Required Practical: Investigating SHM ( AQA A Level Physics )

Revision note.

Ashika

Physics Project Lead

Required Practical: Investigating SHM

Equipment list.

Equipment List Table, downloadable AS & A Level Physics revision notes

  • Stopwatch = ±0.01 s
  • Metre Ruler = ±1 mm

SHM in a Mass-Spring System

  • This experiment aims to calculate the spring constant of a spring in a mass-spring system
  • This is just one example of how this required practical might be carried out
  • Independent variable = mass,  m
  • Dependent variable = time period,  T
  • Spring constant,  k
  • Number of oscillations

Mass-Spring Practical Setup, downloadable AS & A Level Physics revision notes

The setup of apparatus to detect oscillations of a mass-spring system

  • Set up the apparatus, with no masses hanging on the holder to begin with (just the 100 g mass attached to it)
  • Pull the mass hanger vertically downwards between 2-5 cm as measured from the ruler and let go. The mass hanger will begin to oscillate
  • Start the stopwatch when it passes the nail marker
  • Stop the stopwatch after 10 complete oscillations and record this time. Divide the time by 10 for the time period (which is the mean)
  • Add a 50 g mass to the holder and repeat the above between 8-10 readings. Make sure the mass is pulled down by the same length before letting go
  • An example table might look like this:

Mass-Spring Example Table, downloadable AS & A Level Physics revision notes

 Analysing the Results

  • Obtain an equation for the spring constant,  k 
  • Then plot a suitable graph to obtain a value for k
  • Start with the time period of a mass-spring system from the equation:

Mass-Spring Time Period Equation

  • T  = time period (s)
  • m = mass (kg)
  • k = spring constant (N m –1 )
  • Squaring both sides of the equation gives:

T^2 Mass-Spring Equation

  • Gradient = 4π 2 / k
  • The spring constant, k , is therefore equal to:

Spring Constant from Graph

  • Where  T 2 and  m  are directly proportional to each other
  • The graph is a straight line with a positive gradient

Mass-Spring Example Graph, downloadable AS & A Level Physics revision notes

  • Where k is found from the gradient of a force F  extension x  graph

SHM in a Simple Pendulum

  • This experiment aims to calculate the acceleration due to gravity of a simple pendulum
  • Independent variable = length, L
  • Mass of pendulum bob,  m

Pendulum Practical Setup, downloadable AS & A Level Physics revision notes

  • Set up the apparatus, with the length of the pendulum at 0.2 m
  • Make sure the pendulum hangs vertically downwards at equilibrium and inline directly in front of the needle marker
  • Pull the pendulum to the side at a very small angle then let go. The pendulum will begin to oscillate
  • Start the stopwatch when the pendulum passes the needle marker in its equilibrium. One complete oscillation occurs when the pendulum passes through the equilibrium, to one maximum and then the other, and back to the equilibrium again (not just from side to side)
  • Stop the stopwatch after 10 complete oscillations and record the total time. Divide the time by 10 to obtain the time period (which is the mean)
  • Adjust the string to increase the length of the pendulum and the wooden block. Repeat the above for 8-10 readings. The ruler is used to measure the string. Ensure it is measured from the wooden blocks to the centre of mass of the bob.
  • Oscillations should be counted as follows:

Complete Oscillation Pendulum, downloadable AS & A Level Physics revision notes

Analysing the Results

  • Obtain an equation for the   acceleration due to gravity, g 
  • Then plot a suitable   graph   to obtain a value for g
  • The time period of a simple pendulum is given by:

Period of Pendulum Equation _2

  • T = time period (s)
  • L = length of the pendulum (m)
  • g = acceleration due to gravity (m s –2 )
  • Squaring both sides of the equation gives

Time Period Square Equation _2

  • gradient m = 4π 2 / g

The acceleration due to gravity is equal to:

g from Graph

  • Where  T 2   and  L are   directly proportional   to each other
  • The graph is a   straight line   with a   positive gradient

Pendulum Example Graph, downloadable AS & A Level Physics revision notes

  • The accuracy of the experiment can be determined by comparing the obtained value of  g  to the accepted value of acceleration due to gravity,  g = 9.81 m s −2

Evaluating the Experiments

Systematic Errors :

  • Reduce parallax error by viewing the marker at eye level

Random Errors :

  • Record the time taken for 10 full oscillations, then divide by 10 for one period, to reduce random errors
  • For the simple pendulum, the oscillations may not completely go from side to side, and the object may move in a circle. Therefore, keep the amplitudes of oscillation relatively small (only a few cm) and repeat any readings that take a different trajectory
  • The equation for the time period of a pendulum bob only works for small angles , so make sure the pendulum is not pulled too far out to the side for the oscillation
  • For the mass-spring system, the oscillations may not stay completely vertical. Therefore, keep the amplitudes relatively small (only a few cm) and repeat the readings making sure they are vertical
  • When setting an oscillation in motion make sure the mass is pulled to the side by the same angle every time 
  • A motion tracker and data logger could provide a more accurate value for the time period and reduce the random errors in starting and stopping the stopwatch (due to reflex times)

Safety Considerations

  • Place a soft surface directly below the equipment to reduce the damage caused by a falling pendulum or spring
  • Only pull down the mass and spring system a few centimetres for the oscillations, as larger oscillations could cause the masses to fall off and damage the equipment
  • The wooden blocks must be tightly clamped together to hold the string for the pendulum in place, otherwise, the pendulum may dislodge during oscillations and fall off

Worked example

A student investigates the relationship between the time period and the mass of a mass-spring system that oscillates with simple harmonic motion. They obtain the following results:

SHM Worked Example Question Table, downloadable AS & A Level Physics revision notes

Calculate the value of the spring constant of the spring used in this experiment.

Step 1: Complete the table

Add the extra column T 2 and calculate the values

SHM Worked Example Step 1 Table, downloadable AS & A Level Physics revision notes

Step 2: Plot the graph of T 2 against the mass m

SHM Worked Example Step 2 Graph, downloadable AS & A Level Physics revision notes

Make sure the axes are properly labelled and the line of best fit is drawn with a ruler.

The line of best fit should have an equal number of points above and below it.

Step 3: Calculate the gradient of the graph

SHM Worked Example Step 3 Graph, downloadable AS & A Level Physics revision notes

The gradient is calculated by:

safety precautions for simple pendulum experiment

Step 4: Calculate the spring constant, k

safety precautions for simple pendulum experiment

You've read 0 of your 10 free revision notes

Unlock more, it's free, join the 100,000 + students that ❤️ save my exams.

the (exam) results speak for themselves:

Did this page help you?

  • Simple Harmonic Motion
  • Forced Vibrations & Resonance
  • Thermal Energy Transfer
  • Ideal Gases
  • Molecular Kinetic Theory Model
  • Gravitational Fields
  • Gravitational Potential
  • Orbits of Planets & Satellites
  • Electric Fields
  • Electric Potential

Author: Ashika

Ashika graduated with a first-class Physics degree from Manchester University and, having worked as a software engineer, focused on Physics education, creating engaging content to help students across all levels. Now an experienced GCSE and A Level Physics and Maths tutor, Ashika helps to grow and improve our Physics resources.

