the reader what your research is about. It’s best to write the abstract after you’re finished with the rest of your paper.

The questions below may help structure your abstract. Try answering them in one to three sentences each.

  • What is the problem? Outline the objective, research questions , and/or hypotheses .
  • What has been done? Explain your research methods .
  • What did you discover? Summarize the key findings and conclusions .
  • What do the findings mean? Summarize the discussion and recommendations .

Check out our guide on how to write an abstract for more guidance and an annotated example.

Guide: writing an abstract

At the end of the abstract, you may include a few keywords that will be used for indexing if your paper is published on a database. Listing your keywords will help other researchers find your work.

Choosing relevant keywords is essential. Try to identify keywords that address your topic, method, or population. APA recommends including three to five keywords.

An abstract is a concise summary of an academic text (such as a journal article or dissertation ). It serves two main purposes:

  • To help potential readers determine the relevance of your paper for their own research.
  • To communicate your key findings to those who don’t have time to read the whole paper.

Abstracts are often indexed along with keywords on academic databases, so they make your work more easily findable. Since the abstract is the first thing any reader sees, it’s important that it clearly and accurately summarizes the contents of your paper.

An APA abstract is around 150–250 words long. However, always check your target journal’s guidelines and don’t exceed the specified word count.

In an APA Style paper , the abstract is placed on a separate page after the title page (page 2).

Avoid citing sources in your abstract . There are two reasons for this:

  • The abstract should focus on your original research, not on the work of others.
  • The abstract should be self-contained and fully understandable without reference to other sources.

There are some circumstances where you might need to mention other sources in an abstract: for example, if your research responds directly to another study or focuses on the work of a single theorist. In general, though, don’t include citations unless absolutely necessary.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Streefkerk, R. (2024, January 17). APA Abstract (2020) | Formatting, Length, and Keywords. Scribbr. Retrieved September 3, 2024, from https://www.scribbr.com/apa-style/apa-abstract/

Is this article helpful?

Raimo Streefkerk

Raimo Streefkerk

Other students also liked, apa headings and subheadings, apa running head, apa title page (7th edition) | template for students & professionals, scribbr apa citation checker.

An innovative new tool that checks your APA citations with AI software. Say goodbye to inaccurate citations!

  • Privacy Policy

Research Method

Home » Research Paper Abstract – Writing Guide and Examples

Research Paper Abstract – Writing Guide and Examples

Table of Contents

Research Paper Abstract

Research Paper Abstract

Research Paper Abstract is a brief summary of a research pape r that describes the study’s purpose, methods, findings, and conclusions . It is often the first section of the paper that readers encounter, and its purpose is to provide a concise and accurate overview of the paper’s content. The typical length of an abstract is usually around 150-250 words, and it should be written in a concise and clear manner.

Research Paper Abstract Structure

The structure of a research paper abstract usually includes the following elements:

  • Background or Introduction: Briefly describe the problem or research question that the study addresses.
  • Methods : Explain the methodology used to conduct the study, including the participants, materials, and procedures.
  • Results : Summarize the main findings of the study, including statistical analyses and key outcomes.
  • Conclusions : Discuss the implications of the study’s findings and their significance for the field, as well as any limitations or future directions for research.
  • Keywords : List a few keywords that describe the main topics or themes of the research.

How to Write Research Paper Abstract

Here are the steps to follow when writing a research paper abstract:

  • Start by reading your paper: Before you write an abstract, you should have a complete understanding of your paper. Read through the paper carefully, making sure you understand the purpose, methods, results, and conclusions.
  • Identify the key components : Identify the key components of your paper, such as the research question, methods used, results obtained, and conclusion reached.
  • Write a draft: Write a draft of your abstract, using concise and clear language. Make sure to include all the important information, but keep it short and to the point. A good rule of thumb is to keep your abstract between 150-250 words.
  • Use clear and concise language : Use clear and concise language to explain the purpose of your study, the methods used, the results obtained, and the conclusions drawn.
  • Emphasize your findings: Emphasize your findings in the abstract, highlighting the key results and the significance of your study.
  • Revise and edit: Once you have a draft, revise and edit it to ensure that it is clear, concise, and free from errors.
  • Check the formatting: Finally, check the formatting of your abstract to make sure it meets the requirements of the journal or conference where you plan to submit it.

Research Paper Abstract Examples

Research Paper Abstract Examples could be following:

Title : “The Effectiveness of Cognitive-Behavioral Therapy for Treating Anxiety Disorders: A Meta-Analysis”

Abstract : This meta-analysis examines the effectiveness of cognitive-behavioral therapy (CBT) in treating anxiety disorders. Through the analysis of 20 randomized controlled trials, we found that CBT is a highly effective treatment for anxiety disorders, with large effect sizes across a range of anxiety disorders, including generalized anxiety disorder, panic disorder, and social anxiety disorder. Our findings support the use of CBT as a first-line treatment for anxiety disorders and highlight the importance of further research to identify the mechanisms underlying its effectiveness.

Title : “Exploring the Role of Parental Involvement in Children’s Education: A Qualitative Study”

Abstract : This qualitative study explores the role of parental involvement in children’s education. Through in-depth interviews with 20 parents of children in elementary school, we found that parental involvement takes many forms, including volunteering in the classroom, helping with homework, and communicating with teachers. We also found that parental involvement is influenced by a range of factors, including parent and child characteristics, school culture, and socio-economic status. Our findings suggest that schools and educators should prioritize building strong partnerships with parents to support children’s academic success.

Title : “The Impact of Exercise on Cognitive Function in Older Adults: A Systematic Review and Meta-Analysis”

Abstract : This paper presents a systematic review and meta-analysis of the existing literature on the impact of exercise on cognitive function in older adults. Through the analysis of 25 randomized controlled trials, we found that exercise is associated with significant improvements in cognitive function, particularly in the domains of executive function and attention. Our findings highlight the potential of exercise as a non-pharmacological intervention to support cognitive health in older adults.

When to Write Research Paper Abstract

The abstract of a research paper should typically be written after you have completed the main body of the paper. This is because the abstract is intended to provide a brief summary of the key points and findings of the research, and you can’t do that until you have completed the research and written about it in detail.

Once you have completed your research paper, you can begin writing your abstract. It is important to remember that the abstract should be a concise summary of your research paper, and should be written in a way that is easy to understand for readers who may not have expertise in your specific area of research.

Purpose of Research Paper Abstract

The purpose of a research paper abstract is to provide a concise summary of the key points and findings of a research paper. It is typically a brief paragraph or two that appears at the beginning of the paper, before the introduction, and is intended to give readers a quick overview of the paper’s content.

The abstract should include a brief statement of the research problem, the methods used to investigate the problem, the key results and findings, and the main conclusions and implications of the research. It should be written in a clear and concise manner, avoiding jargon and technical language, and should be understandable to a broad audience.

The abstract serves as a way to quickly and easily communicate the main points of a research paper to potential readers, such as academics, researchers, and students, who may be looking for information on a particular topic. It can also help researchers determine whether a paper is relevant to their own research interests and whether they should read the full paper.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Limitations in Research

Limitations in Research – Types, Examples and...

Context of the Study

Context of the Study – Writing Guide and Examples

Research Design

Research Design – Types, Methods and Examples

Implications in Research

Implications in Research – Types, Examples and...

Research Objectives

Research Objectives – Types, Examples and...

Research Results

Research Results Section – Writing Guide and...

How to Write an Abstract APA Format

Saul McLeod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

An APA abstract is a brief, comprehensive summary of the contents of an article, research paper, dissertation, or report.

It is written in accordance with the guidelines of the American Psychological Association (APA), which is a widely used format in social and behavioral sciences. 

An APA abstract summarizes, usually in one paragraph of between 150–250 words, the major aspects of a research paper or dissertation in a prescribed sequence that includes:
  • The rationale: the overall purpose of the study, providing a clear context for the research undertaken.
  • Information regarding the method and participants: including materials/instruments, design, procedure, and data analysis.
  • Main findings or trends: effectively highlighting the key outcomes of the hypotheses.
  • Interpretations and conclusion(s): solidify the implications of the research.
  • Keywords related to the study: assist the paper’s discoverability in academic databases.

The abstract should stand alone, be “self-contained,” and make sense to the reader in isolation from the main article.

The purpose of the abstract is to give the reader a quick overview of the essential information before reading the entire article. The abstract is placed on its own page, directly after the title page and before the main body of the paper.

Although the abstract will appear as the very first part of your paper, it’s good practice to write your abstract after you’ve drafted your full paper, so that you know what you’re summarizing.

Note : This page reflects the latest version of the APA Publication Manual (i.e., APA 7), released in October 2019.

Structure of the Abstract

[NOTE: DO NOT separate the components of the abstract – it should be written as a single paragraph. This section is separated to illustrate the abstract’s structure.]

1) The Rationale

One or two sentences describing the overall purpose of the study and the research problem(s) you investigated. You are basically justifying why this study was conducted.

  • What is the importance of the research?
  • Why would a reader be interested in the larger work?
  • For example, are you filling a gap in previous research or applying new methods to take a fresh look at existing ideas or data?
  • Women who are diagnosed with breast cancer can experience an array of psychosocial difficulties; however, social support, particularly from a spouse, has been shown to have a protective function during this time. This study examined the ways in which a woman’s daily mood, pain, and fatigue, and her spouse’s marital satisfaction predict the woman’s report of partner support in the context of breast cancer.
  • The current nursing shortage, high hospital nurse job dissatisfaction, and reports of uneven quality of hospital care are not uniquely American phenomena.
  • Students with special educational needs and disabilities (SEND) are more likely to exhibit behavioral difficulties than their typically developing peers. The aim of this study was to identify specific risk factors that influence variability in behavior difficulties among individuals with SEND.

2) The Method

Information regarding the participants (number, and population). One or two sentences outlining the method, explaining what was done and how. The method is described in the present tense.

  • Pretest data from a larger intervention study and multilevel modeling were used to examine the effects of women’s daily mood, pain, and fatigue and average levels of mood, pain, and fatigue on women’s report of social support received from her partner, as well as how the effects of mood interacted with partners’ marital satisfaction.
  • This paper presents reports from 43,000 nurses from more than 700 hospitals in the United States, Canada, England, Scotland, and Germany in 1998–1999.
  • The study sample comprised 4,228 students with SEND, aged 5–15, drawn from 305 primary and secondary schools across England. Explanatory variables were measured at the individual and school levels at baseline, along with a teacher-reported measure of behavior difficulties (assessed at baseline and the 18-month follow-up).

3) The Results

One or two sentences indicating the main findings or trends found as a result of your analysis. The results are described in the present or past tense.

  • Results show that on days in which women reported higher levels of negative or positive mood, as well as on days they reported more pain and fatigue, they reported receiving more support. Women who, on average, reported higher levels of positive mood tended to report receiving more support than those who, on average, reported lower positive mood. However, average levels of negative mood were not associated with support. Higher average levels of fatigue but not pain were associated with higher support. Finally, women whose husbands reported higher levels of marital satisfaction reported receiving more partner support, but husbands’ marital satisfaction did not moderate the effect of women’s mood on support.
  • Nurses in countries with distinctly different healthcare systems report similar shortcomings in their work environments and the quality of hospital care. While the competence of and relation between nurses and physicians appear satisfactory, core problems in work design and workforce management threaten the provision of care.
  • Hierarchical linear modeling of data revealed that differences between schools accounted for between 13% (secondary) and 15.4% (primary) of the total variance in the development of students’ behavior difficulties, with the remainder attributable to individual differences. Statistically significant risk markers for these problems across both phases of education were being male, eligibility for free school meals, being identified as a bully, and lower academic achievement. Additional risk markers specific to each phase of education at the individual and school levels are also acknowledged.

4) The Conclusion / Implications

A brief summary of your conclusions and implications of the results, described in the present tense. Explain the results and why the study is important to the reader.

  • For example, what changes should be implemented as a result of the findings of the work?
  • How does this work add to the body of knowledge on the topic?

Implications of these findings are discussed relative to assisting couples during this difficult time in their lives.

  • Resolving these issues, which are amenable to managerial intervention, is essential to preserving patient safety and care of consistently high quality.
  • Behavior difficulties are affected by risks across multiple ecological levels. Addressing any one of these potential influences is therefore likely to contribute to the reduction in the problems displayed.

The above examples of abstracts are from the following papers:

Aiken, L. H., Clarke, S. P., Sloane, D. M., Sochalski, J. A., Busse, R., Clarke, H., … & Shamian, J. (2001). Nurses’ reports on hospital care in five countries . Health affairs, 20(3) , 43-53.

Boeding, S. E., Pukay-Martin, N. D., Baucom, D. H., Porter, L. S., Kirby, J. S., Gremore, T. M., & Keefe, F. J. (2014). Couples and breast cancer: Women’s mood and partners’ marital satisfaction predicting support perception . Journal of Family Psychology, 28(5) , 675.

Oldfield, J., Humphrey, N., & Hebron, J. (2017). Risk factors in the development of behavior difficulties among students with special educational needs and disabilities: A multilevel analysis . British journal of educational psychology, 87(2) , 146-169.

5) Keywords

APA style suggests including a list of keywords at the end of the abstract. This is particularly common in academic articles and helps other researchers find your work in databases.

Keywords in an abstract should be selected to help other researchers find your work when searching an online database. These keywords should effectively represent the main topics of your study. Here are some tips for choosing keywords:

Core Concepts: Identify the most important ideas or concepts in your paper. These often include your main research topic, the methods you’ve used, or the theories you’re discussing.

Specificity: Your keywords should be specific to your research. For example, suppose your paper is about the effects of climate change on bird migration patterns in a specific region. In that case, your keywords might include “climate change,” “bird migration,” and the region’s name.

Consistency with Paper: Make sure your keywords are consistent with the terms you’ve used in your paper. For example, if you use the term “adolescent” rather than “teen” in your paper, choose “adolescent” as your keyword, not “teen.”

Jargon and Acronyms: Avoid using too much-specialized jargon or acronyms in your keywords, as these might not be understood or used by all researchers in your field.

Synonyms: Consider including synonyms of your keywords to capture as many relevant searches as possible. For example, if your paper discusses “post-traumatic stress disorder,” you might include “PTSD” as a keyword.

Remember, keywords are a tool for others to find your work, so think about what terms other researchers might use when searching for papers on your topic.

The Abstract SHOULD NOT contain:

Lengthy background or contextual information: The abstract should focus on your research and findings, not general topic background.

Undefined jargon, abbreviations,  or acronyms: The abstract should be accessible to a wide audience, so avoid highly specialized terms without defining them.

Citations: Abstracts typically do not include citations, as they summarize original research.

Incomplete sentences or bulleted lists: The abstract should be a single, coherent paragraph written in complete sentences.

New information not covered in the paper: The abstract should only summarize the paper’s content.

Subjective comments or value judgments: Stick to objective descriptions of your research.

Excessive details on methods or procedures: Keep descriptions of methods brief and focused on main steps.

Speculative or inconclusive statements: The abstract should state the research’s clear findings, not hypotheses or possible interpretations.

  • Any illustration, figure, table, or references to them . All visual aids, data, or extensive details should be included in the main body of your paper, not in the abstract. 
  • Elliptical or incomplete sentences should be avoided in an abstract . The use of ellipses (…), which could indicate incomplete thoughts or omitted text, is not appropriate in an abstract.

APA Style for Abstracts

An APA abstract must be formatted as follows:

Include the running head aligned to the left at the top of the page (professional papers only) and page number. Note, student papers do not require a running head. On the first line, center the heading “Abstract” and bold (do not underlined or italicize). Do not indent the single abstract paragraph (which begins one line below the section title). Double-space the text. Use Times New Roman font in 12 pt. Set one-inch (or 2.54 cm) margins. If you include a “keywords” section at the end of the abstract, indent the first line and italicize the word “Keywords” while leaving the keywords themselves without any formatting.

Example APA Abstract Page

Download this example as a PDF

APA Style Abstract Example

Further Information

  • APA 7th Edition Abstract and Keywords Guide
  • Example APA Abstract
  • How to Write a Good Abstract for a Scientific Paper or Conference Presentation
  • How to Write a Lab Report
  • Writing an APA paper

How long should an APA abstract be?

An APA abstract should typically be between 150 to 250 words long. However, the exact length may vary depending on specific publication or assignment guidelines. It is crucial that it succinctly summarizes the essential elements of the work, including purpose, methods, findings, and conclusions.

Where does the abstract go in an APA paper?

In an APA formatted paper, the abstract is placed on its own page, directly after the title page and before the main body of the paper. It’s typically the second page of the document. It starts with the word “Abstract” (centered and not in bold) at the top of the page, followed by the text of the abstract itself.

What are the 4 C’s of abstract writing?

The 4 C’s of abstract writing are an approach to help you create a well-structured and informative abstract. They are:

Conciseness: An abstract should briefly summarize the key points of your study. Stick to the word limit (typically between 150-250 words for an APA abstract) and avoid unnecessary details.

Clarity: Your abstract should be easy to understand. Avoid jargon and complex sentences. Clearly explain the purpose, methods, results, and conclusions of your study.

Completeness: Even though it’s brief, the abstract should provide a complete overview of your study, including the purpose, methods, key findings, and your interpretation of the results.

Cohesion: The abstract should flow logically from one point to the next, maintaining a coherent narrative about your study. It’s not just a list of disjointed elements; it’s a brief story of your research from start to finish.

What is the abstract of a psychology paper?

An abstract in a psychology paper serves as a snapshot of the paper, allowing readers to quickly understand the purpose, methodology, results, and implications of the research without reading the entire paper. It is generally between 150-250 words long.

Print Friendly, PDF & Email

  • Resources Home 🏠
  • Try SciSpace Copilot
  • Search research papers
  • Add Copilot Extension
  • Try AI Detector
  • Try Paraphraser
  • Try Citation Generator
  • April Papers
  • June Papers
  • July Papers

SciSpace Resources

Abstract Writing: A Step-by-Step Guide With Tips & Examples

Sumalatha G

Table of Contents

step-by-step-guide-to-abstract-writing

Introduction

Abstracts of research papers have always played an essential role in describing your research concisely and clearly to researchers and editors of journals, enticing them to continue reading. However, with the widespread availability of scientific databases, the need to write a convincing abstract is more crucial now than during the time of paper-bound manuscripts.

Abstracts serve to "sell" your research and can be compared with your "executive outline" of a resume or, rather, a formal summary of the critical aspects of your work. Also, it can be the "gist" of your study. Since most educational research is done online, it's a sign that you have a shorter time for impressing your readers, and have more competition from other abstracts that are available to be read.

The APCI (Academic Publishing and Conferences International) articulates 12 issues or points considered during the final approval process for conferences & journals and emphasises the importance of writing an abstract that checks all these boxes (12 points). Since it's the only opportunity you have to captivate your readers, you must invest time and effort in creating an abstract that accurately reflects the critical points of your research.

With that in mind, let’s head over to understand and discover the core concept and guidelines to create a substantial abstract. Also, learn how to organise the ideas or plots into an effective abstract that will be awe-inspiring to the readers you want to reach.

What is Abstract? Definition and Overview

The word "Abstract' is derived from Latin abstractus meaning "drawn off." This etymological meaning also applies to art movements as well as music, like abstract expressionism. In this context, it refers to the revealing of the artist's intention.

Based on this, you can determine the meaning of an abstract: A condensed research summary. It must be self-contained and independent of the body of the research. However, it should outline the subject, the strategies used to study the problem, and the methods implemented to attain the outcomes. The specific elements of the study differ based on the area of study; however, together, it must be a succinct summary of the entire research paper.

Abstracts are typically written at the end of the paper, even though it serves as a prologue. In general, the abstract must be in a position to:

  • Describe the paper.
  • Identify the problem or the issue at hand.
  • Explain to the reader the research process, the results you came up with, and what conclusion you've reached using these results.
  • Include keywords to guide your strategy and the content.

Furthermore, the abstract you submit should not reflect upon any of  the following elements:

  • Examine, analyse or defend the paper or your opinion.
  • What you want to study, achieve or discover.
  • Be redundant or irrelevant.

After reading an abstract, your audience should understand the reason - what the research was about in the first place, what the study has revealed and how it can be utilised or can be used to benefit others. You can understand the importance of abstract by knowing the fact that the abstract is the most frequently read portion of any research paper. In simpler terms, it should contain all the main points of the research paper.

purpose-of-abstract-writing

What is the Purpose of an Abstract?

Abstracts are typically an essential requirement for research papers; however, it's not an obligation to preserve traditional reasons without any purpose. Abstracts allow readers to scan the text to determine whether it is relevant to their research or studies. The abstract allows other researchers to decide if your research paper can provide them with some additional information. A good abstract paves the interest of the audience to pore through your entire paper to find the content or context they're searching for.

Abstract writing is essential for indexing, as well. The Digital Repository of academic papers makes use of abstracts to index the entire content of academic research papers. Like meta descriptions in the regular Google outcomes, abstracts must include keywords that help researchers locate what they seek.

Types of Abstract

Informative and Descriptive are two kinds of abstracts often used in scientific writing.

A descriptive abstract gives readers an outline of the author's main points in their study. The reader can determine if they want to stick to the research work, based on their interest in the topic. An abstract that is descriptive is similar to the contents table of books, however, the format of an abstract depicts complete sentences encapsulated in one paragraph. It is unfortunate that the abstract can't be used as a substitute for reading a piece of writing because it's just an overview, which omits readers from getting an entire view. Also, it cannot be a way to fill in the gaps the reader may have after reading this kind of abstract since it does not contain crucial information needed to evaluate the article.

To conclude, a descriptive abstract is:

  • A simple summary of the task, just summarises the work, but some researchers think it is much more of an outline
  • Typically, the length is approximately 100 words. It is too short when compared to an informative abstract.
  • A brief explanation but doesn't provide the reader with the complete information they need;
  • An overview that omits conclusions and results

An informative abstract is a comprehensive outline of the research. There are times when people rely on the abstract as an information source. And the reason is why it is crucial to provide entire data of particular research. A well-written, informative abstract could be a good substitute for the remainder of the paper on its own.

A well-written abstract typically follows a particular style. The author begins by providing the identifying information, backed by citations and other identifiers of the papers. Then, the major elements are summarised to make the reader aware of the study. It is followed by the methodology and all-important findings from the study. The conclusion then presents study results and ends the abstract with a comprehensive summary.

In a nutshell, an informative abstract:

  • Has a length that can vary, based on the subject, but is not longer than 300 words.
  • Contains all the content-like methods and intentions
  • Offers evidence and possible recommendations.

Informative Abstracts are more frequent than descriptive abstracts because of their extensive content and linkage to the topic specifically. You should select different types of abstracts to papers based on their length: informative abstracts for extended and more complex abstracts and descriptive ones for simpler and shorter research papers.

What are the Characteristics of a Good Abstract?

  • A good abstract clearly defines the goals and purposes of the study.
  • It should clearly describe the research methodology with a primary focus on data gathering, processing, and subsequent analysis.
  • A good abstract should provide specific research findings.
  • It presents the principal conclusions of the systematic study.
  • It should be concise, clear, and relevant to the field of study.
  • A well-designed abstract should be unifying and coherent.
  • It is easy to grasp and free of technical jargon.
  • It is written impartially and objectively.

You can have a thorough understanding of abstracts using SciSpace ChatPDF which makes your abstract analysis part easier.

the-various-sections-of-abstract-writing

What are the various sections of an ideal Abstract?

By now, you must have gained some concrete idea of the essential elements that your abstract needs to convey . Accordingly, the information is broken down into six key sections of the abstract, which include:

An Introduction or Background

Research methodology, objectives and goals, limitations.

Let's go over them in detail.

The introduction, also known as background, is the most concise part of your abstract. Ideally, it comprises a couple of sentences. Some researchers only write one sentence to introduce their abstract. The idea behind this is to guide readers through the key factors that led to your study.

It's understandable that this information might seem difficult to explain in a couple of sentences. For example, think about the following two questions like the background of your study:

  • What is currently available about the subject with respect to the paper being discussed?
  • What isn't understood about this issue? (This is the subject of your research)

While writing the abstract’s introduction, make sure that it is not lengthy. Because if it crosses the word limit, it may eat up the words meant to be used for providing other key information.

Research methodology is where you describe the theories and techniques you used in your research. It is recommended that you describe what you have done and the method you used to get your thorough investigation results. Certainly, it is the second-longest paragraph in the abstract.

In the research methodology section, it is essential to mention the kind of research you conducted; for instance, qualitative research or quantitative research (this will guide your research methodology too) . If you've conducted quantitative research, your abstract should contain information like the sample size, data collection method, sampling techniques, and duration of the study. Likewise, your abstract should reflect observational data, opinions, questionnaires (especially the non-numerical data) if you work on qualitative research.

The research objectives and goals speak about what you intend to accomplish with your research. The majority of research projects focus on the long-term effects of a project, and the goals focus on the immediate, short-term outcomes of the research. It is possible to summarise both in just multiple sentences.

In stating your objectives and goals, you give readers a picture of the scope of the study, its depth and the direction your research ultimately follows. Your readers can evaluate the results of your research against the goals and stated objectives to determine if you have achieved the goal of your research.

In the end, your readers are more attracted by the results you've obtained through your study. Therefore, you must take the time to explain each relevant result and explain how they impact your research. The results section exists as the longest in your abstract, and nothing should diminish its reach or quality.

One of the most important things you should adhere to is to spell out details and figures on the results of your research.

Instead of making a vague assertion such as, "We noticed that response rates varied greatly between respondents with high incomes and those with low incomes", Try these: "The response rate was higher for high-income respondents than those with lower incomes (59 30 percent vs. 30 percent in both cases; P<0.01)."

You're likely to encounter certain obstacles during your research. It could have been during data collection or even during conducting the sample . Whatever the issue, it's essential to inform your readers about them and their effects on the research.

Research limitations offer an opportunity to suggest further and deep research. If, for instance, you were forced to change for convenient sampling and snowball samples because of difficulties in reaching well-suited research participants, then you should mention this reason when you write your research abstract. In addition, a lack of prior studies on the subject could hinder your research.

Your conclusion should include the same number of sentences to wrap the abstract as the introduction. The majority of researchers offer an idea of the consequences of their research in this case.

Your conclusion should include three essential components:

  • A significant take-home message.
  • Corresponding important findings.
  • The Interpretation.

Even though the conclusion of your abstract needs to be brief, it can have an enormous influence on the way that readers view your research. Therefore, make use of this section to reinforce the central message from your research. Be sure that your statements reflect the actual results and the methods you used to conduct your research.

examples-of-good-abstract-writing

Good Abstract Examples

Abstract example #1.

Children’s consumption behavior in response to food product placements in movies.

The abstract:

"Almost all research into the effects of brand placements on children has focused on the brand's attitudes or behavior intentions. Based on the significant differences between attitudes and behavioral intentions on one hand and actual behavior on the other hand, this study examines the impact of placements by brands on children's eating habits. Children aged 6-14 years old were shown an excerpt from the popular film Alvin and the Chipmunks and were shown places for the item Cheese Balls. Three different versions were developed with no placements, one with moderately frequent placements and the third with the highest frequency of placement. The results revealed that exposure to high-frequency places had a profound effect on snack consumption, however, there was no impact on consumer attitudes towards brands or products. The effects were not dependent on the age of the children. These findings are of major importance to researchers studying consumer behavior as well as nutrition experts as well as policy regulators."

Abstract Example #2

Social comparisons on social media: The impact of Facebook on young women’s body image concerns and mood. The abstract:

"The research conducted in this study investigated the effects of Facebook use on women's moods and body image if the effects are different from an internet-based fashion journal and if the appearance comparison tendencies moderate one or more of these effects. Participants who were female ( N = 112) were randomly allocated to spend 10 minutes exploring their Facebook account or a magazine's website or an appearance neutral control website prior to completing state assessments of body dissatisfaction, mood, and differences in appearance (weight-related and facial hair, face, and skin). Participants also completed a test of the tendency to compare appearances. The participants who used Facebook were reported to be more depressed than those who stayed on the control site. In addition, women who have the tendency to compare appearances reported more facial, hair and skin-related issues following Facebook exposure than when they were exposed to the control site. Due to its popularity it is imperative to conduct more research to understand the effect that Facebook affects the way people view themselves."

Abstract Example #3

The Relationship Between Cell Phone Use and Academic Performance in a Sample of U.S. College Students

"The cellphone is always present on campuses of colleges and is often utilised in situations in which learning takes place. The study examined the connection between the use of cell phones and the actual grades point average (GPA) after adjusting for predictors that are known to be a factor. In the end 536 students in the undergraduate program from 82 self-reported majors of an enormous, public institution were studied. Hierarchical analysis ( R 2 = .449) showed that use of mobile phones is significantly ( p < .001) and negative (b equal to -.164) connected to the actual college GPA, after taking into account factors such as demographics, self-efficacy in self-regulated learning, self-efficacy to improve academic performance, and the actual high school GPA that were all important predictors ( p < .05). Therefore, after adjusting for other known predictors increasing cell phone usage was associated with lower academic performance. While more research is required to determine the mechanisms behind these results, they suggest the need to educate teachers and students to the possible academic risks that are associated with high-frequency mobile phone usage."

quick-tips-on-writing-a-good-abstract

Quick tips on writing a good abstract

There exists a common dilemma among early age researchers whether to write the abstract at first or last? However, it's recommended to compose your abstract when you've completed the research since you'll have all the information to give to your readers. You can, however, write a draft at the beginning of your research and add in any gaps later.

If you find abstract writing a herculean task, here are the few tips to help you with it:

1. Always develop a framework to support your abstract

Before writing, ensure you create a clear outline for your abstract. Divide it into sections and draw the primary and supporting elements in each one. You can include keywords and a few sentences that convey the essence of your message.

2. Review Other Abstracts

Abstracts are among the most frequently used research documents, and thousands of them were written in the past. Therefore, prior to writing yours, take a look at some examples from other abstracts. There are plenty of examples of abstracts for dissertations in the dissertation and thesis databases.

3. Avoid Jargon To the Maximum

When you write your abstract, focus on simplicity over formality. You should  write in simple language, and avoid excessive filler words or ambiguous sentences. Keep in mind that your abstract must be readable to those who aren't acquainted with your subject.

4. Focus on Your Research

It's a given fact that the abstract you write should be about your research and the findings you've made. It is not the right time to mention secondary and primary data sources unless it's absolutely required.

Conclusion: How to Structure an Interesting Abstract?

