U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

National Institute of Environmental Health Sciences

Your environment. your health., what is ethics in research & why is it important, by david b. resnik, j.d., ph.d..

December 23, 2020

The ideas and opinions expressed in this essay are the author’s own and do not necessarily represent those of the NIH, NIEHS, or US government.

ethic image decorative header

When most people think of ethics (or morals), they think of rules for distinguishing between right and wrong, such as the Golden Rule ("Do unto others as you would have them do unto you"), a code of professional conduct like the Hippocratic Oath ("First of all, do no harm"), a religious creed like the Ten Commandments ("Thou Shalt not kill..."), or a wise aphorisms like the sayings of Confucius. This is the most common way of defining "ethics": norms for conduct that distinguish between acceptable and unacceptable behavior.

Most people learn ethical norms at home, at school, in church, or in other social settings. Although most people acquire their sense of right and wrong during childhood, moral development occurs throughout life and human beings pass through different stages of growth as they mature. Ethical norms are so ubiquitous that one might be tempted to regard them as simple commonsense. On the other hand, if morality were nothing more than commonsense, then why are there so many ethical disputes and issues in our society?

Alternatives to Animal Testing

test tubes on a tray decorrative image

Alternative test methods are methods that replace, reduce, or refine animal use in research and testing

Learn more about Environmental science Basics

One plausible explanation of these disagreements is that all people recognize some common ethical norms but interpret, apply, and balance them in different ways in light of their own values and life experiences. For example, two people could agree that murder is wrong but disagree about the morality of abortion because they have different understandings of what it means to be a human being.

Most societies also have legal rules that govern behavior, but ethical norms tend to be broader and more informal than laws. Although most societies use laws to enforce widely accepted moral standards and ethical and legal rules use similar concepts, ethics and law are not the same. An action may be legal but unethical or illegal but ethical. We can also use ethical concepts and principles to criticize, evaluate, propose, or interpret laws. Indeed, in the last century, many social reformers have urged citizens to disobey laws they regarded as immoral or unjust laws. Peaceful civil disobedience is an ethical way of protesting laws or expressing political viewpoints.

Another way of defining 'ethics' focuses on the disciplines that study standards of conduct, such as philosophy, theology, law, psychology, or sociology. For example, a "medical ethicist" is someone who studies ethical standards in medicine. One may also define ethics as a method, procedure, or perspective for deciding how to act and for analyzing complex problems and issues. For instance, in considering a complex issue like global warming , one may take an economic, ecological, political, or ethical perspective on the problem. While an economist might examine the cost and benefits of various policies related to global warming, an environmental ethicist could examine the ethical values and principles at stake.

See ethics in practice at NIEHS

Read latest updates in our monthly  Global Environmental Health Newsletter

global environmental health

Many different disciplines, institutions , and professions have standards for behavior that suit their particular aims and goals. These standards also help members of the discipline to coordinate their actions or activities and to establish the public's trust of the discipline. For instance, ethical standards govern conduct in medicine, law, engineering, and business. Ethical norms also serve the aims or goals of research and apply to people who conduct scientific research or other scholarly or creative activities. There is even a specialized discipline, research ethics, which studies these norms. See Glossary of Commonly Used Terms in Research Ethics and Research Ethics Timeline .

There are several reasons why it is important to adhere to ethical norms in research. First, norms promote the aims of research , such as knowledge, truth, and avoidance of error. For example, prohibitions against fabricating , falsifying, or misrepresenting research data promote the truth and minimize error.

Join an NIEHS Study

See how we put research Ethics to practice.

Visit Joinastudy.niehs.nih.gov to see the various studies NIEHS perform.

join a study decorative image

Second, since research often involves a great deal of cooperation and coordination among many different people in different disciplines and institutions, ethical standards promote the values that are essential to collaborative work , such as trust, accountability, mutual respect, and fairness. For example, many ethical norms in research, such as guidelines for authorship , copyright and patenting policies , data sharing policies, and confidentiality rules in peer review, are designed to protect intellectual property interests while encouraging collaboration. Most researchers want to receive credit for their contributions and do not want to have their ideas stolen or disclosed prematurely.

Third, many of the ethical norms help to ensure that researchers can be held accountable to the public . For instance, federal policies on research misconduct, conflicts of interest, the human subjects protections, and animal care and use are necessary in order to make sure that researchers who are funded by public money can be held accountable to the public.

Fourth, ethical norms in research also help to build public support for research. People are more likely to fund a research project if they can trust the quality and integrity of research.

Finally, many of the norms of research promote a variety of other important moral and social values , such as social responsibility, human rights, animal welfare, compliance with the law, and public health and safety. Ethical lapses in research can significantly harm human and animal subjects, students, and the public. For example, a researcher who fabricates data in a clinical trial may harm or even kill patients, and a researcher who fails to abide by regulations and guidelines relating to radiation or biological safety may jeopardize his health and safety or the health and safety of staff and students.

Codes and Policies for Research Ethics

Given the importance of ethics for the conduct of research, it should come as no surprise that many different professional associations, government agencies, and universities have adopted specific codes, rules, and policies relating to research ethics. Many government agencies have ethics rules for funded researchers.

  • National Institutes of Health (NIH)
  • National Science Foundation (NSF)
  • Food and Drug Administration (FDA)
  • Environmental Protection Agency (EPA)
  • US Department of Agriculture (USDA)
  • Singapore Statement on Research Integrity
  • American Chemical Society, The Chemist Professional’s Code of Conduct
  • Code of Ethics (American Society for Clinical Laboratory Science)
  • American Psychological Association, Ethical Principles of Psychologists and Code of Conduct
  • Statement on Professional Ethics (American Association of University Professors)
  • Nuremberg Code
  • World Medical Association's Declaration of Helsinki

Ethical Principles

The following is a rough and general summary of some ethical principles that various codes address*:

what is ethics important in research

Strive for honesty in all scientific communications. Honestly report data, results, methods and procedures, and publication status. Do not fabricate, falsify, or misrepresent data. Do not deceive colleagues, research sponsors, or the public.

what is ethics important in research

Objectivity

Strive to avoid bias in experimental design, data analysis, data interpretation, peer review, personnel decisions, grant writing, expert testimony, and other aspects of research where objectivity is expected or required. Avoid or minimize bias or self-deception. Disclose personal or financial interests that may affect research.

what is ethics important in research

Keep your promises and agreements; act with sincerity; strive for consistency of thought and action.

what is ethics important in research

Carefulness

Avoid careless errors and negligence; carefully and critically examine your own work and the work of your peers. Keep good records of research activities, such as data collection, research design, and correspondence with agencies or journals.

what is ethics important in research

Share data, results, ideas, tools, resources. Be open to criticism and new ideas.

what is ethics important in research

Transparency

Disclose methods, materials, assumptions, analyses, and other information needed to evaluate your research.

what is ethics important in research

Accountability

Take responsibility for your part in research and be prepared to give an account (i.e. an explanation or justification) of what you did on a research project and why.

what is ethics important in research

Intellectual Property

Honor patents, copyrights, and other forms of intellectual property. Do not use unpublished data, methods, or results without permission. Give proper acknowledgement or credit for all contributions to research. Never plagiarize.

what is ethics important in research

Confidentiality

Protect confidential communications, such as papers or grants submitted for publication, personnel records, trade or military secrets, and patient records.

what is ethics important in research

Responsible Publication

Publish in order to advance research and scholarship, not to advance just your own career. Avoid wasteful and duplicative publication.

what is ethics important in research

Responsible Mentoring

Help to educate, mentor, and advise students. Promote their welfare and allow them to make their own decisions.

what is ethics important in research

Respect for Colleagues

Respect your colleagues and treat them fairly.

what is ethics important in research

Social Responsibility

Strive to promote social good and prevent or mitigate social harms through research, public education, and advocacy.

what is ethics important in research

Non-Discrimination

Avoid discrimination against colleagues or students on the basis of sex, race, ethnicity, or other factors not related to scientific competence and integrity.

what is ethics important in research

Maintain and improve your own professional competence and expertise through lifelong education and learning; take steps to promote competence in science as a whole.

what is ethics important in research

Know and obey relevant laws and institutional and governmental policies.

what is ethics important in research

Animal Care

Show proper respect and care for animals when using them in research. Do not conduct unnecessary or poorly designed animal experiments.

what is ethics important in research

Human Subjects protection

When conducting research on human subjects, minimize harms and risks and maximize benefits; respect human dignity, privacy, and autonomy; take special precautions with vulnerable populations; and strive to distribute the benefits and burdens of research fairly.

* Adapted from Shamoo A and Resnik D. 2015. Responsible Conduct of Research, 3rd ed. (New York: Oxford University Press).

Ethical Decision Making in Research

Although codes, policies, and principles are very important and useful, like any set of rules, they do not cover every situation, they often conflict, and they require interpretation. It is therefore important for researchers to learn how to interpret, assess, and apply various research rules and how to make decisions and act ethically in various situations. The vast majority of decisions involve the straightforward application of ethical rules. For example, consider the following case:

The research protocol for a study of a drug on hypertension requires the administration of the drug at different doses to 50 laboratory mice, with chemical and behavioral tests to determine toxic effects. Tom has almost finished the experiment for Dr. Q. He has only 5 mice left to test. However, he really wants to finish his work in time to go to Florida on spring break with his friends, who are leaving tonight. He has injected the drug in all 50 mice but has not completed all of the tests. He therefore decides to extrapolate from the 45 completed results to produce the 5 additional results.

Many different research ethics policies would hold that Tom has acted unethically by fabricating data. If this study were sponsored by a federal agency, such as the NIH, his actions would constitute a form of research misconduct , which the government defines as "fabrication, falsification, or plagiarism" (or FFP). Actions that nearly all researchers classify as unethical are viewed as misconduct. It is important to remember, however, that misconduct occurs only when researchers intend to deceive : honest errors related to sloppiness, poor record keeping, miscalculations, bias, self-deception, and even negligence do not constitute misconduct. Also, reasonable disagreements about research methods, procedures, and interpretations do not constitute research misconduct. Consider the following case:

Dr. T has just discovered a mathematical error in his paper that has been accepted for publication in a journal. The error does not affect the overall results of his research, but it is potentially misleading. The journal has just gone to press, so it is too late to catch the error before it appears in print. In order to avoid embarrassment, Dr. T decides to ignore the error.

Dr. T's error is not misconduct nor is his decision to take no action to correct the error. Most researchers, as well as many different policies and codes would say that Dr. T should tell the journal (and any coauthors) about the error and consider publishing a correction or errata. Failing to publish a correction would be unethical because it would violate norms relating to honesty and objectivity in research.