  • Search Menu

Sign in through your institution

  • Browse content in Arts and Humanities
  • Browse content in Archaeology
  • Anglo-Saxon and Medieval Archaeology
  • Archaeological Methodology and Techniques
  • Archaeology by Region
  • Archaeology of Religion
  • Archaeology of Trade and Exchange
  • Biblical Archaeology
  • Contemporary and Public Archaeology
  • Environmental Archaeology
  • Historical Archaeology
  • History and Theory of Archaeology
  • Industrial Archaeology
  • Landscape Archaeology
  • Mortuary Archaeology
  • Prehistoric Archaeology
  • Underwater Archaeology
  • Zooarchaeology
  • Browse content in Architecture
  • Architectural Structure and Design
  • History of Architecture
  • Residential and Domestic Buildings
  • Theory of Architecture
  • Browse content in Art
  • Art Subjects and Themes
  • History of Art
  • Industrial and Commercial Art
  • Theory of Art
  • Biographical Studies
  • Byzantine Studies
  • Browse content in Classical Studies
  • Classical History
  • Classical Philosophy
  • Classical Mythology
  • Classical Numismatics
  • Classical Literature
  • Classical Reception
  • Classical Art and Architecture
  • Classical Oratory and Rhetoric
  • Greek and Roman Epigraphy
  • Greek and Roman Law
  • Greek and Roman Papyrology
  • Greek and Roman Archaeology
  • Late Antiquity
  • Religion in the Ancient World
  • Social History
  • Digital Humanities
  • Browse content in History
  • Colonialism and Imperialism
  • Diplomatic History
  • Environmental History
  • Genealogy, Heraldry, Names, and Honours
  • Genocide and Ethnic Cleansing
  • Historical Geography
  • History by Period
  • History of Emotions
  • History of Agriculture
  • History of Education
  • History of Gender and Sexuality
  • Industrial History
  • Intellectual History
  • International History
  • Labour History
  • Legal and Constitutional History
  • Local and Family History
  • Maritime History
  • Military History
  • National Liberation and Post-Colonialism
  • Oral History
  • Political History
  • Public History
  • Regional and National History
  • Revolutions and Rebellions
  • Slavery and Abolition of Slavery
  • Social and Cultural History
  • Theory, Methods, and Historiography
  • Urban History
  • World History
  • Browse content in Language Teaching and Learning
  • Language Learning (Specific Skills)
  • Language Teaching Theory and Methods
  • Browse content in Linguistics
  • Applied Linguistics
  • Cognitive Linguistics
  • Computational Linguistics
  • Forensic Linguistics
  • Grammar, Syntax and Morphology
  • Historical and Diachronic Linguistics
  • History of English
  • Language Acquisition
  • Language Evolution
  • Language Reference
  • Language Variation
  • Language Families
  • Lexicography
  • Linguistic Anthropology
  • Linguistic Theories
  • Linguistic Typology
  • Phonetics and Phonology
  • Psycholinguistics
  • Sociolinguistics
  • Translation and Interpretation
  • Writing Systems
  • Browse content in Literature
  • Bibliography
  • Children's Literature Studies
  • Literary Studies (Asian)
  • Literary Studies (European)
  • Literary Studies (Eco-criticism)
  • Literary Studies (American)
  • Literary Studies (Romanticism)
  • Literary Studies (Modernism)
  • Literary Studies - World
  • Literary Studies (1500 to 1800)
  • Literary Studies (19th Century)
  • Literary Studies (20th Century onwards)
  • Literary Studies (African American Literature)
  • Literary Studies (British and Irish)
  • Literary Studies (Early and Medieval)
  • Literary Studies (Fiction, Novelists, and Prose Writers)
  • Literary Studies (Gender Studies)
  • Literary Studies (Graphic Novels)
  • Literary Studies (History of the Book)
  • Literary Studies (Plays and Playwrights)
  • Literary Studies (Poetry and Poets)
  • Literary Studies (Postcolonial Literature)
  • Literary Studies (Queer Studies)
  • Literary Studies (Science Fiction)
  • Literary Studies (Travel Literature)
  • Literary Studies (War Literature)
  • Literary Studies (Women's Writing)
  • Literary Theory and Cultural Studies
  • Mythology and Folklore
  • Shakespeare Studies and Criticism
  • Browse content in Media Studies
  • Browse content in Music
  • Applied Music
  • Dance and Music
  • Ethics in Music
  • Ethnomusicology
  • Gender and Sexuality in Music
  • Medicine and Music
  • Music Cultures
  • Music and Religion
  • Music and Media
  • Music and Culture
  • Music Education and Pedagogy
  • Music Theory and Analysis
  • Musical Scores, Lyrics, and Libretti
  • Musical Structures, Styles, and Techniques
  • Musicology and Music History
  • Performance Practice and Studies
  • Race and Ethnicity in Music
  • Sound Studies
  • Browse content in Performing Arts
  • Browse content in Philosophy
  • Aesthetics and Philosophy of Art
  • Epistemology
  • Feminist Philosophy
  • History of Western Philosophy
  • Metaphysics
  • Moral Philosophy
  • Non-Western Philosophy
  • Philosophy of Science
  • Philosophy of Language
  • Philosophy of Mind
  • Philosophy of Perception
  • Philosophy of Action
  • Philosophy of Law
  • Philosophy of Religion
  • Philosophy of Mathematics and Logic
  • Practical Ethics
  • Social and Political Philosophy
  • Browse content in Religion
  • Biblical Studies
  • Christianity
  • East Asian Religions
  • History of Religion
  • Judaism and Jewish Studies
  • Qumran Studies
  • Religion and Education
  • Religion and Health
  • Religion and Politics
  • Religion and Science
  • Religion and Law
  • Religion and Art, Literature, and Music
  • Religious Studies
  • Browse content in Society and Culture
  • Cookery, Food, and Drink
  • Cultural Studies
  • Customs and Traditions
  • Ethical Issues and Debates
  • Hobbies, Games, Arts and Crafts
  • Natural world, Country Life, and Pets
  • Popular Beliefs and Controversial Knowledge
  • Sports and Outdoor Recreation
  • Technology and Society
  • Travel and Holiday
  • Visual Culture
  • Browse content in Law
  • Arbitration
  • Browse content in Company and Commercial Law
  • Commercial Law
  • Company Law
  • Browse content in Comparative Law
  • Systems of Law
  • Competition Law
  • Browse content in Constitutional and Administrative Law
  • Government Powers
  • Judicial Review
  • Local Government Law
  • Military and Defence Law
  • Parliamentary and Legislative Practice
  • Construction Law
  • Contract Law
  • Browse content in Criminal Law
  • Criminal Procedure
  • Criminal Evidence Law
  • Sentencing and Punishment
  • Employment and Labour Law
  • Environment and Energy Law
  • Browse content in Financial Law
  • Banking Law
  • Insolvency Law
  • History of Law
  • Human Rights and Immigration
  • Intellectual Property Law
  • Browse content in International Law
  • Private International Law and Conflict of Laws
  • Public International Law
  • IT and Communications Law
  • Jurisprudence and Philosophy of Law
  • Law and Politics
  • Law and Society
  • Browse content in Legal System and Practice
  • Courts and Procedure
  • Legal Skills and Practice
  • Legal System - Costs and Funding
  • Primary Sources of Law
  • Regulation of Legal Profession
  • Medical and Healthcare Law
  • Browse content in Policing
  • Criminal Investigation and Detection
  • Police and Security Services
  • Police Procedure and Law
  • Police Regional Planning
  • Browse content in Property Law
  • Personal Property Law
  • Restitution
  • Study and Revision
  • Terrorism and National Security Law
  • Browse content in Trusts Law
  • Wills and Probate or Succession
  • Browse content in Medicine and Health
  • Browse content in Allied Health Professions
  • Arts Therapies
  • Clinical Science
  • Dietetics and Nutrition
  • Occupational Therapy
  • Operating Department Practice
  • Physiotherapy
  • Radiography
  • Speech and Language Therapy
  • Browse content in Anaesthetics
  • General Anaesthesia
  • Browse content in Clinical Medicine
  • Acute Medicine
  • Cardiovascular Medicine
  • Clinical Genetics
  • Clinical Pharmacology and Therapeutics
  • Dermatology
  • Endocrinology and Diabetes
  • Gastroenterology
  • Genito-urinary Medicine
  • Geriatric Medicine
  • Infectious Diseases
  • Medical Toxicology
  • Medical Oncology
  • Pain Medicine
  • Palliative Medicine
  • Rehabilitation Medicine
  • Respiratory Medicine and Pulmonology
  • Rheumatology
  • Sleep Medicine
  • Sports and Exercise Medicine
  • Clinical Neuroscience
  • Community Medical Services
  • Critical Care
  • Emergency Medicine
  • Forensic Medicine
  • Haematology
  • History of Medicine
  • Browse content in Medical Dentistry
  • Oral and Maxillofacial Surgery
  • Paediatric Dentistry
  • Restorative Dentistry and Orthodontics
  • Surgical Dentistry
  • Browse content in Medical Skills
  • Clinical Skills
  • Communication Skills
  • Nursing Skills
  • Surgical Skills
  • Medical Ethics
  • Medical Statistics and Methodology
  • Browse content in Neurology
  • Clinical Neurophysiology
  • Neuropathology
  • Nursing Studies
  • Browse content in Obstetrics and Gynaecology
  • Gynaecology
  • Occupational Medicine
  • Ophthalmology
  • Otolaryngology (ENT)
  • Browse content in Paediatrics
  • Neonatology
  • Browse content in Pathology
  • Chemical Pathology
  • Clinical Cytogenetics and Molecular Genetics
  • Histopathology
  • Medical Microbiology and Virology
  • Patient Education and Information
  • Browse content in Pharmacology
  • Psychopharmacology
  • Browse content in Popular Health
  • Caring for Others
  • Complementary and Alternative Medicine
  • Self-help and Personal Development
  • Browse content in Preclinical Medicine
  • Cell Biology
  • Molecular Biology and Genetics
  • Reproduction, Growth and Development
  • Primary Care
  • Professional Development in Medicine
  • Browse content in Psychiatry
  • Addiction Medicine
  • Child and Adolescent Psychiatry
  • Forensic Psychiatry
  • Learning Disabilities
  • Old Age Psychiatry
  • Psychotherapy
  • Browse content in Public Health and Epidemiology
  • Epidemiology
  • Public Health
  • Browse content in Radiology
  • Clinical Radiology
  • Interventional Radiology
  • Nuclear Medicine
  • Radiation Oncology
  • Reproductive Medicine
  • Browse content in Surgery
  • Cardiothoracic Surgery
  • Gastro-intestinal and Colorectal Surgery
  • General Surgery
  • Neurosurgery
  • Paediatric Surgery
  • Peri-operative Care
  • Plastic and Reconstructive Surgery
  • Surgical Oncology
  • Transplant Surgery
  • Trauma and Orthopaedic Surgery
  • Vascular Surgery
  • Browse content in Science and Mathematics
  • Browse content in Biological Sciences
  • Aquatic Biology