Abstracts are a short outline of your essay. However, it's among the most important, if not the most important. The process of writing an abstract is not straightforward. A few early-age researchers tend to begin by writing it, thinking they are doing it to "tease" the next step (the document itself). However, it is better to treat it as a spoiler.

The simple, concise style of the abstract lends itself to a well-written and well-investigated study. If your research paper doesn't provide definitive results, or the goal of your research is questioned, so will the abstract. Thus, only write your abstract after witnessing your findings and put your findings in the context of a larger scenario.

The process of writing an abstract can be daunting, but with these guidelines, you will succeed. The most efficient method of writing an excellent abstract is to centre the primary points of your abstract, including the research question and goals methods, as well as key results.

Interested in learning more about dedicated research solutions? Go to the SciSpace product page to find out how our suite of products can help you simplify your research workflows so you can focus on advancing science.

Literature search in Scispace

The best-in-class solution is equipped with features such as literature search and discovery, profile management, research writing and formatting, and so much more.

But before you go,

You might also like.

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Sumalatha G

Literature Review and Theoretical Framework: Understanding the Differences

Nikhil Seethi

Types of Essays in Academic Writing - Quick Guide (2024)

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Dissertation
  • How to Write an Abstract | Steps & Examples

How to Write an Abstract | Steps & Examples

Published on 1 March 2019 by Shona McCombes . Revised on 10 October 2022 by Eoghan Ryan.

An abstract is a short summary of a longer work (such as a dissertation or research paper ). The abstract concisely reports the aims and outcomes of your research, so that readers know exactly what your paper is about.

Although the structure may vary slightly depending on your discipline, your abstract should describe the purpose of your work, the methods you’ve used, and the conclusions you’ve drawn.

One common way to structure your abstract is to use the IMRaD structure. This stands for:

  • Introduction

Abstracts are usually around 100–300 words, but there’s often a strict word limit, so make sure to check the relevant requirements.

In a dissertation or thesis , include the abstract on a separate page, after the title page and acknowledgements but before the table of contents .

Instantly correct all language mistakes in your text

Be assured that you'll submit flawless writing. Upload your document to correct all your mistakes.

upload-your-document-ai-proofreader

Table of contents

Abstract example, when to write an abstract, step 1: introduction, step 2: methods, step 3: results, step 4: discussion, tips for writing an abstract, frequently asked questions about abstracts.

Hover over the different parts of the abstract to see how it is constructed.

This paper examines the role of silent movies as a mode of shared experience in the UK during the early twentieth century. At this time, high immigration rates resulted in a significant percentage of non-English-speaking citizens. These immigrants faced numerous economic and social obstacles, including exclusion from public entertainment and modes of discourse (newspapers, theater, radio).

Incorporating evidence from reviews, personal correspondence, and diaries, this study demonstrates that silent films were an affordable and inclusive source of entertainment. It argues for the accessible economic and representational nature of early cinema. These concerns are particularly evident in the low price of admission and in the democratic nature of the actors’ exaggerated gestures, which allowed the plots and action to be easily grasped by a diverse audience despite language barriers.

Keywords: silent movies, immigration, public discourse, entertainment, early cinema, language barriers.

Prevent plagiarism, run a free check.

You will almost always have to include an abstract when:

  • Completing a thesis or dissertation
  • Submitting a research paper to an academic journal
  • Writing a book proposal
  • Applying for research grants

It’s easiest to write your abstract last, because it’s a summary of the work you’ve already done. Your abstract should:

  • Be a self-contained text, not an excerpt from your paper
  • Be fully understandable on its own
  • Reflect the structure of your larger work

Start by clearly defining the purpose of your research. What practical or theoretical problem does the research respond to, or what research question did you aim to answer?

You can include some brief context on the social or academic relevance of your topic, but don’t go into detailed background information. If your abstract uses specialised terms that would be unfamiliar to the average academic reader or that have various different meanings, give a concise definition.

After identifying the problem, state the objective of your research. Use verbs like “investigate,” “test,” “analyse,” or “evaluate” to describe exactly what you set out to do.

This part of the abstract can be written in the present or past simple tense  but should never refer to the future, as the research is already complete.

  • This study will investigate the relationship between coffee consumption and productivity.
  • This study investigates the relationship between coffee consumption and productivity.

Next, indicate the research methods that you used to answer your question. This part should be a straightforward description of what you did in one or two sentences. It is usually written in the past simple tense, as it refers to completed actions.

  • Structured interviews will be conducted with 25 participants.
  • Structured interviews were conducted with 25 participants.

Don’t evaluate validity or obstacles here — the goal is not to give an account of the methodology’s strengths and weaknesses, but to give the reader a quick insight into the overall approach and procedures you used.

The only proofreading tool specialized in correcting academic writing

The academic proofreading tool has been trained on 1000s of academic texts and by native English editors. Making it the most accurate and reliable proofreading tool for students.

abstract for research paper sample

Correct my document today

Next, summarise the main research results . This part of the abstract can be in the present or past simple tense.

  • Our analysis has shown a strong correlation between coffee consumption and productivity.
  • Our analysis shows a strong correlation between coffee consumption and productivity.
  • Our analysis showed a strong correlation between coffee consumption and productivity.

Depending on how long and complex your research is, you may not be able to include all results here. Try to highlight only the most important findings that will allow the reader to understand your conclusions.

Finally, you should discuss the main conclusions of your research : what is your answer to the problem or question? The reader should finish with a clear understanding of the central point that your research has proved or argued. Conclusions are usually written in the present simple tense.

  • We concluded that coffee consumption increases productivity.
  • We conclude that coffee consumption increases productivity.

If there are important limitations to your research (for example, related to your sample size or methods), you should mention them briefly in the abstract. This allows the reader to accurately assess the credibility and generalisability of your research.

If your aim was to solve a practical problem, your discussion might include recommendations for implementation. If relevant, you can briefly make suggestions for further research.

If your paper will be published, you might have to add a list of keywords at the end of the abstract. These keywords should reference the most important elements of the research to help potential readers find your paper during their own literature searches.

Be aware that some publication manuals, such as APA Style , have specific formatting requirements for these keywords.

It can be a real challenge to condense your whole work into just a couple of hundred words, but the abstract will be the first (and sometimes only) part that people read, so it’s important to get it right. These strategies can help you get started.

Read other abstracts

The best way to learn the conventions of writing an abstract in your discipline is to read other people’s. You probably already read lots of journal article abstracts while conducting your literature review —try using them as a framework for structure and style.

You can also find lots of dissertation abstract examples in thesis and dissertation databases .

Reverse outline

Not all abstracts will contain precisely the same elements. For longer works, you can write your abstract through a process of reverse outlining.

For each chapter or section, list keywords and draft one to two sentences that summarise the central point or argument. This will give you a framework of your abstract’s structure. Next, revise the sentences to make connections and show how the argument develops.

Write clearly and concisely

A good abstract is short but impactful, so make sure every word counts. Each sentence should clearly communicate one main point.

To keep your abstract or summary short and clear:

  • Avoid passive sentences: Passive constructions are often unnecessarily long. You can easily make them shorter and clearer by using the active voice.
  • Avoid long sentences: Substitute longer expressions for concise expressions or single words (e.g., “In order to” for “To”).
  • Avoid obscure jargon: The abstract should be understandable to readers who are not familiar with your topic.
  • Avoid repetition and filler words: Replace nouns with pronouns when possible and eliminate unnecessary words.
  • Avoid detailed descriptions: An abstract is not expected to provide detailed definitions, background information, or discussions of other scholars’ work. Instead, include this information in the body of your thesis or paper.

If you’re struggling to edit down to the required length, you can get help from expert editors with Scribbr’s professional proofreading services .

Check your formatting

If you are writing a thesis or dissertation or submitting to a journal, there are often specific formatting requirements for the abstract—make sure to check the guidelines and format your work correctly. For APA research papers you can follow the APA abstract format .

Checklist: Abstract

The word count is within the required length, or a maximum of one page.

The abstract appears after the title page and acknowledgements and before the table of contents .

I have clearly stated my research problem and objectives.

I have briefly described my methodology .

I have summarized the most important results .

I have stated my main conclusions .

I have mentioned any important limitations and recommendations.

The abstract can be understood by someone without prior knowledge of the topic.

You've written a great abstract! Use the other checklists to continue improving your thesis or dissertation.

An abstract is a concise summary of an academic text (such as a journal article or dissertation ). It serves two main purposes:

  • To help potential readers determine the relevance of your paper for their own research.
  • To communicate your key findings to those who don’t have time to read the whole paper.

Abstracts are often indexed along with keywords on academic databases, so they make your work more easily findable. Since the abstract is the first thing any reader sees, it’s important that it clearly and accurately summarises the contents of your paper.

An abstract for a thesis or dissertation is usually around 150–300 words. There’s often a strict word limit, so make sure to check your university’s requirements.

The abstract is the very last thing you write. You should only write it after your research is complete, so that you can accurately summarize the entirety of your thesis or paper.

Avoid citing sources in your abstract . There are two reasons for this:

  • The abstract should focus on your original research, not on the work of others.
  • The abstract should be self-contained and fully understandable without reference to other sources.

There are some circumstances where you might need to mention other sources in an abstract: for example, if your research responds directly to another study or focuses on the work of a single theorist. In general, though, don’t include citations unless absolutely necessary.

The abstract appears on its own page, after the title page and acknowledgements but before the table of contents .

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2022, October 10). How to Write an Abstract | Steps & Examples. Scribbr. Retrieved 3 September 2024, from https://www.scribbr.co.uk/thesis-dissertation/abstract/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, how to write a thesis or dissertation introduction, thesis & dissertation acknowledgements | tips & examples, dissertation title page.

Reference management. Clean and simple.

How to write an abstract

abstract for research paper sample

What is an abstract?

General format of an abstract, the content of an abstract, abstract example, abstract style guides, frequently asked questions about writing an abstract, related articles.

An abstract is a summary of the main contents of a paper.

The abstract is the first glimpse that readers get of the content of a research paper. It can influence the popularity of a paper, as a well-written one will attract readers, and a poorly-written one will drive them away.

➡️ Different types of papers may require distinct abstract styles. Visit our guide on the different types of research papers to learn more.

Tip: Always wait until you’ve written your entire paper before you write the abstract.

Before you actually start writing an abstract, make sure to follow these steps:

  • Read other papers : find papers with similar topics, or similar methodologies, simply to have an idea of how others have written their abstracts. Notice which points they decided to include, and how in depth they described them.
  • Double check the journal requirements : always make sure to review the journal guidelines to format your paper accordingly. Usually, they also specify abstract's formats.
  • Write the abstract after you finish writing the paper : you can only write an abstract once you finish writing the whole paper. This way you can include all important aspects, such as scope, methodology, and conclusion.

➡️ Read more about  what is a research methodology?

The general format of an abstract includes the following features:

  • Between 150-300 words .
  • An independent page , after the title page and before the table of contents.
  • Concise summary including the aim of the research, methodology , and conclusion .
  • Keywords describing the content.

As mentioned before, an abstract is a text that summarizes the main points of a research. Here is a break down of each element that should be included in an abstract:

  • Purpose : every abstract should start by describing the main purpose or aim of the research.
  • Methods : as a second point, the methodology carried out should be explained.
  • Results : then, a concise summary of the results should be included.
  • Conclusion : finally, a short outline of the general outcome of the research should be given.
  • Keywords : along with the abstract, specific words and phrases related to the topics discussed in the research should be added. These words are usually around five, but the number can vary depending on the journal's guidelines.

This abstract, taken from ScienceDirect , illustrates the ideal structure of an abstract. It has 155 words, it's concise, and it clearly shows the division of elements necessary to write a successful abstract.

This paper explores the implicit assumption in the growing body of literature that social media usage is fundamentally different in business-to-business (B2B) companies than in the extant business-to-consumer (B2C) literature. Sashi's (2012) customer engagement cycle is utilized to compare organizational practices in relation to social media marketing in B2B, B2C, Mixed B2B/B2C and B2B2C business models. Utilizing 449 responses to an exploratory panel based survey instrument, we clearly identify differences in social media usage and its perceived importance as a communications channel. In particular we identify distinct differences in the relationship between social media importance and the perceived effectiveness of social media marketing across business models. Our results indicate that B2B social media usage is distinct from B2C, Mixed and B2B2C business model approaches. Specifically B2B organizational members perceive social media to have a lower overall effectiveness as a channel and identify it as less important for relationship oriented usage than other business models.

The exact format of an abstract depends on the citation style you implement. Whether it’s a well-known style (like APA, IEEE, etc.) or a journal's style, each format has its own guidelines, so make sure you know which style you are using before writing your abstract.

APA is one of the most commonly used styles to format an abstract. Therefore, we created a guide with exact instructions on how to write an abstract in APA style, and a template to download:

📕 APA abstract page: format and template

Additionally, you will find below an IEEE and ASA abstract guide by Purdue Online Writing Lab :

📗 IEEE General Format - Abstract

📘 ASA Manuscript Formatting - Abstract

No. You should always write an abstract once you finish writing the whole paper. This way you can include all important aspects of the paper, such as scope, methodology, and conclusion.

The length of an abstract depends on the formatting style of the paper. For example, APA style calls for 150 to 250 words. Generally, you need between 150-300 words.

No. An abstract has an independent section after the title page and before the table of contents, and should not be included in the table of contents.

Take a look at APA abstract page: format and template for exact details on how to format an abstract in APA style.

You can access any paper through Google Scholar or any other search engine; pick a paper and read the abstract. Abstracts are always freely available to read.

How to give a good scientific presentation

Get 25% OFF new yearly plans in our Storyteller's Sale

  • Grammar Checker
  • Paraphrasing Tool
  • Critique Report
  • Writing Reports
  • Learn Blog Grammar Guide Community Events FAQ
  • Grammar Guide

abstract for research paper sample

How to Write an Abstract in Research Papers (with Examples)

How to write an abstract

An abstract in research papers is a keyword-rich summary usually not exceeding 200-350 words. It can be considered the “face” of research papers because it creates an initial impression on the readers. While searching databases (such as PubMed) for research papers, a title is usually the first selection criterion for readers. If the title matches their search criteria, then the readers read the abstract, which sets the tone of the paper. Titles and abstracts are often the only freely available parts of research papers on journal websites. The pdf versions of full articles need to be purchased. Journal reviewers are often provided with only the title and abstract before they agree to review the complete paper. [ 1]  

Abstracts in research papers provide readers with a quick insight into what the paper is about to help them decide whether they want to read it further or not. Abstracts are the main selling points of articles and therefore should be carefully drafted, accurately highlighting the important aspects. [ 2]  

This article will help you identify the important components and provide tips on how to write an abstract in research papers effectively

What is an Abstract?  

An abstract in research papers can be defined as a synopsis of the paper. It should be clear, direct, self-contained, specific, unbiased, and concise. These summaries are published along with the complete research paper and are also submitted to conferences for consideration for presentation.  

Abstracts are of four types and journals can follow any of these formats: [ 2]  

  • Structured  
  • Unstructured  
  • Descriptive  
  • Informative  

Structured abstracts are used by most journals because they are more organized and have clear sections, usually including introduction/background; objective; design, settings, and participants (or materials and methods); outcomes and measures; results; and conclusion. These headings may differ based on the journal or the type of paper. Clinical trial abstracts should include the essential items mentioned in the CONSORT (Consolidated Standards Of Reporting Trials) guidelines.  

abstract for research paper sample

Figure 1. Structured abstract example [3] 

Unstructured abstracts are common in social science, humanities, and physical science journals. They usually have one paragraph and no specific structure or subheadings. These abstracts are commonly used for research papers that don’t report original work and therefore have a more flexible and narrative style.  

abstract for research paper sample

Figure 2. Unstructured abstract example [3] 

Descriptive abstracts are short (75–150 words) and provide an outline with only the most important points of research papers. They are used for shorter articles such as case reports, reviews, and opinions where space is at a premium, and rarely for original investigations. These abstracts don’t present the results but mainly list the topics covered.  

Here’s a sample abstract . [ 4]  

“Design of a Radio-Based System for Distribution Automation”  

A new survey by the Maryland Public Utilities Commission suggests that utilities have not effectively explained to consumers the benefits of smart meters. The two-year study of 86,000 consumers concludes that the long-term benefits of smart meters will not be realized until consumers understand the benefits of shifting some of their power usage to off-peak hours in response to the data they receive from their meters. The study presents recommendations for utilities and municipal governments to improve customer understanding of how to use the smart meters effectively.  

Keywords: smart meters, distribution systems, load, customer attitudes, power consumption, utilities  

Informative abstracts (structured or unstructured) give a complete detailed summary, including the main results, of the research paper and may or may not have subsections.   

abstract for research paper sample

Figure 3. Informative abstract example [5] 

Purpose of Abstracts in Research    

Abstracts in research have two main purposes—selection and indexing. [ 6,7]  

  • Selection : Abstracts allow interested readers to quickly decide the relevance of a paper to gauge if they should read it completely.   
  • Indexing : Most academic journal databases accessed through libraries enable you to search abstracts, allowing for quick retrieval of relevant articles and avoiding unnecessary search results. Therefore, abstracts must necessarily include the keywords that researchers may use to search for articles.  

Thus, a well-written, keyword-rich abstract can p ique readers’ interest and curiosity and help them decide whether they want to read the complete paper. It can also direct readers to articles of potential clinical and research interest during an online search.  

abstract for research paper sample

Contents of Abstracts in Research  

Abstracts in research papers summarize the main points of an article and are broadly categorized into four or five sections. Here are some details on how to write an abstract .   

Introduction/Background and/or Objectives  

This section should provide the following information:  

  • What is already known about the subject?  
  • What is not known about the subject or what does the study aim to investigate?  

The hypothesis or research question and objectives should be mentioned here. The Background sets the context for the rest of the paper and its length should be short so that the word count could be saved for the Results or other information directly pertaining to the study. The objective should be written in present or past simple tense.  

Examples:  

The antidepressant efficacy of desvenlafaxine (DV) has been established in 8-week, randomized controlled trials. The present study examined the continued efficacy of DV across 6 months of maintenance treatment . [ 1]  

Objective: To describe gastric and breast cancer risk estimates for individuals with CDH1 variants.  

Design, Setting, and Participants (or Materials and Methods)  

This section should provide information on the processes used and should be written in past simple tense because the process is already completed.  

A few important questions to be answered include:  

  • What was the research design and setting?  
  • What was the sample size and how were the participants sampled?  
  • What treatments did the participants receive?  
  • What were the data collection and data analysis dates?  
  • What was the primary outcome measure?  

Hazard ratios (HRs) were estimated for each cancer type and used to calculate cumulative risks and risks per decade of life up to age 80 years.  

abstract for research paper sample

This section, written in either present or past simple tense, should be the longest and should describe the main findings of the study. Here’s an example of how descriptive the sentences should be:  

Avoid: Response rates differed significantly between diabetic and nondiabetic patients.  

Better: The response rate was higher in nondiabetic than in diabetic patients (49% vs 30%, respectively; P<0.01).  

This section should include the following information:  

  • Total number of patients (included, excluded [exclusion criteria])  
  • Primary and secondary outcomes, expressed in words, and supported by numerical data  
  • Data on adverse outcomes  

Example: [ 8]  

In total, 10.9% of students were reported to have favorable study skills. The minimum score was found for preparation for examination domain. Also, a significantly positive correlation was observed between students’ study skills and their Grade Point Average (GPA) of previous term (P=0.001, r=0.269) and satisfaction with study skills (P=0.001, r=0.493).  

Conclusions  

Here, authors should mention the importance of their findings and also the practical and theoretical implications, which would benefit readers referring to this paper for their own research. Present simple tense should be used here.  

Examples: [ 1,8]  

The 9.3% prevalence of bipolar spectrum disorders in students at an arts university is substantially higher than general population estimates. These findings strengthen the oft-expressed hypothesis linking creativity with affective psychopathology.  

The findings indicated that students’ study skills need to be improved. Given the significant relationship between study skills and GPA, as an index of academic achievement, and satisfaction, it is necessary to promote the students’ study skills. These skills are suggested to be reinforced, with more emphasis on weaker domains.  

abstract for research paper sample

When to Write an Abstract  

In addition to knowing how to write an abstract , you should also know when to write an abstract . It’s best to write abstracts once the paper is completed because this would make it easier for authors to extract relevant parts from every section.  

Abstracts are usually required for: [ 7]    

  • submitting articles to journals  
  • applying for research grants   
  • writing book proposals  
  • completing and submitting dissertations  
  • submitting proposals for conference papers  

Mostly, the author of the entire work writes the abstract (the first author, in works with multiple authors). However, there are professional abstracting services that hire writers to draft abstracts of other people’s work.   

How to Write an Abstract (Step-by-Step Process)  

Here are some key steps on how to write an abstract in research papers: [ 9]  

  • Write the abstract after you’ve finished writing your paper.  
  • Select the major objectives/hypotheses and conclusions from your Introduction and Conclusion sections.  
  • Select key sentences from your Methods section.  
  • Identify the major results from the Results section.  
  • Paraphrase or re-write the sentences selected in steps 2, 3, and 4 in your own words into one or two paragraphs in the following sequence: Introduction/Objective, Methods, Results, and Conclusions. The headings may differ among journals, but the content remains the same.  
  • Ensure that this draft does not contain: a.   new information that is not present in the paper b.   undefined abbreviations c.   a discussion of previous literature or reference citations d.   unnecessary details about the methods used  
  • Remove all extra information and connect your sentences to ensure that the information flows well, preferably in the following order: purpose; basic study design, methodology and techniques used; major findings; summary of your interpretations, conclusions, and implications. Use section headings for structured abstracts.  
  • Ensure consistency between the information presented in the abstract and the paper.  
  • Check to see if the final abstract meets the guidelines of the target journal (word limit, type of abstract, recommended subheadings, etc.) and if all the required information has been included.  

Choosing Keywords for Abstracts  

Keywords [ 2] are the important and repeatedly used words and phrases in research papers and can help indexers and search engines find papers relevant to your requirements. Easy retrieval would help in reaching a wider audience and eventually gain more citations. In the fields of medicine and health, keywords should preferably be chosen from the Medical Subject Headings (MeSH) list of the US National Library of Medicine because they are used for indexing. These keywords need to be different from the words in the main title (automatically used for indexing) but can be variants of the terms/phrases used in the title, abstract, and the main text. Keywords should represent the content of your manuscript and be specific to your subject area.  

Basic tips for authors [ 10,11]  

  • Read through your paper and highlight key terms or phrases that are most relevant and frequently used in your field, to ensure familiarity.  
  • Several journals provide instructions about the length (eg, 3 words in a keyword) and maximum number of keywords allowed and other related rules. Create a list of keywords based on these instructions and include specific phrases containing 2 to 4 words. A longer string of words would yield generic results irrelevant to your field.  
  • Use abbreviations, acronyms, and initializations if these would be more familiar.  
  • Search with your keywords to ensure the results fit with your article and assess how helpful they would be to readers.  
  • Narrow down your keywords to about five to ten, to ensure accuracy.  
  • Finalize your list based on the maximum number allowed.  

  Few examples: [ 12]  

     
Direct observation of nonlinear optics in an isolated carbon nanotube  molecule, optics, lasers, energy lifetime  single-molecule interaction, Kerr effect, carbon nanotube, energy level 
Region-specific neuronal degeneration after okadaic acid administration  neuron, brain, regional-specific neuronal degeneration, signaling  neurodegenerative diseases; CA1 region, hippocampal; okadaic acid; neurotoxins; MAP kinase signaling system; cell death 
Increases in levels of sediment transport at former glacial-interglacial transitions  climate change, erosion, plant effects  quaternary climate change, soil erosion, bioturbation 

Important Tips for Writing an Abstract  

Here are a few tips on how to write an abstract to ensure that your abstract is complete, concise, and accurate. [ 1,2]  

  • Write the abstract last.  
  • Follow journal-specific formatting guidelines or Instructions to Authors strictly to ensure acceptance for publication.  
  • Proofread the final draft meticulously to avoid grammatical or typographical errors.  
  • Ensure that the terms or data mentioned in the abstract are consistent with the main text.  
  • Include appropriate keywords at the end.

Do not include:  

  • New information  
  • Text citations to references  
  • Citations to tables and figures  
  • Generic statements  
  • Abbreviations unless necessary, like a trial or study name  

abstract for research paper sample

Key Takeaways    

Here’s a quick snapshot of all the important aspects of how to write an abstract . [2]

  • An abstract in research is a summary of the paper and describes only the main aspects. Typically, abstracts are about 200-350 words long.  
  • Abstracts are of four types—structured, unstructured, descriptive, and informative.  
  • Abstracts should be simple, clear, concise, independent, and unbiased (present both favorable and adverse outcomes).  
  • They should adhere to the prescribed journal format, including word limits, section headings, number of keywords, fonts used, etc.  
  • The terminology should be consistent with the main text.   
  • Although the section heading names may differ for journals, every abstract should include a background and objective, analysis methods, primary results, and conclusions.  
  • Nonstandard abbreviations, references, and URLs shouldn’t be included.  
  • Only relevant and specific keywords should be used to ensure focused searches and higher citation frequency.  
  • Abstracts should be written last after completing the main paper.  

Frequently Asked Questions   

Q1. Do all journals have different guidelines for abstracts?  

A1. Yes, all journals have their own specific guidelines for writing abstracts; a few examples are given in the following table. [ 6,13,14,15]  

   
American Psychological Association           
American Society for Microbiology     
The Lancet     
Journal of the American Medical Association               

Q2. What are the common mistakes to avoid when writing an abstract?  

A2. Listed below are a few mistakes that authors may make inadvertently while writing abstracts.  

  • Copying sentences from the paper verbatim  

An abstract is a summary, which should be created by paraphrasing your own work or writing in your own words. Extracting sentences from every section and combining them into one paragraph cannot be considered summarizing.  

  • Not adhering to the formatting guidelines  

Journals have special instructions for writing abstracts, such as word limits and section headings. These should be followed strictly to avoid rejections.  

  • Not including the right amount of details in every section  

Both too little and too much information could discourage readers. For instance, if the Background has very little information, the readers may not get sufficient context to appreciate your research. Similarly, incomplete information in the Methods and a text-heavy Results section without supporting numerical data may affect the credibility of your research.  

  • Including citations, standard abbreviations, and detailed measurements  

Typically, abstracts shouldn’t include these elements—citations, URLs, and abbreviations. Only nonstandard abbreviations are allowed or those that would be more familiar to readers than the expansions.  

  • Including new information  

Abstracts should strictly include only the same information mentioned in the main text. Any new information should first be added to the text and then to the abstract only if necessary or if permitted by the word limit.  

  • Not including keywords  

Keywords are essential for indexing and searching and should be included to increase the frequency of retrieval and citation.  

Q3. What is the difference between abstracts in research papers and conference abstracts? [16]  

A3. The table summarizes the main differences between research and conference abstracts.  

     
Context  Concise summary of ongoing or completed research presented at conferences  Summary of full research paper published in a journal 
Length  Shorter (150-250 words)   Longer (150-350 words) 
Audience  Diverse conference attendees (both experts & people with general interest)  People or other researchers specifically interested in the subject 
Focus  Intended to quickly attract interest; provides just enough information to highlight the significance, objectives, and impact; may briefly state methods and results  Deeper insight into the study; more detailed sections on methodology, results, and broader implications 
Publication venue  Not published independently but included in conference schedules, booklets, etc.  Published with the full research paper in academic journals, conference proceedings, research databases, etc. 
Citations  Allowed  Not allowed 

  Thus, abstracts are essential “trailers” that can market your research to a wide audience. The better and more complete the abstract the more are the chances of your paper being read and cited. By following our checklist and ensuring that all key elements are included, you can create a well-structured abstract that summarizes your paper accurately.  

References  

  • Andrade C. How to write a good abstract for a scientific paper or conference presentation. Indian J Psychiatry . 2011; 53(2):172-175. Accessed June 14, 2024. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3136027/  
  • Tullu MS. Writing the title and abstract for a research paper: Being concise, precise, and meticulous is the key. 2019; 13(Suppl 1): S12-S17. Accessed June 14, 2024. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6398294/  
  • Zawia J. Writing an Academic Paper? Get to know Abstracts vs. Structured Abstracts. Medium. Published October 16, 2023. Accessed June 16, 2024. https://medium.com/@jamala.zawia/writing-an-academic-paper-get-to-know-abstracts-vs-structured-abstracts-11ed86888367  
  • Markel M and Selber S. Technical Communication, 12 th edition. 2018; pp. 482. Bedford/St Martin’s.  
  • Abstracts. Arkansas State University. Accessed June 17, 2024. https://www.astate.edu/a/global-initiatives/online/a-state-online-services/online-writing-center/resources/How%20to%20Write%20an%20Abstract1.pdf  
  • AMA Manual of Style. 11 th edition. Oxford University Press.  
  • Writing an Abstract. The University of Melbourne. Accessed June 16, 2024. https://services.unimelb.edu.au/__data/assets/pdf_file/0007/471274/Writing_an_Abstract_Update_051112.pdf  
  • 10 Good Abstract Examples that will Kickstart Your Brain. Kibin Essay Writing Blog. Published April 5, 2017. Accessed June 17, 2024. https://www.kibin.com/essay-writing-blog/10-good-abstract-examples/  
  • A 10-step guide to make your research paper abstract more effective. Editage Insights. Published October 16, 2013. Accessed June 17, 2024. https://www.editage.com/insights/a-10-step-guide-to-make-your-research-paper-abstract-more-effective  
  • Using keywords to write your title and abstract. Taylor & Francis Author Services. Accessed June 15, 2024. https://authorservices.taylorandfrancis.com/publishing-your-research/writing-your-paper/using-keywords-to-write-title-and-abstract/  
  • How to choose and use keywords in research papers. Paperpal by Editage blog. Published March 10, 2023. Accessed June 17, 2024. https://paperpal.com/blog/researcher-resources/phd-pointers/how-to-choose-and-use-keywords-in-research-papers  
  • Title, abstract and keywords. Springer. Accessed June 16, 2024. https://www.springer.com/it/authors-editors/authorandreviewertutorials/writing-a-journal-manuscript/title-abstract-and-keywords/10285522  
  • Abstract and keywords guide. APA Style, 7 th edition. Accessed June 18, 2024. https://apastyle.apa.org/instructional-aids/abstract-keywords-guide.pdf  
  • Abstract guidelines. American Society for Microbiology. Accessed June 18, 2024. https://asm.org/events/asm-microbe/present/abstract-guidelines  
  • Guidelines for conference abstracts. The Lancet. Accessed June 16, 2024. https://www.thelancet.com/pb/assets/raw/Lancet/pdfs/Abstract_Guidelines_2013.pdf  
  • Is a conference abstract the same as a paper abstract? Global Conference Alliance, Inc. Accessed June 18, 2024. https://globalconference.ca/is-a-conference-abstract-the-same-as-a-paper-abstract/  

Paperpal is a comprehensive AI writing toolkit that helps students and researchers achieve 2x the writing in half the time. It leverages 21+ years of STM experience and insights from millions of research articles to provide in-depth academic writing, language editing, and submission readiness support to help you write better, faster.  