There are many other activities that the government does not define as "misconduct" but which are still regarded by most researchers as unethical. These are sometimes referred to as " other deviations " from acceptable research practices and include:

  • Publishing the same paper in two different journals without telling the editors
  • Submitting the same paper to different journals without telling the editors
  • Not informing a collaborator of your intent to file a patent in order to make sure that you are the sole inventor
  • Including a colleague as an author on a paper in return for a favor even though the colleague did not make a serious contribution to the paper
  • Discussing with your colleagues confidential data from a paper that you are reviewing for a journal
  • Using data, ideas, or methods you learn about while reviewing a grant or a papers without permission
  • Trimming outliers from a data set without discussing your reasons in paper
  • Using an inappropriate statistical technique in order to enhance the significance of your research
  • Bypassing the peer review process and announcing your results through a press conference without giving peers adequate information to review your work
  • Conducting a review of the literature that fails to acknowledge the contributions of other people in the field or relevant prior work
  • Stretching the truth on a grant application in order to convince reviewers that your project will make a significant contribution to the field
  • Stretching the truth on a job application or curriculum vita
  • Giving the same research project to two graduate students in order to see who can do it the fastest
  • Overworking, neglecting, or exploiting graduate or post-doctoral students
  • Failing to keep good research records
  • Failing to maintain research data for a reasonable period of time
  • Making derogatory comments and personal attacks in your review of author's submission
  • Promising a student a better grade for sexual favors
  • Using a racist epithet in the laboratory
  • Making significant deviations from the research protocol approved by your institution's Animal Care and Use Committee or Institutional Review Board for Human Subjects Research without telling the committee or the board
  • Not reporting an adverse event in a human research experiment
  • Wasting animals in research
  • Exposing students and staff to biological risks in violation of your institution's biosafety rules
  • Sabotaging someone's work
  • Stealing supplies, books, or data
  • Rigging an experiment so you know how it will turn out
  • Making unauthorized copies of data, papers, or computer programs
  • Owning over $10,000 in stock in a company that sponsors your research and not disclosing this financial interest
  • Deliberately overestimating the clinical significance of a new drug in order to obtain economic benefits

These actions would be regarded as unethical by most scientists and some might even be illegal in some cases. Most of these would also violate different professional ethics codes or institutional policies. However, they do not fall into the narrow category of actions that the government classifies as research misconduct. Indeed, there has been considerable debate about the definition of "research misconduct" and many researchers and policy makers are not satisfied with the government's narrow definition that focuses on FFP. However, given the huge list of potential offenses that might fall into the category "other serious deviations," and the practical problems with defining and policing these other deviations, it is understandable why government officials have chosen to limit their focus.

Finally, situations frequently arise in research in which different people disagree about the proper course of action and there is no broad consensus about what should be done. In these situations, there may be good arguments on both sides of the issue and different ethical principles may conflict. These situations create difficult decisions for research known as ethical or moral dilemmas . Consider the following case:

Dr. Wexford is the principal investigator of a large, epidemiological study on the health of 10,000 agricultural workers. She has an impressive dataset that includes information on demographics, environmental exposures, diet, genetics, and various disease outcomes such as cancer, Parkinson’s disease (PD), and ALS. She has just published a paper on the relationship between pesticide exposure and PD in a prestigious journal. She is planning to publish many other papers from her dataset. She receives a request from another research team that wants access to her complete dataset. They are interested in examining the relationship between pesticide exposures and skin cancer. Dr. Wexford was planning to conduct a study on this topic.

Dr. Wexford faces a difficult choice. On the one hand, the ethical norm of openness obliges her to share data with the other research team. Her funding agency may also have rules that obligate her to share data. On the other hand, if she shares data with the other team, they may publish results that she was planning to publish, thus depriving her (and her team) of recognition and priority. It seems that there are good arguments on both sides of this issue and Dr. Wexford needs to take some time to think about what she should do. One possible option is to share data, provided that the investigators sign a data use agreement. The agreement could define allowable uses of the data, publication plans, authorship, etc. Another option would be to offer to collaborate with the researchers.

The following are some step that researchers, such as Dr. Wexford, can take to deal with ethical dilemmas in research:

What is the problem or issue?

It is always important to get a clear statement of the problem. In this case, the issue is whether to share information with the other research team.

What is the relevant information?

Many bad decisions are made as a result of poor information. To know what to do, Dr. Wexford needs to have more information concerning such matters as university or funding agency or journal policies that may apply to this situation, the team's intellectual property interests, the possibility of negotiating some kind of agreement with the other team, whether the other team also has some information it is willing to share, the impact of the potential publications, etc.

What are the different options?

People may fail to see different options due to a limited imagination, bias, ignorance, or fear. In this case, there may be other choices besides 'share' or 'don't share,' such as 'negotiate an agreement' or 'offer to collaborate with the researchers.'

How do ethical codes or policies as well as legal rules apply to these different options?

The university or funding agency may have policies on data management that apply to this case. Broader ethical rules, such as openness and respect for credit and intellectual property, may also apply to this case. Laws relating to intellectual property may be relevant.

Are there any people who can offer ethical advice?

It may be useful to seek advice from a colleague, a senior researcher, your department chair, an ethics or compliance officer, or anyone else you can trust. In the case, Dr. Wexford might want to talk to her supervisor and research team before making a decision.

After considering these questions, a person facing an ethical dilemma may decide to ask more questions, gather more information, explore different options, or consider other ethical rules. However, at some point he or she will have to make a decision and then take action. Ideally, a person who makes a decision in an ethical dilemma should be able to justify his or her decision to himself or herself, as well as colleagues, administrators, and other people who might be affected by the decision. He or she should be able to articulate reasons for his or her conduct and should consider the following questions in order to explain how he or she arrived at his or her decision:

  • Which choice will probably have the best overall consequences for science and society?
  • Which choice could stand up to further publicity and scrutiny?
  • Which choice could you not live with?
  • Think of the wisest person you know. What would he or she do in this situation?
  • Which choice would be the most just, fair, or responsible?

After considering all of these questions, one still might find it difficult to decide what to do. If this is the case, then it may be appropriate to consider others ways of making the decision, such as going with a gut feeling or intuition, seeking guidance through prayer or meditation, or even flipping a coin. Endorsing these methods in this context need not imply that ethical decisions are irrational, however. The main point is that human reasoning plays a pivotal role in ethical decision-making but there are limits to its ability to solve all ethical dilemmas in a finite amount of time.

Promoting Ethical Conduct in Science

globe decorative image

Do U.S. research institutions meet or exceed federal mandates for instruction in responsible conduct of research? A national survey

NCBI Pubmed

 Read about U.S. research instutuins follow federal manadates for ethics in research 

Learn more about NIEHS Research

Most academic institutions in the US require undergraduate, graduate, or postgraduate students to have some education in the responsible conduct of research (RCR) . The NIH and NSF have both mandated training in research ethics for students and trainees. Many academic institutions outside of the US have also developed educational curricula in research ethics

Those of you who are taking or have taken courses in research ethics may be wondering why you are required to have education in research ethics. You may believe that you are highly ethical and know the difference between right and wrong. You would never fabricate or falsify data or plagiarize. Indeed, you also may believe that most of your colleagues are highly ethical and that there is no ethics problem in research..

If you feel this way, relax. No one is accusing you of acting unethically. Indeed, the evidence produced so far shows that misconduct is a very rare occurrence in research, although there is considerable variation among various estimates. The rate of misconduct has been estimated to be as low as 0.01% of researchers per year (based on confirmed cases of misconduct in federally funded research) to as high as 1% of researchers per year (based on self-reports of misconduct on anonymous surveys). See Shamoo and Resnik (2015), cited above.

Clearly, it would be useful to have more data on this topic, but so far there is no evidence that science has become ethically corrupt, despite some highly publicized scandals. Even if misconduct is only a rare occurrence, it can still have a tremendous impact on science and society because it can compromise the integrity of research, erode the public’s trust in science, and waste time and resources. Will education in research ethics help reduce the rate of misconduct in science? It is too early to tell. The answer to this question depends, in part, on how one understands the causes of misconduct. There are two main theories about why researchers commit misconduct. According to the "bad apple" theory, most scientists are highly ethical. Only researchers who are morally corrupt, economically desperate, or psychologically disturbed commit misconduct. Moreover, only a fool would commit misconduct because science's peer review system and self-correcting mechanisms will eventually catch those who try to cheat the system. In any case, a course in research ethics will have little impact on "bad apples," one might argue.

According to the "stressful" or "imperfect" environment theory, misconduct occurs because various institutional pressures, incentives, and constraints encourage people to commit misconduct, such as pressures to publish or obtain grants or contracts, career ambitions, the pursuit of profit or fame, poor supervision of students and trainees, and poor oversight of researchers (see Shamoo and Resnik 2015). Moreover, defenders of the stressful environment theory point out that science's peer review system is far from perfect and that it is relatively easy to cheat the system. Erroneous or fraudulent research often enters the public record without being detected for years. Misconduct probably results from environmental and individual causes, i.e. when people who are morally weak, ignorant, or insensitive are placed in stressful or imperfect environments. In any case, a course in research ethics can be useful in helping to prevent deviations from norms even if it does not prevent misconduct. Education in research ethics is can help people get a better understanding of ethical standards, policies, and issues and improve ethical judgment and decision making. Many of the deviations that occur in research may occur because researchers simply do not know or have never thought seriously about some of the ethical norms of research. For example, some unethical authorship practices probably reflect traditions and practices that have not been questioned seriously until recently. If the director of a lab is named as an author on every paper that comes from his lab, even if he does not make a significant contribution, what could be wrong with that? That's just the way it's done, one might argue. Another example where there may be some ignorance or mistaken traditions is conflicts of interest in research. A researcher may think that a "normal" or "traditional" financial relationship, such as accepting stock or a consulting fee from a drug company that sponsors her research, raises no serious ethical issues. Or perhaps a university administrator sees no ethical problem in taking a large gift with strings attached from a pharmaceutical company. Maybe a physician thinks that it is perfectly appropriate to receive a $300 finder’s fee for referring patients into a clinical trial.

If "deviations" from ethical conduct occur in research as a result of ignorance or a failure to reflect critically on problematic traditions, then a course in research ethics may help reduce the rate of serious deviations by improving the researcher's understanding of ethics and by sensitizing him or her to the issues.

Finally, education in research ethics should be able to help researchers grapple with the ethical dilemmas they are likely to encounter by introducing them to important concepts, tools, principles, and methods that can be useful in resolving these dilemmas. Scientists must deal with a number of different controversial topics, such as human embryonic stem cell research, cloning, genetic engineering, and research involving animal or human subjects, which require ethical reflection and deliberation.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Ethical Considerations in Research | Types & Examples

Ethical Considerations in Research | Types & Examples

Published on October 18, 2021 by Pritha Bhandari . Revised on May 9, 2024.

Ethical considerations in research are a set of principles that guide your research designs and practices. Scientists and researchers must always adhere to a certain code of conduct when collecting data from people.