  • Biochemistry
  • Bioinformatics and Computational Biology
  • Developmental Biology
  • Ecology and Conservation
  • Evolutionary Biology
  • Genetics and Genomics
  • Microbiology
  • Molecular and Cell Biology
  • Natural History
  • Plant Sciences and Forestry
  • Research Methods in Life Sciences
  • Structural Biology
  • Systems Biology
  • Zoology and Animal Sciences
  • Browse content in Chemistry
  • Analytical Chemistry
  • Computational Chemistry
  • Crystallography
  • Environmental Chemistry
  • Industrial Chemistry
  • Inorganic Chemistry
  • Materials Chemistry
  • Medicinal Chemistry
  • Mineralogy and Gems
  • Organic Chemistry
  • Physical Chemistry
  • Polymer Chemistry
  • Study and Communication Skills in Chemistry
  • Theoretical Chemistry
  • Browse content in Computer Science
  • Artificial Intelligence
  • Computer Architecture and Logic Design
  • Game Studies
  • Human-Computer Interaction
  • Mathematical Theory of Computation
  • Programming Languages
  • Software Engineering
  • Systems Analysis and Design
  • Virtual Reality
  • Browse content in Computing
  • Business Applications
  • Computer Security
  • Computer Games
  • Computer Networking and Communications
  • Digital Lifestyle
  • Graphical and Digital Media Applications
  • Operating Systems
  • Browse content in Earth Sciences and Geography
  • Atmospheric Sciences
  • Environmental Geography
  • Geology and the Lithosphere
  • Maps and Map-making
  • Meteorology and Climatology
  • Oceanography and Hydrology
  • Palaeontology
  • Physical Geography and Topography
  • Regional Geography
  • Soil Science
  • Urban Geography
  • Browse content in Engineering and Technology
  • Agriculture and Farming
  • Biological Engineering
  • Civil Engineering, Surveying, and Building
  • Electronics and Communications Engineering
  • Energy Technology
  • Engineering (General)
  • Environmental Science, Engineering, and Technology
  • History of Engineering and Technology
  • Mechanical Engineering and Materials
  • Technology of Industrial Chemistry
  • Transport Technology and Trades
  • Browse content in Environmental Science
  • Applied Ecology (Environmental Science)
  • Conservation of the Environment (Environmental Science)
  • Environmental Sustainability
  • Environmentalist Thought and Ideology (Environmental Science)
  • Management of Land and Natural Resources (Environmental Science)
  • Natural Disasters (Environmental Science)
  • Nuclear Issues (Environmental Science)
  • Pollution and Threats to the Environment (Environmental Science)
  • Social Impact of Environmental Issues (Environmental Science)
  • History of Science and Technology
  • Browse content in Materials Science
  • Ceramics and Glasses
  • Composite Materials
  • Metals, Alloying, and Corrosion
  • Nanotechnology
  • Browse content in Mathematics
  • Applied Mathematics
  • Biomathematics and Statistics
  • History of Mathematics
  • Mathematical Education
  • Mathematical Finance
  • Mathematical Analysis
  • Numerical and Computational Mathematics
  • Probability and Statistics
  • Pure Mathematics
  • Browse content in Neuroscience
  • Cognition and Behavioural Neuroscience
  • Development of the Nervous System
  • Disorders of the Nervous System
  • History of Neuroscience
  • Invertebrate Neurobiology
  • Molecular and Cellular Systems
  • Neuroendocrinology and Autonomic Nervous System
  • Neuroscientific Techniques
  • Sensory and Motor Systems
  • Browse content in Physics
  • Astronomy and Astrophysics
  • Atomic, Molecular, and Optical Physics
  • Biological and Medical Physics
  • Classical Mechanics
  • Computational Physics
  • Condensed Matter Physics
  • Electromagnetism, Optics, and Acoustics
  • History of Physics
  • Mathematical and Statistical Physics
  • Measurement Science
  • Nuclear Physics
  • Particles and Fields
  • Plasma Physics
  • Quantum Physics
  • Relativity and Gravitation
  • Semiconductor and Mesoscopic Physics
  • Browse content in Psychology
  • Affective Sciences
  • Clinical Psychology
  • Cognitive Psychology
  • Cognitive Neuroscience
  • Criminal and Forensic Psychology
  • Developmental Psychology
  • Educational Psychology
  • Evolutionary Psychology
  • Health Psychology
  • History and Systems in Psychology
  • Music Psychology
  • Neuropsychology
  • Organizational Psychology
  • Psychological Assessment and Testing
  • Psychology of Human-Technology Interaction
  • Psychology Professional Development and Training
  • Research Methods in Psychology
  • Social Psychology
  • Browse content in Social Sciences
  • Browse content in Anthropology
  • Anthropology of Religion
  • Human Evolution
  • Medical Anthropology
  • Physical Anthropology
  • Regional Anthropology
  • Social and Cultural Anthropology
  • Theory and Practice of Anthropology
  • Browse content in Business and Management
  • Business Strategy
  • Business Ethics
  • Business History
  • Business and Government
  • Business and Technology
  • Business and the Environment
  • Comparative Management
  • Corporate Governance
  • Corporate Social Responsibility
  • Entrepreneurship
  • Health Management
  • Human Resource Management
  • Industrial and Employment Relations
  • Industry Studies
  • Information and Communication Technologies
  • International Business
  • Knowledge Management
  • Management and Management Techniques
  • Operations Management
  • Organizational Theory and Behaviour
  • Pensions and Pension Management
  • Public and Nonprofit Management
  • Social Issues in Business and Management
  • Strategic Management
  • Supply Chain Management
  • Browse content in Criminology and Criminal Justice
  • Criminal Justice
  • Criminology
  • Forms of Crime
  • International and Comparative Criminology
  • Youth Violence and Juvenile Justice
  • Development Studies
  • Browse content in Economics
  • Agricultural, Environmental, and Natural Resource Economics
  • Asian Economics
  • Behavioural Finance
  • Behavioural Economics and Neuroeconomics
  • Econometrics and Mathematical Economics
  • Economic Systems
  • Economic History
  • Economic Methodology
  • Economic Development and Growth
  • Financial Markets
  • Financial Institutions and Services
  • General Economics and Teaching
  • Health, Education, and Welfare
  • History of Economic Thought
  • International Economics
  • Labour and Demographic Economics
  • Law and Economics
  • Macroeconomics and Monetary Economics
  • Microeconomics
  • Public Economics
  • Urban, Rural, and Regional Economics
  • Welfare Economics
  • Browse content in Education
  • Adult Education and Continuous Learning
  • Care and Counselling of Students
  • Early Childhood and Elementary Education
  • Educational Equipment and Technology
  • Educational Strategies and Policy
  • Higher and Further Education
  • Organization and Management of Education
  • Philosophy and Theory of Education
  • Schools Studies
  • Secondary Education
  • Teaching of a Specific Subject
  • Teaching of Specific Groups and Special Educational Needs
  • Teaching Skills and Techniques
  • Browse content in Environment
  • Applied Ecology (Social Science)
  • Climate Change
  • Conservation of the Environment (Social Science)
  • Environmentalist Thought and Ideology (Social Science)
  • Management of Land and Natural Resources (Social Science)
  • Natural Disasters (Environment)
  • Pollution and Threats to the Environment (Social Science)
  • Social Impact of Environmental Issues (Social Science)
  • Sustainability
  • Browse content in Human Geography
  • Cultural Geography
  • Economic Geography
  • Political Geography
  • Browse content in Interdisciplinary Studies
  • Communication Studies
  • Museums, Libraries, and Information Sciences
  • Browse content in Politics
  • African Politics
  • Asian Politics
  • Chinese Politics
  • Comparative Politics
  • Conflict Politics
  • Elections and Electoral Studies
  • Environmental Politics
  • Ethnic Politics
  • European Union
  • Foreign Policy
  • Gender and Politics
  • Human Rights and Politics
  • Indian Politics
  • International Relations
  • International Organization (Politics)
  • Irish Politics
  • Latin American Politics
  • Middle Eastern Politics
  • Political Methodology
  • Political Communication
  • Political Philosophy
  • Political Sociology
  • Political Behaviour
  • Political Economy
  • Political Institutions
  • Political Theory
  • Politics and Law
  • Politics of Development
  • Public Administration
  • Public Policy
  • Qualitative Political Methodology
  • Quantitative Political Methodology
  • Regional Political Studies
  • Russian Politics
  • Security Studies
  • State and Local Government
  • UK Politics
  • US Politics
  • Browse content in Regional and Area Studies
  • African Studies
  • Asian Studies
  • East Asian Studies
  • Japanese Studies
  • Latin American Studies
  • Middle Eastern Studies
  • Native American Studies
  • Scottish Studies
  • Browse content in Research and Information
  • Research Methods
  • Browse content in Social Work
  • Addictions and Substance Misuse
  • Adoption and Fostering
  • Care of the Elderly
  • Child and Adolescent Social Work
  • Couple and Family Social Work
  • Direct Practice and Clinical Social Work
  • Emergency Services
  • Human Behaviour and the Social Environment
  • International and Global Issues in Social Work
  • Mental and Behavioural Health
  • Social Justice and Human Rights
  • Social Policy and Advocacy
  • Social Work and Crime and Justice
  • Social Work Macro Practice
  • Social Work Practice Settings
  • Social Work Research and Evidence-based Practice
  • Welfare and Benefit Systems
  • Browse content in Sociology
  • Childhood Studies
  • Community Development
  • Comparative and Historical Sociology
  • Disability Studies
  • Economic Sociology
  • Gender and Sexuality
  • Gerontology and Ageing
  • Health, Illness, and Medicine
  • Marriage and the Family
  • Migration Studies
  • Occupations, Professions, and Work
  • Organizations
  • Population and Demography
  • Race and Ethnicity
  • Social Theory
  • Social Movements and Social Change
  • Social Research and Statistics
  • Social Stratification, Inequality, and Mobility
  • Sociology of Religion
  • Sociology of Education
  • Sport and Leisure
  • Urban and Rural Studies
  • Browse content in Warfare and Defence
  • Defence Strategy, Planning, and Research
  • Land Forces and Warfare
  • Military Administration
  • Military Life and Institutions
  • Naval Forces and Warfare
  • Other Warfare and Defence Issues
  • Peace Studies and Conflict Resolution
  • Weapons and Equipment