Get accurate academic translations, rewriting support, grammar checks, vocabulary suggestions, and generative AI assistance that delivers human precision at machine speed. Try for free or upgrade to Paperpal Prime starting at US$19 a month to access premium features, including consistency, plagiarism, and 30+ submission readiness checks to help you succeed.  

Experience the future of academic writing – Sign up to Paperpal and start writing for free!  

Related Reads:

  • What are Journal Guidelines on Using Generative AI Tools
  • How to Write a High-Quality Conference Paper

How to Write Dissertation Acknowledgements?

  • How to Write the First Draft of a Research Paper with Paperpal? 

Top 7 AI Tools for Research 2024

You may also like, dissertation printing and binding | types & comparison , what is a dissertation preface definition and examples , how to write a research proposal: (with examples..., how to write your research paper in apa..., how to choose a dissertation topic, how to write a phd research proposal, how to write an academic paragraph (step-by-step guide), maintaining academic integrity with paperpal’s generative ai writing..., research funding basics: what should a grant proposal....

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Indian J Psychiatry
  • v.53(2); Apr-Jun 2011

How to write a good abstract for a scientific paper or conference presentation

Chittaranjan andrade.

Department of Psychopharmacology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India

Abstracts of scientific papers are sometimes poorly written, often lack important information, and occasionally convey a biased picture. This paper provides detailed suggestions, with examples, for writing the background, methods, results, and conclusions sections of a good abstract. The primary target of this paper is the young researcher; however, authors with all levels of experience may find useful ideas in the paper.

INTRODUCTION

This paper is the third in a series on manuscript writing skills, published in the Indian Journal of Psychiatry . Earlier articles offered suggestions on how to write a good case report,[ 1 ] and how to read, write, or review a paper on randomized controlled trials.[ 2 , 3 ] The present paper examines how authors may write a good abstract when preparing their manuscript for a scientific journal or conference presentation. Although the primary target of this paper is the young researcher, it is likely that authors with all levels of experience will find at least a few ideas that may be useful in their future efforts.

The abstract of a paper is the only part of the paper that is published in conference proceedings. The abstract is the only part of the paper that a potential referee sees when he is invited by an editor to review a manuscript. The abstract is the only part of the paper that readers see when they search through electronic databases such as PubMed. Finally, most readers will acknowledge, with a chuckle, that when they leaf through the hard copy of a journal, they look at only the titles of the contained papers. If a title interests them, they glance through the abstract of that paper. Only a dedicated reader will peruse the contents of the paper, and then, most often only the introduction and discussion sections. Only a reader with a very specific interest in the subject of the paper, and a need to understand it thoroughly, will read the entire paper.

Thus, for the vast majority of readers, the paper does not exist beyond its abstract. For the referees, and the few readers who wish to read beyond the abstract, the abstract sets the tone for the rest of the paper. It is therefore the duty of the author to ensure that the abstract is properly representative of the entire paper. For this, the abstract must have some general qualities. These are listed in Table 1 .

General qualities of a good abstract

An external file that holds a picture, illustration, etc.
Object name is IJPsy-53-172-g001.jpg

SECTIONS OF AN ABSTRACT

Although some journals still publish abstracts that are written as free-flowing paragraphs, most journals require abstracts to conform to a formal structure within a word count of, usually, 200–250 words. The usual sections defined in a structured abstract are the Background, Methods, Results, and Conclusions; other headings with similar meanings may be used (eg, Introduction in place of Background or Findings in place of Results). Some journals include additional sections, such as Objectives (between Background and Methods) and Limitations (at the end of the abstract). In the rest of this paper, issues related to the contents of each section will be examined in turn.

This section should be the shortest part of the abstract and should very briefly outline the following information:

  • What is already known about the subject, related to the paper in question
  • What is not known about the subject and hence what the study intended to examine (or what the paper seeks to present)

In most cases, the background can be framed in just 2–3 sentences, with each sentence describing a different aspect of the information referred to above; sometimes, even a single sentence may suffice. The purpose of the background, as the word itself indicates, is to provide the reader with a background to the study, and hence to smoothly lead into a description of the methods employed in the investigation.

Some authors publish papers the abstracts of which contain a lengthy background section. There are some situations, perhaps, where this may be justified. In most cases, however, a longer background section means that less space remains for the presentation of the results. This is unfortunate because the reader is interested in the paper because of its findings, and not because of its background.

A wide variety of acceptably composed backgrounds is provided in Table 2 ; most of these have been adapted from actual papers.[ 4 – 9 ] Readers may wish to compare the content in Table 2 with the original abstracts to see how the adaptations possibly improve on the originals. Note that, in the interest of brevity, unnecessary content is avoided. For instance, in Example 1 there is no need to state “The antidepressant efficacy of desvenlafaxine (DV), a dual-acting antidepressant drug , has been established…” (the unnecessary content is italicized).

Examples of the background section of an abstract

An external file that holds a picture, illustration, etc.
Object name is IJPsy-53-172-g002.jpg

The methods section is usually the second-longest section in the abstract. It should contain enough information to enable the reader to understand what was done, and how. Table 3 lists important questions to which the methods section should provide brief answers.

Questions regarding which information should ideally be available in the methods section of an abstract

An external file that holds a picture, illustration, etc.
Object name is IJPsy-53-172-g003.jpg

Carelessly written methods sections lack information about important issues such as sample size, numbers of patients in different groups, doses of medications, and duration of the study. Readers have only to flip through the pages of a randomly selected journal to realize how common such carelessness is.

Table 4 presents examples of the contents of accept-ably written methods sections, modified from actual publications.[ 10 , 11 ] Readers are invited to take special note of the first sentence of each example in Table 4 ; each is packed with detail, illustrating how to convey the maximum quantity of information with maximum economy of word count.

Examples of the methods section of an abstract

An external file that holds a picture, illustration, etc.
Object name is IJPsy-53-172-g004.jpg

The results section is the most important part of the abstract and nothing should compromise its range and quality. This is because readers who peruse an abstract do so to learn about the findings of the study. The results section should therefore be the longest part of the abstract and should contain as much detail about the findings as the journal word count permits. For example, it is bad writing to state “Response rates differed significantly between diabetic and nondiabetic patients.” A better sentence is “The response rate was higher in nondiabetic than in diabetic patients (49% vs 30%, respectively; P <0.01).”

Important information that the results should present is indicated in Table 5 . Examples of acceptably written abstracts are presented in Table 6 ; one of these has been modified from an actual publication.[ 11 ] Note that the first example is rather narrative in style, whereas the second example is packed with data.

Information that the results section of the abstract should ideally present

An external file that holds a picture, illustration, etc.
Object name is IJPsy-53-172-g005.jpg

Examples of the results section of an abstract

An external file that holds a picture, illustration, etc.
Object name is IJPsy-53-172-g006.jpg

CONCLUSIONS

This section should contain the most important take-home message of the study, expressed in a few precisely worded sentences. Usually, the finding highlighted here relates to the primary outcome measure; however, other important or unexpected findings should also be mentioned. It is also customary, but not essential, for the authors to express an opinion about the theoretical or practical implications of the findings, or the importance of their findings for the field. Thus, the conclusions may contain three elements:

  • The primary take-home message
  • The additional findings of importance
  • The perspective

Despite its necessary brevity, this section has the most impact on the average reader because readers generally trust authors and take their assertions at face value. For this reason, the conclusions should also be scrupulously honest; and authors should not claim more than their data demonstrate. Hypothetical examples of the conclusions section of an abstract are presented in Table 7 .

Examples of the conclusions section of an abstract

An external file that holds a picture, illustration, etc.
Object name is IJPsy-53-172-g007.jpg

MISCELLANEOUS OBSERVATIONS

Citation of references anywhere within an abstract is almost invariably inappropriate. Other examples of unnecessary content in an abstract are listed in Table 8 .

Examples of unnecessary content in a abstract

An external file that holds a picture, illustration, etc.
Object name is IJPsy-53-172-g008.jpg

It goes without saying that whatever is present in the abstract must also be present in the text. Likewise, whatever errors should not be made in the text should not appear in the abstract (eg, mistaking association for causality).

As already mentioned, the abstract is the only part of the paper that the vast majority of readers see. Therefore, it is critically important for authors to ensure that their enthusiasm or bias does not deceive the reader; unjustified speculations could be even more harmful. Misleading readers could harm the cause of science and have an adverse impact on patient care.[ 12 ] A recent study,[ 13 ] for example, concluded that venlafaxine use during the second trimester of pregnancy may increase the risk of neonates born small for gestational age. However, nowhere in the abstract did the authors mention that these conclusions were based on just 5 cases and 12 controls out of the total sample of 126 cases and 806 controls. There were several other serious limitations that rendered the authors’ conclusions tentative, at best; yet, nowhere in the abstract were these other limitations expressed.

As a parting note: Most journals provide clear instructions to authors on the formatting and contents of different parts of the manuscript. These instructions often include details on what the sections of an abstract should contain. Authors should tailor their abstracts to the specific requirements of the journal to which they plan to submit their manuscript. It could also be an excellent idea to model the abstract of the paper, sentence for sentence, on the abstract of an important paper on a similar subject and with similar methodology, published in the same journal for which the manuscript is slated.

Source of Support: Nil

Conflict of Interest: None declared.

The Writing Center • University of North Carolina at Chapel Hill

What this handout is about

This handout provides definitions and examples of the two main types of abstracts: descriptive and informative. It also provides guidelines for constructing an abstract and general tips for you to keep in mind when drafting. Finally, it includes a few examples of abstracts broken down into their component parts.

What is an abstract?

An abstract is a self-contained, short, and powerful statement that describes a larger work. Components vary according to discipline. An abstract of a social science or scientific work may contain the scope, purpose, results, and contents of the work. An abstract of a humanities work may contain the thesis, background, and conclusion of the larger work. An abstract is not a review, nor does it evaluate the work being abstracted. While it contains key words found in the larger work, the abstract is an original document rather than an excerpted passage.

Why write an abstract?

You may write an abstract for various reasons. The two most important are selection and indexing. Abstracts allow readers who may be interested in a longer work to quickly decide whether it is worth their time to read it. Also, many online databases use abstracts to index larger works. Therefore, abstracts should contain keywords and phrases that allow for easy searching.

Say you are beginning a research project on how Brazilian newspapers helped Brazil’s ultra-liberal president Luiz Ignácio da Silva wrest power from the traditional, conservative power base. A good first place to start your research is to search Dissertation Abstracts International for all dissertations that deal with the interaction between newspapers and politics. “Newspapers and politics” returned 569 hits. A more selective search of “newspapers and Brazil” returned 22 hits. That is still a fair number of dissertations. Titles can sometimes help winnow the field, but many titles are not very descriptive. For example, one dissertation is titled “Rhetoric and Riot in Rio de Janeiro.” It is unclear from the title what this dissertation has to do with newspapers in Brazil. One option would be to download or order the entire dissertation on the chance that it might speak specifically to the topic. A better option is to read the abstract. In this case, the abstract reveals the main focus of the dissertation:

This dissertation examines the role of newspaper editors in the political turmoil and strife that characterized late First Empire Rio de Janeiro (1827-1831). Newspaper editors and their journals helped change the political culture of late First Empire Rio de Janeiro by involving the people in the discussion of state. This change in political culture is apparent in Emperor Pedro I’s gradual loss of control over the mechanisms of power. As the newspapers became more numerous and powerful, the Emperor lost his legitimacy in the eyes of the people. To explore the role of the newspapers in the political events of the late First Empire, this dissertation analyzes all available newspapers published in Rio de Janeiro from 1827 to 1831. Newspapers and their editors were leading forces in the effort to remove power from the hands of the ruling elite and place it under the control of the people. In the process, newspapers helped change how politics operated in the constitutional monarchy of Brazil.

From this abstract you now know that although the dissertation has nothing to do with modern Brazilian politics, it does cover the role of newspapers in changing traditional mechanisms of power. After reading the abstract, you can make an informed judgment about whether the dissertation would be worthwhile to read.

Besides selection, the other main purpose of the abstract is for indexing. Most article databases in the online catalog of the library enable you to search abstracts. This allows for quick retrieval by users and limits the extraneous items recalled by a “full-text” search. However, for an abstract to be useful in an online retrieval system, it must incorporate the key terms that a potential researcher would use to search. For example, if you search Dissertation Abstracts International using the keywords “France” “revolution” and “politics,” the search engine would search through all the abstracts in the database that included those three words. Without an abstract, the search engine would be forced to search titles, which, as we have seen, may not be fruitful, or else search the full text. It’s likely that a lot more than 60 dissertations have been written with those three words somewhere in the body of the entire work. By incorporating keywords into the abstract, the author emphasizes the central topics of the work and gives prospective readers enough information to make an informed judgment about the applicability of the work.

When do people write abstracts?

  • when submitting articles to journals, especially online journals
  • when applying for research grants
  • when writing a book proposal
  • when completing the Ph.D. dissertation or M.A. thesis
  • when writing a proposal for a conference paper
  • when writing a proposal for a book chapter

Most often, the author of the entire work (or prospective work) writes the abstract. However, there are professional abstracting services that hire writers to draft abstracts of other people’s work. In a work with multiple authors, the first author usually writes the abstract. Undergraduates are sometimes asked to draft abstracts of books/articles for classmates who have not read the larger work.

Types of abstracts

There are two types of abstracts: descriptive and informative. They have different aims, so as a consequence they have different components and styles. There is also a third type called critical, but it is rarely used. If you want to find out more about writing a critique or a review of a work, see the UNC Writing Center handout on writing a literature review . If you are unsure which type of abstract you should write, ask your instructor (if the abstract is for a class) or read other abstracts in your field or in the journal where you are submitting your article.

Descriptive abstracts

A descriptive abstract indicates the type of information found in the work. It makes no judgments about the work, nor does it provide results or conclusions of the research. It does incorporate key words found in the text and may include the purpose, methods, and scope of the research. Essentially, the descriptive abstract describes the work being abstracted. Some people consider it an outline of the work, rather than a summary. Descriptive abstracts are usually very short—100 words or less.

Informative abstracts

The majority of abstracts are informative. While they still do not critique or evaluate a work, they do more than describe it. A good informative abstract acts as a surrogate for the work itself. That is, the writer presents and explains all the main arguments and the important results and evidence in the complete article/paper/book. An informative abstract includes the information that can be found in a descriptive abstract (purpose, methods, scope) but also includes the results and conclusions of the research and the recommendations of the author. The length varies according to discipline, but an informative abstract is rarely more than 10% of the length of the entire work. In the case of a longer work, it may be much less.

Here are examples of a descriptive and an informative abstract of this handout on abstracts . Descriptive abstract:

The two most common abstract types—descriptive and informative—are described and examples of each are provided.

Informative abstract:

Abstracts present the essential elements of a longer work in a short and powerful statement. The purpose of an abstract is to provide prospective readers the opportunity to judge the relevance of the longer work to their projects. Abstracts also include the key terms found in the longer work and the purpose and methods of the research. Authors abstract various longer works, including book proposals, dissertations, and online journal articles. There are two main types of abstracts: descriptive and informative. A descriptive abstract briefly describes the longer work, while an informative abstract presents all the main arguments and important results. This handout provides examples of various types of abstracts and instructions on how to construct one.

Which type should I use?

Your best bet in this case is to ask your instructor or refer to the instructions provided by the publisher. You can also make a guess based on the length allowed; i.e., 100-120 words = descriptive; 250+ words = informative.

How do I write an abstract?

The format of your abstract will depend on the work being abstracted. An abstract of a scientific research paper will contain elements not found in an abstract of a literature article, and vice versa. However, all abstracts share several mandatory components, and there are also some optional parts that you can decide to include or not. When preparing to draft your abstract, keep the following key process elements in mind:

  • Reason for writing: What is the importance of the research? Why would a reader be interested in the larger work?
  • Problem: What problem does this work attempt to solve? What is the scope of the project? What is the main argument/thesis/claim?
  • Methodology: An abstract of a scientific work may include specific models or approaches used in the larger study. Other abstracts may describe the types of evidence used in the research.
  • Results: Again, an abstract of a scientific work may include specific data that indicates the results of the project. Other abstracts may discuss the findings in a more general way.
  • Implications: What changes should be implemented as a result of the findings of the work? How does this work add to the body of knowledge on the topic?

(This list of elements is adapted with permission from Philip Koopman, “How to Write an Abstract.” )

All abstracts include:

  • A full citation of the source, preceding the abstract.
  • The most important information first.
  • The same type and style of language found in the original, including technical language.
  • Key words and phrases that quickly identify the content and focus of the work.
  • Clear, concise, and powerful language.

Abstracts may include:

  • The thesis of the work, usually in the first sentence.
  • Background information that places the work in the larger body of literature.
  • The same chronological structure as the original work.

How not to write an abstract:

  • Do not refer extensively to other works.
  • Do not add information not contained in the original work.
  • Do not define terms.

If you are abstracting your own writing

When abstracting your own work, it may be difficult to condense a piece of writing that you have agonized over for weeks (or months, or even years) into a 250-word statement. There are some tricks that you could use to make it easier, however.

Reverse outlining:

This technique is commonly used when you are having trouble organizing your own writing. The process involves writing down the main idea of each paragraph on a separate piece of paper– see our short video . For the purposes of writing an abstract, try grouping the main ideas of each section of the paper into a single sentence. Practice grouping ideas using webbing or color coding .

For a scientific paper, you may have sections titled Purpose, Methods, Results, and Discussion. Each one of these sections will be longer than one paragraph, but each is grouped around a central idea. Use reverse outlining to discover the central idea in each section and then distill these ideas into one statement.

Cut and paste:

To create a first draft of an abstract of your own work, you can read through the entire paper and cut and paste sentences that capture key passages. This technique is useful for social science research with findings that cannot be encapsulated by neat numbers or concrete results. A well-written humanities draft will have a clear and direct thesis statement and informative topic sentences for paragraphs or sections. Isolate these sentences in a separate document and work on revising them into a unified paragraph.

If you are abstracting someone else’s writing

When abstracting something you have not written, you cannot summarize key ideas just by cutting and pasting. Instead, you must determine what a prospective reader would want to know about the work. There are a few techniques that will help you in this process:

Identify key terms:

Search through the entire document for key terms that identify the purpose, scope, and methods of the work. Pay close attention to the Introduction (or Purpose) and the Conclusion (or Discussion). These sections should contain all the main ideas and key terms in the paper. When writing the abstract, be sure to incorporate the key terms.

Highlight key phrases and sentences:

Instead of cutting and pasting the actual words, try highlighting sentences or phrases that appear to be central to the work. Then, in a separate document, rewrite the sentences and phrases in your own words.

Don’t look back:

After reading the entire work, put it aside and write a paragraph about the work without referring to it. In the first draft, you may not remember all the key terms or the results, but you will remember what the main point of the work was. Remember not to include any information you did not get from the work being abstracted.

Revise, revise, revise

No matter what type of abstract you are writing, or whether you are abstracting your own work or someone else’s, the most important step in writing an abstract is to revise early and often. When revising, delete all extraneous words and incorporate meaningful and powerful words. The idea is to be as clear and complete as possible in the shortest possible amount of space. The Word Count feature of Microsoft Word can help you keep track of how long your abstract is and help you hit your target length.

Example 1: Humanities abstract

Kenneth Tait Andrews, “‘Freedom is a constant struggle’: The dynamics and consequences of the Mississippi Civil Rights Movement, 1960-1984” Ph.D. State University of New York at Stony Brook, 1997 DAI-A 59/02, p. 620, Aug 1998

This dissertation examines the impacts of social movements through a multi-layered study of the Mississippi Civil Rights Movement from its peak in the early 1960s through the early 1980s. By examining this historically important case, I clarify the process by which movements transform social structures and the constraints movements face when they try to do so. The time period studied includes the expansion of voting rights and gains in black political power, the desegregation of public schools and the emergence of white-flight academies, and the rise and fall of federal anti-poverty programs. I use two major research strategies: (1) a quantitative analysis of county-level data and (2) three case studies. Data have been collected from archives, interviews, newspapers, and published reports. This dissertation challenges the argument that movements are inconsequential. Some view federal agencies, courts, political parties, or economic elites as the agents driving institutional change, but typically these groups acted in response to the leverage brought to bear by the civil rights movement. The Mississippi movement attempted to forge independent structures for sustaining challenges to local inequities and injustices. By propelling change in an array of local institutions, movement infrastructures had an enduring legacy in Mississippi.

Now let’s break down this abstract into its component parts to see how the author has distilled his entire dissertation into a ~200 word abstract.

What the dissertation does This dissertation examines the impacts of social movements through a multi-layered study of the Mississippi Civil Rights Movement from its peak in the early 1960s through the early 1980s. By examining this historically important case, I clarify the process by which movements transform social structures and the constraints movements face when they try to do so.

How the dissertation does it The time period studied in this dissertation includes the expansion of voting rights and gains in black political power, the desegregation of public schools and the emergence of white-flight academies, and the rise and fall of federal anti-poverty programs. I use two major research strategies: (1) a quantitative analysis of county-level data and (2) three case studies.

What materials are used Data have been collected from archives, interviews, newspapers, and published reports.

Conclusion This dissertation challenges the argument that movements are inconsequential. Some view federal agencies, courts, political parties, or economic elites as the agents driving institutional change, but typically these groups acted in response to movement demands and the leverage brought to bear by the civil rights movement. The Mississippi movement attempted to forge independent structures for sustaining challenges to local inequities and injustices. By propelling change in an array of local institutions, movement infrastructures had an enduring legacy in Mississippi.

Keywords social movements Civil Rights Movement Mississippi voting rights desegregation

Example 2: Science Abstract

Luis Lehner, “Gravitational radiation from black hole spacetimes” Ph.D. University of Pittsburgh, 1998 DAI-B 59/06, p. 2797, Dec 1998

The problem of detecting gravitational radiation is receiving considerable attention with the construction of new detectors in the United States, Europe, and Japan. The theoretical modeling of the wave forms that would be produced in particular systems will expedite the search for and analysis of detected signals. The characteristic formulation of GR is implemented to obtain an algorithm capable of evolving black holes in 3D asymptotically flat spacetimes. Using compactification techniques, future null infinity is included in the evolved region, which enables the unambiguous calculation of the radiation produced by some compact source. A module to calculate the waveforms is constructed and included in the evolution algorithm. This code is shown to be second-order convergent and to handle highly non-linear spacetimes. In particular, we have shown that the code can handle spacetimes whose radiation is equivalent to a galaxy converting its whole mass into gravitational radiation in one second. We further use the characteristic formulation to treat the region close to the singularity in black hole spacetimes. The code carefully excises a region surrounding the singularity and accurately evolves generic black hole spacetimes with apparently unlimited stability.

This science abstract covers much of the same ground as the humanities one, but it asks slightly different questions.

Why do this study The problem of detecting gravitational radiation is receiving considerable attention with the construction of new detectors in the United States, Europe, and Japan. The theoretical modeling of the wave forms that would be produced in particular systems will expedite the search and analysis of the detected signals.

What the study does The characteristic formulation of GR is implemented to obtain an algorithm capable of evolving black holes in 3D asymptotically flat spacetimes. Using compactification techniques, future null infinity is included in the evolved region, which enables the unambiguous calculation of the radiation produced by some compact source. A module to calculate the waveforms is constructed and included in the evolution algorithm.

Results This code is shown to be second-order convergent and to handle highly non-linear spacetimes. In particular, we have shown that the code can handle spacetimes whose radiation is equivalent to a galaxy converting its whole mass into gravitational radiation in one second. We further use the characteristic formulation to treat the region close to the singularity in black hole spacetimes. The code carefully excises a region surrounding the singularity and accurately evolves generic black hole spacetimes with apparently unlimited stability.

Keywords gravitational radiation (GR) spacetimes black holes

Works consulted

We consulted these works while writing this handout. This is not a comprehensive list of resources on the handout’s topic, and we encourage you to do your own research to find additional publications. Please do not use this list as a model for the format of your own reference list, as it may not match the citation style you are using. For guidance on formatting citations, please see the UNC Libraries citation tutorial . We revise these tips periodically and welcome feedback.

Belcher, Wendy Laura. 2009. Writing Your Journal Article in Twelve Weeks: A Guide to Academic Publishing Success. Thousand Oaks, CA: Sage Press.

Koopman, Philip. 1997. “How to Write an Abstract.” Carnegie Mellon University. October 1997. http://users.ece.cmu.edu/~koopman/essays/abstract.html .

Lancaster, F.W. 2003. Indexing And Abstracting in Theory and Practice , 3rd ed. London: Facet Publishing.

You may reproduce it for non-commercial use if you use the entire handout and attribute the source: The Writing Center, University of North Carolina at Chapel Hill

Make a Gift

  • Affiliate Program

Wordvice

  • UNITED STATES
  • 台灣 (TAIWAN)
  • TÜRKIYE (TURKEY)
  • Academic Editing Services
  • - Research Paper
  • - Journal Manuscript
  • - Dissertation
  • - College & University Assignments
  • Admissions Editing Services
  • - Application Essay
  • - Personal Statement
  • - Recommendation Letter
  • - Cover Letter
  • - CV/Resume
  • Business Editing Services
  • - Business Documents
  • - Report & Brochure
  • - Website & Blog
  • Writer Editing Services
  • - Script & Screenplay
  • Our Editors
  • Client Reviews
  • Editing & Proofreading Prices
  • Wordvice Points
  • Partner Discount
  • Plagiarism Checker
  • APA Citation Generator
  • MLA Citation Generator
  • Chicago Citation Generator
  • Vancouver Citation Generator
  • - APA Style
  • - MLA Style
  • - Chicago Style
  • - Vancouver Style
  • Writing & Editing Guide
  • Academic Resources
  • Admissions Resources

How to Write an Abstract for a Research Paper | Examples

abstract for research paper sample

What is a research paper abstract?

Research paper abstracts summarize your study quickly and succinctly to journal editors and researchers and prompt them to read further. But with the ubiquity of online publication databases, writing a compelling abstract is even more important today than it was in the days of bound paper manuscripts.

Abstracts exist to “sell”  your work, and they could thus be compared to the “executive summary” of a business resume: an official briefing on what is most important about your research. Or the “gist” of your research. With the majority of academic transactions being conducted online, this means that you have even less time to impress readers–and increased competition in terms of other abstracts out there to read.

The APCI (Academic Publishing and Conferences International) notes that there are  12 questions or “points” considered in the selection process  for journals and conferences and stresses the importance of having an abstract that ticks all of these boxes. Because it is often the ONLY chance you have to convince readers to keep reading, it is important that you spend time and energy crafting an abstract that faithfully represents the central parts of your study and captivates your audience.

With that in mind, follow these suggestions when structuring and writing your abstract, and learn how exactly to put these ideas into a solid abstract that will captivate your target readers.

Before Writing Your Abstract

How long should an abstract be.

All abstracts are written with the same essential objective: to give a summary of your study. But there are two basic styles of abstract: descriptive and informative . Here is a brief delineation of the two:

Around 100-200 words (or shorter) in length; indicates the type of information found in the paper; briefly explains the background, purpose, and objective of the paper but omits the results, often the methods, and sometimes also the conclusion
One paragraph to one page in length; a truncated version of your paper that summarizes every aspect of the study, including the results; acts as a “surrogate” for the research itself, standing in for the larger paper

Of the two types of abstracts, informative abstracts are much more common, and they are widely used for submission to journals and conferences. Informative abstracts apply to lengthier and more technical research and are common in the sciences, engineering, and psychology, while descriptive abstracts are more likely used in humanities and social science papers. The best method of determining which abstract type you need to use is to follow the instructions for journal submissions and to read as many other published articles in those journals as possible.

Research Abstract Guidelines and Requirements

As any article about research writing will tell you, authors must always closely follow the specific guidelines and requirements indicated in the Guide for Authors section of their target journal’s website. The same kind of adherence to conventions should be applied to journal publications, for consideration at a conference, and even when completing a class assignment.

Each publisher has particular demands when it comes to formatting and structure. Here are some common questions addressed in the journal guidelines:

  • Is there a maximum or minimum word/character length?
  • What are the style and formatting requirements?
  • What is the appropriate abstract type?
  • Are there any specific content or organization rules that apply?

There are of course other rules to consider when composing a research paper abstract. But if you follow the stated rules the first time you submit your manuscript, you can avoid your work being thrown in the “circular file” right off the bat.

Identify Your Target Readership

The main purpose of your abstract is to lead researchers to the full text of your research paper. In scientific journals, abstracts let readers decide whether the research discussed is relevant to their own interests or study. Abstracts also help readers understand your main argument quickly. Consider these questions as you write your abstract:

  • Are other academics in your field the main target of your study?
  • Will your study perhaps be useful to members of the general public?
  • Do your study results include the wider implications presented in the abstract?

Outlining and Writing Your Abstract

What to include in an abstract.

Just as your  research paper title  should cover as much ground as possible in a few short words, your abstract must cover  all  parts of your study in order to fully explain your paper and research. Because it must accomplish this task in the space of only a few hundred words, it is important not to include ambiguous references or phrases that will confuse the reader or mislead them about the content and objectives of your research. Follow these  dos  and  don’ts  when it comes to what kind of writing to include:

  • Avoid acronyms or abbreviations since these will need to be explained in order to make sense to the reader, which takes up valuable abstract space. Instead, explain these terms in the Introduction section of the main text.
  • Only use references to people or other works if they are well-known. Otherwise, avoid referencing anything outside of your study in the abstract.
  • Never include tables, figures, sources, or long quotations in your abstract; you will have plenty of time to present and refer to these in the body of your paper.