The goals of human research often include understanding real-life phenomena, studying effective treatments, investigating behaviors, and improving lives in other ways. What you decide to research and how you conduct that research involve key ethical considerations.

These considerations work to

  • protect the rights of research participants
  • enhance research validity
  • maintain scientific or academic integrity

Table of contents

Why do research ethics matter, getting ethical approval for your study, types of ethical issues, voluntary participation, informed consent, confidentiality, potential for harm, results communication, examples of ethical failures, other interesting articles, frequently asked questions about research ethics.

Research ethics matter for scientific integrity, human rights and dignity, and collaboration between science and society. These principles make sure that participation in studies is voluntary, informed, and safe for research subjects.

You’ll balance pursuing important research objectives with using ethical research methods and procedures. It’s always necessary to prevent permanent or excessive harm to participants, whether inadvertent or not.

Defying research ethics will also lower the credibility of your research because it’s hard for others to trust your data if your methods are morally questionable.

Even if a research idea is valuable to society, it doesn’t justify violating the human rights or dignity of your study participants.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

what is ethics important in research

Before you start any study involving data collection with people, you’ll submit your research proposal to an institutional review board (IRB) .

An IRB is a committee that checks whether your research aims and research design are ethically acceptable and follow your institution’s code of conduct. They check that your research materials and procedures are up to code.

If successful, you’ll receive IRB approval, and you can begin collecting data according to the approved procedures. If you want to make any changes to your procedures or materials, you’ll need to submit a modification application to the IRB for approval.

If unsuccessful, you may be asked to re-submit with modifications or your research proposal may receive a rejection. To get IRB approval, it’s important to explicitly note how you’ll tackle each of the ethical issues that may arise in your study.

There are several ethical issues you should always pay attention to in your research design, and these issues can overlap with each other.

You’ll usually outline ways you’ll deal with each issue in your research proposal if you plan to collect data from participants.

Voluntary participation Your participants are free to opt in or out of the study at any point in time.
Informed consent Participants know the purpose, benefits, risks, and funding behind the study before they agree or decline to join.
Anonymity You don’t know the identities of the participants. Personally identifiable data is not collected.
Confidentiality You know who the participants are but you keep that information hidden from everyone else. You anonymize personally identifiable data so that it can’t be linked to other data by anyone else.
Potential for harm Physical, social, psychological and all other types of harm are kept to an absolute minimum.
Results communication You ensure your work is free of or research misconduct, and you accurately represent your results.

Voluntary participation means that all research subjects are free to choose to participate without any pressure or coercion.

All participants are able to withdraw from, or leave, the study at any point without feeling an obligation to continue. Your participants don’t need to provide a reason for leaving the study.

It’s important to make it clear to participants that there are no negative consequences or repercussions to their refusal to participate. After all, they’re taking the time to help you in the research process , so you should respect their decisions without trying to change their minds.

Voluntary participation is an ethical principle protected by international law and many scientific codes of conduct.

Take special care to ensure there’s no pressure on participants when you’re working with vulnerable groups of people who may find it hard to stop the study even when they want to.

Informed consent refers to a situation in which all potential participants receive and understand all the information they need to decide whether they want to participate. This includes information about the study’s benefits, risks, funding, and institutional approval.

You make sure to provide all potential participants with all the relevant information about

  • what the study is about
  • the risks and benefits of taking part
  • how long the study will take
  • your supervisor’s contact information and the institution’s approval number

Usually, you’ll provide participants with a text for them to read and ask them if they have any questions. If they agree to participate, they can sign or initial the consent form. Note that this may not be sufficient for informed consent when you work with particularly vulnerable groups of people.

If you’re collecting data from people with low literacy, make sure to verbally explain the consent form to them before they agree to participate.

For participants with very limited English proficiency, you should always translate the study materials or work with an interpreter so they have all the information in their first language.

In research with children, you’ll often need informed permission for their participation from their parents or guardians. Although children cannot give informed consent, it’s best to also ask for their assent (agreement) to participate, depending on their age and maturity level.

Anonymity means that you don’t know who the participants are and you can’t link any individual participant to their data.

You can only guarantee anonymity by not collecting any personally identifying information—for example, names, phone numbers, email addresses, IP addresses, physical characteristics, photos, and videos.

In many cases, it may be impossible to truly anonymize data collection . For example, data collected in person or by phone cannot be considered fully anonymous because some personal identifiers (demographic information or phone numbers) are impossible to hide.

You’ll also need to collect some identifying information if you give your participants the option to withdraw their data at a later stage.

Data pseudonymization is an alternative method where you replace identifying information about participants with pseudonymous, or fake, identifiers. The data can still be linked to participants but it’s harder to do so because you separate personal information from the study data.

Confidentiality means that you know who the participants are, but you remove all identifying information from your report.

All participants have a right to privacy, so you should protect their personal data for as long as you store or use it. Even when you can’t collect data anonymously, you should secure confidentiality whenever you can.

Some research designs aren’t conducive to confidentiality, but it’s important to make all attempts and inform participants of the risks involved.

As a researcher, you have to consider all possible sources of harm to participants. Harm can come in many different forms.

  • Psychological harm: Sensitive questions or tasks may trigger negative emotions such as shame or anxiety.
  • Social harm: Participation can involve social risks, public embarrassment, or stigma.
  • Physical harm: Pain or injury can result from the study procedures.
  • Legal harm: Reporting sensitive data could lead to legal risks or a breach of privacy.

It’s best to consider every possible source of harm in your study as well as concrete ways to mitigate them. Involve your supervisor to discuss steps for harm reduction.

Make sure to disclose all possible risks of harm to participants before the study to get informed consent. If there is a risk of harm, prepare to provide participants with resources or counseling or medical services if needed.

Some of these questions may bring up negative emotions, so you inform participants about the sensitive nature of the survey and assure them that their responses will be confidential.

The way you communicate your research results can sometimes involve ethical issues. Good science communication is honest, reliable, and credible. It’s best to make your results as transparent as possible.

Take steps to actively avoid plagiarism and research misconduct wherever possible.

Plagiarism means submitting others’ works as your own. Although it can be unintentional, copying someone else’s work without proper credit amounts to stealing. It’s an ethical problem in research communication because you may benefit by harming other researchers.

Self-plagiarism is when you republish or re-submit parts of your own papers or reports without properly citing your original work.

This is problematic because you may benefit from presenting your ideas as new and original even though they’ve already been published elsewhere in the past. You may also be infringing on your previous publisher’s copyright, violating an ethical code, or wasting time and resources by doing so.

In extreme cases of self-plagiarism, entire datasets or papers are sometimes duplicated. These are major ethical violations because they can skew research findings if taken as original data.

You notice that two published studies have similar characteristics even though they are from different years. Their sample sizes, locations, treatments, and results are highly similar, and the studies share one author in common.

Research misconduct

Research misconduct means making up or falsifying data, manipulating data analyses, or misrepresenting results in research reports. It’s a form of academic fraud.

These actions are committed intentionally and can have serious consequences; research misconduct is not a simple mistake or a point of disagreement about data analyses.

Research misconduct is a serious ethical issue because it can undermine academic integrity and institutional credibility. It leads to a waste of funding and resources that could have been used for alternative research.

Later investigations revealed that they fabricated and manipulated their data to show a nonexistent link between vaccines and autism. Wakefield also neglected to disclose important conflicts of interest, and his medical license was taken away.

This fraudulent work sparked vaccine hesitancy among parents and caregivers. The rate of MMR vaccinations in children fell sharply, and measles outbreaks became more common due to a lack of herd immunity.

Research scandals with ethical failures are littered throughout history, but some took place not that long ago.

Some scientists in positions of power have historically mistreated or even abused research participants to investigate research problems at any cost. These participants were prisoners, under their care, or otherwise trusted them to treat them with dignity.

To demonstrate the importance of research ethics, we’ll briefly review two research studies that violated human rights in modern history.

These experiments were inhumane and resulted in trauma, permanent disabilities, or death in many cases.

After some Nazi doctors were put on trial for their crimes, the Nuremberg Code of research ethics for human experimentation was developed in 1947 to establish a new standard for human experimentation in medical research.

In reality, the actual goal was to study the effects of the disease when left untreated, and the researchers never informed participants about their diagnoses or the research aims.

Although participants experienced severe health problems, including blindness and other complications, the researchers only pretended to provide medical care.

When treatment became possible in 1943, 11 years after the study began, none of the participants were offered it, despite their health conditions and high risk of death.

Ethical failures like these resulted in severe harm to participants, wasted resources, and lower trust in science and scientists. This is why all research institutions have strict ethical guidelines for performing research.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Measures of central tendency
  • Chi square tests
  • Confidence interval
  • Quartiles & Quantiles
  • Cluster sampling
  • Stratified sampling
  • Thematic analysis
  • Cohort study
  • Peer review
  • Ethnography

Research bias

  • Implicit bias
  • Cognitive bias
  • Conformity bias
  • Hawthorne effect
  • Availability heuristic
  • Attrition bias
  • Social desirability bias

Ethical considerations in research are a set of principles that guide your research designs and practices. These principles include voluntary participation, informed consent, anonymity, confidentiality, potential for harm, and results communication.

Scientists and researchers must always adhere to a certain code of conduct when collecting data from others .

These considerations protect the rights of research participants, enhance research validity , and maintain scientific integrity.

Research ethics matter for scientific integrity, human rights and dignity, and collaboration between science and society. These principles make sure that participation in studies is voluntary, informed, and safe.

Anonymity means you don’t know who the participants are, while confidentiality means you know who they are but remove identifying information from your research report. Both are important ethical considerations .

You can only guarantee anonymity by not collecting any personally identifying information—for example, names, phone numbers, email addresses, IP addresses, physical characteristics, photos, or videos.

You can keep data confidential by using aggregate information in your research report, so that you only refer to groups of participants rather than individuals.

These actions are committed intentionally and can have serious consequences; research misconduct is not a simple mistake or a point of disagreement but a serious ethical failure.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bhandari, P. (2024, May 09). Ethical Considerations in Research | Types & Examples. Scribbr. Retrieved September 4, 2024, from https://www.scribbr.com/methodology/research-ethics/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, data collection | definition, methods & examples, what is self-plagiarism | definition & how to avoid it, how to avoid plagiarism | tips on citing sources, what is your plagiarism score.

American Judicial System

What Is Ethics in Research, And Why Is It Important? Research Ethics Explained

Edward Gates

Most researchers may be wondering why they need extensive training in research ethics. Why is research ethics even important?

You already know the difference between what’s right and wrong. You’re honest and won’t fabricate, plagiarize or falsify research data.  

You also believe your research team members know research ethics and are honest. You don’t see any issue with your proposed research plan from an ethical standpoint. 

The truth is this. No one is questioning you or your team members’ ethical standards. It is only normal to discuss the ethical side of every research even before work commences.

