Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Hypothesis Testing | A Step-by-Step Guide with Easy Examples

Published on November 8, 2019 by Rebecca Bevans . Revised on June 22, 2023.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics . It is most often used by scientists to test specific predictions, called hypotheses, that arise from theories.

There are 5 main steps in hypothesis testing:

  • State your research hypothesis as a null hypothesis and alternate hypothesis (H o ) and (H a  or H 1 ).
  • Collect data in a way designed to test the hypothesis.
  • Perform an appropriate statistical test .
  • Decide whether to reject or fail to reject your null hypothesis.
  • Present the findings in your results and discussion section.

Though the specific details might vary, the procedure you will use when testing a hypothesis will always follow some version of these steps.

Table of contents

Step 1: state your null and alternate hypothesis, step 2: collect data, step 3: perform a statistical test, step 4: decide whether to reject or fail to reject your null hypothesis, step 5: present your findings, other interesting articles, frequently asked questions about hypothesis testing.

After developing your initial research hypothesis (the prediction that you want to investigate), it is important to restate it as a null (H o ) and alternate (H a ) hypothesis so that you can test it mathematically.

The alternate hypothesis is usually your initial hypothesis that predicts a relationship between variables. The null hypothesis is a prediction of no relationship between the variables you are interested in.

  • H 0 : Men are, on average, not taller than women. H a : Men are, on average, taller than women.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

what is hypothesis testing basics

For a statistical test to be valid , it is important to perform sampling and collect data in a way that is designed to test your hypothesis. If your data are not representative, then you cannot make statistical inferences about the population you are interested in.

There are a variety of statistical tests available, but they are all based on the comparison of within-group variance (how spread out the data is within a category) versus between-group variance (how different the categories are from one another).

If the between-group variance is large enough that there is little or no overlap between groups, then your statistical test will reflect that by showing a low p -value . This means it is unlikely that the differences between these groups came about by chance.

Alternatively, if there is high within-group variance and low between-group variance, then your statistical test will reflect that with a high p -value. This means it is likely that any difference you measure between groups is due to chance.

Your choice of statistical test will be based on the type of variables and the level of measurement of your collected data .

  • an estimate of the difference in average height between the two groups.
  • a p -value showing how likely you are to see this difference if the null hypothesis of no difference is true.

Based on the outcome of your statistical test, you will have to decide whether to reject or fail to reject your null hypothesis.

In most cases you will use the p -value generated by your statistical test to guide your decision. And in most cases, your predetermined level of significance for rejecting the null hypothesis will be 0.05 – that is, when there is a less than 5% chance that you would see these results if the null hypothesis were true.

In some cases, researchers choose a more conservative level of significance, such as 0.01 (1%). This minimizes the risk of incorrectly rejecting the null hypothesis ( Type I error ).

The results of hypothesis testing will be presented in the results and discussion sections of your research paper , dissertation or thesis .

In the results section you should give a brief summary of the data and a summary of the results of your statistical test (for example, the estimated difference between group means and associated p -value). In the discussion , you can discuss whether your initial hypothesis was supported by your results or not.

In the formal language of hypothesis testing, we talk about rejecting or failing to reject the null hypothesis. You will probably be asked to do this in your statistics assignments.

However, when presenting research results in academic papers we rarely talk this way. Instead, we go back to our alternate hypothesis (in this case, the hypothesis that men are on average taller than women) and state whether the result of our test did or did not support the alternate hypothesis.

If your null hypothesis was rejected, this result is interpreted as “supported the alternate hypothesis.”

These are superficial differences; you can see that they mean the same thing.

You might notice that we don’t say that we reject or fail to reject the alternate hypothesis . This is because hypothesis testing is not designed to prove or disprove anything. It is only designed to test whether a pattern we measure could have arisen spuriously, or by chance.

If we reject the null hypothesis based on our research (i.e., we find that it is unlikely that the pattern arose by chance), then we can say our test lends support to our hypothesis . But if the pattern does not pass our decision rule, meaning that it could have arisen by chance, then we say the test is inconsistent with our hypothesis .

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Descriptive statistics
  • Measures of central tendency
  • Correlation coefficient

Methodology

  • Cluster sampling
  • Stratified sampling
  • Types of interviews
  • Cohort study
  • Thematic analysis

Research bias

  • Implicit bias
  • Cognitive bias
  • Survivorship bias
  • Availability heuristic
  • Nonresponse bias
  • Regression to the mean

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bevans, R. (2023, June 22). Hypothesis Testing | A Step-by-Step Guide with Easy Examples. Scribbr. Retrieved August 13, 2024, from https://www.scribbr.com/statistics/hypothesis-testing/

Is this article helpful?

Rebecca Bevans

Rebecca Bevans

Other students also liked, choosing the right statistical test | types & examples, understanding p values | definition and examples, what is your plagiarism score.

Hypothesis Testing

Hypothesis testing is a tool for making statistical inferences about the population data. It is an analysis tool that tests assumptions and determines how likely something is within a given standard of accuracy. Hypothesis testing provides a way to verify whether the results of an experiment are valid.

A null hypothesis and an alternative hypothesis are set up before performing the hypothesis testing. This helps to arrive at a conclusion regarding the sample obtained from the population. In this article, we will learn more about hypothesis testing, its types, steps to perform the testing, and associated examples.

1.
2.
3.
4.
5.
6.
7.
8.

What is Hypothesis Testing in Statistics?

Hypothesis testing uses sample data from the population to draw useful conclusions regarding the population probability distribution . It tests an assumption made about the data using different types of hypothesis testing methodologies. The hypothesis testing results in either rejecting or not rejecting the null hypothesis.

Hypothesis Testing Definition

Hypothesis testing can be defined as a statistical tool that is used to identify if the results of an experiment are meaningful or not. It involves setting up a null hypothesis and an alternative hypothesis. These two hypotheses will always be mutually exclusive. This means that if the null hypothesis is true then the alternative hypothesis is false and vice versa. An example of hypothesis testing is setting up a test to check if a new medicine works on a disease in a more efficient manner.

Null Hypothesis

The null hypothesis is a concise mathematical statement that is used to indicate that there is no difference between two possibilities. In other words, there is no difference between certain characteristics of data. This hypothesis assumes that the outcomes of an experiment are based on chance alone. It is denoted as \(H_{0}\). Hypothesis testing is used to conclude if the null hypothesis can be rejected or not. Suppose an experiment is conducted to check if girls are shorter than boys at the age of 5. The null hypothesis will say that they are the same height.

Alternative Hypothesis

The alternative hypothesis is an alternative to the null hypothesis. It is used to show that the observations of an experiment are due to some real effect. It indicates that there is a statistical significance between two possible outcomes and can be denoted as \(H_{1}\) or \(H_{a}\). For the above-mentioned example, the alternative hypothesis would be that girls are shorter than boys at the age of 5.

Hypothesis Testing P Value

In hypothesis testing, the p value is used to indicate whether the results obtained after conducting a test are statistically significant or not. It also indicates the probability of making an error in rejecting or not rejecting the null hypothesis.This value is always a number between 0 and 1. The p value is compared to an alpha level, \(\alpha\) or significance level. The alpha level can be defined as the acceptable risk of incorrectly rejecting the null hypothesis. The alpha level is usually chosen between 1% to 5%.

Hypothesis Testing Critical region

All sets of values that lead to rejecting the null hypothesis lie in the critical region. Furthermore, the value that separates the critical region from the non-critical region is known as the critical value.

Hypothesis Testing Formula

Depending upon the type of data available and the size, different types of hypothesis testing are used to determine whether the null hypothesis can be rejected or not. The hypothesis testing formula for some important test statistics are given below:

  • z = \(\frac{\overline{x}-\mu}{\frac{\sigma}{\sqrt{n}}}\). \(\overline{x}\) is the sample mean, \(\mu\) is the population mean, \(\sigma\) is the population standard deviation and n is the size of the sample.
  • t = \(\frac{\overline{x}-\mu}{\frac{s}{\sqrt{n}}}\). s is the sample standard deviation.
  • \(\chi ^{2} = \sum \frac{(O_{i}-E_{i})^{2}}{E_{i}}\). \(O_{i}\) is the observed value and \(E_{i}\) is the expected value.

We will learn more about these test statistics in the upcoming section.

Types of Hypothesis Testing

Selecting the correct test for performing hypothesis testing can be confusing. These tests are used to determine a test statistic on the basis of which the null hypothesis can either be rejected or not rejected. Some of the important tests used for hypothesis testing are given below.

Hypothesis Testing Z Test

A z test is a way of hypothesis testing that is used for a large sample size (n ≥ 30). It is used to determine whether there is a difference between the population mean and the sample mean when the population standard deviation is known. It can also be used to compare the mean of two samples. It is used to compute the z test statistic. The formulas are given as follows:

  • One sample: z = \(\frac{\overline{x}-\mu}{\frac{\sigma}{\sqrt{n}}}\).
  • Two samples: z = \(\frac{(\overline{x_{1}}-\overline{x_{2}})-(\mu_{1}-\mu_{2})}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}\).

Hypothesis Testing t Test

The t test is another method of hypothesis testing that is used for a small sample size (n < 30). It is also used to compare the sample mean and population mean. However, the population standard deviation is not known. Instead, the sample standard deviation is known. The mean of two samples can also be compared using the t test.

  • One sample: t = \(\frac{\overline{x}-\mu}{\frac{s}{\sqrt{n}}}\).
  • Two samples: t = \(\frac{(\overline{x_{1}}-\overline{x_{2}})-(\mu_{1}-\mu_{2})}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}\).

Hypothesis Testing Chi Square

The Chi square test is a hypothesis testing method that is used to check whether the variables in a population are independent or not. It is used when the test statistic is chi-squared distributed.

One Tailed Hypothesis Testing

One tailed hypothesis testing is done when the rejection region is only in one direction. It can also be known as directional hypothesis testing because the effects can be tested in one direction only. This type of testing is further classified into the right tailed test and left tailed test.

Right Tailed Hypothesis Testing

The right tail test is also known as the upper tail test. This test is used to check whether the population parameter is greater than some value. The null and alternative hypotheses for this test are given as follows:

\(H_{0}\): The population parameter is ≤ some value

\(H_{1}\): The population parameter is > some value.

If the test statistic has a greater value than the critical value then the null hypothesis is rejected

Right Tail Hypothesis Testing

Left Tailed Hypothesis Testing

The left tail test is also known as the lower tail test. It is used to check whether the population parameter is less than some value. The hypotheses for this hypothesis testing can be written as follows:

\(H_{0}\): The population parameter is ≥ some value

\(H_{1}\): The population parameter is < some value.

The null hypothesis is rejected if the test statistic has a value lesser than the critical value.

Left Tail Hypothesis Testing

Two Tailed Hypothesis Testing

In this hypothesis testing method, the critical region lies on both sides of the sampling distribution. It is also known as a non - directional hypothesis testing method. The two-tailed test is used when it needs to be determined if the population parameter is assumed to be different than some value. The hypotheses can be set up as follows:

\(H_{0}\): the population parameter = some value

\(H_{1}\): the population parameter ≠ some value

The null hypothesis is rejected if the test statistic has a value that is not equal to the critical value.

Two Tail Hypothesis Testing

Hypothesis Testing Steps

Hypothesis testing can be easily performed in five simple steps. The most important step is to correctly set up the hypotheses and identify the right method for hypothesis testing. The basic steps to perform hypothesis testing are as follows:

  • Step 1: Set up the null hypothesis by correctly identifying whether it is the left-tailed, right-tailed, or two-tailed hypothesis testing.
  • Step 2: Set up the alternative hypothesis.
  • Step 3: Choose the correct significance level, \(\alpha\), and find the critical value.
  • Step 4: Calculate the correct test statistic (z, t or \(\chi\)) and p-value.
  • Step 5: Compare the test statistic with the critical value or compare the p-value with \(\alpha\) to arrive at a conclusion. In other words, decide if the null hypothesis is to be rejected or not.

Hypothesis Testing Example

The best way to solve a problem on hypothesis testing is by applying the 5 steps mentioned in the previous section. Suppose a researcher claims that the mean average weight of men is greater than 100kgs with a standard deviation of 15kgs. 30 men are chosen with an average weight of 112.5 Kgs. Using hypothesis testing, check if there is enough evidence to support the researcher's claim. The confidence interval is given as 95%.

Step 1: This is an example of a right-tailed test. Set up the null hypothesis as \(H_{0}\): \(\mu\) = 100.

Step 2: The alternative hypothesis is given by \(H_{1}\): \(\mu\) > 100.

Step 3: As this is a one-tailed test, \(\alpha\) = 100% - 95% = 5%. This can be used to determine the critical value.

1 - \(\alpha\) = 1 - 0.05 = 0.95

0.95 gives the required area under the curve. Now using a normal distribution table, the area 0.95 is at z = 1.645. A similar process can be followed for a t-test. The only additional requirement is to calculate the degrees of freedom given by n - 1.

Step 4: Calculate the z test statistic. This is because the sample size is 30. Furthermore, the sample and population means are known along with the standard deviation.

z = \(\frac{\overline{x}-\mu}{\frac{\sigma}{\sqrt{n}}}\).

\(\mu\) = 100, \(\overline{x}\) = 112.5, n = 30, \(\sigma\) = 15

z = \(\frac{112.5-100}{\frac{15}{\sqrt{30}}}\) = 4.56

Step 5: Conclusion. As 4.56 > 1.645 thus, the null hypothesis can be rejected.

Hypothesis Testing and Confidence Intervals

Confidence intervals form an important part of hypothesis testing. This is because the alpha level can be determined from a given confidence interval. Suppose a confidence interval is given as 95%. Subtract the confidence interval from 100%. This gives 100 - 95 = 5% or 0.05. This is the alpha value of a one-tailed hypothesis testing. To obtain the alpha value for a two-tailed hypothesis testing, divide this value by 2. This gives 0.05 / 2 = 0.025.

Related Articles:

  • Probability and Statistics
  • Data Handling

Important Notes on Hypothesis Testing

  • Hypothesis testing is a technique that is used to verify whether the results of an experiment are statistically significant.
  • It involves the setting up of a null hypothesis and an alternate hypothesis.
  • There are three types of tests that can be conducted under hypothesis testing - z test, t test, and chi square test.
  • Hypothesis testing can be classified as right tail, left tail, and two tail tests.

Examples on Hypothesis Testing

  • Example 1: The average weight of a dumbbell in a gym is 90lbs. However, a physical trainer believes that the average weight might be higher. A random sample of 5 dumbbells with an average weight of 110lbs and a standard deviation of 18lbs. Using hypothesis testing check if the physical trainer's claim can be supported for a 95% confidence level. Solution: As the sample size is lesser than 30, the t-test is used. \(H_{0}\): \(\mu\) = 90, \(H_{1}\): \(\mu\) > 90 \(\overline{x}\) = 110, \(\mu\) = 90, n = 5, s = 18. \(\alpha\) = 0.05 Using the t-distribution table, the critical value is 2.132 t = \(\frac{\overline{x}-\mu}{\frac{s}{\sqrt{n}}}\) t = 2.484 As 2.484 > 2.132, the null hypothesis is rejected. Answer: The average weight of the dumbbells may be greater than 90lbs
  • Example 2: The average score on a test is 80 with a standard deviation of 10. With a new teaching curriculum introduced it is believed that this score will change. On random testing, the score of 38 students, the mean was found to be 88. With a 0.05 significance level, is there any evidence to support this claim? Solution: This is an example of two-tail hypothesis testing. The z test will be used. \(H_{0}\): \(\mu\) = 80, \(H_{1}\): \(\mu\) ≠ 80 \(\overline{x}\) = 88, \(\mu\) = 80, n = 36, \(\sigma\) = 10. \(\alpha\) = 0.05 / 2 = 0.025 The critical value using the normal distribution table is 1.96 z = \(\frac{\overline{x}-\mu}{\frac{\sigma}{\sqrt{n}}}\) z = \(\frac{88-80}{\frac{10}{\sqrt{36}}}\) = 4.8 As 4.8 > 1.96, the null hypothesis is rejected. Answer: There is a difference in the scores after the new curriculum was introduced.
  • Example 3: The average score of a class is 90. However, a teacher believes that the average score might be lower. The scores of 6 students were randomly measured. The mean was 82 with a standard deviation of 18. With a 0.05 significance level use hypothesis testing to check if this claim is true. Solution: The t test will be used. \(H_{0}\): \(\mu\) = 90, \(H_{1}\): \(\mu\) < 90 \(\overline{x}\) = 110, \(\mu\) = 90, n = 6, s = 18 The critical value from the t table is -2.015 t = \(\frac{\overline{x}-\mu}{\frac{s}{\sqrt{n}}}\) t = \(\frac{82-90}{\frac{18}{\sqrt{6}}}\) t = -1.088 As -1.088 > -2.015, we fail to reject the null hypothesis. Answer: There is not enough evidence to support the claim.

go to slide go to slide go to slide

what is hypothesis testing basics

Book a Free Trial Class

FAQs on Hypothesis Testing

What is hypothesis testing.