Use keywords in your abstract to focus your topic

A vital search tool is the research paper keywords section, which lists the most relevant terms directly underneath the abstract. Think of these keywords as the “tubes” that readers will seek and enter—via queries on databases and search engines—to ultimately land at their destination, which is your paper. Your abstract keywords should thus be words that are commonly used in searches but should also be highly relevant to your work and found in the text of your abstract. Include 5 to 10 important words or short phrases central to your research in both the abstract and the keywords section.

For example, if you are writing a paper on the prevalence of obesity among lower classes that crosses international boundaries, you should include terms like “obesity,” “prevalence,” “international,” “lower classes,” and “cross-cultural.” These are terms that should net a wide array of people interested in your topic of study. Look at our nine rules for choosing keywords for your research paper if you need more input on this.

Research Paper Abstract Structure

As mentioned above, the abstract (especially the informative abstract) acts as a surrogate or synopsis of your research paper, doing almost as much work as the thousands of words that follow it in the body of the main text. In the hard sciences and most social sciences, the abstract includes the following sections and organizational schema.

Each section is quite compact—only a single sentence or two, although there is room for expansion if one element or statement is particularly interesting or compelling. As the abstract is almost always one long paragraph, the individual sections should naturally merge into one another to create a holistic effect. Use the following as a checklist to ensure that you have included all of the necessary content in your abstract.

how to structure an abstract list

1) Identify your purpose and motivation

So your research is about rabies in Brazilian squirrels. Why is this important? You should start your abstract by explaining why people should care about this study—why is it significant to your field and perhaps to the wider world? And what is the exact purpose of your study; what are you trying to achieve? Start by answering the following questions:

  • What made you decide to do this study or project?
  • Why is this study important to your field or to the lay reader?
  • Why should someone read your entire article?

In summary, the first section of your abstract should include the importance of the research and its impact on related research fields or on the wider scientific domain.

2) Explain the research problem you are addressing

Stating the research problem that your study addresses is the corollary to why your specific study is important and necessary. For instance, even if the issue of “rabies in Brazilian squirrels” is important, what is the problem—the “missing piece of the puzzle”—that your study helps resolve?

You can combine the problem with the motivation section, but from a perspective of organization and clarity, it is best to separate the two. Here are some precise questions to address:

  • What is your research trying to better understand or what problem is it trying to solve?
  • What is the scope of your study—does it try to explain something general or specific?
  • What is your central claim or argument?

3) Discuss your research approach

Your specific study approach is detailed in the Methods and Materials section .  You have already established the importance of the research, your motivation for studying this issue, and the specific problem your paper addresses. Now you need to discuss  how  you solved or made progress on this problem—how you conducted your research. If your study includes your own work or that of your team, describe that here. If in your paper you reviewed the work of others, explain this here. Did you use analytic models? A simulation? A double-blind study? A case study? You are basically showing the reader the internal engine of your research machine and how it functioned in the study. Be sure to:

  • Detail your research—include methods/type of the study, your variables, and the extent of the work
  • Briefly present evidence to support your claim
  • Highlight your most important sources

4) Briefly summarize your results

Here you will give an overview of the outcome of your study. Avoid using too many vague qualitative terms (e.g, “very,” “small,” or “tremendous”) and try to use at least some quantitative terms (i.e., percentages, figures, numbers). Save your qualitative language for the conclusion statement. Answer questions like these:

  • What did your study yield in concrete terms (e.g., trends, figures, correlation between phenomena)?
  • How did your results compare to your hypothesis? Was the study successful?
  • Where there any highly unexpected outcomes or were they all largely predicted?

5) State your conclusion

In the last section of your abstract, you will give a statement about the implications and  limitations of the study . Be sure to connect this statement closely to your results and not the area of study in general. Are the results of this study going to shake up the scientific world? Will they impact how people see “Brazilian squirrels”? Or are the implications minor? Try not to boast about your study or present its impact as  too  far-reaching, as researchers and journals will tend to be skeptical of bold claims in scientific papers. Answer one of these questions:

  • What are the exact effects of these results on my field? On the wider world?
  • What other kind of study would yield further solutions to problems?
  • What other information is needed to expand knowledge in this area?

After Completing the First Draft of Your Abstract

Revise your abstract.

The abstract, like any piece of academic writing, should be revised before being considered complete. Check it for  grammatical and spelling errors  and make sure it is formatted properly.

Get feedback from a peer

Getting a fresh set of eyes to review your abstract is a great way to find out whether you’ve summarized your research well. Find a reader who understands research papers but is not an expert in this field or is not affiliated with your study. Ask your reader to summarize what your study is about (including all key points of each section). This should tell you if you have communicated your key points clearly.

In addition to research peers, consider consulting with a professor or even a specialist or generalist writing center consultant about your abstract. Use any resource that helps you see your work from another perspective.

Consider getting professional editing and proofreading

While peer feedback is quite important to ensure the effectiveness of your abstract content, it may be a good idea to find an academic editor  to fix mistakes in grammar, spelling, mechanics, style, or formatting. The presence of basic errors in the abstract may not affect your content, but it might dissuade someone from reading your entire study. Wordvice provides English editing services that both correct objective errors and enhance the readability and impact of your work.

Additional Abstract Rules and Guidelines

Write your abstract after completing your paper.

Although the abstract goes at the beginning of your manuscript, it does not merely introduce your research topic (that is the job of the title), but rather summarizes your entire paper. Writing the abstract last will ensure that it is complete and consistent with the findings and statements in your paper.

Keep your content in the correct order

Both questions and answers should be organized in a standard and familiar way to make the content easier for readers to absorb. Ideally, it should mimic the overall format of your essay and the classic “introduction,” “body,” and “conclusion” form, even if the parts are not neatly divided as such.

Write the abstract from scratch

Because the abstract is a self-contained piece of writing viewed separately from the body of the paper, you should write it separately as well. Never copy and paste direct quotes from the paper and avoid paraphrasing sentences in the paper. Using new vocabulary and phrases will keep your abstract interesting and free of redundancies while conserving space.

Don’t include too many details in the abstract

Again, the density of your abstract makes it incompatible with including specific points other than possibly names or locations. You can make references to terms, but do not explain or define them in the abstract. Try to strike a balance between being specific to your study and presenting a relatively broad overview of your work.

Wordvice Resources

If you think your abstract is fine now but you need input on abstract writing or require English editing services (including paper editing ), then head over to the Wordvice academic resources page, where you will find many more articles, for example on writing the Results , Methods , and Discussion sections of your manuscript, on choosing a title for your paper , or on how to finalize your journal submission with a strong cover letter .    

 alt=

Academic & Employability Skills

Subscribe to academic & employability skills.

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Email Address

' src=

Writing an abstract - a six point checklist (with samples)

Posted in: abstract , dissertations

abstract for research paper sample

The abstract is a vital part of any research paper. It is the shop front for your work, and the first stop for your reader. It should provide a clear and succinct summary of your study, and encourage your readers to read more. An effective abstract, therefore should answer the following questions:

  • Why did you do this study or project?
  • What did you do and how?
  • What did you find?
  • What do your findings mean?

So here's our run down of the key elements of a well-written abstract.

  • Size - A succinct and well written abstract should be between approximately 100- 250 words.
  • Background - An effective abstract usually includes some scene-setting information which might include what is already known about the subject, related to the paper in question (a few short sentences).
  • Purpose  - The abstract should also set out the purpose of your research, in other words, what is not known about the subject and hence what the study intended to examine (or what the paper seeks to present).
  • Methods - The methods section should contain enough information to enable the reader to understand what was done, and how. It should include brief details of the research design, sample size, duration of study, and so on.
  • Results - The results section is the most important part of the abstract. This is because readers who skim an abstract do so to learn about the findings of the study. The results section should therefore contain as much detail about the findings as the journal word count permits.
  • Conclusion - This section should contain the most important take-home message of the study, expressed in a few precisely worded sentences. Usually, the finding highlighted here relates to the primary outcomes of the study. However, other important or unexpected findings should also be mentioned. It is also customary, but not essential, to express an opinion about the theoretical or practical implications of the findings, or the importance of their findings for the field. Thus, the conclusions may contain three elements:
  • The primary take-home message.
  • Any additional findings of importance.
  • Implications for future studies.

abstract 1

Example Abstract 2: Engineering Development and validation of a three-dimensional finite element model of the pelvic bone.

bone

Abstract from: Dalstra, M., Huiskes, R. and Van Erning, L., 1995. Development and validation of a three-dimensional finite element model of the pelvic bone. Journal of biomechanical engineering, 117(3), pp.272-278.

And finally...  A word on abstract types and styles

Abstract types can differ according to subject discipline. You need to determine therefore which type of abstract you should include with your paper. Here are two of the most common types with examples.

Informative Abstract

The majority of abstracts are informative. While they still do not critique or evaluate a work, they do more than describe it. A good informative abstract acts as a surrogate for the work itself. That is, the researcher presents and explains all the main arguments and the important results and evidence in the paper. An informative abstract includes the information that can be found in a descriptive abstract [purpose, methods, scope] but it also includes the results and conclusions of the research and the recommendations of the author. The length varies according to discipline, but an informative abstract is usually no more than 300 words in length.

Descriptive Abstract A descriptive abstract indicates the type of information found in the work. It makes no judgements about the work, nor does it provide results or conclusions of the research. It does incorporate key words found in the text and may include the purpose, methods, and scope of the research. Essentially, the descriptive abstract only describes the work being summarised. Some researchers consider it an outline of the work, rather than a summary. Descriptive abstracts are usually very short, 100 words or less.

Adapted from Andrade C. How to write a good abstract for a scientific paper or conference presentation. Indian J Psychiatry. 2011 Apr;53(2):172-5. doi: 10.4103/0019-5545.82558. PMID: 21772657; PMCID: PMC3136027 .

Share this:

  • Click to print (Opens in new window)
  • Click to email a link to a friend (Opens in new window)
  • Click to share on WhatsApp (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to share on Facebook (Opens in new window)

Click here to cancel reply.

  • Email * (we won't publish this)

Write a response

' src=

Navigating the dissertation process: my tips for final years

Imagine for a moment... After months of hard work and research on a topic you're passionate about, the time has finally come to click the 'Submit' button on your dissertation. You've just completed your longest project to date as part...

Vanda Sigel and another HSS student working on laptops.

8 ways to beat procrastination

Whether you’re writing an assignment or revising for exams, getting started can be hard. Fortunately, there’s lots you can do to turn procrastination into action.

A post-it note reading 'Procrastination' surrounded by balls of screwed-up paper

My takeaways on how to write a scientific report

If you’re in your dissertation writing stage or your course includes writing a lot of scientific reports, but you don’t quite know where and how to start, the Skills Centre can help you get started. I recently attended their ‘How...

Person in a lab coat looking into a microscope doing an experiment in a laboratory. There's a row of test tubes on the bench. The person is writing on a clipboard.

M big.jpg

Magnum Proofreading Services

  • Jake Magnum
  • Jan 2, 2021

Writing an Abstract for a Research Paper: Guidelines, Examples, and Templates

There are six steps to writing a standard abstract. (1) Begin with a broad statement about your topic. Then, (2) state the problem or knowledge gap related to this topic that your study explores. After that, (3) describe what specific aspect of this problem you investigated, and (4) briefly explain how you went about doing this. After that, (5) describe the most meaningful outcome(s) of your study. Finally, (6) close your abstract by explaining the broad implication(s) of your findings.

In this article, I present step-by-step guidelines for writing an abstract for an academic paper. These guidelines are fo llowed by an example of a full abstract that follows these guidelines and a few fill-in-the-blank templates that you can use to write your own abstract.

Guidelines for Writing an Abstract

The basic structure of an abstract is illustrated below.

abstract for research paper sample

A standard abstract starts with a very general statement and becomes more specific with each sentence that follows until once again making a broad statement about the study’s implications at the end. Altogether, a standard abstract has six functions, which are described in detail below.

Start by making a broad statement about your topic.

The first sentence of your abstract should briefly describe a problem that is of interest to your readers. When writing this first sentence, you should think about who comprises your target audience and use terms that will appeal to this audience. If your opening sentence is too broad, it might lose the attention of potential readers because they will not know if your study is relevant to them.

Too broad : Maintaining an ideal workplace environment has a positive effect on employees.

The sentence above is so broad that it will not grab the reader’s attention. While it gives the reader some idea of the area of study, it doesn’t provide any details about the author’s topic within their research area. This can be fixed by inserting some keywords related to the topic (these are underlined in the revised example below).

Improved : Keeping the workplace environment at an ideal temperature positively affects the overall health of employees.

The revised sentence is much better, as it expresses two points about the research topic—namely, (i) what aspect of workplace environment was studied, (ii) what aspect of employees was observed. The mention of these aspects of the research will draw the attention of readers who are interested in them.

Describe the general problem that your paper addresses.

After describing your topic in the first sentence, you can then explain what aspect of this topic has motivated your research. Often, authors use this part of the abstract to describe the research gap that they identified and aimed to fill. These types of sentences are often characterized by the use of words such as “however,” “although,” “despite,” and so on.

However, a comprehensive understanding of how different workplace bullying experiences are associated with absenteeism is currently lacking.

The above example is typical of a sentence describing the problem that a study intends to tackle. The author has noticed that there is a gap in the research, and they briefly explain this gap here.

Although it has been established that quantity and quality of sleep can affect different types of task performance and personal health, the interactions between sleep habits and workplace behaviors have received very little attention.

The example above illustrates a case in which the author has accomplished two tasks with one sentence. The first part of the sentence (up until the comma) mentions the general topic that the research fits into, while the second part (after the comma) describes the general problem that the research addresses.

Express the specific problem investigated in your paper.

After describing the general problem that motivated your research, the next sentence should express the specific aspect of the problem that you investigated. Sentences of this type are often indicated by the use of phrases like “the purpose of this research is to,” “this paper is intended to,” or “this work aims to.”

Uninformative : However, a comprehensive understanding of how different workplace bullying experiences are associated with absenteeism is currently lacking. The present article aimed to provide new insights into the relationship between workplace bullying and absenteeism .

The second sentence in the above example is a mere rewording of the first sentence. As such, it adds nothing to the abstract. The second sentence should be more specific than the preceding one.

Improved : However, a comprehensive understanding of how different workplace bullying experiences are associated with absenteeism is currently lacking. The present article aimed to define various subtypes of workplace bullying and determine which subtypes tend to lead to absenteeism .

The second sentence of this passage is much more informative than in the previous example. This sentence lets the reader know exactly what they can expect from the full research article.

Explain how you attempted to resolve your study’s specific problem.

In this part of your abstract, you should attempt to describe your study’s methodology in one or two sentences. As such, you must be sure to include only the most important information about your method. At the same time, you must also be careful not to be too vague.

Too vague : We conducted multiple tests to examine changes in various factors related to well-being.

This description of the methodology is too vague. Instead of merely mentioning “tests” and “factors,” the author should note which specific tests were run and which factors were assessed.

Improved : Using data from BHIP completers, we conducted multiple one-way multivariate analyses of variance and follow-up univariate t-tests to examine changes in physical and mental health, stress, energy levels, social satisfaction, self-efficacy, and quality of life.

This sentence is very well-written. It packs a lot of specific information about the method into a single sentence. Also, it does not describe more details than are needed for an abstract.

Briefly tell the reader what you found by carrying out your study.

This is the most important part of the abstract—the other sentences in the abstract are there to explain why this one is relevant. When writing this sentence, imagine that someone has asked you, “What did you find in your research?” and that you need to answer them in one or two sentences.

Too vague : Consistently poor sleepers had more health risks and medical conditions than consistently optimal sleepers.

This sentence is okay, but it would be helpful to let the reader know which health risks and medical conditions were related to poor sleeping habits.

Improved : Consistently poor sleepers were more likely than consistently optimal sleepers to suffer from chronic abdominal pain, and they were at a higher risk for diabetes and heart disease.

This sentence is better, as the specific health conditions are named.

Finally, describe the major implication(s) of your study.

Most abstracts end with a short sentence that explains the main takeaway(s) that you want your audience to gain from reading your paper. Often, this sentence is addressed to people in power (e.g., employers, policymakers), and it recommends a course of action that such people should take based on the results.

Too broad : Employers may wish to make use of strategies that increase employee health.

This sentence is too broad to be useful. It does not give employers a starting point to implement a change.

Improved : Employers may wish to incorporate sleep education initiatives as part of their overall health and wellness strategies.

This sentence is better than the original, as it provides employers with a starting point—specifically, it invites employers to look up information on sleep education programs.

Abstract Example

The abstract produced here is from a paper published in Electronic Commerce Research and Applications . I have made slight alterations to the abstract so that this example fits the guidelines given in this article.

(1) Gamification can strengthen enjoyment and productivity in the workplace. (2) Despite this, research on gamification in the work context is still limited. (3) In this study, we investigated the effect of gamification on the workplace enjoyment and productivity of employees by comparing employees with leadership responsibilities to those without leadership responsibilities. (4) Work-related tasks were gamified using the habit-tracking game Habitica, and data from 114 employees were gathered using an online survey. (5) The results illustrated that employees without leadership responsibilities used work gamification as a trigger for self-motivation, whereas employees with leadership responsibilities used it to improve their health. (6) Work gamification positively affected work enjoyment for both types of employees and positively affected productivity for employees with leadership responsibilities. (7) Our results underline the importance of taking work-related variables into account when researching work gamification.

In Sentence (1), the author makes a broad statement about their topic. Notice how the nouns used (“gamification,” “enjoyment,” “productivity”) are quite general while still indicating the focus of the paper. The author uses Sentence (2) to very briefly state the problem that the research will address.

In Sentence (3), the author explains what specific aspects of the problem mentioned in Sentence (2) will be explored in the present work. Notice that the mention of leadership responsibilities makes Sentence (3) more specific than Sentence (2). Sentence (4) gets even more specific, naming the specific tools used to gather data and the number of participants.

Sentences (5) and (6) are similar, with each sentence describing one of the study’s main findings. Then, suddenly, the scope of the abstract becomes quite broad again in Sentence (7), which mentions “work-related variables” instead of a specific variable and “researching” instead of a specific kind of research.

Abstract Templates

Copy and paste any of the paragraphs below into a word processor. Then insert the appropriate information to produce an abstract for your research paper.

Template #1

Researchers have established that [Make a broad statement about your area of research.] . However, [Describe the knowledge gap that your paper addresses.] . The goal of this paper is to [Describe the purpose of your paper.] . The achieve this goal, we [Briefly explain your methodology.] . We found that [Indicate the main finding(s) of your study; you may need two sentences to do this.] . [Provide a broad implication of your results.] .

Template #2

It is well-understood that [Make a broad statement about your area of research.] . Despite this, [Describe the knowledge gap that your paper addresses.] . The current research aims to [Describe the purpose of your paper.] . To accomplish this, we [Briefly explain your methodology.] . It was discovered that [Indicate the main finding(s) of your study; you may need two sentences to do this.] . [Provide a broad implication of your results.] .

Template #3

Extensive research indicates that [Make a broad statement about your area of research.] . Nevertheless, [Describe the knowledge gap that your paper addresses.] . The present work is intended to [Describe the purpose of your paper.] . To this end, we [Briefly explain your methodology.] . The results revealed that [Indicate the main finding(s) of your study; you may need two sentences to do this.] . [Provide a broad implication of your results.] .

  • How to Write an Abstract

Related Posts

How to Write a Research Paper in English: A Guide for Non-native Speakers

How to Write an Abstract Quickly

Using the Present Tense and Past Tense When Writing an Abstract

How To Write A Research Paper

Research Paper Abstract

Cathy A.

How to Write an Abstract For a Research Paper with Examples

12 min read

Published on: Jan 19, 2024

Last updated on: Jul 23, 2024

How To Write An Abstract For A Research Paper

People also read

How to Write a Research Paper Step by Step

How to Write a Proposal For a Research Paper in 10 Steps

A Comprehensive Guide to Creating a Research Paper Outline

Types of Research - Methodologies and Characteristics

300+ Engaging Research Paper Topics to Get You Started

Interesting Psychology Research Topics & Ideas

Qualitative Research - Types, Methods & Examples

Understanding Quantitative Research - Definition, Types, Examples, And More

Research Paper Example - Examples for Different Formats

How To Start A Research Paper - Steps With Examples

How To Write a Literature Review for a Research Paper | Steps & Examples

Types of Qualitative Research Methods - An Overview

Understanding Qualitative vs. Quantitative Research - A Complete Guide

How to Cite a Research Paper in Different Citation Styles

Easy Sociology Research Topics for Your Next Project

200+ Outstanding History Research Paper Topics With Expert Tips

How To Write a Hypothesis in a Research Paper | Steps & Examples

How to Write an Introduction for a Research Paper - A Step-by-Step Guide

How to Write a Good Research Paper Title

How to Write a Conclusion for a Research Paper in 3 Simple Steps

How To Write a Thesis For a Research Paper Step by Step

How to Write a Discussion For a Research Paper | Objectives, Steps & Examples

How to Write the Results Section of a Research Paper - Structure and Tips

How to Write a Problem Statement for a Research Paper in 6 Steps

How To Write The Methods Section of a Research Paper Step-by-Step

How to Find Sources For a Research Paper | A Guide

Share this article

Struggling to encapsulate your extensive research into a concise abstract? Writing an abstract for a research paper can be intimidating, but it doesn't have to be! 

This blog is your guide to deciphering the abstract, understanding its purpose, and learning the art of writing your own.

We'll break down the abstract into clear, simple steps. We'll show you what it is, why it matters, and most importantly, how to write one that's clear, concise, and grabs your reader's attention. 

So, leave your confusion behind, and let's dive into it!

On This Page On This Page -->

What is an Abstract in a Paper?

An abstract in a research paper is a concise summary that provides an overview of the main points and key elements of the entire document. It is typically found at the beginning of academic papers, articles, or research reports. 

The abstract serves as a standalone piece that briefly communicates the purpose, methodology, results, and conclusions of the study.

Usually ranging from 150 to 250 words, an abstract provides readers with a quick overview of the entire text.

Purpose of Abstracts

Abstracts serve several essential purposes in academic and professional settings, and therefore the importance of abstracts in research can not be overlooked. The primary objectives of abstracts include:

  • Concise Summary : Distills key elements for quick understanding.
  • Quick Information Retrieval : Saves time by offering a snapshot of document relevance.
  • Decision-Making Tool : Helps researchers choose studies aligning with their objectives.
  • Communication of Research : Disseminates findings to diverse audiences effectively.
  • Database Indexing : Facilitates efficient literature review in academic databases.
  • Conference and Journal Submissions : Essential requirement for evaluating contributions' merit and relevance.

When to Write an Abstract?

We need to include an abstract when:

  • Submitting research papers for publication.
  • Sending research proposals for conferences or academic events.
  • Completing theses, dissertations, or comprehensive reports.
  • Drafting articles for scholarly journals.
  • Presenting academic projects or detailed proposals.

Types of Abstract

There are 2 basic types of abstract writing:

A brief summary, around 100-200 words, providing an overview of the research focus without delving into specific methods, results, or conclusions.

A more detailed summary, approximately 250-300 words, encompassing key aspects of the research, including methods, results, and conclusions. It aims to offer readers a comprehensive understanding of the study's design, outcomes, and implications.

Order Essay

Paper Due? Why Suffer? That's our Job!

The Contents of an Abstract

An abstract typically includes the following components:

  • Purpose/Objective : Clearly states the primary goal of the research or document.
  • Methods/Approach : Briefly outline the methodology or approach used in the study.
  • Results/Findings : Highlights the main outcomes or discoveries of the research.
  • Conclusions/Implications : Summarize the key conclusions and their broader significance.

Another way to structure your abstract is to use the IMRaD structure. It stands for:

  • Introduction : Introduces the research topic and the problem under investigation.
  • Methods : Describes the research methods and experimental design employed.
  • Results : Presents the main findings or outcomes of the study.
  • Discussion : Analyzes the results, discusses their implications, and draws conclusions.

Adhering to the IMRaD structure ensures a logical flow in your abstract, making it comprehensible and informative for readers.

How to Write an Abstract in 5 Steps?

Let's take a look at the simple steps to write an abstract for a research paper: 

Step 1: Craft an Engaging Introduction 

Begin by clearly defining the purpose of your research. Identify the practical or theoretical problem your research addresses and state the research question you aim to answer. 

Provide brief context on the social or academic relevance of your topic without delving into detailed background information. If using specialized terms, offer concise definitions. 

Use verbs like "investigate," "analyze," or "evaluate" to describe your research objective. Write in the present or past simple tense, avoiding references to the future, as the research is already complete.

This study aims to explore the impact of renewable energy sources on urban air quality. Investigating the relationship between sustainable energy practices and air pollution, the research seeks to evaluate the potential benefits for urban environments.

In this study, we will be exploring the potential impact of renewable energy sources on urban air quality. We will be investigating the relationship between sustainable energy practices and air pollution to evaluate the potential benefits for urban environments.

Step 2: Outline Your Methods Clearly

Outline the research methods and experimental design employed in your study. Refrain from evaluating the validity or challenges of your methodology. Provide a clear description of how you conducted your research, including any specific techniques, tools, or procedures used.

Be concise but offer enough detail for readers to understand the approach you took. Use the past simple tense to describe methods. 

Using a randomized control trial, this research gathered data from 500 participants in urban areas. Employing air quality monitoring stations and surveys, the study assessed the correlation between renewable energy adoption and reductions in particulate matter concentrations.

In this research, a randomized control trial was utilized to collect data from 500 participants located in urban areas. The study employed a combination of air quality monitoring stations and surveys to assess the correlation between the adoption of renewable energy and reductions in particulate matter concentrations.

Step 3: Present Your Results with Precision

Highlight the main findings or outcomes of your research. Summarize the data collected and present key results without interpretation. Use clear and specific language to convey the essential elements of your study.

This section of the abstract can use either present or past simple tense.

The study revealed a statistically significant decrease in particulate matter levels in areas with higher adoption rates of renewable energy sources. Data analysis demonstrated a 15% reduction in air pollutants, supporting the hypothesis that sustainable energy practices positively impact urban air quality.

Our research showed that using renewable energy helps reduce air pollution in cities. The data we collected suggests a significant decrease in pollutants, proving that sustainable energy is beneficial for urban environments.

Step 4: Articulate a Thoughtful Discussion

Analyze the results and discuss their implications. Interpret the findings in the context of your research question and objectives. Explore the broader significance of your results and any potential applications or recommendations.

Include brief mentions of any significant limitations in your research, such as those related to sample size or methods. This provides readers with insights to assess the credibility and generalizability of your study.

The observed reduction in air pollutants suggests that promoting renewable energy initiatives can contribute to mitigating urban air quality challenges. This finding emphasizes the importance of sustainable energy policies in fostering healthier and cleaner urban environments.

Our research showed that using renewable energy is good for reducing air pollution. It's important to promote sustainable energy to make cities cleaner and healthier.

Step 5: List Relevant Keywords

Conclude your abstract by listing keywords that capture the essential concepts and topics addressed in your research. These keywords assist in indexing and categorizing your work for easy retrieval in academic databases.

Renewable energy, urban air quality, sustainable practices, particulate matter, environmental impact.

Air, pollution, cities, energy, impact.

Abstract Examples

Below are some samples to help you understand how to write an effective abstract for a research paper: 

Sample Abstract 1

Abstract for a research paper humanities

Humanities Research Paper Abstract - CollegeEssay.org

Bago, B., Kovacs, M., Protzko, J., Nagy, T., Kekecs, Z., Palfi, B., Adamkovi, M., Adamus, S., Albalooshi, S., AlbayrakAydemir, N., Alfian, I., Alper, S., Solas, S. A., Alves, S. G., Amaya, S., Andresen, P., Anjum, G., Ansari, D., Arriaga, P., . . . Aczel, B. (2022). Situational factors shape moral judgements in the trolley dilemma in Eastern, Southern and Western countries in a culturally diverse sample. Nature Human Behaviour , 6 (6), 880 - 895. https://doi.org/10.1038/s41562-022-01319-5

Sample Abstract 2

Social sciences Abstract 

Social Science Research Paper Abstract - CollegeEssay.org

Reference : 

Hanlon, M., Yeung, K., & Zuo, L. (2021). Behavioral Economics of Accounting: A review of archival research on individual decision makers*. Contemporary Accounting Research , 39 (2), 1150 - 1214. https://doi.org/10.1111/1911-3846.12739

Sample Abstract 3

Abstract for the Sciences

Abstract for Sciences Research Paper - CollegeEssay.org

Reference: 

Widen, E., Junna, N., Ruotsalainen, S., Surakka, I., Mars, N., Ripatti, P., Partanen, J., Aro, J., Mustonen, P., Tuomi, T., Palotie, A., Salomaa, V., Kaprio, J., Partanen, J., Hotakainen, K., Pollanen, P., & Ripatti, S. (2022). How Communicating Polygenic and Clinical Risk for Atherosclerotic Cardiovascular Disease Impacts Health Behavior: an Observational Follow-up Study. Circulation , 15 (2). https://doi.org/10.1161/circgen.121.003459

Tough Essay Due? Hire Tough Writers!

Sample IMRaD Abstract

Background: High-Intensity Interval Training (H3) has gained popularity as an effective exercise strategy, but its specific impact on cardiovascular health remains a subject of ongoing research. This study aims to investigate the effects of H3 on various cardiovascular parameters, including heart rate, blood pressure, and endothelial function.

: A randomized controlled trial was conducted with 100 participants, aged 25-45, who were assigned to either an H3 intervention group or a control group engaging in moderate-intensity continuous exercise. The H3 group underwent a 6-week training program consisting of short bursts of intense exercise alternated with periods of rest, while the control group engaged in traditional continuous aerobic exercise.

: Our findings reveal a significant improvement in cardiovascular health markers among participants in the H3 group. A statistically significant reduction in resting heart rate (p < 0.05) and systolic blood pressure (p < 0.01) was observed compared to the control group. Furthermore, H3 participants demonstrated enhanced endothelial function, as evidenced by a significant increase in flow-mediated dilation (p < 0.001).

: High-Intensity Interval Training (H3) appears to have a positive impact on cardiovascular health, as indicated by improvements in resting heart rate, systolic blood pressure, and endothelial function. These findings suggest that H3 may be an effective and time-efficient exercise strategy for individuals seeking to enhance their cardiovascular well-being. Further research is warranted to explore the long-term effects of H3 and its applicability across diverse populations.