However, reports on research conducted over the last 200 years indicate several confirmed cases of ethical misconduct. And some of these were federally funded projects. 

Cases of misconduct in the last two centuries may also have been underreported. The figures may be higher. 

So, what is ethics in research, and why is it so crucial in research? Let’s discuss this in detail.

What Research Ethics Is

Firstly, what is ethics? It refers to the moral principles that govern the conduct of certain activities or a person’s behavior. 

Now, what’s research ethics? It includes guidelines provided for the responsible conduct of research. The aim is to ensure research results aren’t falsified or altered.

Research ethics seek to educate and monitor scientists to maintain high ethical standards. 

Ethical misconduct poses a considerable risk. It can lead to severe harm or death of people. An excellent example of why research ethics is relevant is Paolo Macchiarini’s case.

Macchiarini was a surgeon who became popular for research he claimed was a massive breakthrough for organ transplants. 

What was Macchiarini’s so-called revolutionized organ transplant about? The Italian surgeon utilized synthetic scaffolds that he claimed to have seeded with his patients’ stem cells. The result was to create trachea transplants. 

Unfortunately, it was evident that the experiments he conducted had no solid preclinical research foundation. Nine patients received  Macchiarini’s transplant , but seven died.  

What did the investigation into Paolo Macchiarini’s scientific publication reveal?

Well, it shows the value ethics have in research. There were revelations of ethical misconduct. Macchiarini had fabricated results in his scientific publications and reports to make the treatment seem successful. 

What happened to Paolo Macchiarini after his failed surgical transplants?

Macchiarini’s ethical blunder bruised the ego of the highly reputable Karolinska Institute of Stockholm, Sweden, as they were his employers then. The institute had no choice but to dismiss him. Several authorities also resigned from the institute following the incident. 

So, you can see why ethics in research is vital. It would have prevented the death of many people who got the transplant. Paolo Macchiarini would also have retained his job and reputation. 

A Handy Tip:  In 2019, an Italian court found Dr. Paolo Macchiarini guilty of fabricating research results and sentenced him to 16 years in prison. His research papers and reports have also been taken down. 

Why Is Ethics In Research Important?

Paolo Macchiarini’s failed experiment is a good reason why ethics is vital in research. If he had adhered to research ethics, he probably would have tackled every facet of the study. 

Macchiarini didn’t consider his patient’s post-surgery conditions. He only painted a rosy picture to make his research look attractive. 

But one thing researchers must never forget is this. There are consequences of ethical misconduct. You can falsify your data, but the outcome will expose you. 

So, why is ethics in research so important? 

#1: Promotes moral and social values:

Ethical norms in research promote moral and social values. These include human rights, social responsibility, compliance with the law, animal welfare, including public health and safety. 

Encouraging ethical misconduct in research is a considerable risk. Why? It might cause significant harm to animals, including human subjects, the public, and students. 

We can repeat Dr. Paolo Macchiarini’s incident on and on. The data he fabricated during clinical trials harmed and killed several patients. 

There are researchers like Macchiarini out there today. Dozens of researchers commit ethical lapses, but many go unnoticed and unpunished. 

Researchers that fail to adhere strictly to guidelines and regulations relating to biological or radiation safety will have themselves to blame. They’ll only jeopardize their health and other people’s safety. 

#2: Promotes the principal aim of research works: 

What is the reason scientists engage in research? Is it for profit or fame?

All these benefits might come if the research is successful. But they’re not the basis for the research work. 

The aim or reason people conduct research is for truth, knowledge, and avoidance of error. Research gives room for more research, leading to advancement in the said field or subject. 

However, prohibiting the falsification, fabrication, or misrepresentation of research data encourages truth and reduces error.  

#3: Promotes value vital for collaborative work:

Researchers don’t conduct research alone. Research work often entails collaborative effort. What values are crucial for a corporation or collaborative work in research to take place?

The values include accountability, trust, fairness, and mutual respect. 

Here is an example. In research, several ethical norms exist. These include guidelines for patenting policies, copyright, authorship, and data-sharing policies. 

These are designed to help protect intellectual property interests and encourage collaborations. 

Many researchers are eager to receive credit for their contributions. They don’t want their ideas to get stolen or prematurely disclosed.

#4: Ensures researchers are held accountable:

Ethical norms are vital in research. It helps ensure researchers are accountable to the public.

So, there’s a need for federal policy-makers to address issues relating to research misconduct, human subject protections, conflicts of interest, and animal care. 

For the record, most researchers are funded with the public’s money. The policy will ensure researchers in this category are held accountable to the public.  

#5: Builds public support for research work:

Would you be comfortable spending your money on poor-quality research? That’s not possible. 

The truth is this. Many people will be more than willing to fund research work if they trust the researcher and the quality of work. 

 So, you can see that the benefits of ethics in research are vast. But then, ethical misconduct where researchers falsify data is dangerous. We cannot overemphasize this enough. 

Therefore, if you’re a researcher, strive to deliver quality research. Don’t waste your time researching if the plan is to falsify data in the end. Many lives would be lost, and you’ll be accused and persecuted at the end of the day. 

Let’s take a quick look at ethical principles researchers should adhere to when conducting research. 

Ethical Principles in Research

These are ethical principles guiding research. If you’re a researcher, please do well to follow them. 

Be honest when stating research methods, procedures, or reporting data or results. Avoid any urge to falsify data or methodology. It could come back to haunt you. 

Keep to your agreements and promises. Let your actions and thoughts remain consistent. 

You have to be open to suggestions, new ideas, and criticisms (whether constructive or not). Be open to yourself, collaborators, and the public. Share data, resources, tools, and ideas. 

Confidentiality:

Do not expose confidential records. These include classified military secrets, trade, patient records, and other personnel records you had the privilege to use. 

Respect intellectual property:

Honor copyrights, patents, and other intellectual property forms. Seek permission before using unpublished results, data or procedures. 

Responsible monitoring:

Don’t leave students to work on research projects alone. Be there to advise, educate and monitor them. However, don’t make decisions for them. Only provide suggestions where needed and allow them to make the final decision. 

Respect colleagues:

Just because you’re heading the research doesn’t mean you have to belittle other researchers. Show respect and love, as they are crucial in collaborative works like research. 

What is ethics in research, and why is it important? The truth is there’s no research without ethics. 

Researchers must abide by ethical norms or risk producing questionable research results. Ethics in research is crucial for many reasons. They help promote the value required for collaborative work, promote the research aim, and ensure researchers are accountable to the public. 

Keep in mind that ethical misconduct can pose a significant risk to our environment and the lives of humans, including animals. 

Why Are Federal Judges Appointed For Life? The Reasons Explained

Why is judicial independence important 5 must-know reasons, edward gates.

Edward “Eddie” Gates is a retired corporate attorney. When Eddie is not contributing to the American Justice System blog, he can be found on the lake fishing, or traveling with Betty, his wife of 20 years.

Related Posts

How To Establish The Other Motorist Was Guilty In A Car Crash

  • How To Establish The Other Motorist Was Guilty In A Car Crash

Qualities To Look For In The Best Medical Malpractice Lawyers

  • Qualities To Look For In The Best Medical Malpractice Lawyers

Understanding the Asylum Process with a Salinas Immigration Lawyer by Your Side

  • Understanding the Asylum Process with a Salinas Immigration Lawyer by Your Side

The Key Benefits of Working With a Newport Beach Personal Injury Attorney

  • The Key Benefits of Working With a Newport Beach Personal Injury Attorney

U.S. Federal Trade Commission Seeks Feedback on Franchising Practices and Agreements

  • U.S. Federal Trade Commission Seeks Feedback On Franchising Practices And Agreements

Depreciation-Based Injury Theory Used To Support Standing In Product Liability

Depreciation-Based Injury Theory Used To Support Standing In Product Liability

Why Is Judicial Independence Important

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Recent Posts

  • Employment (33)
  • Government (18)
  • Lawyers (308)
  • Securities (32)

what is ethics important in research

We are a blog that talks about different law-related topics. We focus primarily on the business side of law, including technology and innovation in the legal industry. We’ve been around since 2015 so we have an extensive archive of articles to choose from. Learn more at AJS Blog! [email protected]

Follow us on social media

Recent News

  • Privacy & Policy
  • Terms & Conditions

© 2024 American Judicial System - All Rights Reserved By AJS

Welcome Back!

Login to your account below

Remember Me

Retrieve your password

Please enter your username or email address to reset your password.

Warning: The NCBI web site requires JavaScript to function. more...

U.S. flag

An official website of the United States government

The .gov means it's official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Browse Titles

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

National Academies of Sciences, Engineering, and Medicine; Policy and Global Affairs; Committee on Science, Engineering, Medicine, and Public Policy; Committee on Responsible Science. Fostering Integrity in Research. Washington (DC): National Academies Press (US); 2017 Apr 11.

Cover of Fostering Integrity in Research

Fostering Integrity in Research.

  • Hardcopy Version at National Academies Press

2 Foundations of Integrity in Research: Core Values and Guiding Norms

Problems of scientific freedom and responsibility are not new; one need only consider, as examples, the passionate controversies that were stirred by the work of Galileo and Darwin. In our time, however, such problems have changed in character, and have become far more numerous, more urgent and more complex. Science and its applications have become entwined with the whole fabric of our lives and thoughts. . . . Scientific freedom, like academic freedom, is an acquired right, generally accepted by society as necessary for the advancement of knowledge from which society may benefit. Scientists possess no rights beyond those of other citizens except those necessary to fulfill the responsibility arising from their special knowledge, and from the insight arising from that knowledge. — John Edsall (1975)

Synopsis: The integrity of research is based on adherence to core values—objectivity, honesty, openness, fairness, accountability, and stewardship. These core values help to ensure that the research enterprise advances knowledge. Integrity in science means planning, proposing, performing, reporting, and reviewing research in accordance with these values. Participants in the research enterprise stray from the norms and appropriate practices of science when they commit research misconduct or other misconduct or engage in detrimental research practices.

  • TRANSMITTING VALUES AND NORMS IN RESEARCH

The core values and guiding norms of science have been studied and written about extensively, with the work of Robert Merton providing a foundation for subsequent work on the sociology of science ( Merton, 1973 ). Merton posited a set of norms that govern good science: (1) Communalism (common ownership of scientific knowledge), (2) Universalism (all scientists can contribute to the advance of knowledge), (3) Disinterestedness (scientists should work for the good of the scientific enterprise as opposed to personal gain), and (4) Organized Skepticism (results should be examined critically before they are accepted). Research on scientists and scientific organizations has also led to a better understanding of counternorms that appear to conflict with the dominant Mertonian norms but that are recognized as playing an inherent part in the actual practice of science, such as the personal commitment that a scientist may have to a particular hypothesis or theory ( Mitroff, 1974 ).