Hypothesis testing in statistics is a tool that is used to make inferences about the population data. It is also used to check if the results of an experiment are valid.

What is the z Test in Hypothesis Testing?

The z test in hypothesis testing is used to find the z test statistic for normally distributed data . The z test is used when the standard deviation of the population is known and the sample size is greater than or equal to 30.

What is the t Test in Hypothesis Testing?

The t test in hypothesis testing is used when the data follows a student t distribution . It is used when the sample size is less than 30 and standard deviation of the population is not known.

What is the formula for z test in Hypothesis Testing?

The formula for a one sample z test in hypothesis testing is z = \(\frac{\overline{x}-\mu}{\frac{\sigma}{\sqrt{n}}}\) and for two samples is z = \(\frac{(\overline{x_{1}}-\overline{x_{2}})-(\mu_{1}-\mu_{2})}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}\).

What is the p Value in Hypothesis Testing?

The p value helps to determine if the test results are statistically significant or not. In hypothesis testing, the null hypothesis can either be rejected or not rejected based on the comparison between the p value and the alpha level.

What is One Tail Hypothesis Testing?

When the rejection region is only on one side of the distribution curve then it is known as one tail hypothesis testing. The right tail test and the left tail test are two types of directional hypothesis testing.

What is the Alpha Level in Two Tail Hypothesis Testing?

To get the alpha level in a two tail hypothesis testing divide \(\alpha\) by 2. This is done as there are two rejection regions in the curve.

  • Skip to secondary menu
  • Skip to main content
  • Skip to primary sidebar

Statistics By Jim

Making statistics intuitive

Statistical Hypothesis Testing Overview

By Jim Frost 59 Comments

In this blog post, I explain why you need to use statistical hypothesis testing and help you navigate the essential terminology. Hypothesis testing is a crucial procedure to perform when you want to make inferences about a population using a random sample. These inferences include estimating population properties such as the mean, differences between means, proportions, and the relationships between variables.

This post provides an overview of statistical hypothesis testing. If you need to perform hypothesis tests, consider getting my book, Hypothesis Testing: An Intuitive Guide .

Why You Should Perform Statistical Hypothesis Testing

Graph that displays mean drug scores by group. Use hypothesis testing to determine whether the difference between the means are statistically significant.

Hypothesis testing is a form of inferential statistics that allows us to draw conclusions about an entire population based on a representative sample. You gain tremendous benefits by working with a sample. In most cases, it is simply impossible to observe the entire population to understand its properties. The only alternative is to collect a random sample and then use statistics to analyze it.

While samples are much more practical and less expensive to work with, there are trade-offs. When you estimate the properties of a population from a sample, the sample statistics are unlikely to equal the actual population value exactly.  For instance, your sample mean is unlikely to equal the population mean. The difference between the sample statistic and the population value is the sample error.

Differences that researchers observe in samples might be due to sampling error rather than representing a true effect at the population level. If sampling error causes the observed difference, the next time someone performs the same experiment the results might be different. Hypothesis testing incorporates estimates of the sampling error to help you make the correct decision. Learn more about Sampling Error .

For example, if you are studying the proportion of defects produced by two manufacturing methods, any difference you observe between the two sample proportions might be sample error rather than a true difference. If the difference does not exist at the population level, you won’t obtain the benefits that you expect based on the sample statistics. That can be a costly mistake!

Let’s cover some basic hypothesis testing terms that you need to know.

Background information : Difference between Descriptive and Inferential Statistics and Populations, Parameters, and Samples in Inferential Statistics

Hypothesis Testing

Hypothesis testing is a statistical analysis that uses sample data to assess two mutually exclusive theories about the properties of a population. Statisticians call these theories the null hypothesis and the alternative hypothesis. A hypothesis test assesses your sample statistic and factors in an estimate of the sample error to determine which hypothesis the data support.

When you can reject the null hypothesis, the results are statistically significant, and your data support the theory that an effect exists at the population level.

The effect is the difference between the population value and the null hypothesis value. The effect is also known as population effect or the difference. For example, the mean difference between the health outcome for a treatment group and a control group is the effect.

Typically, you do not know the size of the actual effect. However, you can use a hypothesis test to help you determine whether an effect exists and to estimate its size. Hypothesis tests convert your sample effect into a test statistic, which it evaluates for statistical significance. Learn more about Test Statistics .

An effect can be statistically significant, but that doesn’t necessarily indicate that it is important in a real-world, practical sense. For more information, read my post about Statistical vs. Practical Significance .

Null Hypothesis

The null hypothesis is one of two mutually exclusive theories about the properties of the population in hypothesis testing. Typically, the null hypothesis states that there is no effect (i.e., the effect size equals zero). The null is often signified by H 0 .

In all hypothesis testing, the researchers are testing an effect of some sort. The effect can be the effectiveness of a new vaccination, the durability of a new product, the proportion of defect in a manufacturing process, and so on. There is some benefit or difference that the researchers hope to identify.

However, it’s possible that there is no effect or no difference between the experimental groups. In statistics, we call this lack of an effect the null hypothesis. Therefore, if you can reject the null, you can favor the alternative hypothesis, which states that the effect exists (doesn’t equal zero) at the population level.

You can think of the null as the default theory that requires sufficiently strong evidence against in order to reject it.

For example, in a 2-sample t-test, the null often states that the difference between the two means equals zero.

When you can reject the null hypothesis, your results are statistically significant. Learn more about Statistical Significance: Definition & Meaning .

Related post : Understanding the Null Hypothesis in More Detail

Alternative Hypothesis

The alternative hypothesis is the other theory about the properties of the population in hypothesis testing. Typically, the alternative hypothesis states that a population parameter does not equal the null hypothesis value. In other words, there is a non-zero effect. If your sample contains sufficient evidence, you can reject the null and favor the alternative hypothesis. The alternative is often identified with H 1 or H A .

For example, in a 2-sample t-test, the alternative often states that the difference between the two means does not equal zero.

You can specify either a one- or two-tailed alternative hypothesis:

If you perform a two-tailed hypothesis test, the alternative states that the population parameter does not equal the null value. For example, when the alternative hypothesis is H A : μ ≠ 0, the test can detect differences both greater than and less than the null value.

A one-tailed alternative has more power to detect an effect but it can test for a difference in only one direction. For example, H A : μ > 0 can only test for differences that are greater than zero.

Related posts : Understanding T-tests and One-Tailed and Two-Tailed Hypothesis Tests Explained

Image of a P for the p-value in hypothesis testing.

P-values are the probability that you would obtain the effect observed in your sample, or larger, if the null hypothesis is correct. In simpler terms, p-values tell you how strongly your sample data contradict the null. Lower p-values represent stronger evidence against the null. You use P-values in conjunction with the significance level to determine whether your data favor the null or alternative hypothesis.

Related post : Interpreting P-values Correctly

Significance Level (Alpha)

image of the alpha symbol for hypothesis testing.

For instance, a significance level of 0.05 signifies a 5% risk of deciding that an effect exists when it does not exist.

Use p-values and significance levels together to help you determine which hypothesis the data support. If the p-value is less than your significance level, you can reject the null and conclude that the effect is statistically significant. In other words, the evidence in your sample is strong enough to be able to reject the null hypothesis at the population level.

Related posts : Graphical Approach to Significance Levels and P-values and Conceptual Approach to Understanding Significance Levels

Types of Errors in Hypothesis Testing

Statistical hypothesis tests are not 100% accurate because they use a random sample to draw conclusions about entire populations. There are two types of errors related to drawing an incorrect conclusion.

  • False positives: You reject a null that is true. Statisticians call this a Type I error . The Type I error rate equals your significance level or alpha (α).
  • False negatives: You fail to reject a null that is false. Statisticians call this a Type II error. Generally, you do not know the Type II error rate. However, it is a larger risk when you have a small sample size , noisy data, or a small effect size. The type II error rate is also known as beta (β).

Statistical power is the probability that a hypothesis test correctly infers that a sample effect exists in the population. In other words, the test correctly rejects a false null hypothesis. Consequently, power is inversely related to a Type II error. Power = 1 – β. Learn more about Power in Statistics .

Related posts : Types of Errors in Hypothesis Testing and Estimating a Good Sample Size for Your Study Using Power Analysis

Which Type of Hypothesis Test is Right for You?

There are many different types of procedures you can use. The correct choice depends on your research goals and the data you collect. Do you need to understand the mean or the differences between means? Or, perhaps you need to assess proportions. You can even use hypothesis testing to determine whether the relationships between variables are statistically significant.

To choose the proper statistical procedure, you’ll need to assess your study objectives and collect the correct type of data . This background research is necessary before you begin a study.

Related Post : Hypothesis Tests for Continuous, Binary, and Count Data

Statistical tests are crucial when you want to use sample data to make conclusions about a population because these tests account for sample error. Using significance levels and p-values to determine when to reject the null hypothesis improves the probability that you will draw the correct conclusion.

To see an alternative approach to these traditional hypothesis testing methods, learn about bootstrapping in statistics !

If you want to see examples of hypothesis testing in action, I recommend the following posts that I have written:

  • How Effective Are Flu Shots? This example shows how you can use statistics to test proportions.
  • Fatality Rates in Star Trek . This example shows how to use hypothesis testing with categorical data.
  • Busting Myths About the Battle of the Sexes . A fun example based on a Mythbusters episode that assess continuous data using several different tests.
  • Are Yawns Contagious? Another fun example inspired by a Mythbusters episode.

Share this:

what is hypothesis testing basics

Reader Interactions

' src=

January 14, 2024 at 8:43 am

Hello professor Jim, how are you doing! Pls. What are the properties of a population and their examples? Thanks for your time and understanding.

' src=

January 14, 2024 at 12:57 pm

Please read my post about Populations vs. Samples for more information and examples.

Also, please note there is a search bar in the upper-right margin of my website. Use that to search for topics.

' src=

July 5, 2023 at 7:05 am

Hello, I have a question as I read your post. You say in p-values section

“P-values are the probability that you would obtain the effect observed in your sample, or larger, if the null hypothesis is correct. In simpler terms, p-values tell you how strongly your sample data contradict the null. Lower p-values represent stronger evidence against the null.”

But according to your definition of effect, the null states that an effect does not exist, correct? So what I assume you want to say is that “P-values are the probability that you would obtain the effect observed in your sample, or larger, if the null hypothesis is **incorrect**.”

July 6, 2023 at 5:18 am

Hi Shrinivas,

The correct definition of p-value is that it is a probability that exists in the context of a true null hypothesis. So, the quotation is correct in stating “if the null hypothesis is correct.”

Essentially, the p-value tells you the likelihood of your observed results (or more extreme) if the null hypothesis is true. It gives you an idea of whether your results are surprising or unusual if there is no effect.

Hence, with sufficiently low p-values, you reject the null hypothesis because it’s telling you that your sample results were unlikely to have occurred if there was no effect in the population.

I hope that helps make it more clear. If not, let me know I’ll attempt to clarify!

' src=

May 8, 2023 at 12:47 am

Thanks a lot Ny best regards

May 7, 2023 at 11:15 pm

Hi Jim Can you tell me something about size effect? Thanks

May 8, 2023 at 12:29 am

Here’s a post that I’ve written about Effect Sizes that will hopefully tell you what you need to know. Please read that. Then, if you have any more specific questions about effect sizes, please post them there. Thanks!

' src=

January 7, 2023 at 4:19 pm

Hi Jim, I have only read two pages so far but I am really amazed because in few paragraphs you made me clearly understand the concepts of months of courses I received in biostatistics! Thanks so much for this work you have done it helps a lot!

January 10, 2023 at 3:25 pm

Thanks so much!

' src=

June 17, 2021 at 1:45 pm

Can you help in the following question: Rocinante36 is priced at ₹7 lakh and has been designed to deliver a mileage of 22 km/litre and a top speed of 140 km/hr. Formulate the null and alternative hypotheses for mileage and top speed to check whether the new models are performing as per the desired design specifications.

' src=

April 19, 2021 at 1:51 pm

Its indeed great to read your work statistics.

I have a doubt regarding the one sample t-test. So as per your book on hypothesis testing with reference to page no 45, you have mentioned the difference between “the sample mean and the hypothesised mean is statistically significant”. So as per my understanding it should be quoted like “the difference between the population mean and the hypothesised mean is statistically significant”. The catch here is the hypothesised mean represents the sample mean.

Please help me understand this.

Regards Rajat

April 19, 2021 at 3:46 pm

Thanks for buying my book. I’m so glad it’s been helpful!

The test is performed on the sample but the results apply to the population. Hence, if the difference between the sample mean (observed in your study) and the hypothesized mean is statistically significant, that suggests that population does not equal the hypothesized mean.

For one sample tests, the hypothesized mean is not the sample mean. It is a mean that you want to use for the test value. It usually represents a value that is important to your research. In other words, it’s a value that you pick for some theoretical/practical reasons. You pick it because you want to determine whether the population mean is different from that particular value.

I hope that helps!

' src=

November 5, 2020 at 6:24 am

Jim, you are such a magnificent statistician/economist/econometrician/data scientist etc whatever profession. Your work inspires and simplifies the lives of so many researchers around the world. I truly admire you and your work. I will buy a copy of each book you have on statistics or econometrics. Keep doing the good work. Remain ever blessed

November 6, 2020 at 9:47 pm

Hi Renatus,

Thanks so much for you very kind comments. You made my day!! I’m so glad that my website has been helpful. And, thanks so much for supporting my books! 🙂

' src=

November 2, 2020 at 9:32 pm

Hi Jim, I hope you are aware of 2019 American Statistical Association’s official statement on Statistical Significance: https://www.tandfonline.com/doi/full/10.1080/00031305.2019.1583913 In case you do not bother reading the full article, may I quote you the core message here: “We conclude, based on our review of the articles in this special issue and the broader literature, that it is time to stop using the term “statistically significant” entirely. Nor should variants such as “significantly different,” “p < 0.05,” and “nonsignificant” survive, whether expressed in words, by asterisks in a table, or in some other way."

With best wishes,

November 3, 2020 at 2:09 am

I’m definitely aware of the debate surrounding how to use p-values most effectively. However, I need to correct you on one point. The link you provide is NOT a statement by the American Statistical Association. It is an editorial by several authors.

There is considerable debate over this issue. There are problems with p-values. However, as the authors state themselves, much of the problem is over people’s mindsets about how to use p-values and their incorrect interpretations about what statistical significance does and does not mean.

If you were to read my website more thoroughly, you’d be aware that I share many of their concerns and I address them in multiple posts. One of the authors’ key points is the need to be thoughtful and conduct thoughtful research and analysis. I emphasize this aspect in multiple posts on this topic. I’ll ask you to read the following three because they all address some of the authors’ concerns and suggestions. But you might run across others to read as well.

Five Tips for Using P-values to Avoid Being Misled How to Interpret P-values Correctly P-values and the Reproducibility of Experimental Results

' src=

September 24, 2020 at 11:52 pm

HI Jim, i just want you to know that you made explanation for Statistics so simple! I should say lesser and fewer words that reduce the complexity. All the best! 🙂

September 25, 2020 at 1:03 am

Thanks, Rene! Your kind words mean a lot to me! I’m so glad it has been helpful!

' src=

September 23, 2020 at 2:21 am

Honestly, I never understood stats during my entire M.Ed course and was another nightmare for me. But how easily you have explained each concept, I have understood stats way beyond my imagination. Thank you so much for helping ignorant research scholars like us. Looking forward to get hardcopy of your book. Kindly tell is it available through flipkart?

September 24, 2020 at 11:14 pm

I’m so happy to hear that my website has been helpful!

I checked on flipkart and it appears like my books are not available there. I’m never exactly sure where they’re available due to the vagaries of different distribution channels. They are available on Amazon in India.

Introduction to Statistics: An Intuitive Guide (Amazon IN) Hypothesis Testing: An Intuitive Guide (Amazon IN)

' src=

July 26, 2020 at 11:57 am

Dear Jim I am a teacher from India . I don’t have any background in statistics, and still I should tell that in a single read I can follow your explanations . I take my entire biostatistics class for botany graduates with your explanations. Thanks a lot. May I know how I can avail your books in India

July 28, 2020 at 12:31 am

Right now my books are only available as ebooks from my website. However, soon I’ll have some exciting news about other ways to obtain it. Stay tuned! I’ll announce it on my email list. If you’re not already on it, you can sign up using the form that is in the right margin of my website.