Accurate Clock Pendulums

  • < Previous
  • Next chapter >

1 Better accuracy from simple pendulums

  • Published: June 2004
  • Cite Icon Cite
  • Permissions Icon Permissions

This chapter deals with simple pendulums and with several things that can be done to improve their accuracy. Most of the items have only a minor effect on accuracy, but they add up. The pendulum should be enclosed in a case to protect it from the air currents of an open room, which will push the pendulum around and give erratic timing. A metal pendulum rod is recommended over a wooden one. If the pendulum is not temperature compensated, a low thermal expansion metal like iron must be chosen for the pendulum rod. If the pendulum is not temperature compensated, the bob must be supported at its bottom edge rather than at its middle or top edge. Other tips: use a low drag bob shape, walls dose to the pendulum cause a problem with relative humidity; slide the top end of the suspension spring up and down through a narrow slot; keep the number of piece parts and mechanical joints in a pendulum to a minimum.

Personal account

  • Sign in with email/username & password
  • Get email alerts
  • Save searches
  • Purchase content
  • Activate your purchase/trial code
  • Add your ORCID iD

Institutional access

Sign in with a library card.

  • Sign in with username/password
  • Recommend to your librarian
  • Institutional account management
  • Get help with access

Access to content on Oxford Academic is often provided through institutional subscriptions and purchases. If you are a member of an institution with an active account, you may be able to access content in one of the following ways:

IP based access

Typically, access is provided across an institutional network to a range of IP addresses. This authentication occurs automatically, and it is not possible to sign out of an IP authenticated account.

Choose this option to get remote access when outside your institution. Shibboleth/Open Athens technology is used to provide single sign-on between your institution’s website and Oxford Academic.

  • Click Sign in through your institution.
  • Select your institution from the list provided, which will take you to your institution's website to sign in.
  • When on the institution site, please use the credentials provided by your institution. Do not use an Oxford Academic personal account.
  • Following successful sign in, you will be returned to Oxford Academic.