More recent work on the effectiveness of responsible conduct of research education, covered in more detail in Chapter 9 , explores evidence that at least some scientists may not understand and reflect upon the ethical dimensions of their work ( McCormick et al., 2012 ). Several causes are identified, including a lack of awareness on the part of researchers of the ethical issues that can arise, confidence that they can identify and address these issues without any special training or help, or apprehension that a focus on ethical issues might hinder their progress. An additional challenge arises from the apparent gap “between the normative ideals of science and science's institutional reward system” ( Devereaux, 2014 ). Chapter 6 covers this issue in more detail. Here, it is important to note that identifying and understanding the values and norms of science do not automatically mean that they will be followed in practice. The context in which values and norms are communicated and transmitted in the professional development of scientists is critically important.

Scientists are privileged to have careers in which they explore the frontiers of knowledge. They have greater autonomy than do many other professionals and are usually respected by other members of society. They often are able to choose the questions they want to pursue and the methods used to derive answers. They have rich networks of social relationships that, for the most part, reinforce and further their work. Whether actively involved in research or employed in some other capacity within the research enterprise, scientists are able to engage in an activity about which they are passionate: learning more about the world and how it functions.

In the United States, scientific research in academia emerged during the late 19th century as an “informal, intimate, and paternalistic endeavor” ( NAS-NAE-IOM, 1992 ). Multipurpose universities emphasized teaching, and research was more of an avocation than a profession. Even today, being a scientist and engaging in research does not necessarily entail a career with characteristics traditionally associated with professions such as law, medicine, architecture, some subfields of engineering, and accounting. For example, working as a researcher does not involve state certification of the practitioner's expertise as a requirement to practice, nor does it generally involve direct relationships with fee-paying clients. Many professions also maintain an explicit expectation that practitioners will adhere to a distinctive ethical code ( Wickenden, 1949 ). In contrast, scientists do not have a formal, overarching code of ethics and professional conduct.

However, the nature of professional practice even in the traditional professions continues to evolve ( Evetts, 2013 ). Some scholars assert that the concept of professional work should include all occupations characterized by “expert knowledge, autonomy, a normative orientation grounded in community, and high status, income, and other rewards” ( Gorman and Sandefur, 2011 ). Scientific research certainly shares these characteristics. In this respect, efforts to formalize responsible conduct of research training in the education of researchers often have assumed that this training should be part of the professional development of researchers ( IOM-NRC, 2002 ; NAS-NAE-IOM, 1992 ). However, the training of researchers (and research itself) has retained some “informal, intimate, and paternalistic” features. Attempts to formalize professional development training sometimes have generated resistance in favor of essentially an apprenticeship model with informal, ad hoc approaches to how graduate students and postdoctoral fellows learn how to become professional scientists.

One challenge facing the research enterprise is that informal, ad hoc approaches to scientific professionalism do not ensure that the core values and guiding norms of science are adequately inculcated and sustained. This has become increasingly clear as the changes in the research environment described in Chapter 3 have emerged and taken hold. Indeed, the apparent inadequacy of these older forms of training to the task of socializing and training individuals into responsible research practices is a recurring theme of this report.

Individual scientists work within a much broader system that profoundly influences the integrity of research results. This system, described briefly in Chapter 1 , is characterized by a massive, interconnected web of relationships among researchers, employing institutions, public and private funders, and journals and professional societies. This web comprises unidirectional and bidirectional obligations and responsibilities between the parts of the system. The system is driven by public and private investments and results in various outcomes or products, including research results, various uses of those results, and trained students. However, the system itself has a dynamic that shapes the actions of everyone involved and produces results that reflect the functioning of the system. Because of the large number of relationships between the many players in the web of responsibility, features of one set of relationships may affect other parts of the web. These interdependencies complicate the task of devising interventions and structures that support and encourage the responsible conduct of research.

  • THE CORE VALUES OF RESEARCH

The integrity of research is based on the foundational core values of science. The research system could not operate without these shared values that shape the behaviors of all who are involved with the system. Out of these values arise the web of responsibilities that make the system cohere and make scientific knowledge reliable. Many previous guides to responsible conduct in research have identified and described these values ( CCA, 2010 ; ESF-ALLEA, 2011 ; IAC-IAP, 2012 ; ICB, 2010 ; IOM-NRC, 2002 ). This report emphasizes six values that are most influential in shaping the norms that constitute research practices and relationships and the integrity of science:

Objectivity

Accountability, stewardship.

This chapter examines each of these six values in turn to consider how they shape, and are realized in, research practices.

The first of the six values discussed in this report—objectivity—describes the attitude of impartiality with which researchers should strive to approach their work. The next four values—honesty, openness, accountability, and fairness—describe relationships among those involved in the research enterprise. The final value—stewardship—involves the relationship between members of the research enterprise, the enterprise as a whole, and the broader society within which the enterprise is situated. Although we discuss stewardship last, it is an essential value that perpetuates the other values.

The hallmark of scientific thinking that differentiates it from other modes of human inquiry and expression such as literature and art is its dedication to rational and empirical inquiry. In this context, objectivity is central to the scientific worldview. Karl Popper (1999) viewed scientific objectivity as consisting of the freedom and responsibility of the researcher to (1) pose refutable hypotheses, (2) test the hypotheses with the relevant evidence, and (3) state the results clearly and unambiguously to any interested person. The goal is reproducibility, which is essential to advancing knowledge through experimental science. If these steps are followed diligently, Popper suggested, any reasonable second researcher should be able to follow the same steps to replicate the work.

Objectivity means that certain kinds of motivations should not influence a researcher's action, even though others will. For example, if a researcher in an experimental field believes in a particular hypothesis or explanation of a phenomenon, he or she is expected to design experiments that will test the hypothesis. The experiment should be designed in a way that allows the possibility for the hypothesis to be disconfirmed. Scientific objectivity is intended to ensure that scientists' personal beliefs and qualities—motivations, position, material interests, field of specialty, prominence, or other factors—do not introduce biases into their work.

As will be explored in later chapters, in practice it is not that simple. Human judgment and decisions are prone to a variety of cognitive biases and systematic errors in reasoning. Even the best scientific intentions are not always sufficient to ensure scientific objectivity. Scientific objectivity can be compromised accidentally or without recognition by individuals. In addition, broader biases of the reigning scientific paradigm influence the theory and practice of science ( Kuhn, 1962 ). A primary purpose of scientific replication is to minimize the extent to which experimental findings are distorted by biases and errors. Researchers have a responsibility to design experiments in ways that any other person with different motivations, interests, and knowledge could trust the results. Modern problems related to reproducibility are explored later in the report.

In addition, objectivity does not imply or require that researchers can or should be completely neutral or disinterested in pursuing their work. The research enterprise does not function properly without the organized efforts of researchers to convince their scientific audiences. Sometimes researchers are proven correct when they persist in trying to prove theories in the face of evidence that appears to contradict them.

It is important to note, in addition, Popper's suggestion that scientific objectivity consists of not only responsibility but freedom . The scientist must be free from pressures and influences that can bias research results. Objectivity can be compromised when institutional expectations, laboratory culture, the regulatory environment, or funding needs put pressure on the scientist to produce positive results or to produce them under time pressure. Scientists and researchers operate in social contexts, and the incentives and pressures of those contexts can have a profound effect on the exercise of scientific methodology and a researcher's commitment to scientific objectivity.

Scientific objectivity also must coexist with other human motivations that challenge it. As an example of such a challenge, a researcher might become biased in desiring definitive results evaluating the validity of high-profile theories or hypotheses that their experiments were designed to support or refute. Both personal desire to obtain a definitive answer and institutional pressures to produce “significant” conclusions can provide strong motivation to find definitive results in experimental situations. Dedication to scientific objectivity in those settings represents the best guard against scientists finding what they desire instead of what exists. Institutional support of objectivity at every level—from mentors, to research supervisors, to administrators, and to funders—is crucial in counterbalancing the very human tendency to desire definitive outcomes of research.

A researcher's freedom to advance knowledge is tied to his or her responsibility to be honest . Science as an enterprise producing reliable knowledge is based on the assumption of honesty. Science is predicated on agreed-upon systematic procedures for determining the empirical or theoretical basis of a proposition. Dishonest science violates that agreement and therefore violates a defining characteristic of science.

Honesty is the principal value that underlies all of the other relationship values. For example, without an honest foundation, realizing the values of openness, accountability, and fairness would be impossible.

Scientific institutions and stakeholders start with the assumption of honesty. Peer reviewers, granting agencies, journal editors, commercial research and development managers, policy makers, and other players in the scientific enterprise all start with an assumption of the trustworthiness of the reporting scientist and research team. Dishonesty undermines not only the results of the specific research but also the entire scientific enterprise itself, because it threatens the trustworthiness of the scientific endeavor.

Being honest is not always straightforward. It may not be easy to decide what to do with outlier data, for example, or when one suspects fraud in published research. A single outlier data point may be legitimately interpreted as a malfunctioning instrument or a contaminated sample. However, true scientific integrity requires the disclosure of the exclusion of a data point and the effect of that exclusion unless the contamination or malfunction is documented, not merely conjectured. There are accepted statistical methods and standards for dealing with outlier data, although questions are being raised about how often these are followed in certain fields ( Thiese et al., 2015 ).

Dishonesty can take many forms. It may refer to out-and-out fabrication or falsification of data or reporting of results or plagiarism. It includes such things as misrepresentation (e.g., avoiding blame, claiming that protocol requirements have been followed when they have not, or producing significant results by altering experiments that have been previously conducted), nonreporting of phenomena, cherry-picking of data, or overenhancing pictorial representations of data. Honest work includes accurate reporting of what was done, including the methods used to do that work. Thus, dishonesty can encompass lying by omission, as in leaving out data that change the overall conclusions or systematically publishing only trials that yield positive results. The “file drawer” effect was first discussed almost 40 years ago; Robert Rosenthal (1979) presented the extreme view that “journals are filled with the 5 percent of the studies that show Type I errors, while the file drawers are filled with the 95 percent of the studies that show non-significant results.” This hides the possibility of results being published from 1 significant trial in an experiment of 100 trials, as well as experiments that were conducted and then altered in order to produce the desired results. The file drawer effect is a result of publication bias and selective reporting, the probability that a study will be published depending on the significance of its results ( Scargle, 2000 ). As the incentives for researchers to publish in top journals increase, so too do these biases and the file drawer effect.

Another example of dishonesty by omission is failing to report all funding sources where that information is relevant to assessing potential biases that might influence the integrity of the work. Conversely, dishonesty can also include reporting of nonexistent funding sources, giving the impression that the research was conducted with more support and so may have been more thorough than in actuality.