' src=

June 22, 2020 at 2:02 pm

Also can you please let me if this book covers topics like EDA and principal component analysis?

June 22, 2020 at 2:07 pm

This book doesn’t cover principal components analysis. Although, I wouldn’t really classify that as a hypothesis test. In the future, I might write a multivariate analysis book that would cover this and others. But, that’s well down the road.

My Introduction to Statistics covers EDA. That’s the largely graphical look at your data that you often do prior to hypothesis testing. The Introduction book perfectly leads right into the Hypothesis Testing book.

June 22, 2020 at 1:45 pm

Thanks for the detailed explanation. It does clear my doubts. I saw that your book related to hypothesis testing has the topics that I am studying currently. I am looking forward to purchasing it.

Regards, Take Care

June 19, 2020 at 1:03 pm

For this particular article I did not understand a couple of statements and it would great if you could help: 1)”If sample error causes the observed difference, the next time someone performs the same experiment the results might be different.” 2)”If the difference does not exist at the population level, you won’t obtain the benefits that you expect based on the sample statistics.”

I discovered your articles by chance and now I keep coming back to read & understand statistical concepts. These articles are very informative & easy to digest. Thanks for the simplifying things.

June 20, 2020 at 9:53 pm

I’m so happy to hear that you’ve found my website to be helpful!

To answer your questions, keep in mind that a central tenant of inferential statistics is that the random sample that a study drew was only one of an infinite number of possible it could’ve drawn. Each random sample produces different results. Most results will cluster around the population value assuming they used good methodology. However, random sampling error always exists and makes it so that population estimates from a sample almost never exactly equal the correct population value.

So, imagine that we’re studying a medication and comparing the treatment and control groups. Suppose that the medicine is truly not effect and that the population difference between the treatment and control group is zero (i.e., no difference.) Despite the true difference being zero, most sample estimates will show some degree of either a positive or negative effect thanks to random sampling error. So, just because a study has an observed difference does not mean that a difference exists at the population level. So, on to your questions:

1. If the observed difference is just random error, then it makes sense that if you collected another random sample, the difference could change. It could change from negative to positive, positive to negative, more extreme, less extreme, etc. However, if the difference exists at the population level, most random samples drawn from the population will reflect that difference. If the medicine has an effect, most random samples will reflect that fact and not bounce around on both sides of zero as much.

2. This is closely related to the previous answer. If there is no difference at the population level, but say you approve the medicine because of the observed effects in a sample. Even though your random sample showed an effect (which was really random error), that effect doesn’t exist. So, when you start using it on a larger scale, people won’t benefit from the medicine. That’s why it’s important to separate out what is easily explained by random error versus what is not easily explained by it.

I think reading my post about how hypothesis tests work will help clarify this process. Also, in about 24 hours (as I write this), I’ll be releasing my new ebook about Hypothesis Testing!

' src=

May 29, 2020 at 5:23 am

Hi Jim, I really enjoy your blog. Can you please link me on your blog where you discuss about Subgroup analysis and how it is done? I need to use non parametric and parametric statistical methods for my work and also do subgroup analysis in order to identify potential groups of patients that may benefit more from using a treatment than other groups.

May 29, 2020 at 2:12 pm

Hi, I don’t have a specific article about subgroup analysis. However, subgroup analysis is just the dividing up of a larger sample into subgroups and then analyzing those subgroups separately. You can use the various analyses I write about on the subgroups.

Alternatively, you can include the subgroups in regression analysis as an indicator variable and include that variable as a main effect and an interaction effect to see how the relationships vary by subgroup without needing to subdivide your data. I write about that approach in my article about comparing regression lines . This approach is my preferred approach when possible.

' src=

April 19, 2020 at 7:58 am

sir is confidence interval is a part of estimation?

' src=

April 17, 2020 at 3:36 pm

Sir can u plz briefly explain alternatives of hypothesis testing? I m unable to find the answer

April 18, 2020 at 1:22 am

Assuming you want to draw conclusions about populations by using samples (i.e., inferential statistics ), you can use confidence intervals and bootstrap methods as alternatives to the traditional hypothesis testing methods.

' src=

March 9, 2020 at 10:01 pm

Hi JIm, could you please help with activities that can best teach concepts of hypothesis testing through simulation, Also, do you have any question set that would enhance students intuition why learning hypothesis testing as a topic in introductory statistics. Thanks.

' src=

March 5, 2020 at 3:48 pm

Hi Jim, I’m studying multiple hypothesis testing & was wondering if you had any material that would be relevant. I’m more trying to understand how testing multiple samples simultaneously affects your results & more on the Bonferroni Correction

March 5, 2020 at 4:05 pm

I write about multiple comparisons (aka post hoc tests) in the ANOVA context . I don’t talk about Bonferroni Corrections specifically but I cover related types of corrections. I’m not sure if that exactly addresses what you want to know but is probably the closest I have already written. I hope it helps!

' src=

January 14, 2020 at 9:03 pm

Thank you! Have a great day/evening.

January 13, 2020 at 7:10 pm

Any help would be greatly appreciated. What is the difference between The Hypothesis Test and The Statistical Test of Hypothesis?

January 14, 2020 at 11:02 am

They sound like the same thing to me. Unless this is specialized terminology for a particular field or the author was intending something specific, I’d guess they’re one and the same.

' src=

April 1, 2019 at 10:00 am

so these are the only two forms of Hypothesis used in statistical testing?

April 1, 2019 at 10:02 am

Are you referring to the null and alternative hypothesis? If so, yes, that’s those are the standard hypotheses in a statistical hypothesis test.

April 1, 2019 at 9:57 am

year very insightful post, thanks for the write up

' src=

October 27, 2018 at 11:09 pm

hi there, am upcoming statistician, out of all blogs that i have read, i have found this one more useful as long as my problem is concerned. thanks so much

October 27, 2018 at 11:14 pm

Hi Stano, you’re very welcome! Thanks for your kind words. They mean a lot! I’m happy to hear that my posts were able to help you. I’m sure you will be a fantastic statistician. Best of luck with your studies!

' src=

October 26, 2018 at 11:39 am

Dear Jim, thank you very much for your explanations! I have a question. Can I use t-test to compare two samples in case each of them have right bias?

October 26, 2018 at 12:00 pm

Hi Tetyana,

You’re very welcome!

The term “right bias” is not a standard term. Do you by chance mean right skewed distributions? In other words, if you plot the distribution for each group on a histogram they have longer right tails? These are not the symmetrical bell-shape curves of the normal distribution.

If that’s the case, yes you can as long as you exceed a specific sample size within each group. I include a table that contains these sample size requirements in my post about nonparametric vs parametric analyses .

Bias in statistics refers to cases where an estimate of a value is systematically higher or lower than the true value. If this is the case, you might be able to use t-tests, but you’d need to be sure to understand the nature of the bias so you would understand what the results are really indicating.

I hope this helps!

' src=

April 2, 2018 at 7:28 am

Simple and upto the point 👍 Thank you so much.

April 2, 2018 at 11:11 am

Hi Kalpana, thanks! And I’m glad it was helpful!

' src=

March 26, 2018 at 8:41 am

Am I correct if I say: Alpha – Probability of wrongly rejection of null hypothesis P-value – Probability of wrongly acceptance of null hypothesis

March 28, 2018 at 3:14 pm

You’re correct about alpha. Alpha is the probability of rejecting the null hypothesis when the null is true.

Unfortunately, your definition of the p-value is a bit off. The p-value has a fairly convoluted definition. It is the probability of obtaining the effect observed in a sample, or more extreme, if the null hypothesis is true. The p-value does NOT indicate the probability that either the null or alternative is true or false. Although, those are very common misinterpretations. To learn more, read my post about how to interpret p-values correctly .

' src=

March 2, 2018 at 6:10 pm

I recently started reading your blog and it is very helpful to understand each concept of statistical tests in easy way with some good examples. Also, I recommend to other people go through all these blogs which you posted. Specially for those people who have not statistical background and they are facing to many problems while studying statistical analysis.

Thank you for your such good blogs.

March 3, 2018 at 10:12 pm

Hi Amit, I’m so glad that my blog posts have been helpful for you! It means a lot to me that you took the time to write such a nice comment! Also, thanks for recommending by blog to others! I try really hard to write posts about statistics that are easy to understand.

' src=

January 17, 2018 at 7:03 am

I recently started reading your blog and I find it very interesting. I am learning statistics by my own, and I generally do many google search to understand the concepts. So this blog is quite helpful for me, as it have most of the content which I am looking for.

January 17, 2018 at 3:56 pm

Hi Shashank, thank you! And, I’m very glad to hear that my blog is helpful!

' src=

January 2, 2018 at 2:28 pm

thank u very much sir.

January 2, 2018 at 2:36 pm

You’re very welcome, Hiral!

' src=

November 21, 2017 at 12:43 pm

Thank u so much sir….your posts always helps me to be a #statistician

November 21, 2017 at 2:40 pm

Hi Sachin, you’re very welcome! I’m happy that you find my posts to be helpful!

' src=

November 19, 2017 at 8:22 pm

great post as usual, but it would be nice to see an example.

November 19, 2017 at 8:27 pm

Thank you! At the end of this post, I have links to four other posts that show examples of hypothesis tests in action. You’ll find what you’re looking for in those posts!

Comments and Questions Cancel reply

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Indian J Crit Care Med
  • v.23(Suppl 3); 2019 Sep

An Introduction to Statistics: Understanding Hypothesis Testing and Statistical Errors

Priya ranganathan.

1 Department of Anesthesiology, Critical Care and Pain, Tata Memorial Hospital, Mumbai, Maharashtra, India

2 Department of Surgical Oncology, Tata Memorial Centre, Mumbai, Maharashtra, India

The second article in this series on biostatistics covers the concepts of sample, population, research hypotheses and statistical errors.

How to cite this article

Ranganathan P, Pramesh CS. An Introduction to Statistics: Understanding Hypothesis Testing and Statistical Errors. Indian J Crit Care Med 2019;23(Suppl 3):S230–S231.

Two papers quoted in this issue of the Indian Journal of Critical Care Medicine report. The results of studies aim to prove that a new intervention is better than (superior to) an existing treatment. In the ABLE study, the investigators wanted to show that transfusion of fresh red blood cells would be superior to standard-issue red cells in reducing 90-day mortality in ICU patients. 1 The PROPPR study was designed to prove that transfusion of a lower ratio of plasma and platelets to red cells would be superior to a higher ratio in decreasing 24-hour and 30-day mortality in critically ill patients. 2 These studies are known as superiority studies (as opposed to noninferiority or equivalence studies which will be discussed in a subsequent article).

SAMPLE VERSUS POPULATION

A sample represents a group of participants selected from the entire population. Since studies cannot be carried out on entire populations, researchers choose samples, which are representative of the population. This is similar to walking into a grocery store and examining a few grains of rice or wheat before purchasing an entire bag; we assume that the few grains that we select (the sample) are representative of the entire sack of grains (the population).

The results of the study are then extrapolated to generate inferences about the population. We do this using a process known as hypothesis testing. This means that the results of the study may not always be identical to the results we would expect to find in the population; i.e., there is the possibility that the study results may be erroneous.

HYPOTHESIS TESTING

A clinical trial begins with an assumption or belief, and then proceeds to either prove or disprove this assumption. In statistical terms, this belief or assumption is known as a hypothesis. Counterintuitively, what the researcher believes in (or is trying to prove) is called the “alternate” hypothesis, and the opposite is called the “null” hypothesis; every study has a null hypothesis and an alternate hypothesis. For superiority studies, the alternate hypothesis states that one treatment (usually the new or experimental treatment) is superior to the other; the null hypothesis states that there is no difference between the treatments (the treatments are equal). For example, in the ABLE study, we start by stating the null hypothesis—there is no difference in mortality between groups receiving fresh RBCs and standard-issue RBCs. We then state the alternate hypothesis—There is a difference between groups receiving fresh RBCs and standard-issue RBCs. It is important to note that we have stated that the groups are different, without specifying which group will be better than the other. This is known as a two-tailed hypothesis and it allows us to test for superiority on either side (using a two-sided test). This is because, when we start a study, we are not 100% certain that the new treatment can only be better than the standard treatment—it could be worse, and if it is so, the study should pick it up as well. One tailed hypothesis and one-sided statistical testing is done for non-inferiority studies, which will be discussed in a subsequent paper in this series.

STATISTICAL ERRORS

There are two possibilities to consider when interpreting the results of a superiority study. The first possibility is that there is truly no difference between the treatments but the study finds that they are different. This is called a Type-1 error or false-positive error or alpha error. This means falsely rejecting the null hypothesis.

The second possibility is that there is a difference between the treatments and the study does not pick up this difference. This is called a Type 2 error or false-negative error or beta error. This means falsely accepting the null hypothesis.

The power of the study is the ability to detect a difference between groups and is the converse of the beta error; i.e., power = 1-beta error. Alpha and beta errors are finalized when the protocol is written and form the basis for sample size calculation for the study. In an ideal world, we would not like any error in the results of our study; however, we would need to do the study in the entire population (infinite sample size) to be able to get a 0% alpha and beta error. These two errors enable us to do studies with realistic sample sizes, with the compromise that there is a small possibility that the results may not always reflect the truth. The basis for this will be discussed in a subsequent paper in this series dealing with sample size calculation.

Conventionally, type 1 or alpha error is set at 5%. This means, that at the end of the study, if there is a difference between groups, we want to be 95% certain that this is a true difference and allow only a 5% probability that this difference has occurred by chance (false positive). Type 2 or beta error is usually set between 10% and 20%; therefore, the power of the study is 90% or 80%. This means that if there is a difference between groups, we want to be 80% (or 90%) certain that the study will detect that difference. For example, in the ABLE study, sample size was calculated with a type 1 error of 5% (two-sided) and power of 90% (type 2 error of 10%) (1).

Table 1 gives a summary of the two types of statistical errors with an example

Statistical errors

(a) Types of statistical errors
: Null hypothesis is
TrueFalse
Null hypothesis is actuallyTrueCorrect results!Falsely rejecting null hypothesis - Type I error
FalseFalsely accepting null hypothesis - Type II errorCorrect results!
(b) Possible statistical errors in the ABLE trial
There is difference in mortality between groups receiving fresh RBCs and standard-issue RBCsThere difference in mortality between groups receiving fresh RBCs and standard-issue RBCs
TruthThere is difference in mortality between groups receiving fresh RBCs and standard-issue RBCsCorrect results!Falsely rejecting null hypothesis - Type I error
There difference in mortality between groups receiving fresh RBCs and standard-issue RBCsFalsely accepting null hypothesis - Type II errorCorrect results!

In the next article in this series, we will look at the meaning and interpretation of ‘ p ’ value and confidence intervals for hypothesis testing.

Source of support: Nil

Conflict of interest: None

what is hypothesis testing basics

Member-only story

Hypothesis Tests Explained

A quick overview of the concept of hypothesis testing, its classification in parametric and non-parametric tests, and when to use the most popular ones..

Angelica Lo Duca

Angelica Lo Duca

Towards Data Science

What is Hypothesis Testing

According to Jim Frost, Hypothesis Testing is a form of inferential statistics that allows us to draw conclusions about an entire population based on a representative sample [..] In most cases, it is simply impossible to observe the entire population to understand its properties. The only alternative is to collect a random sample and then use statistics to analyze it [1].

When performing Hypothesis Testing, firstly, a hypothesis must be formulated. An example of a hypothesis is “there is a correlation between height and gender in a population,” or “there is a difference between two groups of a population.”

Usually, the thesis to be demonstrated is called the Alternative Hypothesis (HA), and its opposite is the Null Hypothesis (H0). In practice, the Null Hypothesis states that there is nothing new happening in the population.

In the previous examples, Null Hypotheses could be formulated as follows: there is no correlation between height and gender in the…

Angelica Lo Duca

Written by Angelica Lo Duca

Researcher | +50k monthly views | I write on Data Science, Python, Tutorials, and, occasionally, Web Applications | Book Author of Comet for Data Science

Text to speech

what is hypothesis testing basics

Hypothesis Testing: Understanding the Basics, Types, and Importance

Hypothesis testing is a statistical method used to determine whether a hypothesis about a population parameter is true or not. This technique helps researchers and decision-makers make informed decisions based on evidence rather than guesses. Hypothesis testing is an essential tool in scientific research, social sciences, and business analysis. In this article, we will delve deeper into the basics of hypothesis testing, types of hypotheses, significance level, p-values, and the importance of hypothesis testing.