Here are some PDF samples of the abstract; check them out for a more detailed understanding: 

Abstract For a Research Paper Example

Abstract For a Research Paper Sample

Abstract For a Research Paper APA 7

Abstract For a Research Paper Proposal

Tips For Writing an Abstract

Here are some essential tips for writing an effective abstract:

  • Understand the Types : Familiarize yourself with different types of abstracts - such as descriptive abstracts and informative abstracts.
  • Clarity is Key: A good abstract is clear, concise, and easily understandable. Avoid unnecessary jargon or complex language.
  • Follow a Structure : Organize your abstract with a structured format, including the research problem, methodology, key findings, and conclusions.
  • Stay Within Word Limits : Adhere to specified word limits. Balancing brevity while conveying essential information is crucial.
  • Define the Research Problem : Clearly state the research problem or objective to provide context for your study.
  • Highlight Methodology : Briefly describe the methods used in your research, giving readers insight into your approach.
  • Include Vital Information: Specify the type of information covered in your research abstract.
  • Active Voice and Strong Verbs : Use active voice and strong verbs to convey a sense of authority and engagement.
  • Follow Guidelines : Adhere to formatting requirements stated in the title page or table of contents.
  • Choose Impactful Keywords: Incorporate relevant keywords that potential readers might use when searching for similar studies.
  • Revise and Edit : Prioritize the clarity and coherence of your abstract, ensuring it aligns with guidelines and objectives.

 Abstract Checklist

Here's a checklist for writing an abstract for a research paper:

Clearly reflects the content of the research

Briefly introduces the research problem or context

Clearly states the aim or objective of the study

Describes the research design and methodology used

Summarizes key findings without interpretation

Presents the main conclusions drawn from the study

Includes relevant keywords for search optimization

Adheres to the specified word limit 

Highlights the novel aspects or importance of the study

In summary, writing a compelling abstract is essential for conveying your research paper's core elements concisely. Remember, clarity and brevity are key. Feel free to revisit the examples provided for inspiration. 

If you face challenges in any section, including the abstract, reach out to CollegeEssay.org for professional assistance. Our expert writing service is here to guide you through academic intricacies. 

Get research paper writing help today for tailored support in achieving your scholarly goals.

Cathy A. (Marketing, Literature)

For more than five years now, Cathy has been one of our most hardworking authors on the platform. With a Masters degree in mass communication, she knows the ins and outs of professional writing. Clients often leave her glowing reviews for being an amazing writer who takes her work very seriously.

Paper Due? Why Suffer? That’s our Job!

Get Help

Keep reading

How To Write An Abstract For A Research Paper

Legal & Policies

  • Privacy Policy
  • Cookies Policy
  • Terms of Use
  • Refunds & Cancellations
  • Our Writers
  • Success Stories
  • Our Guarantees
  • Affiliate Program
  • Referral Program
  • AI Essay Writer

Disclaimer: All client orders are completed by our team of highly qualified human writers. The essays and papers provided by us are not to be used for submission but rather as learning models only.

abstract for research paper sample

Fourwaves

  • Event Website Publish a modern and mobile friendly event website.
  • Registration & Payments Collect registrations & online payments for your event.
  • Abstract Management Collect and manage all your abstract submissions.
  • Peer Reviews Easily distribute and manage your peer reviews.
  • Conference Program Effortlessly build & publish your event program.
  • Virtual Poster Sessions Host engaging virtual poster sessions.
  • Customer Success Stories
  • Wall of Love ❤️

Mastering the Art of Writing an Effective Conference Abstract

Matthieu Chartier, PhD.

Published on 30 Aug 2024

Conference abstracts are crucial in the world of academic research and professional health associations. They serve as the gateway to presenting your work at conferences, where you can share your findings, network with peers, and contribute to advancing your field. Writing a compelling abstract that stands out and increases your chances of acceptance requires careful attention to detail and an understanding of what reviewers are looking for.

What is the Purpose of a Conference Abstract?

A conference abstract is a succinct summary of your research that highlights the significance of your work, your methodology, and your findings. It is often the first (and sometimes only) piece of your work that conference organizers and reviewers see. The abstract must capture their attention, convey the essence of your research, and persuade them of its value to the conference and its attendees. Like the summary on the back of a novel that makes you want to read more, your abstract should give readers an intriguing glimpse into the larger story that your research can tell .

The Key Components of an Effective Abstract

If it’s your first time submitting to a conference, you may be tempted to simply copy and paste the introduction of your research paper into the abstract field. Don’t. An abstract and an introduction serve different purposes and have different formats . A well-crafted abstract typically includes the following key components:

Your title should be clear, concise, and descriptive. It should accurately reflect the content of your research and intrigue the reader. Avoid jargon and strive for a title that is both informative and engaging.

This section provides context for your study. Briefly describe the problem or gap in knowledge that your research addresses. The background should be compelling enough to establish the importance of your work within the broader field.

Clearly state the primary aim or research question of your study. This section should articulate what you set out to achieve with your research.

Summarize the methodology you used to conduct your research. This includes the study design, population or sample, data collection techniques, and analytical methods. Be precise and ensure that the methods align with your stated objectives.

Present the key findings of your study. Even if your research is ongoing, include any preliminary results that are available. The results should directly address your research objectives and provide evidence supporting your conclusions.

Conclude your abstract by summarizing the implications of your findings. Discuss how your research contributes to the field , its potential impact, and any recommendations for future research or practice.

Tips for Writing a Conference Abstract

1. focus on clarity in your writing.

Avoid technical jargon and overly complex language. Your abstract should be accessible to a broad audience, including those outside your area of expertise.

2. Keep Your Abstract Concise

Most conference abstracts are limited to 250-500 words. Make every word count by focusing on the most important aspects of your research. Eliminate unnecessary details and ensure that each section flows logically into the next.

3. Use an Active Voice if Possible

Writing in an active voice makes your abstract more engaging and direct. For example, instead of writing, "The study was conducted to assess...," write, "We conducted the study to assess..." 

4. Highlight the Novelty in Your Research

Emphasize what makes your research unique or innovative. If your study fills a gap in the literature, challenges existing paradigms, or introduces a new method or perspective, make that clear.  If your research will have practical implications in the world, outline that too. Reviewers are often looking for work that will inspire discussion and further research.

5. Align Your Abstract with Conference Themes

Tailor your abstract to fit the themes or focus areas of the conference. Demonstrating that your research aligns with the conference’s goals can increase its relevance to the reviewers. 

6. Give Yourself Plenty of Time to Revise and Edit

A well-written abstract requires multiple revisions. Review your abstract for clarity, conciseness, and coherence. Before submitting, ask colleagues or mentors to review your abstract. They can provide valuable insights and help identify areas for improvement.

Common Conference Abstract Mistakes to Avoid

Another great way to write a good abstract is to first think about how NOT to write one . Here’s a list of common mistakes to avoid when writing and editing your submission:

1. Lack of Focus

An abstract that tries to cover too much can become unfocused and difficult to follow. Stick to the main points of your research. If you’re debating if something is important enough to include, you’re probably better off leaving it out.

2. Vague or General Statements

Be specific in your description of the background, objectives, methods, and results. Vague statements can leave reviewers unsure about the significance of your work. Don’t feel the need to include every detail of course, but make sure you highlight WHY the details matter (i.e. why would someone want to learn more about your work).

3. Ignoring Word Limits

Exceeding the word limit can result in automatic rejection. Double-check and be sure to adhere to the guidelines provided by the conference.

4. Omitting Key Results

If your abstract lacks results or presents them in a vague manner, it may be perceived as incomplete or unconvincing. Reviewers want to be told why they should care about your work. Results are a huge part of that.

5. Submitting at the Last Minute

Early submission gives you more time to make revisions if needed and reduces the stress of last-minute technical issues. Most abstract management platforms allow you to return and edit your submissions up to the deadline. So, you’re better off submitting at least a day or two early.

The Importance of Following Conference Guidelines

Each conference may have specific guidelines for abstract submission, including formatting, word limits, and content requirements. These guidelines are designed to standardize submissions and ensure that all abstracts can be fairly reviewed. Failing to adhere to these guidelines can result in your abstract being rejected, regardless of the quality of your research. Always review the conference's submission instructions carefully and ensure your abstract meets all the requirements. If the instructions given aren’t clear, it never hurts to reach out to the organizing committee to clarify before you submit.

Once you’ve confirmed the guidelines for your conference, check if the organizers have provided a list of sample abstracts for you review. Some organizations will give guidance to help you write your submission, like this list of example abstracts provided by the Association for Applied Sport Psychology .

Writing a Great Conference Abstract

Crafting a compelling abstract is both an art and a science. By understanding the purpose of an abstract, focusing on clarity and conciseness, avoiding common mistakes, and adhering to conference guidelines, you can significantly increase your chances of having your work accepted and making an impact in your field. And, if you do get accepted, be sure to come back here for more tips on how to write your speaker bio and how to present your research at a conference .

5 Best Event Registration Platforms for Your Next Conference

By having one software to organize registrations and submissions, a pediatric health center runs aro...

5 Essential Conference Apps for Your Event

In today’s digital age, the success of any conference hinges not just on the content and speakers bu...

Information

  • Author Services

Initiatives

You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.

All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess .

Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.

Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Original Submission Date Received: .

  • Active Journals
  • Find a Journal
  • Proceedings Series
  • For Authors
  • For Reviewers
  • For Editors
  • For Librarians
  • For Publishers
  • For Societies
  • For Conference Organizers
  • Open Access Policy
  • Institutional Open Access Program
  • Special Issues Guidelines
  • Editorial Process
  • Research and Publication Ethics
  • Article Processing Charges
  • Testimonials
  • Preprints.org
  • SciProfiles
  • Encyclopedia

sustainability-logo

Article Menu

abstract for research paper sample

  • Subscribe SciFeed
  • Recommended Articles
  • Google Scholar
  • on Google Scholar
  • Table of Contents

Find support for a specific problem in the support section of our website.

Please let us know what you think of our products and services.

Visit our dedicated information section to learn more about MDPI.

JSmol Viewer

Insights from 20 years (2004–2023) of supply chain disruption research: trends and future directions based on a bibliometric analysis.

abstract for research paper sample

1. Introduction

2. literature review, 3. materials and methods, 3.1. sample creation.

  • Only papers published in international journals were retrieved, while other types of publications were not considered;
  • Similarly, only papers written in English were considered.
  • The paper’s metadata: authors, journal, bibliographic data, publication year, document title, and document type (article vs. review);
  • The authors’ keywords;
  • The publication option (traditional vs. open access);
  • Funding information.

3.2. Descriptive Analyses

3.3. keyword analysis and trend.

  • Authors often use slightly different terms to express the same concept. This is the case for singular or plural forms, British or American spelling of words, usage of capital letters/lower case letters, usage of hyphenation, or abbreviations (e.g., COVID vs. Coronavirus);
  • Acronyms can sometimes be used as keywords instead of the full text.
  • Well-established (‘core’), with high frequency and high persistence. They are expected to denote themes that have long been studied by many authors in the field;
  • Intermittent, with low frequency and high persistence. Terms in this category denote themes that have been known for many years, but have been studied with low continuity;
  • Phantom/emerging, with low frequency and low persistence. These topics could be relatively new to the research field or could describe themes that have progressively disappeared;
  • Trendy, with high frequency and low persistence. These topics are relatively new but have already attracted the attention of many researchers.
  • The subset of keywords that were observed in all periods of analysis, as these terms are expected to reflect relevant themes to the selected field of research. For those terms, their classification across the four periods was mapped, so as to delineate a trend in the interest toward the specific theme;
  • The subset of keywords with a minimum frequency of 30, thus indicating a high recurrence of the related topics in the targeted field of research. These keywords were first grouped by macro-areas; then, their trend in time was evaluated jointly with that of some core topics of the targeted field of research to identify possible correlations.

4.1. Descriptive Analyses

4.2. keyword analysis and trend.

  • Query-related terms: as the query settings expressively included terms such as “supply chain” and “disruption”, these terms (and their combination “supply chain disruption”) were grouped in a single query-related category;
  • COVID-relates terms: this category includes the terms “COVID-19” and “COVID-19 pandemic”;
  • Disruption-related terms: these terms are semantically related to the topic of “disruption”, which, however, is not necessarily used as a keyword. Those terms are supply disruption; pandemic; disruption risk; disruption management; uncertainty; ripple effect; demand disruption; and disaster;
  • Risk- or resilience-related terms: this category includes terms that were not used in the query settings but that appear to be related to the more general theme of risk management or resilience, whose relationship with supply chain disruptions is obvious. These terms include (supply chain) resilience, (supply chain) risk management, (supply chain) risk, robustness; resilient supply chain, supply risk, reliability, risk assessment; or vulnerability;
  • Supply chain-related terms: as per the classification made previously, these terms do not strictly refer to disruptions, but to more general problems in the area of supply chain or supply chain management. These terms include supply chain management, supplier selection, logistics, supply chain design, supply chain network, global supply chain, supply chain network design, collaboration, supply chain coordination, or inventory management;
  • Sustainability-related terms: the sustainability perspective includes four terms, namely sustainability, closed-loop supply chain, climate change, and circular economy;
  • Technology-related terms: this category includes terms such as Industry 4.0, artificial intelligence, machine learning, additive manufacturing, or blockchain;
  • Tools and methodologies: this group of terms includes typical engineering tools and techniques, such as simulation, game theory, (robust) optimization, stochastic programming, system dynamics, case study, or multi-criteria decision making;
  • Interrelated topics: terms in this category do not strictly refer to the area of supply chain disruptions, nor the more general area of risk or supply chain management. Rather, they introduce complementary topics, such as food security, food supply chain, small and medium enterprises, innovation, agility, or systematic review.

5. Discussion

6. conclusions, supplementary materials, author contributions, institutional review board statement, informed consent statement, data availability statement, conflicts of interest.

  • Centobelli, P.; Cerchione, R.; Strazzullo, S.; Shehri, K.A.; Farag, T.; El-Garaihy, W.H. Supply Chain Practices for a Sustainable Value Chain. IEEE Eng. Manag. Rev. 2023 , 51 , 130–147. [ Google Scholar ] [ CrossRef ]
  • Pirie, N.W. The world food supply. Futures 1976 , 8 , 509–516. [ Google Scholar ] [ CrossRef ]
  • Burns, J.F.; Sivazlian, B.D. Dynamic analysis of multi-echelon supply systems. Comput. Ind. Eng. 1978 , 2 , 181–193. [ Google Scholar ] [ CrossRef ]
  • Liao, S.H.; Widowati, R. A Supply Chain Management Study: A Review of Theoretical Models from 2014 to 2019. Oper. Supply Chain Manag. Int. J. 2021 , 9 , 173–188. [ Google Scholar ] [ CrossRef ]
  • Jayarathna, C.P.; Agdas, D.; Dawes, L.; Yigitcanlar, T. Multi-Objective Optimization for Sustainable Supply Chain and Logistics: A Review. Sustainability 2021 , 13 , 13617. [ Google Scholar ] [ CrossRef ]
  • Seo, Y.; Jung, S.; Hahm, J. Optimal reorder decision utilizing centralized stock information in a two-echelon distribution system. Comput. Oper. Res. 2002 , 29 , 171–193. [ Google Scholar ] [ CrossRef ]
  • Lysova, N.; Solari, F.; Caccamo, D.; Suppini, C.; Montanari, R. Periodic Review Inventory Management with Budget Constraints: Discrete-Event Simulation and Sensitivity Analysis. In Proceedings of the ECMS 2023 Proceedings edited by Enrico Vicario, Romeo Bandinelli, Virginia Fani, Michele Mastroianni, Florence, Italy, 20–23 June 2023. [ Google Scholar ] [ CrossRef ]
  • Wang, P.; Zhang, Y.; Guo, W. Demand Forecast of Railway Transportation Logistics Supply Chain Based on Machine Learning Model. Int. J. Inf. Technol. Syst. Approach 2023 , 16 , 1–17. [ Google Scholar ] [ CrossRef ]
  • Wang, F.; Wu, D.; Yu, H.; Shen, H.; Zhao, Y. Understanding the role of big data analytics for coordination of electronic retail service supply chain. J. Enterp. Inf. Manag. 2021 , 35 , 1392–1408. [ Google Scholar ] [ CrossRef ]
  • Kazancoglu, I.; Ozbiltekin-Pala, M.; Kumar Mangla, S.; Kazancoglu, Y.; Jabeen, F. Role of flexibility, agility and responsiveness for sustainable supply chain resilience during COVID-19. J. Clean. Prod. 2022 , 362 , 132431. [ Google Scholar ] [ CrossRef ]
  • Mcgaughey, R.E.; Gunasekaran, A. The Y2K problem: Manufacturing inputs at risk. Prod. Plan. Control 1999 , 10 , 796–808. [ Google Scholar ] [ CrossRef ]
  • Overby, J.; Rayburn, M.; Hammond, K.; Wyld, D.C. The China Syndrome: The impact of the SARS epidemic in Southeast Asia. Asia Pac. J. Mark. Logist. 2004 , 16 , 69–94. [ Google Scholar ] [ CrossRef ]
  • Hendry, L.C.; Stevenson, M.; MacBryde, J.; Ball, P.; Sayed, M.; Liu, L. Local food supply chain resilience to constitutional change: The Brexit effect. Int. J. Oper. Prod. Manag. 2019 , 39 , 429–453. [ Google Scholar ] [ CrossRef ]
  • Wang, J.J. The labour surplus and COVID-19: The outlook for Chinese migrant low-skilled workers. Account. Financ. 2021 , 62 , 577–596. [ Google Scholar ] [ CrossRef ]
  • Naz, F. Impact of Ukraine War on Global Energy and Food Supply Chains: A Case Study of South Asia. Strateg. Stud. 2023 , 42 , 38–53. [ Google Scholar ] [ CrossRef ]
  • Rose, A.; Chen, Z.; Wei, D. The economic impacts of Russia–Ukraine War export disruptions of grain commodities. Appl. Econ. Perspect. Policy 2023 , 45 , 645–665. [ Google Scholar ] [ CrossRef ]
  • Mostafa, N.A.; Hussein, A.A.; Elsheeta, M.; Romagnoli, G. Impacts of COVID-19 and the Russian–Ukrainian Conflict on Food Supply Chain: A Case Study from Bread Supply Chain in Egypt. Sustainability 2024 , 16 , 994. [ Google Scholar ] [ CrossRef ]
  • Abdirad, M.; Krishnan, K. Industry 4.0 in Logistics and Supply Chain Management: A Systematic Literature Review. Eng. Manag. J. 2020 , 33 , 187–201. [ Google Scholar ] [ CrossRef ]
  • Dolgui, A.; Ivanov, D.; Rozhkov, M. Does the ripple effect influence the bullwhip effect? An integrated analysis of structural and operational dynamics in the supply chain. Int. J. Prod. Res. 2019 , 58 , 1285–1301. [ Google Scholar ] [ CrossRef ]
  • Alvarenga, M.Z.; de Oliveira, M.P.V.; de Oliveira, T.A.G.F. The impact of using digital technologies on supply chain resilience and robustness: The role of memory under the COVID-19 outbreak. Supply Chain Manag. Int. J. 2023 , 28 , 825–842. [ Google Scholar ] [ CrossRef ]
  • Bianco, D.; Bueno, A.; Godinho Filho, M.; Latan, H.; Miller Devós Ganga, G.; Frank, A.G.; Chiappetta Jabbour, C.J. The role of Industry 4.0 in developing resilience for manufacturing companies during COVID-19. Int. J. Prod. Econ. 2023 , 256 , 108728. [ Google Scholar ] [ CrossRef ]
  • Fagundes, M.V.C.; Teles, E.O.; Vieira de Melo, S.A.B.; Freires, F.G.M. Decision-making models and support systems for supply chain risk: Literature mapping and future research agenda. Eur. Res. Manag. Bus. Econ. 2020 , 26 , 63–70. [ Google Scholar ] [ CrossRef ]
  • Christopher, M.; Peck, H. Building the Resilient Supply Chain. Int. J. Logist. Manag. 2004 , 15 , 1–14. [ Google Scholar ] [ CrossRef ]
  • Bak, O.; Shaw, S.; Colicchia, C.; Kumar, V. A Systematic Literature Review of Supply Chain Resilience in Small–Medium Enterprises (SMEs): A Call for Further Research. IEEE Trans. Eng. Manag. 2023 , 70 , 328–341. [ Google Scholar ] [ CrossRef ]
  • Mishra, R.; Singh, R.K. A systematic literature review on supply chain resilience in SMEs: Learnings from COVID-19 pandemic. Int. J. Qual. Reliab. Manag. 2022 , 40 , 1172–1202. [ Google Scholar ] [ CrossRef ]
  • Devi, Y.; Srivastava, A. Addressing sustainability during and post-COVID-19 pandemic crisis: A literature review and bibliometric analysis to explore the future avenues. Benchmarking Int. J. 2022 , 30 , 3225–3252. [ Google Scholar ] [ CrossRef ]
  • Agrawal, S.; Kumar, D.; Singh, R.K.; Singh, R.K. Coordination issues in managing the reverse supply chain: A systematic literature review and future research directions. Benchmarking Int. J. 2022 , 30 , 1259–1299. [ Google Scholar ] [ CrossRef ]
  • Aamer, A.; Sahara, C.R.; Al-Awlaqi, M.A. Digitalization of the supply chain: Transformation factors. J. Sci. Technol. Policy Manag. 2022 , 14 , 713–733. [ Google Scholar ] [ CrossRef ]
  • Arji, G.; Ahmadi, H.; Avazpoor, P.; Hemmat, M. Identifying resilience strategies for disruption management in the healthcare supply chain during COVID-19 by digital innovations: A systematic literature review. Inform. Med. Unlocked 2023 , 38 , 101199. [ Google Scholar ] [ CrossRef ]
  • Erboz, G.; Abbas, H.; Nosratabadi, S. Investigating supply chain research trends amid Covid-19: A bibliometric analysis. Manag. Res. Rev. 2022 , 46 , 413–436. [ Google Scholar ] [ CrossRef ]
  • Araujo, R.; Fernandes, J.M.; Reis, L.P.; Beaulieu, M. Purchasing challenges in times of COVID-19: Resilience practices to mitigate disruptions in the health-care supply chain. J. Glob. Oper. Strateg. Sourc. 2022 , 16 , 368–396. [ Google Scholar ] [ CrossRef ]
  • Shah, H.M.; Gardas, B.B.; Narwane, V.S.; Mehta, H.S. The contemporary state of big data analytics and artificial intelligence towards intelligent supply chain risk management: A comprehensive review. Kybernetes 2021 , 52 , 1643–1697. [ Google Scholar ] [ CrossRef ]
  • Llaguno, A.; Mula, J.; Campuzano-Bolarin, F. State of the art, conceptual framework and simulation analysis of the ripple effect on supply chains. Int. J. Prod. Res. 2021 , 60 , 2044–2066. [ Google Scholar ] [ CrossRef ]
  • Pujawan, I.N.; Bah, A.U. Supply chains under COVID-19 disruptions: Literature review and research agenda. Supply Chain Forum Int. J. 2021 , 23 , 81–95. [ Google Scholar ] [ CrossRef ]
  • Sarkar, P.; Mohamed Ismail, M.W.; Tkachev, T. Bridging the supply chain resilience research and practice gaps: Pre and post COVID-19 perspectives. J. Glob. Oper. Strateg. Sourc. 2022 , 15 , 599–627. [ Google Scholar ] [ CrossRef ]
  • Tortorella, G.; Fogliatto, F.S.; Gao, S.; Chan, T.K. Contributions of Industry 4.0 to supply chain resilience. Int. J. Logist. Manag. 2021 , 33 , 547–566. [ Google Scholar ] [ CrossRef ]
  • Moosavi, J.; Fathollahi-Fard, A.M.; Dulebenets, M.A. Supply chain disruption during the COVID-19 pandemic: Recognizing potential disruption management strategies. Int. J. Disaster Risk Reduct. 2022 , 75 , 102983. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Naghshineh, B.; Carvalho, H. The implications of additive manufacturing technology adoption for supply chain resilience: A systematic search and review. Int. J. Prod. Econ. 2022 , 247 , 108387. [ Google Scholar ] [ CrossRef ]
  • Cardoso, B.; Cunha, L.; Leiras, A.; Gonçalves, P.; Yoshizaki, H.; de Brito Junior, I.; Pedroso, F. Causal Impacts of Epidemics and Pandemics on Food Supply Chains: A Systematic Review. Sustainability 2021 , 13 , 9799. [ Google Scholar ] [ CrossRef ]
  • Sharifi, A.; Khavarian-Garmsir, A.R.; Kummitha, R.K.R. Contributions of Smart City Solutions and Technologies to Resilience against the COVID-19 Pandemic: A Literature Review. Sustainability 2021 , 13 , 8018. [ Google Scholar ] [ CrossRef ]
  • Abu Hatab, A.; Krautscheid, L.; Boqvist, S. COVID-19, Livestock Systems and Food Security in Developing Countries: A Systematic Review of an Emerging Literature. Pathogens 2021 , 10 , 586. [ Google Scholar ] [ CrossRef ]
  • Riera, R.; Bagattini, Â.M.; Pacheco, R.L.; Pachito, D.V.; Roitberg, F.; Ilbawi, A. Delays and Disruptions in Cancer Health Care Due to COVID-19 Pandemic: Systematic Review. JCO Glob. Oncol. 2021 , 7 , 311–323. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Abideen, A.Z.; Sundram, V.P.K.; Pyeman, J.; Othman, A.K.; Sorooshian, S. Food Supply Chain Transformation through Technology and Future Research Directions—A Systematic Review. Logistics 2021 , 5 , 83. [ Google Scholar ] [ CrossRef ]
  • Etemadi, N.; Borbon-Galvez, Y.; Strozzi, F.; Etemadi, T. Supply Chain Disruption Risk Management with Blockchain: A Dynamic Literature Review. Information 2021 , 12 , 70. [ Google Scholar ] [ CrossRef ]
  • Farooq, M.U.; Hussain, A.; Masood, T.; Habib, M.S. Supply Chain Operations Management in Pandemics: A State-of-the-Art Review Inspired by COVID-19. Sustainability 2021 , 13 , 2504. [ Google Scholar ] [ CrossRef ]
  • Gurtu, A.; Johny, J. Supply Chain Risk Management: Literature Review. Risks 2021 , 9 , 16. [ Google Scholar ] [ CrossRef ]
  • Habibi Rad, M.; Mojtahedi, M.; Ostwald, M.J. The Integration of Lean and Resilience Paradigms: A Systematic Review Identifying Current and Future Research Directions. Sustainability 2021 , 13 , 8893. [ Google Scholar ] [ CrossRef ]
  • Svoboda, J.; Minner, S.; Yao, M. Typology and literature review on multiple supplier inventory control models. Eur. J. Oper. Res. 2021 , 293 , 1–23. [ Google Scholar ] [ CrossRef ]
  • Bui, T.D.; Tsai, F.M.; Tseng, M.L.; Tan, R.R.; Yu, K.D.S.; Lim, M.K. Sustainable supply chain management towards disruption and organizational ambidexterity: A data driven analysis. Sustain. Prod. Consum. 2021 , 26 , 373–410. [ Google Scholar ] [ CrossRef ]
  • Bier, T.; Lange, A.; Glock, C.H. Methods for mitigating disruptions in complex supply chain structures: A systematic literature review. Int. J. Prod. Res. 2019 , 58 , 1835–1856. [ Google Scholar ] [ CrossRef ]
  • Xu, S.; Zhang, X.; Feng, L.; Yang, W. Disruption risks in supply chain management: A literature review based on bibliometric analysis. Int. J. Prod. Res. 2020 , 58 , 3508–3526. [ Google Scholar ] [ CrossRef ]
  • Fischer-Preßler, D.; Eismann, K.; Pietrowski, R.; Fischbach, K.; Schoder, D. Information technology and risk management in supply chains. Int. J. Phys. Distrib. Logist. Manag. 2020 , 50 , 233–254. [ Google Scholar ] [ CrossRef ]
  • Duong, L.N.K.; Chong, J. Supply chain collaboration in the presence of disruptions: A literature review. Int. J. Prod. Res. 2020 , 58 , 3488–3507. [ Google Scholar ] [ CrossRef ]
  • Vieira, A.A.C.; Dias, L.M.S.; Santos, M.Y.; Pereira, G.A.B.; Oliveira, J.A. Supply chain data integration: A literature review. J. Ind. Inf. Integr. 2020 , 19 , 100161. [ Google Scholar ] [ CrossRef ]
  • Yuen, K.F.; Wang, X.; Ma, F.; Li, K.X. The Psychological Causes of Panic Buying Following a Health Crisis. Int. J. Environ. Res. Public Health 2020 , 17 , 3513. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Golan, M.S.; Jernegan, L.H.; Linkov, I. Trends and applications of resilience analytics in supply chain modeling: Systematic literature review in the context of the COVID-19 pandemic. Environ. Syst. Decis. 2020 , 40 , 222–243. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Aamer, A.; Eka Yani, L.P.; Alan Priyatna, I.M. Data Analytics in the Supply Chain Management: Review of Machine Learning Applications in Demand Forecasting. Oper. Supply Chain Manag. Int. J. 2020 , 14 , 1–13. [ Google Scholar ] [ CrossRef ]
  • Gligor, D.; Bozkurt, S.; Russo, I.; Omar, A. A look into the past and future: Theories within supply chain management, marketing and management. Supply Chain Manag. Int. J. 2019 , 24 , 170–186. [ Google Scholar ] [ CrossRef ]
  • Gligor, D.; Gligor, N.; Holcomb, M.; Bozkurt, S. Distinguishing between the concepts of supply chain agility and resilience. Int. J. Logist. Manag. 2019 , 30 , 467–487. [ Google Scholar ] [ CrossRef ]
  • Aboah, J.; Wilson, M.M.J.; Rich, K.M.; Lyne, M.C. Operationalising resilience in tropical agricultural value chains. Supply Chain Manag. Int. J. 2019 , 24 , 271–300. [ Google Scholar ] [ CrossRef ]
  • Queiroz, M.M.; Telles, R.; Bonilla, S.H. Blockchain and supply chain management integration: A systematic review of the literature. Supply Chain Manag. Int. J. 2019 , 25 , 241–254. [ Google Scholar ] [ CrossRef ]
  • Ghadge, A.; Weiß, M.; Caldwell, N.D.; Wilding, R. Managing cyber risk in supply chains: A review and research agenda. Supply Chain Manag. Int. J. 2019 , 25 , 223–240. [ Google Scholar ] [ CrossRef ]
  • Aryal, A.; Liao, Y.; Nattuthurai, P.; Li, B. The emerging big data analytics and IoT in supply chain management: A systematic review. Supply Chain Manag. Int. J. 2018 , 25 , 141–156. [ Google Scholar ] [ CrossRef ]
  • Feak, C.; Swales, J. Telling a Research Story: Writing a Literature Review ; University of Michigan Press: Ann Arbor, MI, USA, 2009. [ Google Scholar ] [ CrossRef ]
  • Haghani, M. What makes an informative and publication-worthy scientometric analysis of literature: A guide for authors, reviewers and editors. Transp. Res. Interdiscip. Perspect. 2023 , 22 , 100956. [ Google Scholar ] [ CrossRef ]
  • Bottani, E.; Solari, F.; Lysova, N. Sample of Papers about “Supply Chain” AND Disruption ; Mendeley Data; Università degli Studi di Parma: Parma, Italy, 2024; p. V1. [ Google Scholar ] [ CrossRef ]
  • Amini, H.; Jabalameli, M.S.; Ramesht, M.H. Development of regional foresight studies between 2000: An overview and co-citation analysis. Eur. J. Futures Res. 2021 , 9 , 1. [ Google Scholar ] [ CrossRef ]
  • Hartley, J. Academic Writing and Publishing ; Routledge: London, UK, 2008. [ Google Scholar ] [ CrossRef ]
  • Zhang, J.; Yu, Q.; Zheng, F.; Long, C.; Lu, Z.; Duan, Z. Comparing keywords plus of WOS and author keywords: A case study of patient adherence research. J. Assoc. Inf. Sci. Technol. 2015 , 67 , 967–972. [ Google Scholar ] [ CrossRef ]
  • Fadlalla, A.; Amani, F. A keyword-based organizing framework for ERP intellectual contributions. J. Enterp. Inf. Manag. 2015 , 28 , 637–657. [ Google Scholar ] [ CrossRef ]
  • Bigliardi, B.; Casella, G.; Bottani, E. Industry 4.0 in the logistics field: A bibliometric analysis. IET Collab. Intell. Manuf. 2021 , 3 , 4–12. [ Google Scholar ] [ CrossRef ]
  • Wang, M.; Chai, L. Three new bibliometric indicators/approaches derived from keyword analysis. Scientometrics 2018 , 116 , 721–750. [ Google Scholar ] [ CrossRef ]
  • Ivanov, D. Predicting the impacts of epidemic outbreaks on global supply chains: A simulation-based analysis on the coronavirus outbreak (COVID-19/SARS-CoV-2) case. Transp. Res. Part E: Logist. Transp. Rev. 2020 , 136 , 101922. [ Google Scholar ] [ CrossRef ]
  • Rinaldi, M.; Bottani, E. How did COVID-19 affect logistics and supply chain processes? Immediate, short and medium-term evidence from some industrial fields of Italy. Int. J. Prod. Econ. 2023 , 262 , 108915. [ Google Scholar ] [ CrossRef ]
  • Bordons, M.; González-Albo, B.; Moreno-Solano, L. Improving our understanding of open access: How it relates to funding, internationality of research and scientific leadership. Scientometrics 2023 , 128 , 4651–4676. [ Google Scholar ] [ CrossRef ]
  • Bontekoning, Y.M.; Macharis, C.; Trip, J.J. Is a new applied transportation research field emerging?—A review of intermodal rail–truck freight transport literature. Transp. Res. Part A Policy Pract. 2004 , 38 , 1–34. [ Google Scholar ] [ CrossRef ]
  • Ngai, E.W.T.; Moon, K.K.L.; Riggins, F.J.; Yi, C.Y. RFID research: An academic literature review (1995–2005) and future research directions. Int. J. Prod. Econ. 2008 , 112 , 510–520. [ Google Scholar ] [ CrossRef ]
  • Casella, G.; Filippelli, S.; Bigliardi, B.; Bottani, E. Radio frequency identification technology in logistics: A review of the literature. Int. J. RF Technol. 2022 , 12 , 69–86. [ Google Scholar ] [ CrossRef ]
  • Hobbs, J.E. Food supply chains during the COVID-19 pandemic. Can. J. Agric. Econ. Rev. Can. D’agroéconomie 2020 , 68 , 171–176. [ Google Scholar ] [ CrossRef ]
  • Dolgui, A.; Ivanov, D. Ripple effect and supply chain disruption management: New trends and research directions. Int. J. Prod. Res. 2021 , 59 , 102–109. [ Google Scholar ] [ CrossRef ]
  • Raja Santhi, A.; Muthuswamy, P. Industry 5.0 or industry 4.0S? Introduction to industry 4.0 and a peek into the prospective industry 5.0 technologies. Int. J. Interact. Des. Manuf. 2023 , 17 , 947–979. [ Google Scholar ] [ CrossRef ]
  • Thilmany, D.; Canales, E.; Low, S.A.; Boys, K. Local Food Supply Chain Dynamics and Resilience during COVID-19. Appl. Econ. Perspect. Policy 2020 , 43 , 86–104. [ Google Scholar ] [ CrossRef ]
  • Suryawanshi, P.; Dutta, P.; Varun, L.; Deepak, G. Sustainable and resilience planning for the supply chain of online hyperlocal grocery services. Sustain. Prod. Consum. 2021 , 28 , 496–518. [ Google Scholar ] [ CrossRef ]