Beyond the individual researcher, those engaged in assessing research, whether those who are funding it or participating in any level of the peer review process, also have fundamental responsibilities of honesty. Most centrally, those assessing the quality of science must be honest in their assessments and aware of and honest in reporting their own conflicts of interest or any cognitive biases that may skew their judgment in self-serving ways. There is also a need to guard against unconscious bias, sometimes by refusing to assess work even when a potential reviewer is convinced that he or she can be objective. Efforts to protect honesty should be reinforced by the organizations and systems within which those assessors function. Universities, research organizations, journals, funding agencies, and professional societies must all work to hold each other to honest interactions without favoritism and with potentially biasing factors disclosed.

Openness is not the same as honesty, but it is predicated on honesty. In the scientific enterprise, openness refers to the value of being transparent and presenting all the information relevant to a decision or conclusion. This is essential so that others in the web of the research enterprise can understand why a decision or conclusion was reached. Openness also means making the data on which a result is based available to others so that they may reproduce and verify results or build on them. In some contexts, openness means listening to conflicting ideas or negative results without allowing preexisting biases or expectations to cloud one's judgment. In this respect, openness reinforces objectivity and the achievement of reliable observations and results.

Openness is an ideal toward which to strive in the research enterprise. It almost always enhances the advance of knowledge and facilitates others in meeting their responsibilities, be it journal editors, reviewers, or those who use the research to build products or as an input to policy making. Researchers have to be especially conscientious about being open, since the incentive structure within science does not always explicitly reward openness and sometimes discourages it. An investigator may desire to keep data private to monopolize the conclusions that can be drawn from those data without fear of competition. Researchers may be tempted to withhold data that do not fit with their hypotheses or conclusions. In the worst cases, investigators may fail to disclose data, code, or other information underlying their published results to prevent the detection of fabrication or falsification.

Openness is an ideal that may not always be possible to achieve within the research enterprise. In research involving classified military applications, sensitive personal information, or trade secrets, researchers may have an obligation not to disseminate data and the results derived from those data. Disclosure of results and underlying data may be delayed to allow time for filing a patent application. These sorts of restrictions are more common in certain research settings—such as commercial enterprises and government laboratories—than they are in academic research institutions performing primarily fundamental work. In the latter, openness in research is a long-held principle shared by the community, and it is a requirement in the United States to avoid privileged access that would undermine the institution's nonprofit status and to maintain the fundamental research exclusion from national security-based restrictions.

As the nature of data changes, so do the demands of achieving openness. For example, modern science is often based on very large datasets and computational implementations that cannot be included in a written manuscript. However, publications describing such results could not exist without the data and code underlying the results. Therefore, as part of the publication process, the authors have an obligation to have the available data and commented code or pseudocode (a high-level description of a program's operating principle) necessary and sufficient to re-create the results listed in the manuscript. Again, in some situations where a code implementation is patentable, a brief delay in releasing the code in order to secure intellectual property protection may be acceptable. When the resources needed to make data and code available are insufficient, authors should openly provide them upon request. Similar considerations apply to such varied forms of data as websites, videos, and still images with associated text or voiceovers.

Central to the functioning of the research enterprise is the fundamental value that members of the community are responsible for and stand behind their work, statements, actions, and roles in the conduct of their work. At its core, accountability implies an obligation to explain and/or justify one's behavior. Accountability requires that individuals be willing and able to demonstrate the validity of their work or the reasons for their actions. Accountability goes hand in hand with the credit researchers receive for their contributions to science and how this credit builds their reputations as members of the research enterprise. Accountability also enables those in the web of relationships to rely on work presented by others as a foundation for additional advances.

Individual accountability builds the trustworthiness of the research enterprise as a whole. Each participant in the research system, including researchers, institutional administrators, sponsors, and scholarly publishers, has obligations to others in the web of science and in return should be able to expect consistent and honest actions by others in the system. Mutual accountability therefore builds trust, which is a consequence of the application of the values described in this report.

The purpose of scientific publishing is to advance the state of knowledge through examination by peers who can assess, test, replicate where appropriate, and build on the work being described. Investigators reporting on their work thus must be accountable for the accuracy of their work. Through this accountability, they form a compact with the users of their work. Readers should be able to trust that the work was performed by the authors as described, with honest and accurate reporting of results. Accountability means that any deviations from the compact would be flagged and explained. Readers then could use these explanations in interpreting and evaluating the work.

Investigators are accountable to colleagues in their discipline or field of research, to the employer and institution at which the work is done, to the funders or other sponsors of the research, to the editors and institutions that disseminate their findings, and to the public, which supports research in the expectation that it will produce widespread benefits. Other participants in the research system have other forms of accountability. Journals are accountable to authors, reviewers, readers, the institutions they represent, and other journals (for the reuse of material, violation of copyright, or other issues of mutual concern). Institutions are accountable to their employees, to students, to the funders of both research and education, and to the communities in which they are located. Organizations that sponsor research are accountable to the researchers whose work they support and to their governing bodies or other sources of support, including the public. These networks of accountability support the web of relationships and responsibilities that define the research enterprise.

The accountability expected of individuals and organizations involved with research may be formally specified in policies or regulations. Accountability under institutional research misconduct policies, for example, could mean that researchers will face reprimand or other corrective actions if they fail to meet their responsibilities.

While responsibilities that are formally defined in policies or regulations are important to accountability in the research enterprise, responsibilities that may not be formally specified should also be included in the concept. For example, senior researchers who supervise others are accountable to their employers and the researchers whom they supervise to conduct themselves as professionals, as this is defined by formal organizational policies. On a less formal level, research supervisors are also accountable for being attentive to the educational and career development needs of students, postdoctoral fellows, and other junior researchers whom they oversee. The same principle holds for individuals working for research institutions, sponsoring organizations, and journals.

The scientific enterprise is filled with professional relationships. Many of them involve judging others' work for purposes of funding, publication, or deciding who is hired or promoted. Being fair in these contexts means making professional judgments based on appropriate and announced criteria, including processes used to determine outcomes. Fairness in adhering to explicit criteria and processes reinforces a system in which the core values can operate and trust among the parties can be maintained.

Fairness takes on another dimension in designing criteria and evaluation mechanisms. Research has demonstrated, for example, that grant proposals in which reviewers were blinded to applicant identity and institution receive systematically different funding decisions compared with the outcomes of unblinded reviews ( Ross et al., 2006 ). Truly blinded reviews may be difficult or impossible in a small field. Nevertheless, to the extent possible, the criteria and mechanisms involved in evaluation must be designed so as to ensure against unfair incentive structures or preexisting cultural biases. Fairness is also important in other review contexts, such as the process of peer reviewing articles and the production of book reviews for publication.

Fairness is a particularly important consideration in the list of authors for a publication and in the citations included in reports of research results. Investigators may be tempted to claim that senior or well-known authors played a larger role than they actually did so that their names may help carry the paper to publication and readership. But such a practice is unfair both to the people who actually did the work and to the honorary author, who may not want to be listed prominently or at all. Similarly, nonattribution of credit for contributions to the reported work or careless or negligent crediting of prior work violates the value of fairness. Best practices in authorship, which are based on the value of fairness, honesty, openness, and accountability, are discussed further in Chapter 9 .

Upholding fairness also requires researchers to acknowledge those whose work contributed to their advances. This is usually done through citing relevant work in reporting results. Also, since research is often a highly competitive activity, sometimes there is a race to make a discovery that results in clear winners and losers. Sometimes two groups of researchers make the same discovery nearly simultaneously. Being fair in these situations involves treating research competitors with generosity and magnanimity.

The importance of fairness is also evident in issues involving the duty of care toward human and animal research subjects. Researchers often depend on the use of human and animal subjects for their research, and they have an obligation to treat those subjects fairly—with respect in the case of human subjects and humanely in the case of laboratory animals. They also have obligations to other living things and to those aspects of the environment that affect humans and other living things. These responsibilities need to be balanced and informed by an appreciation for the potential benefits of research.

The research enterprise cannot continue to function unless the members of that system exhibit good stewardship both toward the other members of the system and toward the system itself. Good stewardship implies being aware of and attending carefully to the dynamics of the relationships within the lab, at the institutional level, and at the broad level of the research enterprise itself. Although we have listed stewardship as the final value in the six we discuss in this report, it supports all the others. Here we take up stewardship within the research enterprise but pause to acknowledge the extension of this value to encompass the larger society.

One area where individual researchers exercise stewardship is by performing service for their institution, discipline, or the broader research enterprise that may not necessarily be recognized or rewarded. These service activities include reviewing, editing, serving on faculty committees, and performing various roles in scientific societies. Senior researchers may also serve as mentors to younger researchers whom they are not directly supervising or formally responsible for. At a broader level, researchers, institutions, sponsors, journals, and societies can contribute to the development and updating of policies and practices affecting research. As will be discussed in Chapter 9 , professional societies perform a valuable service by developing scientific integrity policies for their fields and keeping them updated. Individual journals, journal editors, and member organizations have contributed by developing standards and guidelines in areas such as authorship, data sharing, and the responsibilities of journals when they suspect that submitted work has been fabricated or plagiarized.

Stewardship also involves decisions about support and influences on science. Some aspects of the research system are influenced or determined by outside factors. Public demand, political considerations, concerns about national security, and even the prospects for our species' survival can inform and influence decisions about the amount of public and private resources devoted to the research enterprise. Such forces also play important roles in determining the balance of resources invested in various fields of study (e.g., both among and within federal agencies), as well as the balance of effort devoted to fundamental versus applied work and the use of various funding mechanisms.

In some cases, good stewardship requires attending to situations in which the broader research enterprise may not be operating optimally. Chapter 6 discusses issues where problems have been identified and are being debated, such as workforce imbalances, the poor career prospects of academic researchers in some fields, and the incentive structures of modern research environments.

Stewardship is particularly evident in the commitment of the research enterprise to education, both of the next generation of researchers and of individuals who do not expect to become scientists. In particular, Chapter 10 discusses the need to educate all members of the research enterprise in the responsible conduct of research. Education is one way in which engaging in science provides benefits both to those within the research system and to the general public outside the system.

  • A DEFINITION OF RESEARCH INTEGRITY

Making judgments about definitions and terminology as they relate to research integrity and breaches of integrity is a significant component of this committee's statement of task. Practicing integrity in research means planning, proposing, performing, reporting, and reviewing research in accordance with the values described above. These values should be upheld by research institutions, research sponsors, journals, and learned societies as well as by individual researchers and research groups. General norms and specific research practices that conform to these values have developed over time. Sometimes norms and practices need to be updated as technologies and the institutions that compose the research enterprise evolve. There are also disciplinary differences in some specific research practices, but norms and appropriate practices generally apply across science and engineering research fields. As described more fully in Chapter 9 , best practices in research are those actions undertaken by individuals and organizations that are based on the core values of science and enable good research. They should be embraced, practiced, and promoted.