  • Introduction

What is a hypothesis?

What is hypothesis testing, types of hypotheses, null hypothesis, alternative hypothesis, one-tailed and two-tailed tests, significance level and p-values, avoiding type i and type ii errors, making informed decisions, testing business strategies, a/b testing, formulating the null and alternative hypotheses, selecting the appropriate test, setting the level of significance, calculating the p-value, making a decision, common misconceptions about hypothesis testing, understanding hypothesis testing.

A hypothesis is an assumption or a proposition made about a population parameter. It is a statement that can be tested and either supported or refuted. For example, a hypothesis could be that a new medication reduces the severity of symptoms in patients with a particular disease.

Hypothesis testing is a statistical method that helps to determine whether a hypothesis is true or not. It is a procedure that involves collecting and analyzing data to evaluate the probability of the null hypothesis being true. The null hypothesis is the hypothesis that there is no significant difference between a sample and the population.

In hypothesis testing, there are two types of hypotheses: null and alternative.

The null hypothesis, denoted by H0, is a statement of no effect, no relationship, or no difference between the sample and the population. It is assumed to be true until there is sufficient evidence to reject it. For example, the null hypothesis could be that there is no significant difference in the blood pressure of patients who received the medication and those who received a placebo.

The alternative hypothesis, denoted by H1, is a statement of an effect, relationship, or difference between the sample and the population. It is the opposite of the null hypothesis. For example, the alternative hypothesis could be that the medication reduces the blood pressure of patients compared to those who received a placebo.

There are two types of alternative hypotheses: one-tailed and two-tailed. A one-tailed test is used when there is a directional hypothesis. For example, the hypothesis could be that the medication reduces blood pressure. A two-tailed test is used when there is a non-directional hypothesis. For example, the hypothesis could be that there is a significant difference in blood pressure between patients who received the medication and those who received a placebo.

The significance level, denoted by α, is the probability of rejecting the null hypothesis when it is true. It is set at the beginning of the test, usually at 5% or 1%. The p-value is the probability of obtaining a test statistic as extreme as

or more extreme than the observed one, assuming that the null hypothesis is true. If the p-value is less than the significance level, we reject the null hypothesis.

Importance of Hypothesis Testing

Hypothesis testing helps to avoid Type I and Type II errors. Type I error occurs when we reject the null hypothesis when it is actually true. Type II error occurs when we fail to reject the null hypothesis when it is actually false. By setting a significance level and calculating the p-value, we can control the probability of making these errors.

Hypothesis testing helps researchers and decision-makers make informed decisions based on evidence. For example, a medical researcher can use hypothesis testing to determine the effectiveness of a new drug. A business analyst can use hypothesis testing to evaluate the performance of a marketing campaign. By testing hypotheses, decision-makers can avoid making decisions based on guesses or assumptions.

Hypothesis testing is widely used in business analysis to test strategies and make data-driven decisions. For example, a business owner can use hypothesis testing to determine whether a new product will be profitable. By conducting A/B testing, businesses can compare the performance of two versions of a product and make data-driven decisions.

Examples of Hypothesis Testing

  • A/B testing is a popular technique used in online marketing and web design. It involves comparing two versions of a webpage or an advertisement to determine which one performs better. By conducting A/B testing, businesses can optimize their websites and advertisements to increase conversions and sales.

A t-test is used to compare the means of two samples. It is commonly used in medical research, social sciences, and business analysis. For example, a researcher can use a t-test to determine whether there is a significant difference in the cholesterol levels of patients who received a new drug and those who received a placebo.

Analysis of Variance (ANOVA) is a statistical technique used to compare the means of more than two samples. It is commonly used in medical research, social sciences, and business analysis. For example, a business owner can use ANOVA to determine whether there is a significant difference in the sales performance of three different stores.

Steps in Hypothesis Testing

The first step in hypothesis testing is to formulate the null and alternative hypotheses. The null hypothesis is the hypothesis that there is no significant difference between the sample and the population, while the alternative hypothesis is the opposite.

The second step is to select the appropriate test based on the type of data and the research question. There are different types of tests for different types of data, such as t-test for continuous data and chi-square test for categorical data.

The third step is to set the level of significance, which is usually 5% or 1%. The significance level represents the probability of rejecting the null hypothesis when it is actually true.

The fourth step is to calculate the p-value, which represents the probability of obtaining a test statistic as extreme as or more extreme than the observed one, assuming that the null hypothesis is true.

The final step is to make a decision based on the p-value and the significance level. If the p-value is less than the significance level, we reject the null hypothesis. Otherwise, we fail to reject the null hypothesis.

There are several common misconceptions about hypothesis testing. One of the most common misconceptions is that rejecting the null hypothesis means that the alternative hypothesis is true. However

this is not necessarily the case. Rejecting the null hypothesis only means that there is evidence against it, but it does not prove that the alternative hypothesis is true. Another common misconception is that hypothesis testing can prove causality. However, hypothesis testing can only provide evidence for or against a hypothesis, and causality can only be inferred from a well-designed experiment.

Hypothesis testing is an important statistical technique used to test hypotheses and make informed decisions based on evidence. It helps to avoid Type I and Type II errors, and it is widely used in medical research, social sciences, and business analysis. By following the steps in hypothesis testing and avoiding common misconceptions, researchers and decision-makers can make data-driven decisions and avoid making decisions based on guesses or assumptions.

  • What is the difference between Type I and Type II errors in hypothesis testing?
  • Type I error occurs when we reject the null hypothesis when it is actually true, while Type II error occurs when we fail to reject the null hypothesis when it is actually false.
  • How do you select the appropriate test in hypothesis testing?
  • The appropriate test is selected based on the type of data and the research question. There are different types of tests for different types of data, such as t-test for continuous data and chi-square test for categorical data.
  • Can hypothesis testing prove causality?
  • No, hypothesis testing can only provide evidence for or against a hypothesis, and causality can only be inferred from a well-designed experiment.
  • Why is hypothesis testing important in business analysis?
  • Hypothesis testing is important in business analysis because it helps businesses make data-driven decisions and avoid making decisions based on guesses or assumptions. By testing hypotheses, businesses can evaluate the effectiveness of their strategies and optimize their performance.
  • What is A/B testing?

If you want to learn more about statistical analysis, including central tendency measures, check out our  comprehensive statistical course . Our course provides a hands-on learning experience that covers all the essential statistical concepts and tools, empowering you to analyze complex data with confidence. With practical examples and interactive exercises, you’ll gain the skills you need to succeed in your statistical analysis endeavors. Enroll now and take your statistical knowledge to the next level!

If you’re looking to jumpstart your career as a data analyst, consider enrolling in our comprehensive  Data Analyst Bootcamp with Internship program . Our program provides you with the skills and experience necessary to succeed in today’s data-driven world. You’ll learn the fundamentals of statistical analysis, as well as how to use tools such as SQL, Python, Excel, and PowerBI to analyze and visualize data. But that’s not all – our program also includes a 3-month internship with us where you can showcase your Capstone Project.

2 Responses

This is a great and comprehensive article on hypothesis testing, covering everything from the basics to practical examples. I particularly appreciate the section on common misconceptions, as it’s important to understand what hypothesis testing can and cannot do. Overall, a valuable resource for anyone looking to understand this statistical technique.

Thanks, Ana Carol for your Kind words, Yes these topics are very important to know in Artificial intelligence.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Data Science
  • Data Analysis
  • Data Visualization
  • Machine Learning
  • Deep Learning
  • Computer Vision
  • Artificial Intelligence
  • AI ML DS Interview Series
  • AI ML DS Projects series
  • Data Engineering
  • Web Scrapping

Understanding Hypothesis Testing

Hypothesis testing involves formulating assumptions about population parameters based on sample statistics and rigorously evaluating these assumptions against empirical evidence. This article sheds light on the significance of hypothesis testing and the critical steps involved in the process.

What is Hypothesis Testing?

A hypothesis is an assumption or idea, specifically a statistical claim about an unknown population parameter. For example, a judge assumes a person is innocent and verifies this by reviewing evidence and hearing testimony before reaching a verdict.

Hypothesis testing is a statistical method that is used to make a statistical decision using experimental data. Hypothesis testing is basically an assumption that we make about a population parameter. It evaluates two mutually exclusive statements about a population to determine which statement is best supported by the sample data. 

To test the validity of the claim or assumption about the population parameter:

  • A sample is drawn from the population and analyzed.
  • The results of the analysis are used to decide whether the claim is true or not.
Example: You say an average height in the class is 30 or a boy is taller than a girl. All of these is an assumption that we are assuming, and we need some statistical way to prove these. We need some mathematical conclusion whatever we are assuming is true.

Defining Hypotheses

  • Null hypothesis (H 0 ): In statistics, the null hypothesis is a general statement or default position that there is no relationship between two measured cases or no relationship among groups. In other words, it is a basic assumption or made based on the problem knowledge. Example : A company’s mean production is 50 units/per da H 0 : [Tex]\mu [/Tex] = 50.
  • Alternative hypothesis (H 1 ): The alternative hypothesis is the hypothesis used in hypothesis testing that is contrary to the null hypothesis.  Example: A company’s production is not equal to 50 units/per day i.e. H 1 : [Tex]\mu [/Tex] [Tex]\ne [/Tex] 50.

Key Terms of Hypothesis Testing

  • Level of significance : It refers to the degree of significance in which we accept or reject the null hypothesis. 100% accuracy is not possible for accepting a hypothesis, so we, therefore, select a level of significance that is usually 5%. This is normally denoted with  [Tex]\alpha[/Tex] and generally, it is 0.05 or 5%, which means your output should be 95% confident to give a similar kind of result in each sample.
  • P-value: The P value , or calculated probability, is the probability of finding the observed/extreme results when the null hypothesis(H0) of a study-given problem is true. If your P-value is less than the chosen significance level then you reject the null hypothesis i.e. accept that your sample claims to support the alternative hypothesis.
  • Test Statistic: The test statistic is a numerical value calculated from sample data during a hypothesis test, used to determine whether to reject the null hypothesis. It is compared to a critical value or p-value to make decisions about the statistical significance of the observed results.
  • Critical value : The critical value in statistics is a threshold or cutoff point used to determine whether to reject the null hypothesis in a hypothesis test.
  • Degrees of freedom: Degrees of freedom are associated with the variability or freedom one has in estimating a parameter. The degrees of freedom are related to the sample size and determine the shape.

Why do we use Hypothesis Testing?

Hypothesis testing is an important procedure in statistics. Hypothesis testing evaluates two mutually exclusive population statements to determine which statement is most supported by sample data. When we say that the findings are statistically significant, thanks to hypothesis testing. 

One-Tailed and Two-Tailed Test

One tailed test focuses on one direction, either greater than or less than a specified value. We use a one-tailed test when there is a clear directional expectation based on prior knowledge or theory. The critical region is located on only one side of the distribution curve. If the sample falls into this critical region, the null hypothesis is rejected in favor of the alternative hypothesis.

One-Tailed Test

There are two types of one-tailed test:

  • Left-Tailed (Left-Sided) Test: The alternative hypothesis asserts that the true parameter value is less than the null hypothesis. Example: H 0 ​: [Tex]\mu \geq 50 [/Tex] and H 1 : [Tex]\mu < 50 [/Tex]
  • Right-Tailed (Right-Sided) Test : The alternative hypothesis asserts that the true parameter value is greater than the null hypothesis. Example: H 0 : [Tex]\mu \leq50 [/Tex] and H 1 : [Tex]\mu > 50 [/Tex]

Two-Tailed Test

A two-tailed test considers both directions, greater than and less than a specified value.We use a two-tailed test when there is no specific directional expectation, and want to detect any significant difference.

Example: H 0 : [Tex]\mu = [/Tex] 50 and H 1 : [Tex]\mu \neq 50 [/Tex]

To delve deeper into differences into both types of test: Refer to link

What are Type 1 and Type 2 errors in Hypothesis Testing?

In hypothesis testing, Type I and Type II errors are two possible errors that researchers can make when drawing conclusions about a population based on a sample of data. These errors are associated with the decisions made regarding the null hypothesis and the alternative hypothesis.

  • Type I error: When we reject the null hypothesis, although that hypothesis was true. Type I error is denoted by alpha( [Tex]\alpha [/Tex] ).
  • Type II errors : When we accept the null hypothesis, but it is false. Type II errors are denoted by beta( [Tex]\beta [/Tex] ).


Null Hypothesis is True

Null Hypothesis is False

Null Hypothesis is True (Accept)

Correct Decision

Type II Error (False Negative)

Alternative Hypothesis is True (Reject)

Type I Error (False Positive)

Correct Decision

How does Hypothesis Testing work?

Step 1: define null and alternative hypothesis.

State the null hypothesis ( [Tex]H_0 [/Tex] ), representing no effect, and the alternative hypothesis ( [Tex]H_1 [/Tex] ​), suggesting an effect or difference.

We first identify the problem about which we want to make an assumption keeping in mind that our assumption should be contradictory to one another, assuming Normally distributed data.

Step 2 – Choose significance level

Select a significance level ( [Tex]\alpha [/Tex] ), typically 0.05, to determine the threshold for rejecting the null hypothesis. It provides validity to our hypothesis test, ensuring that we have sufficient data to back up our claims. Usually, we determine our significance level beforehand of the test. The p-value is the criterion used to calculate our significance value.

Step 3 – Collect and Analyze data.

Gather relevant data through observation or experimentation. Analyze the data using appropriate statistical methods to obtain a test statistic.

Step 4-Calculate Test Statistic

The data for the tests are evaluated in this step we look for various scores based on the characteristics of data. The choice of the test statistic depends on the type of hypothesis test being conducted.

There are various hypothesis tests, each appropriate for various goal to calculate our test. This could be a Z-test , Chi-square , T-test , and so on.

  • Z-test : If population means and standard deviations are known. Z-statistic is commonly used.
  • t-test : If population standard deviations are unknown. and sample size is small than t-test statistic is more appropriate.
  • Chi-square test : Chi-square test is used for categorical data or for testing independence in contingency tables
  • F-test : F-test is often used in analysis of variance (ANOVA) to compare variances or test the equality of means across multiple groups.

We have a smaller dataset, So, T-test is more appropriate to test our hypothesis.

T-statistic is a measure of the difference between the means of two groups relative to the variability within each group. It is calculated as the difference between the sample means divided by the standard error of the difference. It is also known as the t-value or t-score.

Step 5 – Comparing Test Statistic:

In this stage, we decide where we should accept the null hypothesis or reject the null hypothesis. There are two ways to decide where we should accept or reject the null hypothesis.

Method A: Using Crtical values

Comparing the test statistic and tabulated critical value we have,

  • If Test Statistic>Critical Value: Reject the null hypothesis.
  • If Test Statistic≤Critical Value: Fail to reject the null hypothesis.

Note: Critical values are predetermined threshold values that are used to make a decision in hypothesis testing. To determine critical values for hypothesis testing, we typically refer to a statistical distribution table , such as the normal distribution or t-distribution tables based on.

Method B: Using P-values

We can also come to an conclusion using the p-value,

  • If the p-value is less than or equal to the significance level i.e. ( [Tex]p\leq\alpha [/Tex] ), you reject the null hypothesis. This indicates that the observed results are unlikely to have occurred by chance alone, providing evidence in favor of the alternative hypothesis.
  • If the p-value is greater than the significance level i.e. ( [Tex]p\geq \alpha[/Tex] ), you fail to reject the null hypothesis. This suggests that the observed results are consistent with what would be expected under the null hypothesis.

Note : The p-value is the probability of obtaining a test statistic as extreme as, or more extreme than, the one observed in the sample, assuming the null hypothesis is true. To determine p-value for hypothesis testing, we typically refer to a statistical distribution table , such as the normal distribution or t-distribution tables based on.

Step 7- Interpret the Results

At last, we can conclude our experiment using method A or B.

Calculating test statistic

To validate our hypothesis about a population parameter we use statistical functions . We use the z-score, p-value, and level of significance(alpha) to make evidence for our hypothesis for normally distributed data .

1. Z-statistics:

When population means and standard deviations are known.

[Tex]z = \frac{\bar{x} – \mu}{\frac{\sigma}{\sqrt{n}}}[/Tex]

  • [Tex]\bar{x} [/Tex] is the sample mean,
  • μ represents the population mean, 
  • σ is the standard deviation
  • and n is the size of the sample.