If your institution is not listed or you cannot sign in to your institution’s website, please contact your librarian or administrator.

Enter your library card number to sign in. If you cannot sign in, please contact your librarian.

Society Members

Society member access to a journal is achieved in one of the following ways:

Sign in through society site

Many societies offer single sign-on between the society website and Oxford Academic. If you see ‘Sign in through society site’ in the sign in pane within a journal:

  • Click Sign in through society site.
  • When on the society site, please use the credentials provided by that society. Do not use an Oxford Academic personal account.

If you do not have a society account or have forgotten your username or password, please contact your society.

Sign in using a personal account

Some societies use Oxford Academic personal accounts to provide access to their members. See below.

A personal account can be used to get email alerts, save searches, purchase content, and activate subscriptions.

Some societies use Oxford Academic personal accounts to provide access to their members.

Viewing your signed in accounts

Click the account icon in the top right to:

  • View your signed in personal account and access account management features.
  • View the institutional accounts that are providing access.

Signed in but can't access content

Oxford Academic is home to a wide variety of products. The institutional subscription may not cover the content that you are trying to access. If you believe you should have access to that content, please contact your librarian.

For librarians and administrators, your personal account also provides access to institutional account management. Here you will find options to view and activate subscriptions, manage institutional settings and access options, access usage statistics, and more.

Our books are available by subscription or purchase to libraries and institutions.

Month: Total Views:
October 2022 8
November 2022 4
December 2022 4
January 2023 4
February 2023 8
March 2023 6
April 2023 3
May 2023 2
June 2023 2
July 2023 2
August 2023 3
September 2023 16
October 2023 11
November 2023 11
December 2023 3
January 2024 8
February 2024 11
March 2024 22
April 2024 9
May 2024 4
June 2024 8
July 2024 1
August 2024 6
  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Rights and permissions
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Logo for UH Pressbooks

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

16 Oscillatory Motion and Waves

119 16.4 The Simple Pendulum

  • Measure acceleration due to gravity.

In the figure, a horizontal bar is drawn. A perpendicular dotted line from the middle of the bar, depicting the equilibrium of pendulum, is drawn downward. A string of length L is tied to the bar at the equilibrium point. A circular bob of mass m is tied to the end of the string which is at a distance s from the equilibrium. The string is at an angle of theta with the equilibrium at the bar. A red arrow showing the time T of the oscillation of the mob is shown along the string line toward the bar. An arrow from the bob toward the equilibrium shows its restoring force asm g sine theta. A perpendicular arrow from the bob toward the ground depicts its mass as W equals to mg, and this arrow is at an angle theta with downward direction of string.

Pendulums are in common usage. Some have crucial uses, such as in clocks; some are for fun, such as a child’s swing; and some are just there, such as the sinker on a fishing line. For small displacements, a pendulum is a simple harmonic oscillator. A simple pendulum is defined to have an object that has a small mass, also known as the pendulum bob, which is suspended from a light wire or string, such as shown in Figure 1 . Exploring the simple pendulum a bit further, we can discover the conditions under which it performs simple harmonic motion, and we can derive an interesting expression for its period.

We begin by defining the displacement to be the arc length[latex]\boldsymbol{s}.[/latex]We see from Figure 1 that the net force on the bob is tangent to the arc and equals[latex]\boldsymbol{-mg\sin\theta}.[/latex](The weight[latex]\boldsymbol{mg}[/latex]has components[latex]\boldsymbol{mg\cos\theta}[/latex]along the string and[latex]\boldsymbol{mg\sin\theta}[/latex]tangent to the arc.) Tension in the string exactly cancels the component[latex]\boldsymbol{mg\cos\theta}[/latex]parallel to the string. This leaves a net restoring force back toward the equilibrium position at[latex]\boldsymbol{\theta=0}.[/latex]

Now, if we can show that the restoring force is directly proportional to the displacement, then we have a simple harmonic oscillator. In trying to determine if we have a simple harmonic oscillator, we should note that for small angles (less than about[latex]\boldsymbol{15^0}[/latex]),[latex]\boldsymbol{\sin\theta\approx\theta}[/latex]([latex]\boldsymbol{\sin\theta}[/latex]and[latex]\boldsymbol{\theta}[/latex]differ by about 1% or less at smaller angles). Thus, for angles less than about[latex]\boldsymbol{15^0},[/latex]the restoring force[latex]\boldsymbol{F}[/latex]is

The displacement[latex]\boldsymbol{s}[/latex]is directly proportional to[latex]\boldsymbol{\theta}.[/latex]When[latex]\boldsymbol{\theta}[/latex]is expressed in radians, the arc length in a circle is related to its radius ([latex]\boldsymbol{L}[/latex]in this instance) by:

For small angles, then, the expression for the restoring force is:

This expression is of the form:

where the force constant is given by[latex]\boldsymbol{k=mg/L}[/latex]and the displacement is given by[latex]\boldsymbol{x=s}.[/latex]For angles less than about[latex]\boldsymbol{15^0},[/latex]the restoring force is directly proportional to the displacement, and the simple pendulum is a simple harmonic oscillator.

Using this equation, we can find the period of a pendulum for amplitudes less than about[latex]\boldsymbol{15^0}.[/latex]For the simple pendulum:

for the period of a simple pendulum. This result is interesting because of its simplicity. The only things that affect the period of a simple pendulum are its length and the acceleration due to gravity. The period is completely independent of other factors, such as mass. As with simple harmonic oscillators, the period[latex]\boldsymbol{T}[/latex]for a pendulum is nearly independent of amplitude, especially if[latex]\boldsymbol{\theta}[/latex]is less than about[latex]\boldsymbol{15^0}.[/latex]Even simple pendulum clocks can be finely adjusted and accurate.

Note the dependence of[latex]\boldsymbol{T}[/latex]on[latex]\boldsymbol{g}.[/latex]If the length of a pendulum is precisely known, it can actually be used to measure the acceleration due to gravity. Consider the following example.

Example 1: Measuring Acceleration due to Gravity: The Period of a Pendulum

What is the acceleration due to gravity in a region where a simple pendulum having a length 75.000 cm has a period of 1.7357 s?

We are asked to find[latex]\boldsymbol{g}[/latex]given the period[latex]\boldsymbol{T}[/latex]and the length[latex]\boldsymbol{L}[/latex]of a pendulum. We can solve[latex]\boldsymbol{T=2\pi\sqrt{\frac{L}{g}}}[/latex]for[latex]\boldsymbol{g},[/latex]assuming only that the angle of deflection is less than[latex]\boldsymbol{15^0}.[/latex]

Square[latex]\boldsymbol{T=2\pi\sqrt{\frac{L}{g}}}[/latex]and solve for[latex]\boldsymbol{g}:[/latex]

[latex]\boldsymbol{g=4\pi^2}[/latex][latex]\boldsymbol{\frac{L}{T^2}}.[/latex]

Substitute known values into the new equation:

[latex]\boldsymbol{g=4\pi^2}[/latex][latex]\boldsymbol{\frac{0.75000\textbf{ m}}{(1.7357\textbf{ s})^2}}.[/latex]

Calculate to find[latex]\boldsymbol{g}:[/latex]

This method for determining[latex]\boldsymbol{g}[/latex]can be very accurate. This is why length and period are given to five digits in this example. For the precision of the approximation[latex]\boldsymbol{\sin\theta\approx\theta}[/latex]to be better than the precision of the pendulum length and period, the maximum displacement angle should be kept below about[latex]\boldsymbol{0.5^{/circ}}.[/latex]

MAKING CAREER CONNECTIONS

Knowing[latex]\boldsymbol{g}[/latex]can be important in geological exploration; for example, a map of[latex]\boldsymbol{g}[/latex]over large geographical regions aids the study of plate tectonics and helps in the search for oil fields and large mineral deposits.