  • Cite this Page National Academies of Sciences, Engineering, and Medicine; Policy and Global Affairs; Committee on Science, Engineering, Medicine, and Public Policy; Committee on Responsible Science. Fostering Integrity in Research. Washington (DC): National Academies Press (US); 2017 Apr 11. 2, Foundations of Integrity in Research: Core Values and Guiding Norms.
  • PDF version of this title (3.0M)

In this Page

Recent activity.

  • Foundations of Integrity in Research: Core Values and Guiding Norms - Fostering ... Foundations of Integrity in Research: Core Values and Guiding Norms - Fostering Integrity in Research

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

Connect with NLM

National Library of Medicine 8600 Rockville Pike Bethesda, MD 20894

Web Policies FOIA HHS Vulnerability Disclosure

Help Accessibility Careers

statistics

what is ethics important in research

Research Ethics & Ethical Considerations

A Plain-Language Explainer With Examples

By: Derek Jansen (MBA) | Reviewers: Dr Eunice Rautenbach | May 2024

Research ethics are one of those “ unsexy but essential ” subjects that you need to fully understand (and apply) to conquer your dissertation, thesis or research paper. In this post, we’ll unpack research ethics using plain language and loads of examples .

Overview: Research Ethics 101

  • What are research ethics?
  • Why should you care?
  • Research ethics principles
  • Respect for persons
  • Beneficence
  • Objectivity
  • Key takeaways

What (exactly) are research ethics?

At the simplest level, research ethics are a set of principles that ensure that your study is conducted responsibly, safely, and with integrity. More specifically, research ethics help protect the rights and welfare of your research participants, while also ensuring the credibility of your research findings.

Research ethics are critically important for a number of reasons:

Firstly, they’re a complete non-negotiable when it comes to getting your research proposal approved. Pretty much all universities will have a set of ethical criteria that student projects need to adhere to – and these are typically very strictly enforced. So, if your proposed study doesn’t tick the necessary ethical boxes, it won’t be approved .

Beyond the practical aspect of approval, research ethics are essential as they ensure that your study’s participants (whether human or animal) are properly protected . In turn, this fosters trust between you and your participants – as well as trust between researchers and the public more generally. As you can probably imagine, it wouldn’t be good if the general public had a negative perception of researchers!

Last but not least, research ethics help ensure that your study’s results are valid and reliable . In other words, that you measured the thing you intended to measure – and that other researchers can repeat your study. If you’re not familiar with the concepts of reliability and validity , we’ve got a straightforward explainer video covering that below.

The Core Principles

In practical terms, each university or institution will have its own ethics policy – so, what exactly constitutes “ethical research” will vary somewhat between institutions and countries. Nevertheless, there are a handful of core principles that shape ethics policies. These principles include:

Let’s unpack each of these to make them a little more tangible.

Ethics Principle 1: Respect for persons

As the name suggests, this principle is all about ensuring that your participants are treated fairly and respectfully . In practical terms, this means informed consent – in other words, participants should be fully informed about the nature of the research, as well as any potential risks. Additionally, they should be able to withdraw from the study at any time. This is especially important when you’re dealing with vulnerable populations – for example, children, the elderly or people with cognitive disabilities.

Another dimension of the “respect for persons” principle is confidentiality and data protection . In other words, your participants’ personal information should be kept strictly confidential and secure at all times. Depending on the specifics of your project, this might also involve anonymising or masking people’s identities. As mentioned earlier, the exact requirements will vary between universities, so be sure to thoroughly review your institution’s ethics policy before you start designing your project.

Need a helping hand?

what is ethics important in research

Ethics Principle 2: Beneficence

This principle is a little more opaque, but in simple terms beneficence means that you, as the researcher, should aim to maximise the benefits of your work, while minimising any potential harm to your participants.

In practical terms, benefits could include advancing knowledge, improving health outcomes, or providing educational value. Conversely, potential harms could include:

  • Physical harm from accidents or injuries
  • Psychological harm, such as stress or embarrassment
  • Social harm, such as stigmatisation or loss of reputation
  • Economic harm – in other words, financial costs or lost income

Simply put, the beneficence principle means that researchers must always try to identify potential risks and take suitable measures to reduce or eliminate them.

Free Webinar: Research Methodology 101

Ethics Principle 3: Objectivity

As you can probably guess, this principle is all about attempting to minimise research bias to the greatest degree possible. In other words, you’ll need to reduce subjectivity and increase objectivity wherever possible.

In practical terms, this principle has the largest impact on the methodology of your study – specifically the data collection and data analysis aspects. For example, you’ll need to ensure that the selection of your participants (in other words, your sampling strategy ) is aligned with your research aims – and that your sample isn’t skewed in a way that supports your presuppositions.

If you’re keen to learn more about research bias and the various ways in which you could unintentionally skew your results, check out the video below.

Ethics Principle 4: Integrity

Again, no surprises here; this principle is all about producing “honest work” . It goes without saying that researchers should always conduct their work honestly and transparently, report their findings accurately, and disclose any potential conflicts of interest upfront.

This is all pretty obvious, but another aspect of the integrity principle that’s sometimes overlooked is respect for intellectual property . In practical terms, this means you need to honour any patents, copyrights, or other forms of intellectual property that you utilise while undertaking your research. Along the same vein, you shouldn’t use any unpublished data, methods, or results without explicit, written permission from the respective owner.

Linked to all of this is the broader issue of plagiarism . Needless to say, if you’re drawing on someone else’s published work, be sure to cite your sources, in the correct format. To make life easier, use a reference manager such as Mendeley or Zotero to ensure that your citations and reference list are perfectly polished.

FAQs: Research Ethics

Research ethics & ethical considertation, what is informed consent.

Informed consent simply means providing your potential participants with all necessary information about the study. This should include information regarding the study’s purpose, procedures, risks, and benefits. This information allows your potential participants to make a voluntary and informed decision about whether to participate.

How should I obtain consent from non-English speaking participants?

What about animals.

When conducting research with animals, ensure you adhere to ethical guidelines for the humane treatment of animals. Again, the exact requirements here will vary between institutions, but typically include minimising pain and distress, using alternatives where possible, and obtaining approval from an animal care and use committee.

What is the role of the ERB or IRB?

An ethics review board (ERB) or institutional review board (IRB) evaluates research proposals to ensure they meet ethical standards. The board reviews study designs, consent forms, and data handling procedures, to protect participants’ welfare and rights.

How can I obtain ethical approval for my project?

This varies between universities, but you will typically need to submit a detailed research proposal to your institution’s ethics committee. This proposal should include your research objectives, methods, and how you plan to address ethical considerations like informed consent, confidentiality, and risk minimisation. You can learn more about how to write a proposal here .

How do I ensure ethical collaboration when working with colleagues?

Collaborative research should be conducted with mutual respect and clear agreements on roles, contributions, and publication credits. Open communication is key to preventing conflicts and misunderstandings. Also, be sure to check whether your university has any specific requirements with regards to collaborative efforts and division of labour. 

How should I address ethical concerns relating to my funding source?

Key takeaways: research ethics 101.

Here’s a quick recap of the key points we’ve covered:

  • Research ethics are a set of principles that ensure that your study is conducted responsibly.
  • It’s essential that you design your study around these principles, or it simply won’t get approved.
  • The four ethics principles we looked at are: respect for persons, beneficence, objectivity and integrity

As mentioned, the exact requirements will vary slightly depending on the institution and country, so be sure to thoroughly review your university’s research ethics policy before you start developing your study.

what is ethics important in research

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

Olaniyi Olawale Akeem

Great piece!!!

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • Ethical Considerations in Research | Types & Examples

Ethical Considerations in Research | Types & Examples

Published on 7 May 2022 by Pritha Bhandari . Revised on 6 July 2024.

Ethical considerations in research are a set of principles that guide your research designs and practices. Scientists and researchers must always adhere to a certain code of conduct when collecting data from people.

The goals of human research often include understanding real-life phenomena, studying effective treatments, investigating behaviours, and improving lives in other ways. What you decide to research and how you conduct that research involve key ethical considerations.

These considerations work to:

  • Protect the rights of research participants
  • Enhance research validity
  • Maintain scientific integrity

Table of contents

Why do research ethics matter, getting ethical approval for your study, types of ethical issues, voluntary participation, informed consent, confidentiality, potential for harm, results communication, examples of ethical failures, frequently asked questions about research ethics.

Research ethics matter for scientific integrity, human rights and dignity, and collaboration between science and society. These principles make sure that participation in studies is voluntary, informed, and safe for research subjects.

You’ll balance pursuing important research aims with using ethical research methods and procedures. It’s always necessary to prevent permanent or excessive harm to participants, whether inadvertent or not.

Defying research ethics will also lower the credibility of your research because it’s hard for others to trust your data if your methods are morally questionable.

Even if a research idea is valuable to society, it doesn’t justify violating the human rights or dignity of your study participants.

Prevent plagiarism, run a free check.

Before you start any study involving data collection with people, you’ll submit your research proposal to an institutional review board (IRB) .

An IRB is a committee that checks whether your research aims and research design are ethically acceptable and follow your institution’s code of conduct. They check that your research materials and procedures are up to code.

If successful, you’ll receive IRB approval, and you can begin collecting data according to the approved procedures. If you want to make any changes to your procedures or materials, you’ll need to submit a modification application to the IRB for approval.

If unsuccessful, you may be asked to re-submit with modifications or your research proposal may receive a rejection. To get IRB approval, it’s important to explicitly note how you’ll tackle each of the ethical issues that may arise in your study.

There are several ethical issues you should always pay attention to in your research design, and these issues can overlap with each other.

You’ll usually outline ways you’ll deal with each issue in your research proposal if you plan to collect data from participants.

Voluntary participation Your participants are free to opt in or out of the study at any point in time.
Informed consent Participants know the purpose, benefits, risks, and funding behind the study before they agree or decline to join.
Anonymity You don’t know the identities of the participants. Personally identifiable data is not collected.
Confidentiality You know who the participants are but keep that information hidden from everyone else. You anonymise personally identifiable data so that it can’t be linked to other data by anyone else.
Potential for harm Physical, social, psychological, and all other types of harm are kept to an absolute minimum.
Results communication You ensure your work is free of plagiarism or research misconduct, and you accurately represent your results.

Voluntary participation means that all research subjects are free to choose to participate without any pressure or coercion.

All participants are able to withdraw from, or leave, the study at any point without feeling an obligation to continue. Your participants don’t need to provide a reason for leaving the study.

It’s important to make it clear to participants that there are no negative consequences or repercussions to their refusal to participate. After all, they’re taking the time to help you in the research process, so you should respect their decisions without trying to change their minds.

Voluntary participation is an ethical principle protected by international law and many scientific codes of conduct.

Take special care to ensure there’s no pressure on participants when you’re working with vulnerable groups of people who may find it hard to stop the study even when they want to.