2. T-Statistics

T test is used when n<30,

t-statistic calculation is given by:

[Tex]t=\frac{x̄-μ}{s/\sqrt{n}} [/Tex]

  • t = t-score,
  • x̄ = sample mean
  • μ = population mean,
  • s = standard deviation of the sample,
  • n = sample size

3. Chi-Square Test

Chi-Square Test for Independence categorical Data (Non-normally distributed) using:

[Tex]\chi^2 = \sum \frac{(O_{ij} – E_{ij})^2}{E_{ij}}[/Tex]

  • [Tex]O_{ij}[/Tex] is the observed frequency in cell [Tex]{ij} [/Tex]
  • i,j are the rows and columns index respectively.
  • [Tex]E_{ij}[/Tex] is the expected frequency in cell [Tex]{ij}[/Tex] , calculated as : [Tex]\frac{{\text{{Row total}} \times \text{{Column total}}}}{{\text{{Total observations}}}}[/Tex]

Real life Examples of Hypothesis Testing

Let’s examine hypothesis testing using two real life situations,

Case A: D oes a New Drug Affect Blood Pressure?

Imagine a pharmaceutical company has developed a new drug that they believe can effectively lower blood pressure in patients with hypertension. Before bringing the drug to market, they need to conduct a study to assess its impact on blood pressure.

  • Before Treatment: 120, 122, 118, 130, 125, 128, 115, 121, 123, 119
  • After Treatment: 115, 120, 112, 128, 122, 125, 110, 117, 119, 114

Step 1 : Define the Hypothesis

  • Null Hypothesis : (H 0 )The new drug has no effect on blood pressure.
  • Alternate Hypothesis : (H 1 )The new drug has an effect on blood pressure.

Step 2: Define the Significance level

Let’s consider the Significance level at 0.05, indicating rejection of the null hypothesis.

If the evidence suggests less than a 5% chance of observing the results due to random variation.

Step 3 : Compute the test statistic

Using paired T-test analyze the data to obtain a test statistic and a p-value.

The test statistic (e.g., T-statistic) is calculated based on the differences between blood pressure measurements before and after treatment.

t = m/(s/√n)

  • m  = mean of the difference i.e X after, X before
  • s  = standard deviation of the difference (d) i.e d i ​= X after, i ​− X before,
  • n  = sample size,

then, m= -3.9, s= 1.8 and n= 10

we, calculate the , T-statistic = -9 based on the formula for paired t test

Step 4: Find the p-value

The calculated t-statistic is -9 and degrees of freedom df = 9, you can find the p-value using statistical software or a t-distribution table.

thus, p-value = 8.538051223166285e-06

Step 5: Result

  • If the p-value is less than or equal to 0.05, the researchers reject the null hypothesis.
  • If the p-value is greater than 0.05, they fail to reject the null hypothesis.

Conclusion: Since the p-value (8.538051223166285e-06) is less than the significance level (0.05), the researchers reject the null hypothesis. There is statistically significant evidence that the average blood pressure before and after treatment with the new drug is different.

Python Implementation of Case A

Let’s create hypothesis testing with python, where we are testing whether a new drug affects blood pressure. For this example, we will use a paired T-test. We’ll use the scipy.stats library for the T-test.

Scipy is a mathematical library in Python that is mostly used for mathematical equations and computations.

We will implement our first real life problem via python,

import numpy as np from scipy import stats # Data before_treatment = np . array ([ 120 , 122 , 118 , 130 , 125 , 128 , 115 , 121 , 123 , 119 ]) after_treatment = np . array ([ 115 , 120 , 112 , 128 , 122 , 125 , 110 , 117 , 119 , 114 ]) # Step 1: Null and Alternate Hypotheses # Null Hypothesis: The new drug has no effect on blood pressure. # Alternate Hypothesis: The new drug has an effect on blood pressure. null_hypothesis = "The new drug has no effect on blood pressure." alternate_hypothesis = "The new drug has an effect on blood pressure." # Step 2: Significance Level alpha = 0.05 # Step 3: Paired T-test t_statistic , p_value = stats . ttest_rel ( after_treatment , before_treatment ) # Step 4: Calculate T-statistic manually m = np . mean ( after_treatment - before_treatment ) s = np . std ( after_treatment - before_treatment , ddof = 1 ) # using ddof=1 for sample standard deviation n = len ( before_treatment ) t_statistic_manual = m / ( s / np . sqrt ( n )) # Step 5: Decision if p_value <= alpha : decision = "Reject" else : decision = "Fail to reject" # Conclusion if decision == "Reject" : conclusion = "There is statistically significant evidence that the average blood pressure before and after treatment with the new drug is different." else : conclusion = "There is insufficient evidence to claim a significant difference in average blood pressure before and after treatment with the new drug." # Display results print ( "T-statistic (from scipy):" , t_statistic ) print ( "P-value (from scipy):" , p_value ) print ( "T-statistic (calculated manually):" , t_statistic_manual ) print ( f "Decision: { decision } the null hypothesis at alpha= { alpha } ." ) print ( "Conclusion:" , conclusion )

T-statistic (from scipy): -9.0 P-value (from scipy): 8.538051223166285e-06 T-statistic (calculated manually): -9.0 Decision: Reject the null hypothesis at alpha=0.05. Conclusion: There is statistically significant evidence that the average blood pressure before and after treatment with the new drug is different.

In the above example, given the T-statistic of approximately -9 and an extremely small p-value, the results indicate a strong case to reject the null hypothesis at a significance level of 0.05. 

  • The results suggest that the new drug, treatment, or intervention has a significant effect on lowering blood pressure.
  • The negative T-statistic indicates that the mean blood pressure after treatment is significantly lower than the assumed population mean before treatment.

Case B : Cholesterol level in a population

Data: A sample of 25 individuals is taken, and their cholesterol levels are measured.

Cholesterol Levels (mg/dL): 205, 198, 210, 190, 215, 205, 200, 192, 198, 205, 198, 202, 208, 200, 205, 198, 205, 210, 192, 205, 198, 205, 210, 192, 205.

Populations Mean = 200

Population Standard Deviation (σ): 5 mg/dL(given for this problem)

Step 1: Define the Hypothesis

  • Null Hypothesis (H 0 ): The average cholesterol level in a population is 200 mg/dL.
  • Alternate Hypothesis (H 1 ): The average cholesterol level in a population is different from 200 mg/dL.

As the direction of deviation is not given , we assume a two-tailed test, and based on a normal distribution table, the critical values for a significance level of 0.05 (two-tailed) can be calculated through the z-table and are approximately -1.96 and 1.96.

The test statistic is calculated by using the z formula Z = [Tex](203.8 – 200) / (5 \div \sqrt{25}) [/Tex] ​ and we get accordingly , Z =2.039999999999992.

Step 4: Result

Since the absolute value of the test statistic (2.04) is greater than the critical value (1.96), we reject the null hypothesis. And conclude that, there is statistically significant evidence that the average cholesterol level in the population is different from 200 mg/dL

Python Implementation of Case B

import scipy.stats as stats import math import numpy as np # Given data sample_data = np . array ( [ 205 , 198 , 210 , 190 , 215 , 205 , 200 , 192 , 198 , 205 , 198 , 202 , 208 , 200 , 205 , 198 , 205 , 210 , 192 , 205 , 198 , 205 , 210 , 192 , 205 ]) population_std_dev = 5 population_mean = 200 sample_size = len ( sample_data ) # Step 1: Define the Hypotheses # Null Hypothesis (H0): The average cholesterol level in a population is 200 mg/dL. # Alternate Hypothesis (H1): The average cholesterol level in a population is different from 200 mg/dL. # Step 2: Define the Significance Level alpha = 0.05 # Two-tailed test # Critical values for a significance level of 0.05 (two-tailed) critical_value_left = stats . norm . ppf ( alpha / 2 ) critical_value_right = - critical_value_left # Step 3: Compute the test statistic sample_mean = sample_data . mean () z_score = ( sample_mean - population_mean ) / \ ( population_std_dev / math . sqrt ( sample_size )) # Step 4: Result # Check if the absolute value of the test statistic is greater than the critical values if abs ( z_score ) > max ( abs ( critical_value_left ), abs ( critical_value_right )): print ( "Reject the null hypothesis." ) print ( "There is statistically significant evidence that the average cholesterol level in the population is different from 200 mg/dL." ) else : print ( "Fail to reject the null hypothesis." ) print ( "There is not enough evidence to conclude that the average cholesterol level in the population is different from 200 mg/dL." )

Reject the null hypothesis. There is statistically significant evidence that the average cholesterol level in the population is different from 200 mg/dL.

Limitations of Hypothesis Testing

  • Although a useful technique, hypothesis testing does not offer a comprehensive grasp of the topic being studied. Without fully reflecting the intricacy or whole context of the phenomena, it concentrates on certain hypotheses and statistical significance.
  • The accuracy of hypothesis testing results is contingent on the quality of available data and the appropriateness of statistical methods used. Inaccurate data or poorly formulated hypotheses can lead to incorrect conclusions.
  • Relying solely on hypothesis testing may cause analysts to overlook significant patterns or relationships in the data that are not captured by the specific hypotheses being tested. This limitation underscores the importance of complimenting hypothesis testing with other analytical approaches.

Hypothesis testing stands as a cornerstone in statistical analysis, enabling data scientists to navigate uncertainties and draw credible inferences from sample data. By systematically defining null and alternative hypotheses, choosing significance levels, and leveraging statistical tests, researchers can assess the validity of their assumptions. The article also elucidates the critical distinction between Type I and Type II errors, providing a comprehensive understanding of the nuanced decision-making process inherent in hypothesis testing. The real-life example of testing a new drug’s effect on blood pressure using a paired T-test showcases the practical application of these principles, underscoring the importance of statistical rigor in data-driven decision-making.

Frequently Asked Questions (FAQs)

1. what are the 3 types of hypothesis test.

There are three types of hypothesis tests: right-tailed, left-tailed, and two-tailed. Right-tailed tests assess if a parameter is greater, left-tailed if lesser. Two-tailed tests check for non-directional differences, greater or lesser.

2.What are the 4 components of hypothesis testing?

Null Hypothesis ( [Tex]H_o [/Tex] ): No effect or difference exists. Alternative Hypothesis ( [Tex]H_1 [/Tex] ): An effect or difference exists. Significance Level ( [Tex]\alpha [/Tex] ): Risk of rejecting null hypothesis when it’s true (Type I error). Test Statistic: Numerical value representing observed evidence against null hypothesis.

3.What is hypothesis testing in ML?

Statistical method to evaluate the performance and validity of machine learning models. Tests specific hypotheses about model behavior, like whether features influence predictions or if a model generalizes well to unseen data.

4.What is the difference between Pytest and hypothesis in Python?

Pytest purposes general testing framework for Python code while Hypothesis is a Property-based testing framework for Python, focusing on generating test cases based on specified properties of the code.

Please Login to comment...

Similar reads.

  • data-science

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

Tutorial Playlist

Statistics tutorial, everything you need to know about the probability density function in statistics, the best guide to understand central limit theorem, an in-depth guide to measures of central tendency : mean, median and mode, the ultimate guide to understand conditional probability.

A Comprehensive Look at Percentile in Statistics

The Best Guide to Understand Bayes Theorem

Everything you need to know about the normal distribution, an in-depth explanation of cumulative distribution function, a complete guide to chi-square test, what is hypothesis testing in statistics types and examples, understanding the fundamentals of arithmetic and geometric progression, the definitive guide to understand spearman’s rank correlation, mean squared error: overview, examples, concepts and more, all you need to know about the empirical rule in statistics, the complete guide to skewness and kurtosis, a holistic look at bernoulli distribution.

All You Need to Know About Bias in Statistics

A Complete Guide to Get a Grasp of Time Series Analysis

The Key Differences Between Z-Test Vs. T-Test

The Complete Guide to Understand Pearson's Correlation

A complete guide on the types of statistical studies, everything you need to know about poisson distribution, your best guide to understand correlation vs. regression, the most comprehensive guide for beginners on what is correlation, hypothesis testing in statistics - types | examples.

Lesson 10 of 24 By Avijeet Biswal

What Is Hypothesis Testing in Statistics? Types and Examples

Table of Contents

In today’s data-driven world, decisions are based on data all the time. Hypothesis plays a crucial role in that process, whether it may be making business decisions, in the health sector, academia, or in quality improvement. Without hypothesis & hypothesis tests, you risk drawing the wrong conclusions and making bad decisions. In this tutorial, you will look at Hypothesis Testing in Statistics.

The Ultimate Ticket to Top Data Science Job Roles

The Ultimate Ticket to Top Data Science Job Roles

What Is Hypothesis Testing in Statistics?

Hypothesis Testing is a type of statistical analysis in which you put your assumptions about a population parameter to the test. It is used to estimate the relationship between 2 statistical variables.

Let's discuss few examples of statistical hypothesis from real-life - 

  • A teacher assumes that 60% of his college's students come from lower-middle-class families.
  • A doctor believes that 3D (Diet, Dose, and Discipline) is 90% effective for diabetic patients.

Now that you know about hypothesis testing, look at the two types of hypothesis testing in statistics.

Hypothesis Testing Formula

Z = ( x̅ – μ0 ) / (σ /√n)

  • Here, x̅ is the sample mean,
  • μ0 is the population mean,
  • σ is the standard deviation,
  • n is the sample size.

How Hypothesis Testing Works?

An analyst performs hypothesis testing on a statistical sample to present evidence of the plausibility of the null hypothesis. Measurements and analyses are conducted on a random sample of the population to test a theory. Analysts use a random population sample to test two hypotheses: the null and alternative hypotheses.

The null hypothesis is typically an equality hypothesis between population parameters; for example, a null hypothesis may claim that the population means return equals zero. The alternate hypothesis is essentially the inverse of the null hypothesis (e.g., the population means the return is not equal to zero). As a result, they are mutually exclusive, and only one can be correct. One of the two possibilities, however, will always be correct.

Your Dream Career is Just Around The Corner!

Your Dream Career is Just Around The Corner!

Null Hypothesis and Alternative Hypothesis

The Null Hypothesis is the assumption that the event will not occur. A null hypothesis has no bearing on the study's outcome unless it is rejected.

H0 is the symbol for it, and it is pronounced H-naught.

The Alternate Hypothesis is the logical opposite of the null hypothesis. The acceptance of the alternative hypothesis follows the rejection of the null hypothesis. H1 is the symbol for it.

Let's understand this with an example.

A sanitizer manufacturer claims that its product kills 95 percent of germs on average. 

To put this company's claim to the test, create a null and alternate hypothesis.

H0 (Null Hypothesis): Average = 95%.

Alternative Hypothesis (H1): The average is less than 95%.

Another straightforward example to understand this concept is determining whether or not a coin is fair and balanced. The null hypothesis states that the probability of a show of heads is equal to the likelihood of a show of tails. In contrast, the alternate theory states that the probability of a show of heads and tails would be very different.

Become a Data Scientist with Hands-on Training!

Become a Data Scientist with Hands-on Training!

Hypothesis Testing Calculation With Examples

Let's consider a hypothesis test for the average height of women in the United States. Suppose our null hypothesis is that the average height is 5'4". We gather a sample of 100 women and determine that their average height is 5'5". The standard deviation of population is 2.

To calculate the z-score, we would use the following formula:

z = ( x̅ – μ0 ) / (σ /√n)

z = (5'5" - 5'4") / (2" / √100)

z = 0.5 / (0.045)

We will reject the null hypothesis as the z-score of 11.11 is very large and conclude that there is evidence to suggest that the average height of women in the US is greater than 5'4".

Steps in Hypothesis Testing

Hypothesis testing is a statistical method to determine if there is enough evidence in a sample of data to infer that a certain condition is true for the entire population. Here’s a breakdown of the typical steps involved in hypothesis testing:

Formulate Hypotheses

  • Null Hypothesis (H0): This hypothesis states that there is no effect or difference, and it is the hypothesis you attempt to reject with your test.
  • Alternative Hypothesis (H1 or Ha): This hypothesis is what you might believe to be true or hope to prove true. It is usually considered the opposite of the null hypothesis.

Choose the Significance Level (α)

The significance level, often denoted by alpha (α), is the probability of rejecting the null hypothesis when it is true. Common choices for α are 0.05 (5%), 0.01 (1%), and 0.10 (10%).

Select the Appropriate Test

Choose a statistical test based on the type of data and the hypothesis. Common tests include t-tests, chi-square tests, ANOVA, and regression analysis. The selection depends on data type, distribution, sample size, and whether the hypothesis is one-tailed or two-tailed.

Collect Data

Gather the data that will be analyzed in the test. This data should be representative of the population to infer conclusions accurately.

Calculate the Test Statistic

Based on the collected data and the chosen test, calculate a test statistic that reflects how much the observed data deviates from the null hypothesis.

Determine the p-value

The p-value is the probability of observing test results at least as extreme as the results observed, assuming the null hypothesis is correct. It helps determine the strength of the evidence against the null hypothesis.