TAKE-HOME EXPERIMENT: DETERMINING g

Use a simple pendulum to determine the acceleration due to gravity[latex]\boldsymbol{g}[/latex]in your own locale. Cut a piece of a string or dental floss so that it is about 1 m long. Attach a small object of high density to the end of the string (for example, a metal nut or a car key). Starting at an angle of less than[latex]\boldsymbol{10^0},[/latex]allow the pendulum to swing and measure the pendulum’s period for 10 oscillations using a stopwatch. Calculate[latex]\boldsymbol{g}.[/latex]How accurate is this measurement? How might it be improved?

Check Your Understanding

An engineer builds two simple pendula. Both are suspended from small wires secured to the ceiling of a room. Each pendulum hovers 2 cm above the floor. Pendulum 1 has a bob with a mass of[latex]\boldsymbol{10\textbf{ kg}}.[/latex]Pendulum 2 has a bob with a mass of[latex]\boldsymbol{100\textbf{ kg}}.[/latex]Describe how the motion of the pendula will differ if the bobs are both displaced by[latex]\boldsymbol{12^0}.[/latex]

PHET EXPLORATIONS: PENDULUM LAB

Play with one or two pendulums and discover how the period of a simple pendulum depends on the length of the string, the mass of the pendulum bob, and the amplitude of the swing. It’s easy to measure the period using the photogate timer. You can vary friction and the strength of gravity. Use the pendulum to find the value of[latex]\boldsymbol{g}[/latex]on planet X. Notice the anharmonic behavior at large amplitude.

image

Section Summary

The period of a simple pendulum is

where[latex]\boldsymbol{L}[/latex]is the length of the string and[latex]\boldsymbol{g}[/latex]is the acceleration due to gravity.

Conceptual Questions

1: Pendulum clocks are made to run at the correct rate by adjusting the pendulum’s length. Suppose you move from one city to another where the acceleration due to gravity is slightly greater, taking your pendulum clock with you, will you have to lengthen or shorten the pendulum to keep the correct time, other factors remaining constant? Explain your answer.

Problems & Exercises

As usual, the acceleration due to gravity in these problems is taken to be [latex]\boldsymbol{g=9.80\textbf{ m/s}^2},[/latex] unless otherwise specified.

1: What is the length of a pendulum that has a period of 0.500 s?

2: Some people think a pendulum with a period of 1.00 s can be driven with “mental energy” or psycho kinetically, because its period is the same as an average heartbeat. True or not, what is the length of such a pendulum?

3: What is the period of a 1.00-m-long pendulum?

4: How long does it take a child on a swing to complete one swing if her center of gravity is 4.00 m below the pivot?

5: The pendulum on a cuckoo clock is 5.00 cm long. What is its frequency?

6: Two parakeets sit on a swing with their combined center of mass 10.0 cm below the pivot. At what frequency do they swing?

7: (a) A pendulum that has a period of 3.00000 s and that is located where the acceleration due to gravity is[latex]\boldsymbol{9.79\textbf{ m/s}^2}[/latex]is moved to a location where it the acceleration due to gravity is[latex]\boldsymbol{9.82\textbf{ m/s}^2}.[/latex]What is its new period? (b) Explain why so many digits are needed in the value for the period, based on the relation between the period and the acceleration due to gravity.

8: A pendulum with a period of 2.00000 s in one location[latex]\boldsymbol{(g=9.80\textbf{ m/s}^2)}[/latex]is moved to a new location where the period is now 1.99796 s. What is the acceleration due to gravity at its new location?

9: (a) What is the effect on the period of a pendulum if you double its length?

(b) What is the effect on the period of a pendulum if you decrease its length by 5.00%?

10: Find the ratio of the new/old periods of a pendulum if the pendulum were transported from Earth to the Moon, where the acceleration due to gravity is[latex]\boldsymbol{1.63\textbf{ m/s}^2}.[/latex]

11: At what rate will a pendulum clock run on the Moon, where the acceleration due to gravity is[latex]\boldsymbol{1.63\textbf{ m/s}^2},[/latex]if it keeps time accurately on Earth? That is, find the time (in hours) it takes the clock’s hour hand to make one revolution on the Moon.

12: Suppose the length of a clock’s pendulum is changed by 1.000%, exactly at noon one day. What time will it read 24.00 hours later, assuming it the pendulum has kept perfect time before the change? Note that there are two answers, and perform the calculation to four-digit precision.

13: If a pendulum-driven clock gains 5.00 s/day, what fractional change in pendulum length must be made for it to keep perfect time?

1:  The movement of the pendula will not differ at all because the mass of the bob has no effect on the motion of a simple pendulum. The pendula are only affected by the period (which is related to the pendulum’s length) and by the acceleration due to gravity.

(a) 2.99541 s

(b) Since the period is related to the square root of the acceleration of gravity, when the acceleration changes by 1% the period changes by[latex]\boldsymbol{(0.01)^2=0.01\%}[/latex]so it is necessary to have at least 4 digits after the decimal to see the changes.

(a) Period increases by a factor of 1.41 ([latex]\boldsymbol{\sqrt{2}}[/latex])

(b) Period decreases to 97.5% of old period

Slow by a factor of 2.45

length must increase by 0.0116%.

College Physics chapters 1-17 Copyright © August 22, 2016 by OpenStax is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Share This Book

Choose an Account to Log In

Roly

Notifications

Science project, simple harmonic motion: pendulum.

safety precautions for simple pendulum experiment

The movement of a pendulum is called simple harmonic motion : when moved from a starting position, the pendulum feels a restoring force proportional to how far it’s been moved. Put another way, it always wants go back to where it started.

Pendulums move by constantly changing energy from one form to another. Because of this, they are great demonstrators of the conservation of energy —the idea that energy doesn’t just appear or disappear; it always comes from (or goes) somewhere . The reason pendulums don’t move forever is because eventually, all the energy ends up transferred to the surrounding environment. But what if you could capture some of that lost energy? This fun demonstration does just that: you’ll use a pendulum to move energy from one place to another.

Use two pendulums to observe energy being moved around within a system.

  • Several feet of string
  • Weights that can be tied to the string (e.g. heavy washers or nuts)
  • Cut a length of string several feet long (roughly 4 to 5 feet). Attach both ends to the ceiling or the underside of a table—any place that will allow the loop of string to dangle freely. Tie the ends far enough part so most of the slack is taken out of the string, and identify the midpoint of the string.
  • Cut two more equal lengths of string, each about a foot long. Tie a weight to one end of each string. Tie each loose end to the long, hanging string 6 inches away from the hanging string’s midpoint.
  • Steady the weights so that everything is still. Take one of the weights and pull it several inches towards you, away from the long string, and then gently let it go.
  • As the weight swings back and forth, watch the other weight. What do you notice? Does the second weight move? Does its motion change over time? How does the motion relate to the first weight? What happens to the first weight’s motion?
  • Simply observe the motion of the weights for a couple of minutes. Describe what you see.

At first, the second weight remains stationary while the first weight swings back and forth. Slowly, the second weight will start to move; its motion will be opposite that of the first weight. The arc of the second weight’s swing will get larger as the first weight’s gets smaller. Eventually, the second weight will be the only weight swinging. If you keep watching, the process will reverse itself until the second weight stops and all the motion returns to the first weight.

This experiment shows energy being transferred back and forth between the pendulums. When you pull the first pendulum towards you, you put potential energy into the system: energy that is stored away but not actually doing anything yet. As soon as you release, the potential energy rapidly starts converting to kinetic energy —the energy of motion—as gravity pulls the weight in an arc. At the bottom of the swing, all the potential energy is gone; the pendulum’s energy is entirely kinetic. Then, as the pendulum starts to climb again, the kinetic energy starts transforming back into potential energy until it has climbed as far as it can go. The energy keeps sloshing back and forth like that on every swing: potential turns to kinetic which turns back to potential, over and over.