Click here to enlarge figure

ReferenceNumber
of Papers
PeriodMain Topic
[ ]1012006–2019Supply chain resilience in Small and Medium-sized Enterprises (SME)
[ ]462012–2022Supply chain resilience in SMEs in the context of the COVID-19 pandemic
[ ]5172020–2022Trends in sustainability during and post the COVID-19 pandemic
[ ]1512004–2021Coordination issues in the return supply chain
[ ]402002–2021Identification of key drivers for supply chain digitalization readiness
[ ]352020–2022Resilience strategies for disruption management in healthcare supply chains during the COVID-19 pandemic
[ ]1912019–2021Effects of COVID-19 on the supply chain management
[ ]522017–2022Resilience practices in healthcare supply chain management, with a focus on purchasing challenges during the COVID-19 pandemic
[ ]682009–2020Artificial Intelligence and Big Data Analytics in Supply Chain Risk Management
[ ]502011–2020Ripple effect in supply chains
[ ]502020–2021Supply chains under disruptions due to COVID-19 pandemic, with a focus on the production and distribution of COVID-19 vaccine
[ ]1352011–2021Practice and research gaps related to supply chains, and what characteristics should a supply chain have to be survivable
[ ]332011–2020Contribution of Industry 4.0 integration into supply chains to the enhancement of resilience
[ ]4692020–2021Potential disruption-management strategies during the COVID-19 pandemic
[ ]872006–2021Impacts of additive manufacturing on the structure and dynamics of supply chains
[ ]1732009–2021Main impacts of pandemics and epidemics on food supply chains and policies that can minimize these impacts
[ ]1472019–2021How smart city solutions and technologies have contributed to enhancing resilience in cities during the COVID-19 pandemic
[ ]682019–2021COVID-19 impact on livestock systems and food security in developing countries
[ ]622020Delays and disruptions to cancer health care services due to COVID-19 pandemic
[ ]1122020–2021How technology has tackled food supply chain challenges related to quality, safety, and sustainability
[ ]1922017–2020Potential of blockchain for privacy and security challenges related to supply chain disruptions
[ ]322010–2020Impacts on the business environment of supply chains of previous epidemic outbreaks
[ ]4552010–2019Supply chain risk management: review of the existing literature and exploration of risk factors
[ ]532000–2020Integration of lean and resilience paradigms
[ ]306n.d.–2020Inventory models with multiple sourcing options
[ ]24022008–2020Integration of sustainable supply chain management with organizational ambidexterity to manage disruptions effectively
[ ]772004–2018Review of the methods that are currently used for mitigating supply chain disruptions
[ ]13101999–2019Disruption risks in supply chain management
[ ]552004–2018Use of information technology in supply chain risk management
[ ]1572000–2019How collaborations help supply chains respond and recover from a disruption
[ ]932008–2015Review of simulation methods that deal with risks in supply chain and types of data integration employed
[ ]272009–2020Psychological causes of panic buying
[ ]942017–2019Resilience analytics in supply chain management and modeling of the supply chain network dependence on other networks
[ ]772010–2019Use of machine learning algorithms for demand forecasting
[ ]16252009–2018Analysis of the most adopted theories in supply chain management, marketing and management
[ ]200n.d.–2017Multidisciplinary review about the concepts of agility and resilience
[ ]542000–2018Analysis of resilience focusing on upstream disruptions in agricultural value chains
[ ]272008–2018Use of blockchain in supply chain management context
[ ]411997–2017Cyber risk management in supply chain contexts
[ ]6892010–2018Research themes on IoT and big data analytics in the field of supply chain management
This study423920042023Supply chain disruptions
2004–20082009–20132014–20182019–2023
Number of keywords25184717466687
Average frequency1.631.681.872.36
Frequency boundary2223
Number of PeriodsNumber of KeywordsPercentage
1725188.15%
27148.68%
31922.33%
4690.84%
From/toFinal Classification (2019–2023)
Emerging/PhantomIntermittentTrendyWell-Established
2
(supply chain planning; quantity discount)
10
(supply risk management; buyback contract; supply management; dynamic programming; radio frequency identification; asymmetric information; coordination mechanism; safety stock; sourcing strategy; revenue sharing contract)
013
(service level; transportation disruption; bullwhip effect; modelling; flexibility; analytic hierarchy process; inventory management; innovation; demand disruption; global supply chain; robustness; closed loop supply chain; stochastic programming)
2
(contract; Petri net)
6
(integration; terrorism; backup supplier; empirical research; contingency planning; business continuity planning)
1
(sourcing)
15
(supply uncertainty; resilience; agent-based model; visibility; coordination; information sharing; supply chain risk management; dual sourcing; supply chain vulnerabilities; agility; disaster; risk assessment; vulnerability; supply chain network; logistics)
0002
(inventory; supply chain design)
1
(security)
0017
(supply chain; purchasing; supply chain disruption; supply chain management; disruption; risk management; supply chain coordination; supply disruption; supply chain risk; simulation; disruption management; uncertainty; risk; game theory; optimization; case study; supply risk)
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

Solari, F.; Lysova, N.; Romagnoli, G.; Montanari, R.; Bottani, E. Insights from 20 Years (2004–2023) of Supply Chain Disruption Research: Trends and Future Directions Based on a Bibliometric Analysis. Sustainability 2024 , 16 , 7530. https://doi.org/10.3390/su16177530

Solari F, Lysova N, Romagnoli G, Montanari R, Bottani E. Insights from 20 Years (2004–2023) of Supply Chain Disruption Research: Trends and Future Directions Based on a Bibliometric Analysis. Sustainability . 2024; 16(17):7530. https://doi.org/10.3390/su16177530

Solari, Federico, Natalya Lysova, Giovanni Romagnoli, Roberto Montanari, and Eleonora Bottani. 2024. "Insights from 20 Years (2004–2023) of Supply Chain Disruption Research: Trends and Future Directions Based on a Bibliometric Analysis" Sustainability 16, no. 17: 7530. https://doi.org/10.3390/su16177530

Article Metrics

Article access statistics, further information, mdpi initiatives, follow mdpi.

MDPI

Subscribe to receive issue release notifications and newsletters from MDPI journals

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 02 September 2024

Fault diagnosis method for oil-immersed transformers integrated digital twin model

  • Haiyan Yao 1 ,
  • Xin Zhang 2 ,
  • Qiang Guo 1 ,
  • Yufeng Miao 1 &
  • Shan Guan 3  

Scientific Reports volume  14 , Article number:  20355 ( 2024 ) Cite this article

Metrics details

  • Electrical and electronic engineering
  • Mechanical engineering

To address the problems of low accuracy in fault diagnosis of oil-immersed transformers, poor state perception ability and real-time collaboration during diagnosis feedback, a fault diagnosis method for transformers based on the integration of digital twins is proposed. Firstly, fault sample balance is achieved through Iterative Nearest Neighbor Oversampling (INNOS), Secondly, nine-dimensional ratio features are extracted, and the correlation between dissolved gases in oil and fault types is established. Then, sparse principal component analysis (SPCA) is used for feature fusion and dimensionality reduction. Finally, the Aquila Optimizer (AO) is introduced to optimize the parameters of the Kernel Extreme Learning Machine (KELM), establishing the optimal AO-KELM diagnosis model. The final fault diagnosis accuracy reaches 98.1013%. Combining transformer digital twin models, real-time interaction mapping between physical entities and virtual space is achieved, enabling online diagnosis of transformer faults. Experimental results show that the method proposed in this paper has high diagnostic accuracy and strong stability, providing reference for the intelligent operation and maintenance of transformers.

Similar content being viewed by others

abstract for research paper sample

Research on transformer fault diagnosis method based on ACGAN and CGWO-LSSVM

abstract for research paper sample

Fault diagnosis of gearbox based on Fourier Bessel EWT and manifold regularization ELM

abstract for research paper sample

Discernment of transformer oil stray gassing anomalies using machine learning classification techniques

Introduction.

The transformer, as the hub of power systems, its health status directly impacts the stability and reliability of the electrical system's operation. Therefore, the precise management of a transformer's health status is paramount to ensuring the steadfast and secure operation of the power grid 1 .

Presently, the technology of Dissolved Gas Analysis (DGA) is extensively employed in the monitoring and identification of faults within oil-insulated transformers 2 , 3 , primarily encompassing: the IEC triad ratio method 4 , the Rogers quadruple ratio method 5 , and the DUVAL triangle technique 6 . Despite their simplicity of operation, these approaches lack the depth of representation for fault characteristics and are limited by their capabilities, resulting in a blurred and indistinct encoding boundary, thereby leading to a low accuracy rate in fault recognition 7 . With the rapid advancement of artificial intelligence, eminent scholars have integrated machine learning with DGA technology, achieving notable results in the field of transformer fault detection. The literature 8 optimizes the support vector machine parameters through the refinement of the scalar search algorithm, thereby augmenting both the convergence velocity and the diagnostic precision of the methodology. The literature 9 proffers an SE-ELM diagnostic method, whose efficacy was validated through the verification across various datasets. The literature 10 enhances the particle swarm optimization algorithm through the dynamic adjustment of inertial weights and acceleration factors, iteratively optimizing the parameters of XGBoost, thereby augmenting the model's classification acumen. Additionally, methods such as Convolutional Neural Networks 11 , 12 , Long Short-Term Memory Networks 13 , 14 , 15 , LightGBM 16 , and the Capsule Network 17 are extensively employed.

With the advancement of big data and the Internet of Things (IoT) technologies, the Digital Twin (DT) 18 technology has paved a new path for enhancing the efficiency of equipment health management. The core concept is to construct a holographic virtual twin model in the digital realm, utilizing advanced technologies such as intelligent sensing and data transmission, which accurately, comprehensively, and in real-time reflect the evolution of physical devices, achieving intelligent control over entities 19 , 20 , 21 . This technology has been extensively utilized in various sectors including aerospace, manufacturing, and healthcare.

In the field of transformer fault diagnosis, scholars both domestically and internationally have carried out extensive research. Referencing 22 , the study proposed a method for constructing a dual-driving twin model integrating data and models, focusing on 10 kv oil-immersed transformers. This approach enables the synchronization between the actual operating conditions of the transformer and the digital twin center. Referencing 23 , a digital twin fault diagnosis model was constructed based on the mechanism model and data model of transformers. Five characteristic gases extracted from DGA data were selected as input feature vectors for a CNN. Experimental results showed that the 1D-CNN model established in this study responded rapidly, had a short training time, and achieved high accuracy, thus validating the effectiveness of the model. Referencing 24 , a fault diagnosis model based on digital twin was constructed for transformers, taking into account their structural characteristics and operational traits. By optimizing the smoothing factor δ in a probabilistic neural network through differential evolution algorithm, the diagnostic accuracy reached an impressive 96.7%, enabling precise monitoring of the transformer's actual operating state. Reference 25 conducts a statistical analysis of the operating data and state information quantity of power transformers, proposes a framework for a state evaluation system and fault detection system based on GCA-CNN, and verifies with 2000 real data cases that the model has higher accuracy and evaluation and detection effects. The literature 26 establishes a high-fidelity simulation model of transformers to accurately simulate winding currents and the temperatures of different components, which can be used for the identification of early faults. However, the aforementioned research is only focused on a single dissolved gas in oil or vibration signal as the basis for fault diagnosis, but there are many factors affecting transformer faults. In the future, it may be possible to combine multi-source data for comprehensive judgment.

In light of the above context, this paper proposes a fault diagnosis method for oil-immersed transformers that integrates a digital twin model. The main contributions of the paper are divided into several parts. Part 1 mainly elaborates on the research background of the paper and the future research direction. Part 2 establishes a transformer digital twin framework, based on geometric, physical, behavioral, and rule models, to achieve interaction mapping between the virtual entity and the physical entity. Part 3 introduces the methods used in the paper, providing theoretical support for the establishment of an accurate and efficient fault diagnosis model. Part 4 addresses the issue of imbalanced small sample data that can easily lead to misjudgment of minority class samples, deeply explores the correlation between dissolved gases in oil and fault types, and eliminates the 'dimensionality catastrophe' problem, using instance data to obtain diagnostic results. Part 5 discusses and analyzes different sampling methods, different features, and different diagnostic models. Part 6 summarizes the entire paper.

Transformer fault diagnosis model fusing digital twin

Transformer digital twin framework.

This article takes a 400kV oil-immersed transformer as the research object and establishes a transformer digital twin integrated digital twin technology. The constructed digital twin framework mainly includes: physical space, twin body, twin data layer and application service layer 27 , as shown in Fig.  1 .

figure 1

Transformer digital twin framework.

In the process of building a digital twin, the geometric model is the foundation for creating the digital twin model. Three-dimensional software such as UG and SolidWorks are used to comprehensively describe the solid model in terms of geometric dimensions, material properties, and assembly relationships. Based on prior knowledge, physical properties, and operating mechanisms, the geometric model is analyzed and tested for magnetic field, structure, and other modeling aspects, fully reflecting the intrinsic nature and operating mechanism of the transformer. Heterogeneous data from multiple sources, such as dissolved gas in oil and acoustic vibration signals, are collected using state-aware devices. Artificial intelligence algorithms integrated in the behavior model are used for processing and analysis. The derived data generated from simulation calculations are fed back to the mechanism model in real-time. At the same time, simulation data, state-aware data, as well as transformer's full life cycle process data, maintenance records, and computed derived data collectively form the twin database. Through data communication protocols and interfaces, real-time updates and interactive control between the physical entity and the digital twin are achieved, enabling visual description, real-time monitoring, analysis, diagnosis, and intelligent decision-making for the physical transformer. This provides new ideas for improving the safety and reliable operation of power transmission and transformation equipment.

The five-dimensional model of digital twin

The present work is founded on the five-dimensional model proposed by Tao Fei from Beijing Aerospace University 28 , culminating in the creation of a digital twin for transformers, as exemplified by Eq. ( 1 ).

where: PE denotes the physical entity of the transformer, VE represents the virtual entity, SS signifies data, algorithms and models of the digital twin, DD stands for the twinning data of the transformer, and CN symbolizes the interaction and communication among the various components.

The acronym PE stands for transformer physical entity, an ensemble of components including the core, windings, tap-changer, and cooling equipment, it caters to the perception of contact or non-contact by state-sensing devices, embodying the interactive and responsive essence of an objective presence.

The SS represents the process of integrating data and models generated by the digital twin transformer system, thereby facilitating comprehensive monitoring of entities, diagnostic analysis of equipment failures, and predictive maintenance.

VE represents the twin model of the virtual realm, establishing the fundamental groundwork for mapping the virtual to the real. The specific composition is delineated by the formula ( 2 ) shown:

where: Gv represents the geometric model, which uses 3D modeling software to create a comprehensive description of the geometric features of physical entities; Pv represents the physical model, which describes the physical properties and operating mechanisms of electrical equipment; Bv represents the behavior model, which combines artificial intelligence algorithms to create Bv; Rv represents the rule model, which mainly includes expert experience and rule inference based on processed historical data for optimization and deduction.

DD represents twin data, which dynamically stores relevant data of PE/VE/SS, and is an important prerequisite for ensuring intelligent operation and maintenance of transformers. The specific representation is shown in formula ( 3 ):

where: Dp refers to the dynamic factor data collected through the state-aware device; Dv refers to the running parameters in the virtual model; Ds mainly refers to the functional and business service data; Dk includes expert experience, industry rules in the transformer field, and usage guidelines, etc. Df refers to the integrated transformation, interactive fusion, and other derived data of the above-mentioned data.

CN represents the data connection part, which is crucial for ensuring the interaction and updating of the elements in the digital twin model. Through data interfaces, communication protocols, etc., efficient transmission and utilization of data in the digital twin system can be achieved, enabling seamless communication and connectivity among different parts of the model. The interactive relationships of the five dimensions in the digital twin model are shown in Fig.  2 .

figure 2

Transformer digital twin five-dimensional model connection relationship.

Transformer fault diagnosis model based on optimized extreme learning machine

Iterative nearest neighbor oversampling algorithm.

The iterative neighborhood oversampling 29 algorithm is a sampling method designed to tackle class imbalance issues, with its principal tenet being the selection of a multitude of class-specific samples as neighbors, and then traversing all k data points within this category, scouring for the most recent unlabeled instance within each label data subset of said category until the dataset balances out or approaches close to it. Here follow the specific steps:

Assume the samples in the dataset for each tag to be \({\text{r}} = \left\{ {r_{1} ,r_{2} , \cdots ,r_{j} , \cdots ,r_{a} } \right\}\) , with \(r_{j} \left( {j = 1,2, \cdots a} \right)\) denoting the number of samples contained within category j . Define the sample set's imbalance factor, utilizing the standard deviation \({\text{var}} \left( r \right)\) to symbolize the dispersal of various types of samples within the dataset, as illustrated in Eq. ( 4 ):

where: \(\mathop r\limits^{ - } = \frac{1}{a}\sum\limits_{j = 1}^{a} {r_{j} }\) .

Based on the philosophy of greedy search, endeavor to identify a multitude of particular sub-samples, with the process detailed in formula ( 5 ):

where: \(x_{j}\) represents the labeled data in category j . If \(x_{\max k}\) is the classification boundary, remove it and select the next nearest neighbor. Then, label it as category j , remove it from the unlabeled data set \(X_{U}\) , add it to the labeled data set \(X_{L}\) , and set \(r_{j} = r_{j} + 1\) . Recalculate the imbalance degree until the preset value is reached, and stop iterating.

Extreme learning machine algorithm

The Kernel Extreme Learning Machine (KELM) 30 is based on a single hidden layer feedforward neural network. It introduces a kernel function on top of the ELM algorithm, which maps low-dimensional data to a high-dimensional feature space, resulting in a model with stronger generalization and robustness. The specific steps are as follows:

Assume we are provided with N samples represented as \(\left\{ {\left( {{\text{x}}_{{\text{i}}} ,t_{i} } \right)} \right\}_{i = 1}^{N}\) , where \(x_{i} = \left[ {x_{i1} ,x_{i2} , \cdots ,x_{in} } \right]^{T} \in R^{n}\) and \(t_{i} = \left[ {t_{i1} ,t_{i2} , \cdots ,t_{im} } \right]^{T} \in R^{n}\) denote the input vector and output function of the model respectively. In the context of a neural network with k hidden layers and an activation function \(g\left( x \right)\) , the number of hidden nodes is L , and the ELM model can be articulated by the formula shown in Eq. ( 6 ):

where: \(\beta_{j} = \left[ {\beta_{j1} ,\beta_{j2} , \cdots ,\beta_{jL} } \right]^{T} \left( {j = 1,2, \cdots ,L} \right)\) denotes the output weight value connecting the j th implicit layer node with the output layer node. Among these, \(H = \left\{ {h_{ij} } \right\}\left( {i = 1,2, \cdots ,N;j = 1,2, \cdots ,L} \right)\) represents the output matrix of the hidden layer, and H denotes the jth column of the input \(x_{1} ,x_{2} , \cdots ,x_{n}\) corresponding to the jth hidden layer node. Within H, the jth row corresponds to the output vector of \(x_{i}\) .

Using the least squares method to obtain the output weight values, as shown in formula ( 7 ):

In the formula, \(H{\prime}\) represents the generalized inverse matrix of the hidden layer output matrix H .

Introducing the kernel function mitigates the issue of randomly generated input weights and bias values, exemplified by the KELM weight output formula ( 8 ):

The KELM output function as expressed in formula ( 9 ):

When \(h\left( x \right)\) remains unknown, the kernel function matrix is represented by formula ( 10 ):

In the equation, \(K\left( {x_{i} ,x_{j} } \right)\) denotes the nuclear function, represented as:

The KELM model's output function expression is delineated in formula ( 12 ):

Sparse principal component analysis

The sparse principal component analysis 31 is a method that builds upon the principal component analysis algorithm by incorporating the LASSO penalty term, thereby enabling the matrix to be sparsely populated. By solving the regression coefficient matrix, it further transforms PCA into an optimization problem aimed at finding the optimal set of coefficients for regression. Compared to traditional PCA, SPCA excels in effectively managing the sparsity within high-dimensional data, yielding results that are more interpretative.

The SPCA algorithm is resolve into two segments: the first entails calculating the principal components via PCA; the second entails enhancing the LASSO penalty term to render the obtained solution sparse. Here follow the specific steps:

Given a \({\text{n}} \times m\) -variant dataset X, the feature decomposition upon normalization treatment, as expounded upon in formula ( 13 ):

In the equation, \(\Lambda \in R^{m \times m}\) represents a diagonal matrix of eigenvalues, arranged in descending order. \(\Lambda \in R^{m \times m}\) is a unitary matrix with column vectors as load vectors.

Select the first k columns of the load matrix \(P \in R^{m \times k}\) , compute the score matrix T , as shown in Eq. ( 14 ):

Projecting T onto X yields a new matrix \(\mathop X\limits^{ \wedge }\) that encompasses information from the corresponding principal component; the difference with X is denoted as E , as illustrated in formula ( 15 ), ( 16 ):

The solution of the SPCA first reverts to the PCA model. The formula ( 15 – 16 ) yields the expression ( 17 ):

Ensure the main component is as near to the original data as possible, that is,it mandates E'sminimalism. Therefore, the principal component seeks resolution through formula ( 18 ):

In the equation, \(\mathop P\limits^{ \wedge }\) is the solution to the minimum value of the principal matrix P .

The vectors sought by PCA are all non-zero; thus, the sparse solution is achieved by incorporating the LASSO penalty term, thereby mitigating the overfitting issue in PCA. The solution formula for sparse principal components, as displayed in formula ( 19 ), is illustrated:

In this equation, matrix A denotes the expected demand matrix to be sought, while matrix B represents the demand matrix expected under the regression problem. A and B represent the \(m \times k\) matrix, \(\mathop A\limits^{ \wedge }\) and \(\mathop B\limits^{ \wedge }\) the matrices to be solved for minimizing values of A and B; they are subject to the constraints \(b_{j} \propto P_{j}\) , \(\lambda\) and \(\lambda_{1,j}\) being the penalty coefficients, and must adhere to \(\lambda > 0\) . The adjusted variance, as expressed in formula ( 20 ), is indicative of:

In the equation, the diagonal matrix interpreting variance is delineated, with \(\mathop P\limits^{ \wedge }\) representing the load matrix following the coefficients. Model contribution lies articulated in formula ( 21 ):

Transformer fault diagnosis model process

This article, established on the premise of transformer fault imbalance within small sample sets, aims at achieving real-time and precise diagnosis through the establishment of a diagnostic model and a determined diagnostic process. The specific diagnostic process is illustrated in Fig.  3 . The article employs the AO-KELM model as the diagnostic model, erecting a diagnostic process that integrates offline model training with online fault identification.

figure 3

Transformer fault diagnosis model based on optimized kernel extreme learning machine.

⑴ Train the model offline

The article delves into the offline model training segment from three perspectives: data preprocessing, feature extraction, and model recognition.

Step 1: the preprocessing segment encompasses data INNOS's oversampling and normalization treatment. Collect the gathered DGA samples through INNOS for augmenting the minority class samples, followed by normalization treatment.

Step 2: the feature extraction section encompasses the establishment of ratio signature generation and the integration of SPCA for fusion dimensionality reduction. First, construct a multidimensional discriminant signature, delving deeply into the correlation between the ratio of dissolved gas content in oil and the type of fault. Subsequently, employ SPCA for feature fusion to acquire the optimal principal component, thereby removing redundant information, and divide the training set, validation set, and test set proportionally.

Step 3: the model identification segment encompasses the training and validation of the model. Utilizing the AO algorithm to optimize the regularization parameters C and the kernel functions within the KELM model, one verifies the model's accuracy through validation set on each iteration. Should the discrepancy between consecutive training sessions fall beneath 5%, the model training continues; otherwise, the model retraining commences anew until the prerequisite conditions are met. The ultimate establishment of the AO-KELM optimal diagnostic model.

⑵ Online fault diagnosis

Normalize the samples collected in real-time to handle and construct multi-dimensional features, employing an unencoded ratio method to input into an optimal diagnosis model directly following optimal principal component projection, thereby achieving swift recognition of transformer fault. Although the computational time for offline model training is accordingly elevated, it is merely necessary to undergo training once, with the aim of achieving online recognition and diagnosis of transformer faults as data from real-time monitoring continues to be inputted.

Case study analysis

Data source and normalization processing.

Transformer insults are exacerbated by thermal electrochemical action, causing the decomposition of internal insulating materials and the dissolution of various hydrocarbon gases within the insulation oil. Distinct characteristics of gas dissolved in oil under varying fault types exist; research has demonstrated that diagnostic and classification of faults can be achieved through the use of DGA techniques 32 . Consequently, these five gas contents are utilized as a basis for transformer fault diagnosis in this article.