Make a Decision

Compare the p-value to the chosen significance level:

  • If the p-value ≤ α: Reject the null hypothesis, suggesting sufficient evidence in the data supports the alternative hypothesis.
  • If the p-value > α: Do not reject the null hypothesis, suggesting insufficient evidence to support the alternative hypothesis.

Report the Results

Present the findings from the hypothesis test, including the test statistic, p-value, and the conclusion about the hypotheses.

Perform Post-hoc Analysis (if necessary)

Depending on the results and the study design, further analysis may be needed to explore the data more deeply or to address multiple comparisons if several hypotheses were tested simultaneously.

Types of Hypothesis Testing

To determine whether a discovery or relationship is statistically significant, hypothesis testing uses a z-test. It usually checks to see if two means are the same (the null hypothesis). Only when the population standard deviation is known and the sample size is 30 data points or more, can a z-test be applied.

A statistical test called a t-test is employed to compare the means of two groups. To determine whether two groups differ or if a procedure or treatment affects the population of interest, it is frequently used in hypothesis testing.

Chi-Square 

You utilize a Chi-square test for hypothesis testing concerning whether your data is as predicted. To determine if the expected and observed results are well-fitted, the Chi-square test analyzes the differences between categorical variables from a random sample. The test's fundamental premise is that the observed values in your data should be compared to the predicted values that would be present if the null hypothesis were true.

Hypothesis Testing and Confidence Intervals

Both confidence intervals and hypothesis tests are inferential techniques that depend on approximating the sample distribution. Data from a sample is used to estimate a population parameter using confidence intervals. Data from a sample is used in hypothesis testing to examine a given hypothesis. We must have a postulated parameter to conduct hypothesis testing.

Bootstrap distributions and randomization distributions are created using comparable simulation techniques. The observed sample statistic is the focal point of a bootstrap distribution, whereas the null hypothesis value is the focal point of a randomization distribution.

A variety of feasible population parameter estimates are included in confidence ranges. In this lesson, we created just two-tailed confidence intervals. There is a direct connection between these two-tail confidence intervals and these two-tail hypothesis tests. The results of a two-tailed hypothesis test and two-tailed confidence intervals typically provide the same results. In other words, a hypothesis test at the 0.05 level will virtually always fail to reject the null hypothesis if the 95% confidence interval contains the predicted value. A hypothesis test at the 0.05 level will nearly certainly reject the null hypothesis if the 95% confidence interval does not include the hypothesized parameter.

Become a Data Scientist through hands-on learning with hackathons, masterclasses, webinars, and Ask-Me-Anything! Start learning now!

Simple and Composite Hypothesis Testing

Depending on the population distribution, you can classify the statistical hypothesis into two types.

Simple Hypothesis: A simple hypothesis specifies an exact value for the parameter.

Composite Hypothesis: A composite hypothesis specifies a range of values.

A company is claiming that their average sales for this quarter are 1000 units. This is an example of a simple hypothesis.

Suppose the company claims that the sales are in the range of 900 to 1000 units. Then this is a case of a composite hypothesis.

One-Tailed and Two-Tailed Hypothesis Testing

The One-Tailed test, also called a directional test, considers a critical region of data that would result in the null hypothesis being rejected if the test sample falls into it, inevitably meaning the acceptance of the alternate hypothesis.

In a one-tailed test, the critical distribution area is one-sided, meaning the test sample is either greater or lesser than a specific value.

In two tails, the test sample is checked to be greater or less than a range of values in a Two-Tailed test, implying that the critical distribution area is two-sided.

If the sample falls within this range, the alternate hypothesis will be accepted, and the null hypothesis will be rejected.

Become a Data Scientist With Real-World Experience

Become a Data Scientist With Real-World Experience

Right Tailed Hypothesis Testing

If the larger than (>) sign appears in your hypothesis statement, you are using a right-tailed test, also known as an upper test. Or, to put it another way, the disparity is to the right. For instance, you can contrast the battery life before and after a change in production. Your hypothesis statements can be the following if you want to know if the battery life is longer than the original (let's say 90 hours):

  • The null hypothesis is (H0 <= 90) or less change.
  • A possibility is that battery life has risen (H1) > 90.

The crucial point in this situation is that the alternate hypothesis (H1), not the null hypothesis, decides whether you get a right-tailed test.

Left Tailed Hypothesis Testing

Alternative hypotheses that assert the true value of a parameter is lower than the null hypothesis are tested with a left-tailed test; they are indicated by the asterisk "<".

Suppose H0: mean = 50 and H1: mean not equal to 50

According to the H1, the mean can be greater than or less than 50. This is an example of a Two-tailed test.

In a similar manner, if H0: mean >=50, then H1: mean <50

Here the mean is less than 50. It is called a One-tailed test.

Type 1 and Type 2 Error

A hypothesis test can result in two types of errors.

Type 1 Error: A Type-I error occurs when sample results reject the null hypothesis despite being true.

Type 2 Error: A Type-II error occurs when the null hypothesis is not rejected when it is false, unlike a Type-I error.

Suppose a teacher evaluates the examination paper to decide whether a student passes or fails.

H0: Student has passed

H1: Student has failed

Type I error will be the teacher failing the student [rejects H0] although the student scored the passing marks [H0 was true]. 

Type II error will be the case where the teacher passes the student [do not reject H0] although the student did not score the passing marks [H1 is true].

Our Data Scientist Master's Program covers core topics such as R, Python, Machine Learning, Tableau, Hadoop, and Spark. Get started on your journey today!

Limitations of Hypothesis Testing

Hypothesis testing has some limitations that researchers should be aware of:

  • It cannot prove or establish the truth: Hypothesis testing provides evidence to support or reject a hypothesis, but it cannot confirm the absolute truth of the research question.
  • Results are sample-specific: Hypothesis testing is based on analyzing a sample from a population, and the conclusions drawn are specific to that particular sample.
  • Possible errors: During hypothesis testing, there is a chance of committing type I error (rejecting a true null hypothesis) or type II error (failing to reject a false null hypothesis).
  • Assumptions and requirements: Different tests have specific assumptions and requirements that must be met to accurately interpret results.

Learn All The Tricks Of The BI Trade

Learn All The Tricks Of The BI Trade

After reading this tutorial, you would have a much better understanding of hypothesis testing, one of the most important concepts in the field of Data Science . The majority of hypotheses are based on speculation about observed behavior, natural phenomena, or established theories.

If you are interested in statistics of data science and skills needed for such a career, you ought to explore the Post Graduate Program in Data Science.

If you have any questions regarding this ‘Hypothesis Testing In Statistics’ tutorial, do share them in the comment section. Our subject matter expert will respond to your queries. Happy learning!

1. What is hypothesis testing in statistics with example?

Hypothesis testing is a statistical method used to determine if there is enough evidence in a sample data to draw conclusions about a population. It involves formulating two competing hypotheses, the null hypothesis (H0) and the alternative hypothesis (Ha), and then collecting data to assess the evidence. An example: testing if a new drug improves patient recovery (Ha) compared to the standard treatment (H0) based on collected patient data.

2. What is H0 and H1 in statistics?

In statistics, H0​ and H1​ represent the null and alternative hypotheses. The null hypothesis, H0​, is the default assumption that no effect or difference exists between groups or conditions. The alternative hypothesis, H1​, is the competing claim suggesting an effect or a difference. Statistical tests determine whether to reject the null hypothesis in favor of the alternative hypothesis based on the data.

3. What is a simple hypothesis with an example?

A simple hypothesis is a specific statement predicting a single relationship between two variables. It posits a direct and uncomplicated outcome. For example, a simple hypothesis might state, "Increased sunlight exposure increases the growth rate of sunflowers." Here, the hypothesis suggests a direct relationship between the amount of sunlight (independent variable) and the growth rate of sunflowers (dependent variable), with no additional variables considered.

4. What are the 3 major types of hypothesis?

The three major types of hypotheses are:

  • Null Hypothesis (H0): Represents the default assumption, stating that there is no significant effect or relationship in the data.
  • Alternative Hypothesis (Ha): Contradicts the null hypothesis and proposes a specific effect or relationship that researchers want to investigate.
  • Nondirectional Hypothesis: An alternative hypothesis that doesn't specify the direction of the effect, leaving it open for both positive and negative possibilities.

Find our PL-300 Microsoft Power BI Certification Training Online Classroom training classes in top cities:

NameDatePlace
24 Aug -8 Sep 2024,
Weekend batch
Your City
7 Sep -22 Sep 2024,
Weekend batch
Your City
21 Sep -6 Oct 2024,
Weekend batch
Your City

About the Author

Avijeet Biswal

Avijeet is a Senior Research Analyst at Simplilearn. Passionate about Data Analytics, Machine Learning, and Deep Learning, Avijeet is also interested in politics, cricket, and football.

Recommended Resources

The Key Differences Between Z-Test Vs. T-Test

Free eBook: Top Programming Languages For A Data Scientist

Normality Test in Minitab: Minitab with Statistics

Normality Test in Minitab: Minitab with Statistics

A Comprehensive Look at Percentile in Statistics

Machine Learning Career Guide: A Playbook to Becoming a Machine Learning Engineer

  • PMP, PMI, PMBOK, CAPM, PgMP, PfMP, ACP, PBA, RMP, SP, and OPM3 are registered marks of the Project Management Institute, Inc.

what is hypothesis testing basics

Hypothesis Testing for Beginners — Simplest Explanation

Ashish Kumar Singh

Ashish Kumar Singh

Hypothesis testing is an important tool for Data Scientists and Researchers that allows them to make decisions based on evidence. In this article, we will explore the basics of hypothesis testing , including the steps involved in conducting a hypothesis test, as well as some common misconceptions .

What is a Hypothesis?

A hypothesis is a statement that we believe to be true. For example, we might hypothesize that a new drug is effective at treating a particular disease. To test this hypothesis, we need to gather data and analyze it using statistical methods.

The Steps of Hypothesis Testing

Step 1 : state the null hypothesis (h0).

Null hypothesis (H0) — The null hypothesis is the default position that there is no effect or difference between groups.

The null hypothesis (H0) is a statement of “no effect” or “no difference” between two populations. It represents the status quo, or the situation in which nothing has changed. For example, if we are testing whether a new drug is effective in treating a disease, the null hypothesis would be that the drug has no effect on the disease.

Step 2 : State the Alternative Hypothesis (Ha)

Alternative Hypothesis (H1) — The alternative hypothesis states that a population parameter is smaller, greater, or different than the hypothesized value in the null hypothesis. The alternative hypothesis is what you might believe to be true or hope to prove true.

The alternative hypothesis (Ha) is a statement that contradicts the null hypothesis and represents the effect or difference that we are trying to find evidence for. It is the statement that we will accept if we reject the null hypothesis. Using the same example as above, the alternative hypothesis would be that the drug is effective in treating the disease.

Step 3 : Determine the Level of Significance (α)

The level of significance, denoted by α, represents the likelihood of rejecting the null hypothesis when it is actually true. Typically, the level of significance is set at 0.05 or 0.01, which means that there is a 5% or 1% chance, respectively, of rejecting a true null hypothesis.

It is important to note that the level of significance is not the same as the p-value, which is the probability of obtaining a test statistic as extreme or more extreme than the observed value, assuming the null hypothesis is true. The p-value is compared to the level of significance to determine whether to reject or fail to reject the null hypothesis.

Step 4 : Collect Data and Calculate Test Statistic

The test statistic is a numerical value that is calculated based on the sample data, and it is used to determine whether to reject or fail to reject the null hypothesis. The calculation of the test statistic depends on the type of hypothesis test being performed.

For example, if we are testing whether the mean height of a population is equal to a certain value, we would calculate a t-test statistic. This involves calculating the difference between the sample mean and the hypothesized population mean, and dividing it by the standard error of the sample mean.

Step 5 : Determine the P-Value

P-value is the probability of observing a test statistic as extreme or more extreme than the one calculated from the sample data, assuming the null hypothesis is true.

We can use a one-sample t-test to test this hypothesis, with a significance level (α) of 0.05. We calculate the test statistic as: t statistic= (sample mean — hypothesized mean) / (standard deviation / sqrt(sample size)) = (173–170) / (5 / sqrt(50)) = 2.82 Now, we need to determine the p-value for this test statistic. We can use a t-distribution table or a statistical software to find the probability of getting a t-value as extreme or more extreme than 2.82, with 49 degrees of freedom (sample size — 1). Let’s assume that the p-value we obtain is 0.006. Since the p-value is less than our significance level of 0.05, we reject the null hypothesis and conclude that there is evidence to suggest that the mean height of students in the school is greater than 170 cm. The smaller the p-value, the stronger the evidence against the null hypothesis.

Step 6 : Make a Decision

After calculating the test statistic and determining the p-value, the next step in hypothesis testing is to make a decision. This involves comparing the p-value to the level of significance (α) set at the beginning of the test.

If the p-value is less than α , then we reject the null hypothesis and conclude that there is sufficient evidence to support the alternative hypothesis. This means that the result is statistically significant, and we can confidently make conclusions based on the sample data.

On the other hand, if the p-value is greater than or equal to α , then we fail to reject the null hypothesis . This means that the result is not statistically significant, and we cannot conclude that the alternative hypothesis is true based on the sample data.

Let’s take a simple example to understand this. Suppose a pharmaceutical company has developed a new drug that they claim reduces blood pressure in patients. The null hypothesis is that the drug has no effect on blood pressure, while the alternative hypothesis is that the drug does have an effect. To test this hypothesis, the company conducts a clinical trial on 100 patients and measures their blood pressure before and after taking the drug. They calculate a p-value of 0.03 and set the level of significance at α = 0.05. Since the p-value (0.03) is less than the level of significance (0.05), we can reject the null hypothesis and conclude that the drug does have a significant effect on reducing blood pressure in patients. The company can then confidently market the drug as an effective treatment for high blood pressure based on the sample data.

Common Misconceptions

One common misconception about hypothesis testing is that rejecting the null hypothesis means that the alternative hypothesis is true. However, this is not necessarily the case. Rejecting the null hypothesis only means that there is evidence to support the alternative hypothesis.

Another common misconception is that a small P-value means that the alternative hypothesis is true. However, a small P-value only suggests that the null hypothesis should be rejected in favor of the alternative hypothesis.

Usecases in Various Industries

  • Healthcare : Hypothesis testing is used to test new treatments, medications and procedures. For example, a hypothesis test can be conducted to determine if a new drug is more effective than an existing one.
  • Marketing : Hypothesis testing is used to determine the effectiveness of marketing campaigns. For example, a hypothesis test can be conducted to determine if a new advertisement is more effective than an existing one.
  • Finance : Hypothesis testing is used to make investment decisions. For example, a hypothesis test can be conducted to determine if an investment strategy is more effective than a traditional one.
  • Manufacturing : Hypothesis testing is used to improve product quality and reduce defects. For example, a hypothesis test can be conducted to determine if a new manufacturing process is more efficient than an existing one.
  • Education : Hypothesis testing is used to evaluate teaching methods and educational programs. For example, a hypothesis test can be conducted to determine if a new teaching method is more effective than an existing one.
  • Agriculture : Hypothesis testing is used to improve crop yields and reduce costs. For example, a hypothesis test can be conducted to determine if a new fertilizer is more effective than an existing one.

Ashish Kumar Singh

Written by Ashish Kumar Singh

Founder @ CareerTrek | Data Analytics | Machine Learning | Predictive Modeling

Text to speech

  • Business Essentials
  • Leadership & Management
  • Credential of Leadership, Impact, and Management in Business (CLIMB)
  • Entrepreneurship & Innovation
  • Digital Transformation
  • Finance & Accounting
  • Business in Society
  • For Organizations
  • Support Portal
  • Media Coverage
  • Founding Donors
  • Leadership Team

what is hypothesis testing basics

  • Harvard Business School →
  • HBS Online →
  • Business Insights →

Business Insights

Harvard Business School Online's Business Insights Blog provides the career insights you need to achieve your goals and gain confidence in your business skills.