Pendulums, like all simple harmonic oscillators , are great demonstrators of the conservation of energy : the idea that energy cannot be created or destroyed, only transferred. The energy you end up with has to equal the energy you start with. But if that’s true, how does the second pendulum start moving? Where does its energy come from? Easy: it comes from the first pendulum.

During every swing, a little bit of energy is transferred into the long string the two pendulums dangle from. Start the pendulum swinging again. This time, watch the longest string: it moves! As the pendulum oscillates, it tugs on the string. The string, in turn, tugs on the second pendulum. A tiny fraction of the first pendulum’s kinetic energy goes through the string and displaces the pivot of the second pendulum, causing the second pendulum to swing—and with every swing, a little more energy gets transferred from one pendulum to the other.

Eventually, the first pendulum has no more energy to give to the second pendulum. When this happens, the first pendulum stops, while the second pendulum swings away—but now, the second pendulum pulls on the string. The energy starts working its way back to the first pendulum until eventually, the balance of energy is right back to where it started.

This can’t continue forever. With every swing, energy is also lost to pushing the air out of the way or vibrating whatever the main string is attached to. No system is perfect. Eventually, all the energy you provided is lost to the environment and both pendulums will stop swinging.

Going Further

Experiment with pulling more or less on the first pendulum. How does that affect how far the second pendulum ends up swinging? Do the pendulums swing for longer?

What if you replace the main string with something rigid, like a beam or a dowel? Does the second pendulum start moving? What do you think is going on here?

Related learning resources

Add to collection, create new collection, new collection, new collection>, sign up to start collecting.

Bookmark this to easily find it later. Then send your curated collection to your children, or put together your own custom lesson plan.

  • No category

Sample lab procedure and report The Simple Pendulum

Related documents.

SOL Solving Review

Add this document to collection(s)

You can add this document to your study collection(s)

Add this document to saved

You can add this document to your saved list

Suggest us how to improve StudyLib

(For complaints, use another form )

Input it if you want to receive answer

Labkafe

Get in Touch

Get A Free Lab Consultation

Simple pendulum experiment class 11 | labkafe.

Using a simple pendulum, plot its L-T2 graph and use it to find the effective length of second’s pendulum.

  • A Clamp With Stand
  • Bob with Hook
  • Stop Clock/Stop Watch
  • Vernier Callipers
  • Cotton Thread
  • Half Meter Scale

A simple pendulum consists of a heavy metallic (brass) sphere with a hook (bob) suspended from a rigid stand, with clamp by a weightless inextensible and perfectly flexible thread through a slit cork, capable of oscillating in a single plane, without any friction, with a small amplitude (less than 150) as shown in figure 6.1 (a). There is no ideal simple pendulum. In practice, we make a simple pendulum by tying a metallic spherical bob to a fine cotton stitching thread.

               The spherical bob may be regarded by as a point mass at its centre G. The distance between the point of suspension S and the centre G of the spherical bob is to be regarded as the effective  length of the pendulum as shown in figure 6.1 (b). The effective length of a simple pendulum,  L = l + h + r.  Where  l  is the length of the thread,  h  is length of hook,  r  is radius of bob.

simple-pendulum-photo-1.png

The simple pendulum produces Simple Harmonic Motion (SHM) as the acceleration of the pendulum bob is directly proportional to its displacement from the mean position and is always directed towards it. The time period (T) of a simple pendulum for oscillations of small amplitude, is given by the relation,

T = 2 π √ (L/g)

Where, g = value of acceleration due to gravity and L is the effective length of the pendulum.

 T2 = (4π2/g) X L             or           T2 = KL (K= constant)

               and,  g = 4π2(L/T2)

If T is plotted along the Y-axis and L along the X-axis, we should get a parabola. If T2 is plotted along the Y- axis and L along the X-axis, we should get a straight line passing through the origin.

  • Find the vernier constant and zero error of the vernier callipers same as experiment 1.
  • Measure the radius (r) of the bob using a vernier callipers same as experiment 1.
  • Measure the length of hook (h) and note it on the table 6.1.
  • Since h and r is already known, adjust the length of the thread  l  to make  L = l + h + r  an integer (say L = 80cm) and mark it as M1 with ink. Making L an integer will make the drawing easier. (You can measure the distance between the point of suspension (ink mark) and the point of contact between the hook and the bob directly. Hence you get  l + h  directly).
  • Similarly mark M2, M3, M4 , M5, and  M6 on the thread as distance (L) of 90 cm, 100 cm, 110cm, 120cm and 130 cm respectively.
  • Pass the thread through the two half-pieces of a split cork coming out just from the ink mark (M1).
  • Tight the split cork between the clamp such that the line of separation of the two pieces of the split cork is at right angles to the line along which the pendulum oscillates.
  • Fix the clamp in the stand and place it on the table such that the bob is hanging at-least 2 cm above the base of the stand.
  • Mark a point A  on the table (use a chalk) just below the position of bob at rest and draw a straight line BC of 10 cm having a point A at its centre. Over this line bob will oscillate.
  • Find the least count and the zero error of the stop clock/watch. Bring its hands at zero position
  • Move the bob by hand to over position B on the right of A and leave. See that the bob returns over line BC. Make sure that bob is not spinning.
  • Now counting oscillations, from the instant bob passes through its mean position L, where its velocity is maximum. So starting from L it traverses LL2, L2L, LL1, L1L hence, one oscillation is completed. We have to find time for 20 such oscillations.
  • Now start the stop watch at the instant the bob passes through the mean position A. Go on counting the number of oscillations it completes. As soon as it completes 20 oscillations, stop the watch. Note the time t for 20 oscillations in the table 6.1.
  • Repeat the measurement at least 3 times for the same length.
  • Now increase the length of the thread by 10 cm or 15 cm (M2) and measure the time t for this length as explained from step 6 to 14.
  • Repeat step 15 for at least 4 more different lengths.

Observations:

Vernier constant

Vernier constant of the vernier callipers, V.C. = ______________ cm

Zero error, ±e = _____________cm

Diameter of the bob and length of hook

Observe diameter of the bob:= (i) ______cm, (ii)________cm, (iii)___________cm

Mean diameter of bob, d0 = _________cm

Mean corrected diameter of bob, d = d0 ±e = __________cm

Radius of the bob, r = d/2= ____________ cm

Length of the hook, h= __________cm

Standard value acceleration due to gravity, g1 : 980 cm s-2

Least count of stop clock = ____________s

Zero error of stop clock = ___________s

Table 6.1 Determination of time-periods for different lengths of the pendulum.

image-7.png

Mean  = L/T2 = _______________________

Calculation:

We know ,  T = 2 π √ (L/g)

 Experimental value, g1 = 4π2(L/T2) = ______________________

So, %error = (g-g1)/g *100 = ______________________

L vs T graph

Plot the graph between L and T from the observations recorded in the table 6.1. Take L along X-axis and T along Y-axis. The L-T curve is a parabola. As shown in the figure 6.2. The origin need not be (0,0) point.

L vs T2 Graph

Plot the graph between L and T2 from the observations recorded in the table 6.1. Take L along X-axis and T2 along Y-axis. The L-T curve is a straight line passing through the (0, 0) point. So the origin of the graph should be chosen (0, 0). As shown in the figure 6.3.