The article selected a comprehensive sample of 337 monitoring data from a particular power supply company, dividing the operating status of transformers into categories such as normal, moderate heat overload, high temperature overload, high energy discharge, low energy discharge, and local discharge, each represented by labels 1 through 6. Each type of fault is augmented with specific characteristic gases including H 2 , CH 4 , C 2 H 4 , C 2 H 6 , and C 2 H 2 ; the exact number of samples for each category is detailed in Table 1 . The data reveals that the majority of samples fall into the category of normal, comprising 35.63% of the total. Low-energy discharge and local discharge types account for 5.55% and 9.78% respectively, with a maximum disparity reaching 5.1:1. Such imbalanced data is prone to misidentifying samples of the minority class as normal, thereby impacting recognition accuracy. Therefore, this paper employs the INNOS algorithm to augment the minority class samples, achieving a balance in sample categories.

To manifest the disparities between data prior to and after sampling, a principal component analysis is conducted upon the sample data from before and after said sampling process. Subsequently, the first two principal components are selected for visualizing the data of various types both before and after said sampling, as illustrated in Fig.  4 . In Fig.  4 , it becomes apparent that the data distribution trends for various types of faults, prior to and after the adoption of the INNOS sampling method, are identical, thereby underscoring the viability of the INNOS sampling approach.

figure 4

Scatter plot of INNOS samples.

Transformer malfunction signature composition

Considering the substantial disparities among the various volatile gases, a preliminary normalization is required for each gas's abundance, as illustrated in Eq. ( 22 ):

In the equation: \(x_{i}\) and \(x_{{\text{i}}}^{*}\) represent features pre-normalized; \({\text{x}}_{{{\text{i}}\max }}\) and \({\text{x}}_{{{\text{i}}\min }}\) indicate the original minimal and maximum values.

The method of unencoded ratio analysis 33 is but one among numerous techniques widely employed, utilizing the percentage ratio of key gases to either the total gas or the hydrocarbon concentration can profoundly illustrate the interconnectedness between characteristic gases and types of failures. For instance, the ratio of a singular gas to the total hydrocarbon concentration provides a more conclusive indicator of the interplay between diverse fault types; the concentrations of C 2 H 4 and CH 4 can effectively demarcate local discharge from discharge with overheating diagnosis; the percentage composition of C 2 H 2 can determine whether a transformer has experienced thermal failure, among other determinations. The construction of this paper is predicated on the integration of pertinent literature, establishing a nine-dimensional candidate ratio signature for transformer fault diagnosis 31 , as delineated in Table 2 , wherein THC = CH 4  + C 2 H 4  + C 2 H 6  + C 2 H 2 , and ALL = H 2  + CH 4  + C 2 H 4  + C 2 H 6  + C 2 H 2 .

Dimensionality reduction through feature parameter fusion

To avoid the redundancy of fault-related feature information within the samples and to enhance the efficiency and precision of the diagnostic model, the SPCA method was employed for the integration of the derived rational features. The cumulative explicable variance contribution rate of each principal component is depicted in Fig.  5 . It is evident from Fig.  5 that the cumulative variance contribution rate for the first six principal components reaches 90.4419%, indicating that the first five principal components can achieve more than 90% of the ability expressed by all the principal components. Hence, selecting these five principal components as inputs for the transformer fault diagnosis model is warranted.

figure 5

Cumulative variance contribution rate.

Transformer malfunction diagnosis outcomes

The fused features derived from the SPCA extraction are delineated in a ratio of 6:2:2 to be divided into training, testing, and validation datasets. The regularization parameters C within KELM determine the learning capacity of the model and its diagnostic precision; in this paper, we employ the AO optimization algorithm to optimize C, with an introduction of the AO algorithm as delineated in literature 34 , 35 , culminating in the establishment of a diagnostic model based on SPCA-AO-KELM. Figure  6 delineates the confusion matrix diagram of the transformer fault diagnosis. It is evident from Fig.  6 that within the test set of 158 samples, 155 were correctly diagnosed, representing a total correct rate of 98.1013%. The accuracy rates for normal, high-temperature overheating, and low-energy discharge diagnoses are 100%, one case of misjudgment was found in medium–low temperature overheating, high-energy discharge, and partial discharge.

figure 6

Transformer fault diagnosis results.

However, the precision of diagnostic accuracy alone cannot comprehensively nor efficaciously evaluate the impact of rare class faults on classification performance 36 , 37 . In this paper, we introduce classification model performance evaluation metrics derived from confusion matrices, employing accuracy (R), precision (P), and F1-score as the core components of our evaluation system. The veracity of diagnostic models for identifying various faults is assessed by the accuracy rate, the sensitivity of the model in recognizing a variety of faults is evaluated by the coverage rate, while the F1 score derived from the amalgamation of precision and recall reflects the model's classification performance amidst sample imbalance, with specific formulas denoted in the literature displayed here. The model's precision, recall, and F1-score derived from the computed graph in Fig.  6 respectively stand at 0.9816, 0.9825, and 0.9820, further underscoring the model's high fault detection accuracy and its stable nature.

Results and discussions

Comparison and analysis of different sampling methods.

To verify the effectiveness of the new samples synthesized based on INNOS in improving the accuracy of transformer fault diagnosis, this paper uses unbalanced data set, random oversampling, SMOTE, and ADASYN oversampling algorithms for sample augmentation, and the diagnostic results are shown in Fig.  7 . The red dots in the figure represent the samples that are correctly classified in the test set, while the circles represent the samples of the true class, and the scattered dots represent the samples that are misclassified as other classes. The more scattered sample points, the higher the misclassification rate. In Fig.  7 d, the diagnostic accuracy of the original unbalanced data set without balancing processing is only 88.4058%, indicating that due to the imbalance of data in each fault category, the training of the diagnostic model is insufficient, and it is easy to misclassify minority class samples as majority class samples during classification recognition. After balancing the data set using different sampling methods, the misclassification rate of the samples decreases. The sampling method used in this paper improves the diagnostic accuracy by 7.7967%, 2.5316%, and 1.8987% compared to ADASYN, SMOTE, and random oversampling, respectively, indicating that the INNOS sampling method can effectively solve the problem of low diagnostic accuracy caused by data imbalance.

figure 7

Diagnostic results under different sampling methods.

Qualitative and quantitative analysis with integrated features

To demonstrate the effectiveness of the SPCA feature fusion method, this study conducted analysis from two perspectives: qualitative observation and quantitative analysis. Firstly, PCA, KPCA, and SPCA were used to extract features from the constructed ratio signs. The cumulative variance contribution rate threshold was set at 90%, and the obtained principal component information is detailed in Table 3 . LASSO penalty term was introduced based on PCA to constrain some loading vectors to zero, resulting in a loss of variance contribution rate. From the data in the table, it can be seen that the contribution rate of SPCA principal components is slightly lower than that of PCA and KPCA, effectively removing redundant information in the ratio features and providing a valid data foundation for subsequent classification and recognition.

Furthermore, for the above feature extraction methods, quantitative calculations were performed. The fused features extracted by the 9-dimensional joint feature, PCA, KPCA, and SPCA were input into the diagnostic model for comparative analysis, as shown in Fig.  8 . From Fig.  8 a–d, it can be observed that the diagnostic accuracy is significantly improved after feature extraction. Figure  8 a has a higher accuracy compared to Fig.  8 b and c, which validates the superiority of the SPCA feature extraction method.

figure 8

Diagnostic outcomes under various characteristics.

Analysis of contrastive diagnostic models

To explore the diagnostic performance of the models, three diagnostic models, ELM, KELM, and AO-ELM, were constructed for horizontal comparison. The diagnostic results are shown in Table 4 . From the perspective of a single model, the introduction of a kernel function improved the diagnostic accuracy and evaluation indicators of ELM. From the perspective of optimization algorithms, the diagnostic capability of fault recognition was effectively improved after parameter optimization using the AO algorithm.

On the other hand, the extracted integration features are respectively inputted into the POA-SVM model proposed in Literature 38 , the SSA-ELM model suggested in Literature 39 , and the PSO-BiLSTM model introduced in Literature 40 for longitudinal comparison. To circumvent the chances of chance, each model is subjected to ten-fold cross-validation, as manifested in Table 5 . It is evident from Table 5 that, under conditions where the input features remain identical, the AO-KELM outperforms both the POA-SVM and POA-SVM by elevating the average accuracy by 3.23% and 2.64%, respectively, while the PSO-BiLSTM lags behind with a mere 1.8% increase in accuracy. This clearly signifies the robust stability of the AO-KELM model and its formidable classification capabilities.

The paper introduces an oil-immersed transformer fault diagnosis method that integrates digital twin models, providing validation through case studies, leading to the conclusions below:

Build a twin mechanism model based on geometric, physical, rule, and behavior models, use real-time data to drive the fusion of data and mechanism models, complete real-time mapping between physical entities and virtual entities, and use visualization technology to express the twin in multiple dimensions, achieve intelligent diagnosis, health monitoring, and optimization decision-making for the transformer entity.

Proposed a transformer fault diagnosis model based on optimized kernel extreme learning machine, which solves the problem of misjudgment of minority class samples caused by unbalanced small samples, effectively extracts fusion features, establishes the optimal AO-KELM classifier, and achieves an accuracy of 98.1013%. By comparing with different diagnostic models, the classification performance and stability of the proposed method are verified.

Data availability

The datasets generated and/or analysed during the currentstudy are not publicly availabledue [REASON WHY DATA ARENOT PUBLlC] but are availablefrom the corresponding authoron reasonable request. E-mail:[email protected].

Tightiz, L. et al. An intelligent system based on optimized ANFIS and association rules for power transformer fault diagnosis. ISA Trans. 103 , 63–74 (2020).

Article   PubMed   Google Scholar  

Zhang, Y. et al. Fault diagnosis of transformer using artificial intelligence: A review. Front. Energy Res. 10 , 1006474 (2022).

Article   Google Scholar  

Wani, S. A. et al. Advances in DGA based condition monitoring of transformers: A review. Renew. Sustain. Energy Rev. 149 , 111347 (2021).

Article   CAS   Google Scholar  

Malik, H. & Mishra, S. Application of gene expression programming (GEP) in power transformers fault diagnosis using DGA. IEEE Trans. Ind. Appl. 52 (6), 4556–4565 (2016).

Lin, J., Ma, J. & Zhu, J. Hierarchical federated learning for power transformer fault diagnosis. IEEE Trans. Instrum. Meas. 71 , 1–11 (2022).

Google Scholar  

Duval, M. A review of faults detectable by gas-in-oil analysis in transformers. IEEE Electr. Insul. Mag. 18 (3), 8–17 (2002).

Li, P. & Hu, G. M. Transformer fault diagnosis based on data enhanced one-dimensional improved convolutional neural network. Power Syst. Technol. 47 (07), 2957–2967 (2023).

Zhou, X. H. et al. Transformer fault diagnosis based on SVM optimized by the improved bald eagle search algorithm. Power Syst. Prot. Control 51 (08), 118–126 (2023).

Chen, H. C., Zhang, Y. & Chen, M. Transformer dissolved gas analysis for highly-imbalanced dataset using multi-class sequential ensembled ELM. IEEE Trans. Dielectr. Electr. Insulat. https://doi.org/10.1109/TDEI.2023.3280436 (2023).

Gong, Z. W. Y. et al. Fault diagnosis method of transformer based on improved particle swarm optimization XGBoost. High Volt. Appar. 59 (08), 61–69 (2023).

Xu, H. R. & Wang, Z. Y. Condition evaluation and fault diagnosis of power transformer based on GAN-CNN. J. Electrotechnol. Electr. Eng. Manag. 6 (3), 8–16 (2023).

Wang, Z. & Xu, H. GCA-CNN based transformer digital twin model construction and fault diagnosis and condition evaluation analysis. Acad. J. Comput. Inf. Sci. 6 (6), 100–107 (2023).

MathSciNet   Google Scholar  

Wang, L., Littler, T. & Liu, X. Dynamic incipient fault forecasting for power transformers using an LSTM model. IEEE Trans. Dielectr. Electr. Insulat. https://doi.org/10.1109/TDEI.2023.3253463 (2023).

Ding, Y. et al. A novel time–frequency Transformer based on self-attention mechanism and its application in fault diagnosis of rolling bearings. Mech. Syst. Signal Process. 168 , 108616 (2022).

Zheng, Q. et al. A real-time transformer discharge pattern recognition method based on CNN-LSTM driven by few-shot learning. Electr. Power Syst. Res. 219 , 109241 (2023).

Yan, P. et al. Transformer fault diagnosis research based on LIF technology and IAO optimization of LightGBM. Anal. Methods 15 (3), 261–274 (2023).

Yang, D. C. et al. Fault diagnosis of transformer based on capsule network. High Volt. Eng. 47 (02), 415–425 (2021).

Grieves, M. & Vickers, J. Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. In Transdisciplinary Prespectives on Complex Systems (eds Kahlen, F.-J. et al.) 85–113 (Springer International Publishing, 2017).

Chapter   Google Scholar  

Bai, X. Z. et al. Selection method of feature derived from dissolved gas in oil for transformers fault diagnosis. High Volt. Eng. 49 (09), 3873–3886 (2023).

Liu, Y. P. et al. Application prospect and key technology of digital twin in power transmission and transformation equipment. High Volt. Eng. 48 (05), 1621–1633 (2022).

Yang, F. et al. Application and implementation method of digital twin in electric equipment. High Volt. Eng. 47 (05), 1505–1521 (2021).

Jiang, L. et al. Research on transformer fault diagnosis method based on digital twin. J. Syst. Simulat. https://doi.org/10.16182/j.issn1004731x.joss.23-1402 (2024).

Yan, Z. J. & Yang, Y. F. Fault diagnosis of transformers based on CNN and digital twin. Comput. Digit. Eng. 51 (11), 2758–2762 (2023).

Wang, Y. & Zhang, T. H. Fault diagnosis of transformers based on optimal probabilistic neural network based on digital twin. Mod. Mach. Tool Autom. Manuf. Techn. 11 , 20–23 (2020).

Moutis, P. & Alizadeh-Mousavi, O. Digital twin of distribution power transformer for real-time monitoring of medium voltage from low voltage measurements. IEEE Trans. Power Deliv. 36 (4), 1952–1963 (2020).

Zhang, L. J. et al. Study on electrothermal characteristics of oil-immersed power transformers in early stage of interturn faults. Proc. CSEE 43 (15), 6124–6136 (2023).

Tao, F. et al. Five-dimension digital twin model and its ten applications. Comput. Integr. Manuf. Syst. 25 (01), 1–18 (2019).

Li, S. W. et al. Application of data feature selection and classification in mechanical fault diagnosis. J. Vibrat. Shock 39 (02), 218–222 (2020).

CAS   Google Scholar  

Han, X. et al. A novel power transformer fault diagnosis model based on Harris-Hawks-optimization algorithm optimized kernel extreme learning machine. J. Electr. Eng. Technol. 17 (3), 1993–2001 (2022).

Kong, D. M. et al. Research on oil identification method based on three-dimensional fluorescence spectroscopy combined with sparse principal component analysis and support vector machine. Spectroscopy Spectral Anal. 41 (11), 3474–3479 (2021).

Kim, S. W. et al. New methods of DGA diagnosis using IEC TC 10 and related databases part l: Application of gas-ratio combinations. IEEE Trans. Dielectr. Electr. Insulat. 20 (2), 685–690 (2013).

Guo, R. Y., Peng, M. M. & Cao, Z. Q. Fault diagnosis of power transformer based on SE-DenseNet. Adv. Technol. Electr. Eng. Energy 40 (01), 61–69 (2021).

Wang, K. et al. New features derived from dissolved gas Analysis for fault diagnosis of power transformers. Proc. CSEE 36 (23), 6570–6578+6625 (2016).

Li, G. L. et al. Thermal error model of spindle for precision CNC machine tool based on AO-CNN. J. Xi’an Jiaotong Univ. 56 (08), 51–61 (2022).

Zhang, C. S. et al. improved aquila optimization based on multi-strategy integration. Acta Electron. Sin. 51 (05), 1245–1255 (2023).

Wang, Y. et al. Transformer fault diagnosis fused with synthetic minority over-sampling balanced multi-classification data based on improved extreme learning machine. Power Syst. Technol. 47 (09), 3799–3807 (2023).

Tang, J. et al. Oversampling and cost⁃sensitive algorithm for transformer fault diagnosis with unbalanced samples. High Volt. Apparatus 59 (06), 93–102 (2023).

Liu, D. D. et al. POA-SVM transformer fault diagnosis based on ADASYN balanced data set. Power Syst. Clean Energy 39 (08), 36–44 (2023).

Wang, Y. et al. Transformer DGA fault diagnosis method based on DBN-SSAELM. Power Syst. Prot. Control 51 (04), 32–42 (2023).

Fan, Q. C., Yu, F. & Xuan, M. Power transformer fault diagnosis based on optimized Bi-LSTM model. Comput. Simul. 39 (11), 136–140 (2022).

Download references

Acknowledgements

Project supported by Jilin Provincial Development and Reform Commission innovation capacity construction fund (2020C022-6).

Author information

Authors and affiliations.

Hangzhou Electric Power Equipment Manufacturing Co. Ltd Yuhang Qunli Complete Sets Electricity Manufacturing Branch Electric, Hangzhou, 311000, China

Haiyan Yao, Qiang Guo & Yufeng Miao

Hangzhou Electric Power Equipment Manufacturing Co. Ltd., Hangzhou, 311000, China

Northeast Electric Power University School of Mechanic Engineering, Jilin, 132012, China

You can also search for this author in PubMed   Google Scholar

Contributions

Haiyan Y designed the experiments and contributedmaterials/analysis tools; Xin Zhang analyzed the data and its visualization; Qiang Guo and Yufeng Miao M guided the data analysis; Shan Guan wrote the paper; All authors have reviewed the manuscript.

Corresponding author

Correspondence to Shan Guan .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/ .

Reprints and permissions

About this article

Cite this article.

Yao, H., Zhang, X., Guo, Q. et al. Fault diagnosis method for oil-immersed transformers integrated digital twin model. Sci Rep 14 , 20355 (2024). https://doi.org/10.1038/s41598-024-71107-w

Download citation

Received : 20 May 2024

Accepted : 26 August 2024

Published : 02 September 2024

DOI : https://doi.org/10.1038/s41598-024-71107-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Transformer fault diagnosis
  • Digital twin
  • Imbalanced small sample

By submitting a comment you agree to abide by our Terms and Community Guidelines . If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

abstract for research paper sample

Log in using your username and password

  • Search More Search for this keyword Advanced search
  • Latest content
  • Current issue
  • For authors
  • New editors
  • BMJ Journals

You are here

  • Volume 58, Issue 17
  • Where is the research on sport-related concussion in Olympic athletes? A descriptive report and assessment of the impact of access to multidisciplinary care on recovery
  • Article Text
  • Article info
  • Citation Tools
  • Rapid Responses
  • Article metrics

Download PDF

  • http://orcid.org/0000-0002-3298-5719 Thomas Romeas 1 , 2 , 3 ,
  • http://orcid.org/0000-0003-1748-7241 Félix Croteau 3 , 4 , 5 ,
  • Suzanne Leclerc 3 , 4
  • 1 Sport Sciences , Institut national du sport du Québec , Montreal , Quebec , Canada
  • 2 School of Optometry , Université de Montréal , Montreal , Quebec , Canada
  • 3 IOC Research Centre for Injury Prevention and Protection of Athlete Health , Réseau Francophone Olympique de la Recherche en Médecine du Sport , Montreal , Quebec , Canada
  • 4 Sport Medicine , Institut national du sport du Québec , Montreal , Quebec , Canada
  • 5 School of Physical and Occupational Therapy , McGill University , Montreal , Quebec , Canada
  • Correspondence to Dr Thomas Romeas; thomas.romeas{at}umontreal.ca

Objectives This cohort study reported descriptive statistics in athletes engaged in Summer and Winter Olympic sports who sustained a sport-related concussion (SRC) and assessed the impact of access to multidisciplinary care and injury modifiers on recovery.

Methods 133 athletes formed two subgroups treated in a Canadian sport institute medical clinic: earlier (≤7 days) and late (≥8 days) access. Descriptive sample characteristics were reported and unrestricted return to sport (RTS) was evaluated based on access groups as well as injury modifiers. Correlations were assessed between time to RTS, history of concussions, the number of specialist consults and initial symptoms.

Results 160 SRC (median age 19.1 years; female=86 (54%); male=74 (46%)) were observed with a median (IQR) RTS duration of 34.0 (21.0–63.0) days. Median days to care access was different in the early (1; n SRC =77) and late (20; n SRC =83) groups, resulting in median (IQR) RTS duration of 26.0 (17.0–38.5) and 45.0 (27.5–84.5) days, respectively (p<0.001). Initial symptoms displayed a meaningful correlation with prognosis in this study (p<0.05), and female athletes (52 days (95% CI 42 to 101)) had longer recovery trajectories than male athletes (39 days (95% CI 31 to 65)) in the late access group (p<0.05).

Conclusions Olympic athletes in this cohort experienced an RTS time frame of about a month, partly due to limited access to multidisciplinary care and resources. Earlier access to care shortened the RTS delay. Greater initial symptoms and female sex in the late access group were meaningful modifiers of a longer RTS.

  • Brain Concussion
  • Cohort Studies
  • Retrospective Studies

Data availability statement

Data are available on reasonable request. Due to the confidential nature of the dataset, it will be shared through a controlled access repository and made available on specific and reasonable requests.

https://doi.org/10.1136/bjsports-2024-108211

Statistics from Altmetric.com

Request permissions.

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

WHAT IS ALREADY KNOWN ON THIS TOPIC

Most data regarding the impact of sport-related concussion (SRC) guidelines on return to sport (RTS) are derived from collegiate or recreational athletes. In these groups, time to RTS has steadily increased in the literature since 2005, coinciding with the evolution of RTS guidelines. However, current evidence suggests that earlier access to care may accelerate recovery and RTS time frames.

WHAT THIS STUDY ADDS

This study reports epidemiological data on the occurrence of SRC in athletes from several Summer and Winter Olympic sports with either early or late access to multidisciplinary care. We found the median time to RTS for Olympic athletes with an SRC was 34.0 days which is longer than that reported in other athletic groups such as professional or collegiate athletes. Time to RTS was reduced by prompt access to multidisciplinary care following SRC, and sex-influenced recovery in the late access group with female athletes having a longer RTS timeline. Greater initial symptoms, but not prior concussion history, were also associated with a longer time to RTS.

HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE OR POLICY

Considerable differences exist in access to care for athletes engaged in Olympic sports, which impact their recovery. In this cohort, several concussions occurred during international competitions where athletes are confronted with poor access to organised healthcare. Pathways for prompt access to multidisciplinary care should be considered by healthcare authorities, especially for athletes who travel internationally and may not have the guidance or financial resources to access recommended care.

Introduction

After two decades of consensus statements, sport-related concussion (SRC) remains a high focus of research, with incidence ranging from 0.1 to 21.5 SRC per 1000 athlete exposures, varying according to age, sex, sport and level of competition. 1 2 Evidence-based guidelines have been proposed by experts to improve its identification and management, such as those from the Concussion in Sport Group. 3 Notably, they recommend specific strategies to improve SRC detection and monitoring such as immediate removal, 4 prompt access to healthcare providers, 5 evidence-based interventions 6 and multidisciplinary team approaches. 7 It is believed that these guidelines contribute to improving the early identification and management of athletes with an SRC, thereby potentially mitigating its long-term consequences.

Nevertheless, evidence regarding the impact of SRC guidelines implementation remains remarkably limited, especially within high-performance sport domains. In fact, most reported SRC data focus on adolescent student-athletes, collegiate and sometimes professional athletes in the USA but often neglect Olympians. 1 2 8–11 Athletes engaged in Olympic sports, often referred to as elite amateurs, are typically classified among the highest performers in elite sport, alongside professional athletes. 12 13 They train year-round and uniquely compete regularly on the international stage in sports that often lack professional leagues and rely on highly variable resources and facilities, mostly dependent on winning medals. 14 Unlike professional athletes, Olympians do not have access to large financial rewards. Although some Olympians work or study in addition to their intensive sports practice, they can devote more time to full-time sports practice compared with collegiate athletes. Competition calendars in Olympians differ from collegiate athletes, with periodic international competitions (eg, World Cups, World Championships) throughout the whole year rather than regular domestic competitions within a shorter season (eg, semester). Olympians outclass most collegiate athletes, and only the best collegiate athletes will have the chance to become Olympians and/or professionals. 12 13 15 In Canada, a primary reason for limited SRC data in Olympic sports is that the Canadian Olympic and Paralympic Sports Institute (COPSI) network only adopted official guidelines in 2018 to standardise care for athletes’ SRC nationwide. 16 17 The second reason could be the absence of a centralised medical structure and surveillance systems, identified as key factors contributing to the under-reporting and underdiagnosis of athletes with an SRC. 18

Among the available evidence on the evolution of SRC management, a 2023 systematic review and meta-analysis in athletic populations including children, adolescents and adults indicated that a full return to sport (RTS) could take up to a month but is estimated to require 19.8 days on average (15.4 days in adults), as opposed to the initial expectation of approximately 10.0 days based on studies published prior to 2005. 19 In comparison, studies focusing strictly on American collegiate athletes report median times to RTS of 16 days. 9 20 21 Notably, a recent study of military cadets reported an even longer return to duty times of 29.4 days on average, attributed to poorer access to care and fewer incentives to return to play compared with elite sports. 22 In addition, several modifiers have also been identified as influencing the time to RTS, such as the history of concussions, type of sport, sex, past medical problems (eg, preinjury modifiers), as well as the initial number of symptoms and their severity (eg, postinjury modifiers). 20 22 The evidence regarding the potential influence of sex on the time to RTS has yielded mixed findings in this area. 23–25 In fact, females are typically under-represented in SRC research, highlighting the need for additional studies that incorporate more balanced sample representation across sexes and control for known sources of bias. 26 Interestingly, a recent Concussion Assessment, Research and Education Consortium study, which included a high representation of concussed female athletes (615 out of 1071 patients), revealed no meaningful differences in RTS between females and males (13.5 and 11.8 days, respectively). 27 Importantly, findings in the sporting population suggested that earlier initiation of clinical care is linked to shorter recovery after concussion. 5 28 However, these factors affecting the time to RTS require a more thorough investigation, especially among athletes engaged in Olympic sports who may or may not have equal access to prompt, high-quality care.

Therefore, the primary objective of this study was to provide descriptive statistics among athletes with SRC engaged in both Summer and Winter Olympic sport programmes over a quadrennial, and to assess the influence of recommended guidelines of the COPSI network and the fifth International Consensus Conference on Concussion in Sport on the duration of RTS performance. 16 17 Building on available evidence, the international schedule constraints, variability in resources 14 and high-performance expectation among this elite population, 22 prolonged durations for RTS, compared with what is typically reported (eg, 16.0 or 15.4 days), were hypothesised in Olympians. 3 19 The secondary objective was to more specifically evaluate the impact of access to multidisciplinary care and injury modifiers on the time to RTS. Based on current evidence, 5 7 29 30 the hypothesis was formulated that athletes with earlier multidisciplinary access would experience a faster RTS. Regarding injury modifiers, it was expected that female and male athletes would show similar time to RTS despite presenting sex-specific characteristics of SRC. 31 The history of concussions, the severity of initial symptoms and the number of specialist consults were expected to be positively correlated to the time to RTS. 20 32

Participants

A total of 133 athletes (F=72; M=61; mean age±SD: 20.7±4.9 years old) who received medical care at the Institut national du sport du Québec, a COPSI training centre set up with a medical clinic, were included in this cohort study with retrospective analysis. They participated in 23 different Summer and Winter Olympic sports which were classified into six categories: team (soccer, water polo), middle distance/power (rowing, swimming), speed/strength (alpine skiing, para alpine skiing, short and long track speed skating), precision/skill-dependent (artistic swimming, diving, equestrian, figure skating, gymnastics, skateboard, synchronised skating, trampoline) and combat/weight-making (boxing, fencing, judo, para judo, karate, para taekwondo, wrestling) sports. 13 This sample consists of two distinct groups: (1) early access group in which athletes had access to a medical integrated support team of multidisciplinary experts within 7 days following their SRC and (2) late access group composed of athletes who had access to a medical integrated support team of multidisciplinary experts eight or more days following their SRC. 5 30 Inclusion criteria for the study were participation in a national or international-level sports programme 13 and having sustained at least one SRC diagnosed by an authorised healthcare practitioner (eg, physician and/or physiotherapist).

Clinical context

The institute clinic provides multidisciplinary services for care of patients with SRC including a broad range of recommended tests for concussion monitoring ( table 1 ). The typical pathway for the athletes consisted of an initial visit to either a sports medicine physician or their team sports therapist. A clinical diagnosis of SRC was then confirmed by a sports medicine physician, and referral for the required multidisciplinary assessments ensued based on the patient’s signs and symptoms. Rehabilitation progression was based on the evaluation of exercise tolerance, 33 priority to return to cognitive tasks and additional targeted support based on clinical findings of a cervical, visual or vestibular nature. 17 The expert team worked in an integrated manner with the athlete and their coaching staff for the rehabilitation phase, including regular round tables and ongoing communication. 34 For some athletes, access to recommended care was fee based, without a priori agreements with a third party payer (eg, National Sports Federation).

  • View inline

Main evaluations performed to guide the return to sport following sport-related concussion

Data collection

Data were collected at the medical clinic using a standardised injury surveillance form based on International Olympic Committee guidelines. 35 All injury characteristics were extracted from the central injury database between 1 July 2018 and 31 July 2022. This period corresponds to a Winter Olympic sports quadrennial but also covers 3 years for Summer Olympic sports due to the postponing of the Tokyo 2020 Olympic Games. Therefore, the observation period includes a typical volume of competitions across sports and minimises differences in exposure based on major sports competition schedules. The information extracted from the database included: participant ID, sex, date of birth, sport, date of injury, type of injury, date of their visit at the clinic, clearance date of unrestricted RTS (eg, defined as step 6 of the RTS strategy with a return to normal gameplay including competitions), the number and type of specialist consults, mechanism of injury (eg, fall, hit), environment where the injury took place (eg, training, competition), history of concussions, history of modifiers (eg, previous head injury, migraines, learning disability, attention deficit disorder or attention deficit/hyperactivity disorder, depression, anxiety, psychotic disorder), as well as the number of symptoms and the total severity score from the first Sport Concussion Assessment Tool 5 (SCAT5) assessment following SRC. 17

Following a Shapiro-Wilk test, medians, IQR and non-parametric tests were used for the analyses because of the absence of normal distributions for all the variables in the dataset (all p<0.001). The skewness was introduced by the presence of individuals that required lengthy recovery periods. One participant was removed from the analysis because their time to consult with the multidisciplinary team was extremely delayed (>1 year).