  • Career Development
  • Communication
  • Decision-Making
  • Earning Your MBA
  • Negotiation
  • News & Events
  • Productivity
  • Staff Spotlight
  • Student Profiles
  • Work-Life Balance
  • AI Essentials for Business
  • Alternative Investments
  • Business Analytics
  • Business Strategy
  • Business and Climate Change
  • Creating Brand Value
  • Design Thinking and Innovation
  • Digital Marketing Strategy
  • Disruptive Strategy
  • Economics for Managers
  • Entrepreneurship Essentials
  • Financial Accounting
  • Global Business
  • Launching Tech Ventures
  • Leadership Principles
  • Leadership, Ethics, and Corporate Accountability
  • Leading Change and Organizational Renewal
  • Leading with Finance
  • Management Essentials
  • Negotiation Mastery
  • Organizational Leadership
  • Power and Influence for Positive Impact
  • Strategy Execution
  • Sustainable Business Strategy
  • Sustainable Investing
  • Winning with Digital Platforms

A Beginner’s Guide to Hypothesis Testing in Business

Business professionals performing hypothesis testing

  • 30 Mar 2021

Becoming a more data-driven decision-maker can bring several benefits to your organization, enabling you to identify new opportunities to pursue and threats to abate. Rather than allowing subjective thinking to guide your business strategy, backing your decisions with data can empower your company to become more innovative and, ultimately, profitable.

If you’re new to data-driven decision-making, you might be wondering how data translates into business strategy. The answer lies in generating a hypothesis and verifying or rejecting it based on what various forms of data tell you.

Below is a look at hypothesis testing and the role it plays in helping businesses become more data-driven.

Access your free e-book today.

What Is Hypothesis Testing?

To understand what hypothesis testing is, it’s important first to understand what a hypothesis is.

A hypothesis or hypothesis statement seeks to explain why something has happened, or what might happen, under certain conditions. It can also be used to understand how different variables relate to each other. Hypotheses are often written as if-then statements; for example, “If this happens, then this will happen.”

Hypothesis testing , then, is a statistical means of testing an assumption stated in a hypothesis. While the specific methodology leveraged depends on the nature of the hypothesis and data available, hypothesis testing typically uses sample data to extrapolate insights about a larger population.

Hypothesis Testing in Business

When it comes to data-driven decision-making, there’s a certain amount of risk that can mislead a professional. This could be due to flawed thinking or observations, incomplete or inaccurate data , or the presence of unknown variables. The danger in this is that, if major strategic decisions are made based on flawed insights, it can lead to wasted resources, missed opportunities, and catastrophic outcomes.

The real value of hypothesis testing in business is that it allows professionals to test their theories and assumptions before putting them into action. This essentially allows an organization to verify its analysis is correct before committing resources to implement a broader strategy.

As one example, consider a company that wishes to launch a new marketing campaign to revitalize sales during a slow period. Doing so could be an incredibly expensive endeavor, depending on the campaign’s size and complexity. The company, therefore, may wish to test the campaign on a smaller scale to understand how it will perform.

In this example, the hypothesis that’s being tested would fall along the lines of: “If the company launches a new marketing campaign, then it will translate into an increase in sales.” It may even be possible to quantify how much of a lift in sales the company expects to see from the effort. Pending the results of the pilot campaign, the business would then know whether it makes sense to roll it out more broadly.

Related: 9 Fundamental Data Science Skills for Business Professionals

Key Considerations for Hypothesis Testing

1. alternative hypothesis and null hypothesis.

In hypothesis testing, the hypothesis that’s being tested is known as the alternative hypothesis . Often, it’s expressed as a correlation or statistical relationship between variables. The null hypothesis , on the other hand, is a statement that’s meant to show there’s no statistical relationship between the variables being tested. It’s typically the exact opposite of whatever is stated in the alternative hypothesis.

For example, consider a company’s leadership team that historically and reliably sees $12 million in monthly revenue. They want to understand if reducing the price of their services will attract more customers and, in turn, increase revenue.

In this case, the alternative hypothesis may take the form of a statement such as: “If we reduce the price of our flagship service by five percent, then we’ll see an increase in sales and realize revenues greater than $12 million in the next month.”

The null hypothesis, on the other hand, would indicate that revenues wouldn’t increase from the base of $12 million, or might even decrease.

Check out the video below about the difference between an alternative and a null hypothesis, and subscribe to our YouTube channel for more explainer content.

2. Significance Level and P-Value

Statistically speaking, if you were to run the same scenario 100 times, you’d likely receive somewhat different results each time. If you were to plot these results in a distribution plot, you’d see the most likely outcome is at the tallest point in the graph, with less likely outcomes falling to the right and left of that point.

distribution plot graph

With this in mind, imagine you’ve completed your hypothesis test and have your results, which indicate there may be a correlation between the variables you were testing. To understand your results' significance, you’ll need to identify a p-value for the test, which helps note how confident you are in the test results.

In statistics, the p-value depicts the probability that, assuming the null hypothesis is correct, you might still observe results that are at least as extreme as the results of your hypothesis test. The smaller the p-value, the more likely the alternative hypothesis is correct, and the greater the significance of your results.

3. One-Sided vs. Two-Sided Testing

When it’s time to test your hypothesis, it’s important to leverage the correct testing method. The two most common hypothesis testing methods are one-sided and two-sided tests , or one-tailed and two-tailed tests, respectively.

Typically, you’d leverage a one-sided test when you have a strong conviction about the direction of change you expect to see due to your hypothesis test. You’d leverage a two-sided test when you’re less confident in the direction of change.

Business Analytics | Become a data-driven leader | Learn More

4. Sampling

To perform hypothesis testing in the first place, you need to collect a sample of data to be analyzed. Depending on the question you’re seeking to answer or investigate, you might collect samples through surveys, observational studies, or experiments.

A survey involves asking a series of questions to a random population sample and recording self-reported responses.

Observational studies involve a researcher observing a sample population and collecting data as it occurs naturally, without intervention.

Finally, an experiment involves dividing a sample into multiple groups, one of which acts as the control group. For each non-control group, the variable being studied is manipulated to determine how the data collected differs from that of the control group.

A Beginner's Guide to Data and Analytics | Access Your Free E-Book | Download Now

Learn How to Perform Hypothesis Testing

Hypothesis testing is a complex process involving different moving pieces that can allow an organization to effectively leverage its data and inform strategic decisions.

If you’re interested in better understanding hypothesis testing and the role it can play within your organization, one option is to complete a course that focuses on the process. Doing so can lay the statistical and analytical foundation you need to succeed.

Do you want to learn more about hypothesis testing? Explore Business Analytics —one of our online business essentials courses —and download our Beginner’s Guide to Data & Analytics .

what is hypothesis testing basics

About the Author

Statistics for LIS with Open Source R

Chapter 11: fundamentals of hypothesis testing.

Hypothesis testing refers to the process of choosing between two hypothesis statements about a probability distribution based on observed data from the distribution.  Hypothesis testing is a step-by-step methodology that allows you to make inferences about a population parameter by analyzing differences between the results observed (the sample statistic) and the results that can be expected if some underlying hypothesis is actually true.

The methodology behind hypothesis testing: 1. State the null hypothesis. 2. Select the distribution to use. 3. Determine the rejection and non-rejection regions. 4. Calculate the value of the test statistic. 5. Make a decision.

Step 1. State the null hypothesis In this step, you set up two statements to determine the validity of a statistical claim: a null hypothesis and an alternative hypothesis.

The null hypothesis is a statement containing a null, or zero, difference. It is the null hypothesis that undergoes the testing procedure, whether it is the original claim or not. The notation for the null hypothesis H 0 represents the status quo or what is assumed to be true. It always contains the equal sign.

The alternative statement must be true if the null hypothesis is false. An alternative hypothesis is represented as H 1 . It Is the opposite of the null and is what you wish to support. It also never contains the equal sign.

Step 2. Select the distribution to use You can select a sample or the entire population. In selecting the distribution, we must know the mean for the population or the sample.

Step 3. Determine the rejection and non-rejection regions In this step we calculate the significance level . T he significance level , also denoted as alpha or α, is the probability of rejecting the null hypothesis when it is true. For example, a significance level of 0.05 indicates a 5% risk of concluding that a difference exists when there is no actual difference. Step 4. Determine the value of the test statistics The values of the test statistic separate the rejection and non-rejection regions. Rejection region:  the set of values for the test statistic that leads to rejection of  H 0 . Non-rejection region:  the set of values not in the rejection region that leads to non-rejection of  H 0 .

The P-Value:  Another quantitative measure for reporting the result of a test of hypothesis is the p-value. It is also called the probability of chance in order to test. The lower the p-value the greater likelihood of obtaining the same result. And as a result, a low p-value is a good indication that the results are not due to random chance alone. P-value = the probability of obtaining a test statistic equal to or more extreme value than the observed value of H 0 . As a result H 0  will be true. We then compare the p-value with α: 1. If p-value < α, reject H 0 . 2. If p-value >= α, do not reject H 0 . 3. “If p-value is low, then H 0 must go.”

As mentioned in Chapter 8 , the logic of hypothesis testing is to reject the null hypothesis if the sample data are not consistent with the null hypothesis. Thus, one rejects the null hypothesis if the observed test statistic is more extreme in the direction of the alternative hypothesis than one can tolerate. Step 5. Make a decision Based on the result, you can determine if your study accepts or rejects the null hypothesis. However, when the results of a hypothesis test are reported in academic journal, it is common to find that the author provides only the test statistic and its p-value result in the  conclusions drawn from the data.

Next, Chapter 12 , Correlation and Regression Previous,  Chapter 10 , Confidence Interval Estimation

A Primer for Using Open Source R Software for Accessibility and Visualization

  • Search Search Please fill out this field.

What Is Hypothesis Testing?

  • How It Works

4 Step Process

The bottom line.

  • Fundamental Analysis

Hypothesis Testing: 4 Steps and Example

what is hypothesis testing basics

Hypothesis testing, sometimes called significance testing, is an act in statistics whereby an analyst tests an assumption regarding a population parameter. The methodology employed by the analyst depends on the nature of the data used and the reason for the analysis.

Hypothesis testing is used to assess the plausibility of a hypothesis by using sample data. Such data may come from a larger population or a data-generating process. The word "population" will be used for both of these cases in the following descriptions.

Key Takeaways

  • Hypothesis testing is used to assess the plausibility of a hypothesis by using sample data.
  • The test provides evidence concerning the plausibility of the hypothesis, given the data.
  • Statistical analysts test a hypothesis by measuring and examining a random sample of the population being analyzed.
  • The four steps of hypothesis testing include stating the hypotheses, formulating an analysis plan, analyzing the sample data, and analyzing the result.

How Hypothesis Testing Works

In hypothesis testing, an  analyst  tests a statistical sample, intending to provide evidence on the plausibility of the null hypothesis. Statistical analysts measure and examine a random sample of the population being analyzed. All analysts use a random population sample to test two different hypotheses: the null hypothesis and the alternative hypothesis.

The null hypothesis is usually a hypothesis of equality between population parameters; e.g., a null hypothesis may state that the population mean return is equal to zero. The alternative hypothesis is effectively the opposite of a null hypothesis. Thus, they are mutually exclusive , and only one can be true. However, one of the two hypotheses will always be true.

The null hypothesis is a statement about a population parameter, such as the population mean, that is assumed to be true.

  • State the hypotheses.
  • Formulate an analysis plan, which outlines how the data will be evaluated.
  • Carry out the plan and analyze the sample data.
  • Analyze the results and either reject the null hypothesis, or state that the null hypothesis is plausible, given the data.

Example of Hypothesis Testing

If an individual wants to test that a penny has exactly a 50% chance of landing on heads, the null hypothesis would be that 50% is correct, and the alternative hypothesis would be that 50% is not correct. Mathematically, the null hypothesis is represented as Ho: P = 0.5. The alternative hypothesis is shown as "Ha" and is identical to the null hypothesis, except with the equal sign struck-through, meaning that it does not equal 50%.

A random sample of 100 coin flips is taken, and the null hypothesis is tested. If it is found that the 100 coin flips were distributed as 40 heads and 60 tails, the analyst would assume that a penny does not have a 50% chance of landing on heads and would reject the null hypothesis and accept the alternative hypothesis.

If there were 48 heads and 52 tails, then it is plausible that the coin could be fair and still produce such a result. In cases such as this where the null hypothesis is "accepted," the analyst states that the difference between the expected results (50 heads and 50 tails) and the observed results (48 heads and 52 tails) is "explainable by chance alone."

When Did Hypothesis Testing Begin?

Some statisticians attribute the first hypothesis tests to satirical writer John Arbuthnot in 1710, who studied male and female births in England after observing that in nearly every year, male births exceeded female births by a slight proportion. Arbuthnot calculated that the probability of this happening by chance was small, and therefore it was due to “divine providence.”

What are the Benefits of Hypothesis Testing?

Hypothesis testing helps assess the accuracy of new ideas or theories by testing them against data. This allows researchers to determine whether the evidence supports their hypothesis, helping to avoid false claims and conclusions. Hypothesis testing also provides a framework for decision-making based on data rather than personal opinions or biases. By relying on statistical analysis, hypothesis testing helps to reduce the effects of chance and confounding variables, providing a robust framework for making informed conclusions.

What are the Limitations of Hypothesis Testing?

Hypothesis testing relies exclusively on data and doesn’t provide a comprehensive understanding of the subject being studied. Additionally, the accuracy of the results depends on the quality of the available data and the statistical methods used. Inaccurate data or inappropriate hypothesis formulation may lead to incorrect conclusions or failed tests. Hypothesis testing can also lead to errors, such as analysts either accepting or rejecting a null hypothesis when they shouldn’t have. These errors may result in false conclusions or missed opportunities to identify significant patterns or relationships in the data.

Hypothesis testing refers to a statistical process that helps researchers determine the reliability of a study. By using a well-formulated hypothesis and set of statistical tests, individuals or businesses can make inferences about the population that they are studying and draw conclusions based on the data presented. All hypothesis testing methods have the same four-step process, which includes stating the hypotheses, formulating an analysis plan, analyzing the sample data, and analyzing the result.

Sage. " Introduction to Hypothesis Testing ," Page 4.

Elder Research. " Who Invented the Null Hypothesis? "

Formplus. " Hypothesis Testing: Definition, Uses, Limitations and Examples ."

what is hypothesis testing basics

  • Terms of Service
  • Editorial Policy
  • Privacy Policy

Jaro-Education-15-Years

Know It All About Hypothesis Testing: A Simplified Guide

Table of contents.

Know-It-All-About-Hypothesis-Testing-A-Simplified-Guide

  • jaro education
  • 13, August 2024

Hypothesis testing is one of the major methods in the grand scheme of statistics. It assists in deriving data-driven decisions, evaluating theories, and inferring meaningful conclusions from data. But what is hypothesis testing, and why is it so important in statistics? For those who want to learn and enhance their skills, the IIM Nagpur PG Certificate Programme in Data Science for Business Excellence and Innovation offers the perfect platform for learning from professionals, gaining hands-on experience, and moving up the value chain.

Introduction to Hypothesis Testing

Hypothesis testing is a means to make decisions about population properties based on the information derived from a sample. It simply provides a basis for the testing of assumptions or hypotheses made about a certain parameter in a population. Statement of the whole process involves a null hypothesis denoted by H0 and an alternative hypothesis denoted by H1, followed by the collection of data and subsequent analysis to see whether it favours the rejection of the null hypothesis in favour of the alternative.

In other words, hypothesis testing gives the answers to such questions as:

  • Does a new drug improve patient outcomes?
  • Is a new teaching method more effective than the old one?
  • Does a marketing campaign increase sales?

Studies that need Hypothesis Testing

*ProjectGuru

The Hypothesis Testing Process

The hypothesis testing process is quite logical and it contains several critical steps:

  • State the Hypotheses: The hypotheses state the null hypothesis, H0, and the alternative hypothesis, H1. The null hypothesis normally represents a no-effect or no-difference statement, while the alternative represents what is to be proved.
  • Select the Level of Significance (α): Probability of rejecting the null hypothesis when it is true. Common values are 0.05, 0.01, and 0.10.
  • Choose the Right Test: Depending on the data and hypothesis, the test to be applied will be different, it could be anything from a t-test and chi-square test, among others.
  • Gather and Summarise the Data: Get the data either through experiments or employing observation and then summarize the same through relevant statistics.
  • Calculate the Test Statistic: The test statistic is calculated with the help of data. It expresses the probability that the sample data will be observed under the null hypothesis.
  • Make a Decision: Compare the computed value of the test statistic to the critical value obtained from the statistical table or, using the p-value, accept or reject the null hypothesis.
  • Draw a Conclusion: Using the results in the setting of the research question.

Hypothesis Testing Types

Within hypothesis testing, there are varieties that best fit different sorts of data and research questions. The main kinds include:

  • Z-Test: Used with large samples, n > 30, with known population variance. 
  • One-sample t-test: The sample mean is different from a known population mean.  
  • Two-sample t-test: Used for comparison of the means of two independent groups.  
  • Paired t-test: Comparison of means from the same group at different times.
  • Chi-Square Test: This is carried out with categorical data to assess the probability that such a distribution would occur by chance. It includes the chi-square goodness of fit test, which shows whether a sample conforms to the population, and the chi-square test for independence, which determines whether two variables are independent of one another. 
  • ANOVA: This is used to compare more than three groups’ means to determine if at least one mean of the groups differs from others.
  • F-Test: It tests the hypothesis of equality of two population variances.