Informed consent refers to a situation in which all potential participants receive and understand all the information they need to decide whether they want to participate. This includes information about the study’s benefits, risks, funding, and institutional approval.

  • What the study is about
  • The risks and benefits of taking part
  • How long the study will take
  • Your supervisor’s contact information and the institution’s approval number

Usually, you’ll provide participants with a text for them to read and ask them if they have any questions. If they agree to participate, they can sign or initial the consent form. Note that this may not be sufficient for informed consent when you work with particularly vulnerable groups of people.

If you’re collecting data from people with low literacy, make sure to verbally explain the consent form to them before they agree to participate.

For participants with very limited English proficiency, you should always translate the study materials or work with an interpreter so they have all the information in their first language.

In research with children, you’ll often need informed permission for their participation from their parents or guardians. Although children cannot give informed consent, it’s best to also ask for their assent (agreement) to participate, depending on their age and maturity level.

Anonymity means that you don’t know who the participants are and you can’t link any individual participant to their data.

You can only guarantee anonymity by not collecting any personally identifying information – for example, names, phone numbers, email addresses, IP addresses, physical characteristics, photos, and videos.

In many cases, it may be impossible to truly anonymise data collection. For example, data collected in person or by phone cannot be considered fully anonymous because some personal identifiers (demographic information or phone numbers) are impossible to hide.

You’ll also need to collect some identifying information if you give your participants the option to withdraw their data at a later stage.

Data pseudonymisation is an alternative method where you replace identifying information about participants with pseudonymous, or fake, identifiers. The data can still be linked to participants, but it’s harder to do so because you separate personal information from the study data.

Confidentiality means that you know who the participants are, but you remove all identifying information from your report.

All participants have a right to privacy, so you should protect their personal data for as long as you store or use it. Even when you can’t collect data anonymously, you should secure confidentiality whenever you can.

Some research designs aren’t conducive to confidentiality, but it’s important to make all attempts and inform participants of the risks involved.

As a researcher, you have to consider all possible sources of harm to participants. Harm can come in many different forms.

  • Psychological harm: Sensitive questions or tasks may trigger negative emotions such as shame or anxiety.
  • Social harm: Participation can involve social risks, public embarrassment, or stigma.
  • Physical harm: Pain or injury can result from the study procedures.
  • Legal harm: Reporting sensitive data could lead to legal risks or a breach of privacy.

It’s best to consider every possible source of harm in your study, as well as concrete ways to mitigate them. Involve your supervisor to discuss steps for harm reduction.

Make sure to disclose all possible risks of harm to participants before the study to get informed consent. If there is a risk of harm, prepare to provide participants with resources, counselling, or medical services if needed.

Some of these questions may bring up negative emotions, so you inform participants about the sensitive nature of the survey and assure them that their responses will be confidential.

The way you communicate your research results can sometimes involve ethical issues. Good science communication is honest, reliable, and credible. It’s best to make your results as transparent as possible.

Take steps to actively avoid plagiarism and research misconduct wherever possible.

Plagiarism means submitting others’ works as your own. Although it can be unintentional, copying someone else’s work without proper credit amounts to stealing. It’s an ethical problem in research communication because you may benefit by harming other researchers.

Self-plagiarism is when you republish or re-submit parts of your own papers or reports without properly citing your original work.

This is problematic because you may benefit from presenting your ideas as new and original even though they’ve already been published elsewhere in the past. You may also be infringing on your previous publisher’s copyright, violating an ethical code, or wasting time and resources by doing so.

In extreme cases of self-plagiarism, entire datasets or papers are sometimes duplicated. These are major ethical violations because they can skew research findings if taken as original data.

You notice that two published studies have similar characteristics even though they are from different years. Their sample sizes, locations, treatments, and results are highly similar, and the studies share one author in common.

Research misconduct

Research misconduct means making up or falsifying data, manipulating data analyses, or misrepresenting results in research reports. It’s a form of academic fraud.

These actions are committed intentionally and can have serious consequences; research misconduct is not a simple mistake or a point of disagreement about data analyses.

Research misconduct is a serious ethical issue because it can undermine scientific integrity and institutional credibility. It leads to a waste of funding and resources that could have been used for alternative research.

Later investigations revealed that they fabricated and manipulated their data to show a nonexistent link between vaccines and autism. Wakefield also neglected to disclose important conflicts of interest, and his medical license was taken away.

This fraudulent work sparked vaccine hesitancy among parents and caregivers. The rate of MMR vaccinations in children fell sharply, and measles outbreaks became more common due to a lack of herd immunity.

Research scandals with ethical failures are littered throughout history, but some took place not that long ago.

Some scientists in positions of power have historically mistreated or even abused research participants to investigate research problems at any cost. These participants were prisoners, under their care, or otherwise trusted them to treat them with dignity.

To demonstrate the importance of research ethics, we’ll briefly review two research studies that violated human rights in modern history.

These experiments were inhumane and resulted in trauma, permanent disabilities, or death in many cases.

After some Nazi doctors were put on trial for their crimes, the Nuremberg Code of research ethics for human experimentation was developed in 1947 to establish a new standard for human experimentation in medical research.

In reality, the actual goal was to study the effects of the disease when left untreated, and the researchers never informed participants about their diagnoses or the research aims.

Although participants experienced severe health problems, including blindness and other complications, the researchers only pretended to provide medical care.

When treatment became possible in 1943, 11 years after the study began, none of the participants were offered it, despite their health conditions and high risk of death.

Ethical failures like these resulted in severe harm to participants, wasted resources, and lower trust in science and scientists. This is why all research institutions have strict ethical guidelines for performing research.

Ethical considerations in research are a set of principles that guide your research designs and practices. These principles include voluntary participation, informed consent, anonymity, confidentiality, potential for harm, and results communication.

Scientists and researchers must always adhere to a certain code of conduct when collecting data from others .

These considerations protect the rights of research participants, enhance research validity , and maintain scientific integrity.

Research ethics matter for scientific integrity, human rights and dignity, and collaboration between science and society. These principles make sure that participation in studies is voluntary, informed, and safe.

Anonymity means you don’t know who the participants are, while confidentiality means you know who they are but remove identifying information from your research report. Both are important ethical considerations .

You can only guarantee anonymity by not collecting any personally identifying information – for example, names, phone numbers, email addresses, IP addresses, physical characteristics, photos, or videos.

You can keep data confidential by using aggregate information in your research report, so that you only refer to groups of participants rather than individuals.

These actions are committed intentionally and can have serious consequences; research misconduct is not a simple mistake or a point of disagreement but a serious ethical failure.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Bhandari, P. (2024, July 05). Ethical Considerations in Research | Types & Examples. Scribbr. Retrieved 3 September 2024, from https://www.scribbr.co.uk/research-methods/ethical-considerations/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, a quick guide to experimental design | 5 steps & examples, data collection methods | step-by-step guide & examples, how to avoid plagiarism | tips on citing sources.

Understanding Research Ethics

  • First Online: 22 April 2022

Cite this chapter

what is ethics important in research

  • Sarah Cuschieri 2  

658 Accesses

1 Citations

As a researcher, whatever your career stage, you need to understand and practice good research ethics. Moral and ethical principles are requisite in research to ensure no deception or harm to participants, scientific community, and society occurs. Failure to follow such principles leads to research misconduct, in which case the researcher faces repercussions ranging from withdrawal of an article from publication to potential job loss. This chapter describes the various types of research misconduct that you should be aware of, i.e., data fabrication and falsification, plagiarism, research bias, data integrity, researcher and funder conflicts of interest. A sound comprehension of research ethics will take you a long way in your career.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Author information

Authors and affiliations.

Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, Msida, Malta

Sarah Cuschieri

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Cuschieri, S. (2022). Understanding Research Ethics. In: A Roadmap to Successful Scientific Publishing. Springer, Cham. https://doi.org/10.1007/978-3-030-99295-8_2

Download citation

DOI : https://doi.org/10.1007/978-3-030-99295-8_2

Published : 22 April 2022

Publisher Name : Springer, Cham

Print ISBN : 978-3-030-99294-1

Online ISBN : 978-3-030-99295-8

eBook Packages : Biomedical and Life Sciences Biomedical and Life Sciences (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

COMMENTS

  1. What Is Ethics in Research and Why Is It Important?

    There are several reasons why it is important to adhere to ethical norms in research. First, norms promote the aims of research, such as knowledge, truth, and avoidance of error. For example, prohibitions against fabricating, falsifying, or misrepresenting research data promote the truth and minimize error.

  2. Ethical Considerations in Research | Types & Examples - Scribbr

    Research ethics matter for scientific integrity, human rights and dignity, and collaboration between science and society. These principles make sure that participation in studies is voluntary, informed, and safe for research subjects.

  3. What Is Ethics in Research, And Why Is It Important? Research ...

    Researchers must abide by ethical norms or risk producing questionable research results. Ethics in research is crucial for many reasons. They help promote the value required for collaborative work, promote the research aim, and ensure researchers are accountable to the public.

  4. Ethics in scientific research: a lens into its importance ...

    The need to understand and uphold ethics in scientific research is pertinent in todays scientific community. First, the rapid advancement of technology and science raises ethical questions in fields like biotechnology, biomedical science, genetics, and artificial intelligence.

  5. The Ethics of Research, Writing, and Publication

    Research ethics or norms promote the “knowledge, truth, and avoidance of error” (p. 1) and protect against “fabricating, falsifying, or misrepresenting research data” (p. 1).

  6. 2 Foundations of Integrity in Research: Core Values and ...

    Several causes are identified, including a lack of awareness on the part of researchers of the ethical issues that can arise, confidence that they can identify and address these issues without any special training or help, or apprehension that a focus on ethical issues might hinder their progress.

  7. Understanding Scientific and Research Ethics - PLOS

    Scientific and research ethics exist to safeguard human rights, ensure that we treat animals respectfully and humanely, and protect the natural environment. The specific details may vary widely depending on the type of research you’re conducting, but there are clear themes running through all research and reporting ethical requirements:

  8. Research Ethics 101: Simple Explainer With Examples - Grad Coach

    At the simplest level, research ethics are a set of principles that ensure that your study is conducted responsibly, safely, and with integrity. More specifically, research ethics help protect the rights and welfare of your research participants, while also ensuring the credibility of your research findings.

  9. Ethical Considerations in Research | Types & Examples - Scribbr

    Research ethics matter for scientific integrity, human rights and dignity, and collaboration between science and society. These principles make sure that participation in studies is voluntary, informed, and safe for research subjects. You’ll balance pursuing important research aims with using ethical research methods and procedures.

  10. Understanding Research Ethics | SpringerLink

    Research ethics are moral principles that need to be adhered to when conducting a research study as well as when writing a scientific article, with the prime aim of avoiding deception or intent to harm study’s participants, the scientific community, and society.