Descriptive statistics were used to describe the participant’s demographics, SRC characteristics and risk factors in the total sample. Estimated incidences of SRC were also reported for seven resident sports at the institute for which it was possible to quantify a detailed estimate of training volume based on the annual number of training and competition hours as well as the number of athletes in each sport.

To assess if access to multidisciplinary care modified the time to RTS, we compared time to RTS between early and late access groups using a method based on median differences described elsewhere. 36 Wilcoxon rank sum tests were also performed to make between-group comparisons on single variables of age, time to first consult, the number of specialists consulted and medical visits. Fisher’s exact tests were used to compare count data between groups on variables of sex, history of concussion, time since the previous concussion, presence of injury modifiers, environment and mechanism of injury. Bonferroni corrections were applied for multiple comparisons in case of meaningful differences.

To assess if injury modifiers modified time to RTS in the total sample, we compared time to RTS between sexes, history of concussions, time since previous concussion or other injury modifiers using a method based on median differences described elsewhere. 36 Kaplan-Meier curves were drawn to illustrate time to RTS differences between sexes (origin and start time: date of injury; end time: clearance date of unrestricted RTS). Trajectories were then assessed for statistical differences using Cox proportional hazards model. Wilcoxon rank sum tests were employed for comparing the total number of symptoms and severity scores on the SCAT5. The association of multilevel variables on return to play duration was evaluated in the total sample with Kruskal-Wallis rank tests for environment, mechanism of injury, history of concussions and time since previous concussion. For all subsequent analyses of correlations between SCAT5 results and secondary variables, only data obtained from SCAT5 assessments within the acute phase of injury (≤72 hours) were considered (n=65 SRC episodes in the early access group). 37 Spearman rank correlations were estimated between RTS duration, history of concussions, number of specialist consults and total number of SCAT5 symptoms or total symptom severity. All statistical tests were performed using RStudio (R V.4.1.0, The R Foundation for Statistical Computing). The significance level was set to p<0.05.

Equity, diversity and inclusion statement

The study population is representative of the Canadian athletic population in terms of age, gender, demographics and includes a balanced representation of female and male athletes. The study team consists of investigators from different disciplines and countries, but with a predominantly white composition and under-representation of other ethnic groups. Our study population encompasses data from the Institut national du sport du Québec, covering individuals of all genders, ethnicities and geographical regions across Canada.

Patient and public involvement

The patients or the public were not involved in the design, conduct, reporting or dissemination plans of our research.

Sample characteristics

During the 4-year period covered by this retrospective chart review, a total of 160 SRC episodes were recorded in 132 athletes with a median (IQR) age of 19.1 (17.8–22.2) years old ( table 2 ). 13 female and 10 male athletes had multiple SRC episodes during this time. The sample had a relatively balanced number of females (53.8%) and males (46.2%) with SRC included. 60% of the sample reported a history of concussion, with 35.0% reporting having experienced more than two episodes. However, most of these concussions had occurred more than 1 year before the SRC for which they were being treated. Within this sample, 33.1% of participants reported a history of injury modifiers. Importantly, the median (IQR) time to first clinic consult was 10.0 (1.0–20.0) days and the median (IQR) time to RTS was 34.0 (21.0–63.0) days in this sample ( table 3 ). The majority of SRCs occurred during training (56.3%) rather than competition (33.1%) and were mainly due to a fall (63.7%) or a hit (31.3%). The median (IQR) number of follow-up consultations and specialists consulted after the SRC were, respectively, 9 (5.0–14.3) and 3 (2.0–4.0).

Participants demographics

Sport-related concussion characteristics

Among seven sports of the total sample (n=89 SRC), the estimated incidence of athletes with SRC was highest in short-track speed skating (0.47/1000 hours; 95% CI 0.3 to 0.6), and lower in boxing, trampoline, water polo, judo, artistic swimming, and diving (0.24 (95% CI 0.0 to 0.5), 0.16 (95% CI 0.0 to 0.5), 0.13 (95% CI 0.1 to 0.2), 0.11 (95% CI 0.1 to 0.2), 0.09 (95% CI 0.0 to 0.2) and 0.06 (95% CI 0.0 to 0.1)/1000, respectively ( online supplemental material ). Furthermore, most athletes sustained an SRC in training (66.5%; 95% CI 41.0 to 92.0) rather than competition (26.0%; 95% CI 0.0 to 55.0) except for judo athletes (20.0% (95% CI 4.1 to 62.0) and 80.0% (95% CI 38.0 to 96.0), respectively). Falls were the most common injury mechanism in speed skating, trampoline and judo while hits were the most common injury mechanism in boxing, water polo, artistic swimming and diving.

Supplemental material

Access to care.

The median difference in time to RTS was 19 days (95% CI 9.3 to 28.7; p<0.001) between the early (26 (IQR 17.0–38.5) days) and late (45 (IQR 27.5–84.5) days) access groups ( table 3 ; figure 1 ). Importantly, the distribution of SRC environments was different between both groups (p=0.008). The post hoc analysis demonstrated a meaningful difference in the distribution of SRC in training and competition environments between groups (p=0.029) but not for the other comparisons. There was a meaningful difference between the groups in time to first consult (p<0.001; 95% CI −23.0 to −15.0), but no meaningful differences between groups in median age (p=0.176; 95% CI −0.3 to 1.6), sex distribution (p=0.341; 95% CI 0.7 to 2.8), concussion history (p=0.210), time since last concussion (p=0.866), mechanisms of SRC (p=0.412), the presence of modifiers (p=0.313; 95% CI 0.3 to 1.4) and the number of consulted specialists (p=0.368; 95% CI −5.4 to 1.0) or medical visits (p=0.162; 95% CI −1.0 to 3.0).

  • Download figure
  • Open in new tab
  • Download powerpoint

Time to return to sport following sport-related concussion as a function of group’s access to care and sex. Outliers: below=Q1−1.5×IQR; above=Q3+1.5×IQR.

The median difference in time to RTS was 6.5 days (95% CI −19.3 to 5.3; p=0.263; figure 1 ) between female (37.5 (IQR 22.0–65.3) days) and male (31.0 (IQR 20.0–48.0) days) athletes. Survival analyses highlighted an increased hazard of longer recovery trajectory in female compared with male athletes (HR 1.4; 95% CI 1.4 to 0.7; p=0.052; figure 2A ), which was mainly driven by the late (HR 1.8; 95% CI 1.8 to 0.6; p=0.019; figure 2C ) rather than the early (HR 1.1; 95% CI 1.1 to 0.9; p=0.700; figure 2B ) access group. Interestingly, a greater number of female athletes (n=15) required longer than 100 days for RTS as opposed to the male athletes (n=6). There were no meaningful differences between sexes for the total number of symptoms recorded on the SCAT5 (p=0.539; 95% CI −1.0 to 2.0) nor the total symptoms total severity score (p=0.989; 95% CI −5.0 to 5.0).

Time analysis of sex differences in the time to return to sport following sport-related concussion in the (A) total sample, as well as (B) early, and (C) late groups using survival curves with 95% confidence bands and tables of time-specific number of patients at risk (censoring proportion: 0%).

History of modifiers

SRC modifiers are presented in table 2 , and their influence on RTP is shown in table 4 . The median difference in time to RTS was 1.5 days (95% CI −10.6 to 13.6; p=0.807) between athletes with none and one episode of previous concussion, was 3.5 days (95% CI −13.9 to 19.9; p=0.728) between athletes with none and two or more episodes of previous concussion, and was 2 days (95% CI −12.4 to 15.4; p=0.832) between athletes with one and two or more episodes of previous concussion. The history of concussions (none, one, two or more) had no meaningful impact on the time to RTS (p=0.471). The median difference in time to RTS was 4.5 days (95% CI −21.0 to 30.0; p=0.729) between athletes with none and one episode of concussion in the previous year, was 2 days (95% CI −10.0 to 14.0; p=0.744) between athletes with none and one episode of concussion more than 1 year ago, and was 2.5 days (95% CI −27.7 to 22.7; p=0.846) between athletes with an episode of concussion in the previous year and more than 1 year ago. Time since the most recent concussion did not change the time to RTS (p=0.740). The longest time to RTS was observed in the late access group in which athletes had a concussion in the previous year, with a very large spread of durations (65.0 (IQR 33.0–116.5) days). The median difference in time to RTS was 3 days (95% CI −13.1 to 7.1; p=0.561) between athletes with and without other injury modifiers. The history of other injury modifiers had no meaningful influence on the time to RTS (95% CI −6.0 to 11.0; p=0.579).

Preinjury modifiers of time to return to sport following SRC

SCAT5 symptoms and severity scores

Positive associations were observed between the time to RTS and the number of initial symptoms (r=0.3; p=0.010; 95% CI 0.1 to 0.5) or initial severity score (r=0.3; p=0.008; 95% CI 0.1 to 0.5) from the SCAT5. The associations were not meaningful between the number of specialist consultations and the initial number of symptoms (r=−0.1; p=0.633; 95% CI −0.3 to 0.2) or initial severity score (r=−0.1; p=0.432; 95% CI −0.3 to 0.2). Anecdotally, most reported symptoms following SRC were ‘headache’ (86.2%) and ‘pressure in the head’ (80.0%), followed by ‘fatigue’ (72.3%), ‘neck pain’ (70.8%) and ‘not feeling right’ (67.7%; online supplemental material ).

This study is the first to report descriptive data on athletes with SRC collected across several sports during an Olympic quadrennial, including athletes who received the most recent evidence-based care at the time of data collection. Primarily, results indicate that the time to RTS in athletes engaged in Summer and Winter Olympic sports may require a median (IQR) of 34.0 (21.0–63.0) days. Importantly, findings demonstrated that athletes with earlier (≤7 days) access to multidisciplinary concussion care showed faster RTS compared with those with late access. Time to RTS exhibited large variability where sex had a meaningful influence on the recovery pathway in the late access group. Initial symptoms, but not history of concussion, were correlated with prognosis in this sample. The main reported symptoms were consistent with previous studies. 38 39

Time to RTS in Olympic sports

This study provides descriptive data on the impact of SRC monitoring programmes on recovery in elite athletes engaged in Olympic sports. As hypothesised, the median time to RTS found in this study (eg, 34.0 days) was about three times longer than those found in reports from before 2005, and 2 weeks longer than the typical median values (eg, 19.8 days) recently reported in athletic levels including youth (high heterogeneity, I 2 =99.3%). 19 These durations were also twice as long as the median unrestricted time to RTS observed among American collegiate athletes, which averages around 16 days. 9 20 21 However, they were more closely aligned with findings from collegiate athletes with slow recovery (eg, 34.7 days) and evidence from military cadets with poor access where return to duty duration was 29.4 days. 8 22 Several reasons could explain such extended time to RTS, but the most likely seems to be related to the diversity in access among these sports to multidisciplinary services (eg, 10.0 median days (1–20)), well beyond the delays experienced by collegiate athletes, for example (eg, 0.0 median days (0–2)). 40 In the total sample, the delays to first consult with the multidisciplinary clinic were notably mediated by the group with late access, whose athletes had more SRC during international competition. One of the issues for athletes engaged in Olympic sports is that they travel abroad year-round for competitions, in contrast with collegiate athletes who compete domestically. These circumstances likely make access to quality care very variable and make the follow-up of care less centralised. Also, access to resources among these sports is highly variable (eg, medal-dependant), 14 and at the discretion of the sport’s leadership (eg, sport federation), who may decide to prioritise more or fewer resources to concussion management considering the relatively low incidence of this injury. Another explanation for the longer recovery times in these athletes could be the lack of financial incentives to return to play faster, which are less prevalent among Olympic sports compared with professionals. However, the stakes of performance and return to play are still very high among these athletes.

Additionally, it is plausible that studies vary their outcome with shifting operational definitions such as resolution of symptoms, return to activities, graduated return to play or unrestricted RTS. 19 40 It is understood that resolution of symptoms may occur much earlier than return to preinjury performance levels. Finally, an aspect that has been little studied to date is the influence of the sport’s demands on the RTS. For example, acrobatic sports requiring precision/technical skills such as figure skating, trampoline and diving, which involve high visuospatial and vestibular demands, 41 might require more time to recover or elicit symptoms for longer times. Anecdotally, athletes who experienced a long time to RTS (>100 days) were mostly from precision/skill-dependent sports in this sample. The sports demand should be further considered as an injury modifier. More epidemiological reports that consider the latest guidelines are therefore necessary to gain a better understanding of the true time to RTS and impact following SRC in Olympians.

Supporting early multidisciplinary access to care

In this study, athletes who obtained early access to multidisciplinary care after SRC recovered faster than those with late access to multidisciplinary care. This result aligns with findings showing that delayed access to a healthcare practitioner delays recovery, 19 including previous evidence in a sample of patients from a sports medicine clinic (ages 12–22), indicating that the group with a delayed first clinical visit (eg, 8–20 days) was associated with a 5.8 times increased likelihood of a recovery longer than 30 days. 5 Prompt multidisciplinary approach for patients with SRC is suggested to yield greater effectiveness over usual care, 3 6 17 which is currently evaluated under randomised controlled trial. 42 Notably, early physical exercise and prescribed exercise (eg, 48 hours postinjury) are effective in improving recovery compared with strict rest or stretching. 43 44 In fact, preclinical and clinical studies have shown that exercise has the potential to improve neurotransmission, neuroplasticity and cerebral blood flow which supports that the physically trained brain enhanced recovery. 45 46 Prompt access to specialised healthcare professionals can be challenging in some contexts (eg, during international travel), and the cost of accessing medical care privately may prove further prohibitive. This barrier to recovery should be a priority for stakeholders in Olympic sports and given more consideration by health authorities.

Estimated incidences and implications

The estimated incidences of SRC were in the lower range compared with what is reported in other elite sport populations. 1 2 However, the burden of injury remained high for these sports, and the financial resources as well as expertise required to facilitate athletes’ rehabilitation was considerable (median number of consultations: 9.0). Notably, the current standard of public healthcare in Canada does not subsidise the level of support recommended following SRC as first-line care, and the financial subsidisation of this recommended care within each federation is highly dependent on the available funding, varying significantly between sports. 14 Therefore, the ongoing efforts to improve education, prevention and early recognition, modification of rules to make the environments safer and multidisciplinary care access for athletes remain crucial. 7

Strength and limitations

This unique study provides multisport characteristics following the evolution of concussion guidelines in Summer and Winter Olympic sports in North America. Notably, it features a balance between the number of female and male athletes, allowing the analysis of sex differences. 23 26 In a previous review of 171 studies informing consensus statements, samples were mostly composed of more than 80% of male participants, and more than 40% of these studies did not include female participants at all. 26 This study also included multiple non-traditional sports typically not encompassed in SRC research, feature previously identified as a key requirement of future epidemiological research. 47

However, it must be acknowledged that potential confounding factors could influence the results. For example, the number of SRC detected during the study period does not account for potentially unreported concussions. Nevertheless, this figure should be minimal because these athletes are supervised both in training and in competition by medical staff. Next, the sport types were heterogeneous, with inconsistent risk for head impacts or inconsistent sport demand which might have an influence on recovery. Furthermore, the number of participants or sex in each sport was not evenly distributed, with short-track speed skaters representing a large portion of the overall sample (32.5%), for example. Additionally, the number of participants with specific modifiers was too small in the current sample to conclude whether the presence of precise characteristics (eg, history of concussion) impacted the time to RTS. Also, the group with late access was more likely to consist of athletes who sought specialised care for persistent symptoms. These complex cases are often expected to require additional time to recover. 48 Furthermore, athletes in the late group may have sought support outside of the institute medical clinic, without a coordinated multidisciplinary approach. Therefore, the estimation of clinical consultations was tentative for this group and may represent a potential confounding factor in this study.

This is the first study to provide evidence of the prevalence of athletes with SRC and modifiers of recovery in both female and male elite-level athletes across a variety of Summer and Winter Olympic sports. There was a high variability in access to care in this group, and the median (IQR) time to RTS following SRC was 34.0 (21.0–63.0) days. Athletes with earlier access to multidisciplinary care took nearly half the time to RTS compared with those with late access. Sex had a meaningful influence on the recovery pathway in the late access group. Initial symptom number and severity score but not history of concussion were meaningful modifiers of recovery. Injury surveillance programmes targeting national sport organisations should be prioritised to help evaluate the efficacy of recommended injury monitoring programmes and to help athletes engaged in Olympic sports who travel a lot internationally have better access to care. 35 49

Ethics statements

Patient consent for publication.

Not applicable.

Ethics approval

This study involves human participants and was approved by the ethics board of Université de Montréal (certificate #2023-4052). Participants gave informed consent to participate in the study before taking part.

Acknowledgments

The authors would like to thank the members of the concussion interdisciplinary clinic of the Institut national du sport du Québec for collecting the data and for their unconditional support to the athletes.

  • Glover KL ,
  • Chandran A ,
  • Morris SN , et al
  • Patricios JS ,
  • Schneider KJ ,
  • Dvorak J , et al
  • Guskiewicz KM , et al
  • Kontos AP ,
  • Jorgensen-Wagers K ,
  • Trbovich AM , et al
  • Critchley ML ,
  • Anderson V , et al
  • Eliason PH ,
  • Galarneau J-M ,
  • Kolstad AT , et al
  • McAllister TW ,
  • Broglio SP ,
  • Katz BP , et al
  • Liebel SW ,
  • Van Pelt KL ,
  • Pasquina PF , et al
  • Pellman EJ ,
  • Lovell MR ,
  • Viano DC , et al
  • Casson IR , et al
  • McKinney J ,
  • Fee J , et al
  • McKay AKA ,
  • Stellingwerff T ,
  • Smith ES , et al
  • Government of Canada
  • Pereira LA ,
  • Cal Abad CC ,
  • Kobal R , et al
  • ↵ COPSI - sport related concussion guidelines . Available : https://www.ownthepodium.org/en-CA/Initiatives/Sport-Science-Innovation/2018-COPSI-Network-Concussion-Guidelines [Accessed 25 May 2023 ].
  • McCrory P ,
  • Meeuwisse W ,
  • Dvořák J , et al
  • Gardner AJ ,
  • Quarrie KL ,
  • Putukian M ,
  • Purcell L ,
  • Schneider KJ , et al
  • Nguyen JN , et al
  • Lempke LB ,
  • Caccese JB ,
  • Syrydiuk RA , et al
  • D’Lauro C ,
  • Johnson BR ,
  • McGinty G , et al
  • Crossley KM ,
  • Bo K , et al
  • Covassin T ,
  • Harris W , et al
  • Swanik CB ,
  • Swope LM , et al
  • Master CL ,
  • Arbogast KB , et al
  • Walton SR ,
  • Kelshaw PM ,
  • Munce TA , et al
  • Barron TF , et al
  • Tsushima WT ,
  • Riegler K ,
  • Amalfe S , et al
  • Monteiro D ,
  • Silva F , et al
  • Dijkstra HP ,
  • Pollock N ,
  • Chakraverty R , et al
  • Clarsen B ,
  • Derman W , et al
  • Matthews JN ,
  • Echemendia RJ ,
  • Bruce JM , et al
  • Yeates KO ,
  • Räisänen AM ,
  • Premji Z , et al
  • Breedlove K ,
  • McAllister TW , et al
  • Hennig L , et al
  • Register-Mihalik JK ,
  • Guskiewicz KM ,
  • Marshall SW , et al
  • Toomey CM , et al
  • Mannix R , et al
  • Barkhoudarian G ,
  • Haider MN ,
  • Ellis M , et al
  • Harmon KG ,
  • Clugston JR ,
  • Dec K , et al
  • Carson JD ,
  • Lawrence DW ,
  • Kraft SA , et al
  • Martens G ,
  • Edouard P ,
  • Tscholl P , et al

Supplementary materials

Supplementary data.

This web only file has been produced by the BMJ Publishing Group from an electronic file supplied by the author(s) and has not been edited for content.

  • Data supplement 1

X @ThomasRomeas

Correction notice This article has been corrected since it published Online First. The ORCID details have been added for Dr Croteau.

Contributors TR, FC and SL were involved in planning, conducting and reporting the work. François Bieuzen and Magdalena Wojtowicz critically reviewed the manuscript. TR is guarantor.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient and public involvement Patients and/or the public were not involved in the design, or conduct, or reporting, or dissemination plans of this research.

Provenance and peer review Not commissioned; externally peer reviewed.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Read the full text or download the PDF:

IMAGES

  1. How to Write a Dissertation Abstract in 2024

    abstract for research paper sample

  2. Abstract Writing

    abstract for research paper sample

  3. How to Write an Abstract for a Research Paper

    abstract for research paper sample

  4. 🌱 How to write a good abstract for a research paper. How to Write a

    abstract for research paper sample

  5. how to write an abstract for a conference paper

    abstract for research paper sample

  6. How to Write an Abstract: 6 Simple Steps and Examples • 7ESL

    abstract for research paper sample

VIDEO

  1. How To Write Research Paper For Beginners

  2. How to Write an Abstract for a Research Paper

  3. Writing an Abstract for Your Research Paper

  4. How To Write an Abstract for Research Paper

  5. CRITIQUE OF RESEARCH ABSTRACT

  6. How to write Abstract and Keywords for Research Paper or Article

COMMENTS

  1. How to Write an Abstract

    How to Write an Abstract | Steps & Examples. Published on February 28, 2019 by Shona McCombes.Revised on July 18, 2023 by Eoghan Ryan. An abstract is a short summary of a longer work (such as a thesis, dissertation or research paper).The abstract concisely reports the aims and outcomes of your research, so that readers know exactly what your paper is about.

  2. Writing an Abstract for Your Research Paper

    Definition and Purpose of Abstracts An abstract is a short summary of your (published or unpublished) research paper, usually about a paragraph (c. 6-7 sentences, 150-250 words) long. A well-written abstract serves multiple purposes: an abstract lets readers get the gist or essence of your paper or article quickly, in order to decide whether to….

  3. 15 Abstract Examples: A Comprehensive Guide

    Informative Abstract Example 1. Emotional intelligence (EQ) has been correlated with leadership effectiveness in organizations. Using a mixed-methods approach, this study assesses the importance of emotional intelligence on academic performance at the high school level. The Emotional Intelligence rating scale was used, as well as semi ...

  4. APA Abstract (2020)

    Follow these five steps to format your abstract in APA Style: Insert a running head (for a professional paper—not needed for a student paper) and page number. Set page margins to 1 inch (2.54 cm). Write "Abstract" (bold and centered) at the top of the page. Place the contents of your abstract on the next line.

  5. Research Paper Abstract

    Research Paper Abstract Examples could be following: Example 1: Title: "The Effectiveness of Cognitive-Behavioral Therapy for Treating Anxiety Disorders: A Meta-Analysis". Abstract: This meta-analysis examines the effectiveness of cognitive-behavioral therapy (CBT) in treating anxiety disorders. Through the analysis of 20 randomized ...

  6. How to Write an Abstract in APA Format with Examples

    An APA abstract is a brief, comprehensive summary of the contents of an article, research paper, dissertation, or report. It is written in accordance with the guidelines of the American Psychological Association (APA), which is a widely used format in social and behavioral sciences.

  7. Abstract Writing: A Step-by-Step Guide With Tips & Examples

    Abstracts of research papers have always played an essential role in describing your research concisely and clearly to researchers and editors of journals, enticing them to continue reading. However, with the widespread availability of scientific databases, the need to write a convincing abstract is more crucial now than during the time of ...

  8. How to Write an Abstract

    You will almost always have to include an abstract when: Completing a thesis or dissertation. Submitting a research paper to an academic journal. Writing a book proposal. Applying for research grants. It's easiest to write your abstract last, because it's a summary of the work you've already done.

  9. How to Write an Abstract

    Focus on key results, conclusions and take home messages. Write your paper first, then create the abstract as a summary. Check the journal requirements before you write your abstract, eg. required subheadings. Include keywords or phrases to help readers search for your work in indexing databases like PubMed or Google Scholar.

  10. How to write an abstract

    Before you actually start writing an abstract, make sure to follow these steps: Read other papers: find papers with similar topics, or similar methodologies, simply to have an idea of how others have written their abstracts. Notice which points they decided to include, and how in depth they described them.

  11. How to Write an Abstract (With Examples)

    Put your abstract straight after the title and acknowledgements pages. Use present or past tense, not future tense. Examples of an Abstract. There are two primary types of abstract you could write for your paper—descriptive and informative. An informative abstract is the most common, and they follow the structure mentioned previously.

  12. How to Write an Abstract in Research Papers (with Examples)

    An abstract in research is a summary of the paper and describes only the main aspects. Typically, abstracts are about 200-350 words long. Abstracts are of four types—structured, unstructured, descriptive, and informative. Abstracts should be simple, clear, concise, independent, and unbiased (present both favorable and adverse outcomes).

  13. How to write a good abstract for a scientific paper or conference

    The abstract of a paper is the only part of the paper that is published in conference proceedings. The abstract is the only part of the paper that a potential referee sees when he is invited by an editor to review a manuscript. ... Examples of acceptably written abstracts are presented in Table 6; one of these has been modified from an actual ...

  14. Abstracts

    What this handout is about. This handout provides definitions and examples of the two main types of abstracts: descriptive and informative. It also provides guidelines for constructing an abstract and general tips for you to keep in mind when drafting. Finally, it includes a few examples of abstracts broken down into their component parts.

  15. How to Write a Research Paper Abstract in 2024: Guide With Examples

    Set a 1-inch (2.54 centimeter) margin on all sides. The running head should be aligned to the left at the top of the page. The abstract should be on the second page of the paper (the first one is reserved for the title). Avoid indentations, unless you must include a keywords section at the end of the abstract.

  16. How to Write an Abstract for a Research Paper

    Include 5 to 10 important words or short phrases central to your research in both the abstract and the keywords section. For example, if you are writing a paper on the prevalence of obesity among lower classes that crosses international boundaries, you should include terms like "obesity," "prevalence," "international," "lower ...

  17. Writing an abstract

    Methods - The methods section should contain enough information to enable the reader to understand what was done, and how. It should include brief details of the research design, sample size, duration of study, and so on. Results - The results section is the most important part of the abstract. This is because readers who skim an abstract do so ...

  18. Writing an Abstract for a Research Paper: Guidelines, Examples, and

    There are six steps to writing a standard abstract. (1) Begin with a broad statement about your topic. Then, (2) state the problem or knowledge gap related to this topic that your study explores. After that, (3) describe what specific aspect of this problem you investigated, and (4) briefly explain how you went about doing this.

  19. How to Write an Abstract for Research

    The best practice in writing an abstract is to make it the last part of the research paper you tackle. Write notes that align with the four elements discussed in a previous FAQ.

  20. How to Write an Abstract For a Research Paper with Examples

    Step 2: Outline Your Methods Clearly. Outline the research methods and experimental design employed in your study. Refrain from evaluating the validity or challenges of your methodology. Provide a clear description of how you conducted your research, including any specific techniques, tools, or procedures used.

  21. PDF Abstract and Keywords Guide, APA Style 7th Edition

    Abstract Format. recommended fonts: 11-point Calibri, 11-point Arial, 10-point Lucida Sans Unicode, 12-point Times New Roman, 11-point Georgia, or 10-point Computer Modern2. 1-in. margins on all sides. placement: second page of the paper. section label: "Abstract". ° centered and in bold. ° written on the first line of the page.

  22. PDF Reading and Understanding Abstracts

    Abstracts are usually a student's first point of contact with professional scientific research. Although reading a whole article can be daunting, reading an abstract is much simpler and the benefits to your learning are direct. Here are some ways reading abstracts helps you learn: Finding sources quickly. Gaining knowledge.

  23. 10 Good Abstract Examples That Will Kickstart Your Brain

    The abstract: "This quantitative research study was conducted to illustrate the relationship (s) between social media use and its effect on police brutality awareness. In 2015, social media was used to assist in revealing an act of impulsive police brutality on an adult black woman in Waller County, Texas.

  24. Mastering the Art of Writing an Effective Conference Abstract

    The Key Components of an Effective Abstract. If it's your first time submitting to a conference, you may be tempted to simply copy and paste the introduction of your research paper into the abstract field. Don't. An abstract and an introduction serve different purposes and have different formats. A well-crafted abstract typically includes ...

  25. Insights from 20 Years (2004-2023) of Supply Chain Disruption Research

    This paper explores the research trends in the literature about supply chain disruptions published over the last 20 years through a comprehensive review and keyword-based analysis. A sample of 4239 papers retrieved from Scopus was analyzed to identify the key themes covered and the shifts in time of those themes. The results highlight a significant rise in the number of publications on supply ...

  26. On assistants and researchers: Power, positionality and vulnerability

    Submit Paper. Qualitative Research. Impact Factor: 3.2 / 5-Year Impact Factor: 3.9 . Journal Homepage. Submit Paper. ... Abstract. As field researchers have increasingly explored the methodological 'backstage' of their fieldwork, the relationship between researcher and assistant has come to the fore. ... We argue that the relation between ...

  27. Development of a fast fluorescent probe for sensitive detection of

    In the initial stage, the photophysical properties of the probe were examined in vitro. Fig. 1 a and Fig. 1 b exhibited that the free probe has a maximum absorption peak at 502 nm and a weak fluorescence emission at 480 nm. In contrast, the introduction of GSH led to a blue shift of the UV-visible absorption peak to 416 nm, and a new fluorescence emission peak emerged at 491 nm with a ...

  28. Fault diagnosis method for oil-immersed transformers ...

    Part 4 addresses the issue of imbalanced small sample data that can easily lead to misjudgment of minority class samples, deeply explores the correlation between dissolved gases in oil and fault ...

  29. Where is the research on sport-related concussion in Olympic athletes

    Objectives This cohort study reported descriptive statistics in athletes engaged in Summer and Winter Olympic sports who sustained a sport-related concussion (SRC) and assessed the impact of access to multidisciplinary care and injury modifiers on recovery. Methods 133 athletes formed two subgroups treated in a Canadian sport institute medical clinic: earlier (≤7 days) and late (≥8 days ...

  30. A novel method to assess the integrity of frozen archival DNA samples

    Methods in Ecology and Evolution is an open access journal publishing papers across a wide range of subdisciplines, disseminating new methods in ecology and evolution. ... Abstract Archival DNA samples collected and analysed for a range of research and applied questions have accumulated in the laboratories of universities, government agencies ...