Examples in Real Life of Hypothesis Testing

Let us see how it works in practice with some examples.

Example 1: A/B Testing in Marketing

A company would like to know whether the new layout of a website, version B, provides more user engagement than the old layout, version A. The null hypothesis is that both versions have no difference in engagement. The alternative hypothesis is that the new layout leads to higher engagement. Performing an A/B test and examining the data will enable the company to either accept the new layout or not.

Example 2: Clinical Trials in Healthcare

A new medication in healthcare is tested in a clinical trial. Researchers want to establish if it can reduce blood pressure better than a previously existing one. The null hypothesis, H0, assumes no difference in blood pressure reduction between the new and the existing medications. The alternative hypothesis, H1, is that the new medication is more potent. The researchers can make an informed inference after administering different groups with the medications, measuring changes in blood pressure, and comparing such changes using a t-test.

Example 3: Quality Control in Manufacturing

A manufacturer wants to be certain that the true mean diameter for bolts manufactured by a machine is 5 mm. The null hypothesis is that the mean diameter is 5 mm. The alternative hypothesis is that the mean diameter is not 5 mm. The manufacturer conducts a hypothesis test based on a sample of bolts, measuring their diameters.

Significance of Hypothesis Testing in Business

Hypothesis testing is not merely an exercise alma mater; rather, it is something much needed for making a business decision. It may support enhancing or optimizing business strategies, operations, and customer satisfaction by rigorous testing of assumptions based on data-driven decisions. For instance, this would include areas such as product development, market research, or quality assurance.

This nuance in business matters a lot to decisions. It is useful in finding chances for innovation and optimizing marketing strategies to assure product quality. Hypothesis testing is used by businesses to test new ideas and concepts before full-scale implementation to avoid loss and risk, hence maximizing the chances of return maximization.

For instance, in the retail sector, one can use hypothesis testing to determine if the promotional campaign is effective. Comparing the sales data before and after a promotion will help the business learn if the promotion worked. In manufacturing, hypothesis testing can be used to ensure that production processes are within specified limits, to maintain the quality and consistency of the product.

Moreover, hypothesis testing is at the core of any financial analysis and forecasting . It helps the financial analyst measure investment performance, identify anomalies in financial data, and graph the future trends. It provides a firm statistical method to assist an informed decision that turns on empirical evidence rather than gut feelings or assumptions.

An in-depth look at types of hypothesis testing

Let us consider in greater detail some of the important hypothesis testing types enumerated earlier, and when and how they are used.

The Z-test is very useful in large samples, n > 30, with known population variances. It is frequently used in quality control and survey analysis. For example, suppose a company wants to compare the average customer satisfaction score from a large sample with the national average. A Z-test will tell whether their customer service passes or fails the national standard.

The T-test is useful when sample sizes are small and the population variance is unknown. There are three variants of the T-test, which makes it versatile in application:

  • One-sample t-test: This is used to determine if the sample mean is significantly different from any known value. For instance, a school may use a one-sample t-test to determine if the average test score of the class differs from the national average.
  • Two-sample t-test: This process compares the means of two independent groups. In a clinical trial, this test will be useful in comparing two different treatments.
  • Paired t-test: The same group is measured at two different times. For example, weight loss of people before and after a diet program.

Chi-Square Test

Chi-square tests are used in categorical data. They are aimed at establishing whether the relationship between the two variables is significant. Chi-square tests may be applied in market research to establish whether some relationships exist, say between customer demographics and buying behavior. For example, it would tell if age groups have varying preferences for a given product or not.

ANOVA is used to compare three or more group means. The application of this statistical tool is thus very appropriate, especially in multiple treatment experiments. For instance, to establish which type of crop variety yields the highest under similar conditions, an agricultural scientist will apply the ANOVA to compare the yields of different crop varieties.

The F-test is carried out between the two variances to check if they are significantly different. One of the areas this test is commonly applied includes quality control processes, especially when it comes to comparing the variability of product measurements from different machines.

Practical Considerations in Hypothesis Testing

While hypothesis testing is an invaluable tool, there are some practical considerations which have to be borne in mind for effective and reliable results.

  • Sample Size: The size of the sample in a study greatly influences the reliability of the test result. Inconclusive or misleading results are usually obtained when the sample size is small, and accurate estimates are always obtained using larger samples.
  • Significance Level (): Selection of the appropriate level of significance is very important. A lower significance level will reduce the risk of type I errors, but on the other hand, increases type II errors or false negatives.
  • Test Power: The power of the test refers to the probability of correct rejection of the null hypothesis where it is false. Higher power reduces the risk of type II errors and is obtained either by increasing the sample size or the effect size.
  • Assumptions: There are different assumptions for the various hypothesis testing techniques. Some require normality and equal variances. In this respect, it is also important to check the assumptions before conducting the test to avoid erroneous conclusions.

Develop data-driven strategies with Hypothesis Testing

Hypothesis testing is one of the critical parts of a statistical analysis and hence sets a clearly defined framework within which data-driven decisions can be made. Once you have grasped how the process and types of hypothesis testing work, you will be able to apply such methods to real-world problems in ways that can drive business excellence and innovation.

It isn’t a theoretical concept but a practical tool that enables better decision-making across many domains. Be it healthcare, marketing, or manufacturing, it is understanding hypothesis testing that, with the application of this understanding, leads toward more informed and data-driven decision-making to propel the organization in the proper direction.

Fill The Form To Get More Information

  • I agree to the Terms and Conditions of this website.

Related Program

Chief technology officer programme offered by cep – iit delhi, advanced programme in ev technology – cep, iit delhi, professional certificate programme in digital marketing for performance & growth – iim kozhikode, post graduate certificate programme in manufacturing management & analytics – iim trichy, recent blogs.

The-Importance-of-Branding-Everything-You-Need-to-Know

The Importance of Branding: Everything You Need to Know

What-is-Voice-of-Customer-(VoC)

What is Voice of Customer (VoC)?

The-Ultimate-Guide-To-ECommerce-Business-And-Its-Various-Types

The Ultimate Guide To ECommerce Business And Its Various Types

AIML-Demystified-Everything-You-Need-To-Know-About-AI-Markup-Language

AIML Demystified: Everything You Need To Know About AI Markup Language

Pharmacokinetics

Pharmacokinetics Fundamentals: Know What Happens After A Drug Is Injected

Triumph-Combinational-Circuits-Applications-in-2024-and-Beyond

Triumph Combinational Circuits: Applications in 2024 and Beyond

Trending blogs.

Descriptive-vs.-Inferential-Statistics-Key-Differences

Leave a Comment Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Jaro Education

Long Duration Certification Programs

  • Accelerated General Management Programme - IIM Ahmedabad
  • Advanced Strategy for Products and Marketing & Advanced Analytics for Products and Marketing- IIM Kozhikode
  • Professional Certificate Programme in Investment Banking - IIM Kozhikode
  • Executive General Management Programme - IIM Trichy
  • PG Certification Program in Business Analytics & Application- IIM Trichy
  • PG Certificate in Cyber Security- IIT Palakkad
  • Executive Program in Business Management-IMT Ghaziabad
  • PG Certificate Programme in Fintech- IIM Nagpur
  • Adani Institute of Digital Technology & Management Ahmedabad-Executive Program in Business Analytics

Online Bachelors Degree Programs

  • Online BCA - Manipal University, Jaipur
  • Online BBA- Manipal University, Jaipur
  • Online BBA Degree Program-Dr D. Y. Patil Vidyapeeth Pune
  • Online B.Com- Manipal University, Jaipur

Doctoral Programs

  • Doctor Of Business Administration (DBA)-Swiss School of Management Switzerland

Online Masters Degree and PG Programs

  • Online MBA- Manipal University, Jaipur
  • Online MBA Degree Programme-Dr D. Y. Patil Vidyapeeth Pune
  • Executive MBA-Dayanand Sagar University Bangalore
  • PGDM Hybrid-WeSchool, Mumbai

Trending Programs

  • Doctorate & Phd Courses
  • Online MBA Courses
  • Online PG Programs
  • Online UG Programs
  • Finance Programs
  • International Programs
  • Analytics & Data Science Programs
  • Management & Leadership Programs

Short Duration Certification Programs

  • Future Leader Program- Deakin University Australia and KPMG in India
  • Executive Program in Business Finance - IIM Ahmedabad
  • Certification in Corporate Finance & Analytics- KPMG in India

Fulltime Masters and PG Programs

  • MBA Program in Real Estate - Niranjan Hiranandani School of Real Estate - HSNC University
  • About Jaro Education
  • Student Grievance Redressal
  • Terms of Use

Trending PG & UG Programs

  • Online Mcom
  • Online Bcom

In-Demand MBA Courses

  • MBA in Finance
  • MBA in Marketing
  • MBA in Human Resource Management
  • MBA in Systems & Operations
  • MBA Project Management
  • MBA in Business Analytics

Copyright © 2022 Jaro Education. All rights reserved.

Coming Soon

COMMENTS

  1. Introduction to Hypothesis Testing

    A hypothesis test consists of five steps: 1. State the hypotheses. State the null and alternative hypotheses. These two hypotheses need to be mutually exclusive, so if one is true then the other must be false. 2. Determine a significance level to use for the hypothesis. Decide on a significance level.

  2. Hypothesis Testing

    Step 5: Present your findings. The results of hypothesis testing will be presented in the results and discussion sections of your research paper, dissertation or thesis.. In the results section you should give a brief summary of the data and a summary of the results of your statistical test (for example, the estimated difference between group means and associated p-value).

  3. Hypothesis Testing: Uses, Steps & Example

    Hypothesis testing involves five key steps, each critical to validating a research hypothesis using statistical methods: Formulate the Hypotheses: Write your research hypotheses as a null hypothesis (H 0) and an alternative hypothesis (H A ). Data Collection: Gather data specifically aimed at testing the hypothesis.

  4. 9.1: Introduction to Hypothesis Testing

    In hypothesis testing, the goal is to see if there is sufficient statistical evidence to reject a presumed null hypothesis in favor of a conjectured alternative hypothesis.The null hypothesis is usually denoted \(H_0\) while the alternative hypothesis is usually denoted \(H_1\). An hypothesis test is a statistical decision; the conclusion will either be to reject the null hypothesis in favor ...

  5. Hypothesis Testing

    The basic steps to perform hypothesis testing are as follows: Step 1: Set up the null hypothesis by correctly identifying whether it is the left-tailed, right-tailed, or two-tailed hypothesis testing. Step 2: Set up the alternative hypothesis.

  6. Statistical Hypothesis Testing Overview

    Hypothesis testing is a crucial procedure to perform when you want to make inferences about a population using a random sample. These inferences include estimating population properties such as the mean, differences between means, proportions, and the relationships between variables. This post provides an overview of statistical hypothesis testing.

  7. 7.1: Basics of Hypothesis Testing

    Test Statistic: z = ¯ x − μo σ / √n since it is calculated as part of the testing of the hypothesis. Definition 7.1.4. p - value: probability that the test statistic will take on more extreme values than the observed test statistic, given that the null hypothesis is true.

  8. An Introduction to Statistics: Understanding Hypothesis Testing and

    HYPOTHESIS TESTING. A clinical trial begins with an assumption or belief, and then proceeds to either prove or disprove this assumption. In statistical terms, this belief or assumption is known as a hypothesis. Counterintuitively, what the researcher believes in (or is trying to prove) is called the "alternate" hypothesis, and the opposite ...

  9. 3.1: The Fundamentals of Hypothesis Testing

    Components of a Formal Hypothesis Test. The null hypothesis is a statement about the value of a population parameter, such as the population mean (µ) or the population proportion (p).It contains the condition of equality and is denoted as H 0 (H-naught).. H 0: µ = 157 or H0 : p = 0.37. The alternative hypothesis is the claim to be tested, the opposite of the null hypothesis.

  10. Statistical hypothesis test

    A statistical hypothesis test is a method of statistical inference used to decide whether the data sufficiently support a particular hypothesis. A statistical hypothesis test typically involves a calculation of a test statistic. Then a decision is made, either by comparing the test statistic to a critical value or equivalently by evaluating a p ...

  11. Hypothesis Tests Explained. A quick overview of the concept of…

    In this short article, I have described the concept of the Hypothesis Test, as well as the most popular tests and when they can be used. For those who still have difficulty understanding hypothesis tests, there is a Python library, called easy-ht [6], which runs the main hypothesis tests without any knowledge of statistics.

  12. Simple hypothesis testing

    Practice this lesson yourself on KhanAcademy.org right now: https://www.khanacademy.org/math/probability/probability-and-combinatorics-topic/decisions-with-p...

  13. Hypothesis Testing: Understanding the Basics, Types, and Importance

    Hypothesis testing is an essential tool in scientific research, social sciences, and business analysis. In this article, we will delve deeper into the basics of hypothesis testing, types of hypotheses, significance level, p-values, and the importance of hypothesis testing. Introduction; Understanding Hypothesis Testing What is a hypothesis?

  14. Understanding Hypothesis Testing

    Hypothesis testing involves formulating assumptions about population parameters based on sample statistics and rigorously evaluating these assumptions against empirical evidence. This article sheds light on the significance of hypothesis testing and the critical steps involved in the process. ... In other words, it is a basic assumption or made ...

  15. Hypothesis Testing in Statistics

    Hypothesis testing is a statistical method used to determine if there is enough evidence in a sample data to draw conclusions about a population. It involves formulating two competing hypotheses, the null hypothesis (H0) and the alternative hypothesis (Ha), and then collecting data to assess the evidence. ...

  16. PDF Hypothesis Testing: Basic Concepts

    Hypothesis Testing: Basic Concepts In the field of statistics, a hypothesis is a claim about some aspect of a population. A hypothesis test allows us to test the claim about the population and find out how likely it is to be true. The hypothesis test consists of several components; two statements, the null hypothesis and the

  17. Hypothesis Testing for Beginners

    Hypothesis testing is an important tool for Data Scientists and Researchers that allows them to make decisions based on evidence. In this article, we will explore the basics of hypothesis testing, including the steps involved in conducting a hypothesis test, as well as some common misconceptions.. What is a Hypothesis? A hypothesis is a statement that we believe to be true.

  18. Hypothesis Testing Definition, Steps & Examples

    Hypothesis Testing Steps. There are 5 main hypothesis testing steps, which will be outlined in this section. The steps are: Determine the null hypothesis: In this step, the statistician should ...

  19. 1.4: Basic Concepts of Hypothesis Testing

    Learning Objectives. One of the main goals of statistical hypothesis testing is to estimate the P. P. value, which is the probability of obtaining the observed results, or something more extreme, if the null hypothesis were true. If the observed results are unlikely under the null hypothesis, reject the null hypothesis.

  20. A Beginner's Guide to Hypothesis Testing in Business

    3. One-Sided vs. Two-Sided Testing. When it's time to test your hypothesis, it's important to leverage the correct testing method. The two most common hypothesis testing methods are one-sided and two-sided tests, or one-tailed and two-tailed tests, respectively. Typically, you'd leverage a one-sided test when you have a strong conviction ...

  21. Chapter 11: Fundamentals of Hypothesis Testing

    The null hypothesis is a statement containing a null, or zero, difference. It is the null hypothesis that undergoes the testing procedure, whether it is the original claim or not. The notation for the null hypothesis H 0 represents the status quo or what is assumed to be true. It always contains the equal sign. The alternative statement must be ...

  22. The Ultimate Guide to Hypothesis Testing for beginners

    Hypothesis Testing: Hypothesis testing is the process of checking the validity of the claim using evidence found in sample data. A Hypothesis Testing consists of two contradictory statements ...

  23. Hypothesis Testing: 4 Steps and Example

    Hypothesis testing is an act in statistics whereby an analyst tests an assumption regarding a population parameter. The methodology employed by the analyst depends on the nature of the data used ...

  24. Understanding Hypothesis Testing: A Powerful Tool in 2024

    Hypothesis testing is one of the critical parts of a statistical analysis and hence sets a clearly defined framework within which data-driven decisions can be made. Once you have grasped how the process and types of hypothesis testing work, you will be able to apply such methods to real-world problems in ways that can drive business excellence ...

  25. Question: what is the most basic concept of hypothesis testing

    what is the most basic concept of hypothesis testing Your solution's ready to go! Enhanced with AI, our expert help has broken down your problem into an easy-to-learn solution you can count on.