Determination of length of a seconds pendulum from graph:

A second pendulum has time-period 2 s. To find the corresponding length of the pendulum from the L-T graph, draw a line parallel to the L-axis from the point Q1 (0, 2). The line interval the curve L-T at P1. So, the coordinates of P1 is (102, 2).

 Length of the seconds pendulum is _____________(102) cm.

To find the length from the L-T2 curve, we, similarly, draw a line parallel to L-axis is form a point Q2 (0, 4). The line intersects the curve at P2. P2 has coordinates (100, 4).

 Length of the seconds pendulum is _______________(100) cm.

graph-1-3.png

Precautions :

  • The thread should be very light and strong.
  • The point of suspension should be reasonably rigid.
  • The pendulum should oscillate in the vertical plane without any spin motion.
  • The floor of the laboratory should not have vibration, which may cause a deviation from the regular oscillation of the pendulum.
  • The amplitude of vibration should be small (less than 15) .
  • The length of the pendulum should be as large as possible in the given situation.’
  • Determination of time for 20 or more oscillations should be carefully taken and repeated for at least three times.
  • There must not be strong wind blowing during the experiment.
  • http://www.ncert.nic.in/
  • https://www.learncbse.in/

you may download Simple Pendulum Experiment Class 11 practical manual .pdf Download Now

About Labkafe: Lab Equipment Manufacturer & Exporter

We are a School laboratory furniture and Lab equipment manufacturer and supplier. In laboratory furniture for school, we first design the entire laboratory room keeping in mind the requirements as per affiliation CBSE Bye-Laws. Also, we take care of the complete designing and installation of laboratory furniture.

In the lab equipment section, we have a wide range of glassware, chemicals, equipment and other lab accessories. Most of them are available for order online on our website but some of them can be procured on demand.

If you have need:-

  • laboratory equipment or lab furniture requirements for school
  • composite lab equipment list for school
  • Physics lab equipment list for school
  • Chemistry lab equipment list for
  • Biology lab equipment list for school
  • Pharmacy lab equipment

do drop a message through chat or mail us at  [email protected]  or call contact us +919147163562 and we’ll get in touch with you.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Suggested Reads

A Complete Guide to Building Composite Skill Labs in CBSE Schools

Flag

Teacher Resource Center

Pasco partnerships.

Catalogs and Brochures

2024 Catalogs & Brochures

Simple pendulum.

Students use a photogate and pendulum to determine the physical properties of a simple pendulum that affect its period, and then use their data to support a mathematical model relating period to pendulum arm length.

Grade Level: Advanced Placement

Subject: Physics

Student Files

12.94 KB
244.11 KB
90.84 KB
91.92 KB
27.17 KB

Teacher Files

Sign In to your PASCO account to access teacher files and sample data.

Standards Correlations

Topics Topics
4.1; 9.1 3.B.3.1; 3.B.3.2; 3.B.3.3

Featured Equipment

Many lab activities can be conducted with our Wireless , PASPORT , or even ScienceWorkshop sensors and equipment. For assistance with substituting compatible instruments, contact PASCO Technical Support . We're here to help. Copyright © 2020 PASCO

Source Collection: Lab #13

Advanced Physics 1 Lab Manual

Source Collection: Lab #05

Physics Lab Station: Mechanics Extension

More experiments.

Advanced Placement

  • Electric Field Mapping
  • Coulomb's Law

High School

  • Vector Components of Velocity
  • Inclined Plane and the Conservation of Energy
  • Virtual Images

What are the two precautions taken to ensure accurate results in simple pendulum experiment?

User Avatar

if you are conducting the experiment under a fan, switch off the fan to avoid your pendulum bob to swing in different degree. #stainless

Two precautions taken to ensure accurate results in a simple pendulum experiment are using a long string to minimize air resistance and ensuring the pendulum swings in a small angle to approximate simple harmonic motion.

Richard festus ∙

Make sure Error due to parallax is avoided

Abdulkarim hassan ∙

What is answer

Add your answer:

imp

What are the precautions to b taken while doing simple pendulum experiment?

Some precautions to take while doing a simple pendulum experiment include ensuring the pendulum is hung securely, keeping the amplitude of the swing small to avoid instability, taking measurements at the center of mass of the bob, minimizing air resistance by using a thin string, and ensuring the angle of release is consistent for accurate results.

What are the precautions in compound pendulum?

Ensure the length of the pendulum is accurately measured to maintain the accuracy of the experiment. Take precautions to minimize air resistance by conducting the experiment in a controlled environment. Ensure the pivot point is frictionless to reduce energy losses and improve the accuracy of the results.

What is the effect of draught in a simple pendulum experiment?

In a simple pendulum experiment, air resistance or drag can affect the motion of the pendulum by slowing it down. This can lead to discrepancies in the period and amplitude of the pendulum swing compared to theoretical calculations. It is important to minimize the effects of air resistance in order to obtain accurate results in the experiment.

Why is a simple pendulum bob preferred to bobs of irregular shapes for use in the simple pendulum experiment?

it is less ffected by air resistance

What is the precaution taken on specific heat capacity experiment?

Some precautions taken during a specific heat capacity experiment include ensuring the apparatus is properly calibrated, using consistent and accurate measurements, minimizing heat loss to the surroundings, and maintaining a controlled environment to reduce external influences on the results. These precautions help ensure the accuracy and reliability of the data collected during the experiment.

imp

Top Categories

Answers Logo

IMAGES

  1. Pendulum Action experiment

    safety precautions for simple pendulum experiment

  2. SOLUTION: Simple pendulum experiment physics laboratory sharda

    safety precautions for simple pendulum experiment

  3. Simple Pendulum Experiment

    safety precautions for simple pendulum experiment

  4. Sources of Errors and Precautions in Simple Pendulum and Glass Block

    safety precautions for simple pendulum experiment

  5. Pendulum experiment. Do you want to try a fun and easy…

    safety precautions for simple pendulum experiment

  6. Simple Pendulum Experiment Class 11

    safety precautions for simple pendulum experiment

VIDEO

  1. Simple Pendulum Experiment

  2. simple pendulum experiment।। Time period of simple pendulum। Value of g experiment

  3. Walter Lewin Pendulum Experiment #shorts

  4. BLOSSOMS

  5. Simple Pendulum Experiment Walter Lewin Lecture #shorts

  6. mosquito killer machine. How to make mosquito killer machine at home #diy #trending #experiment

COMMENTS

  1. Required Practical: Investigating SHM

    Calculate the value of the spring constant of the spring used in this experiment. Step 1: Complete the table. Add the extra column T2 and calculate the values. Step 2: Plot the graph of T2 against the mass m. Make sure the axes are properly labelled and the line of best fit is drawn with a ruler.

  2. PDF Lab Handout Lab 13. Simple Harmonic Motion and Pendulums: What ...

    Safety Precautions Follow all normal lab safety rules. In addition, take the following safety precautions: 1. Wear sanitized safety glasses or goggles during lab setup, hands-on activity, and takedown. 2. Keep fingers and toes out of the way of moving objects. 3. Use caution when working with scissors. They are sharp and can cut or puncture skin.

  3. PDF Simple Harmonic Motion-Pendulum

    simple pendulum for small angles. Safety Precautions • Follow all directions for using the equipment. Preview Use a Motion Sensor to measure the period of a pendulum. Determine the relationship of the period of oscillation of a pendulum to the length of the pendulum and the mass of the pendulum. Prediction 1.

  4. PDF L M Experiment6

    as the acceleration of the pendulum bob is directly proportional to its displacement from the mean position and is always directed towards it. The time period (T) of a simple pendulum for oscillations of small amplitude, is given by the relation T L/g= π2 where L is the length of the pendulum, and g is the acceleration due

  5. Investigation of a simple pendulum

    The period of oscillation of a simple pendulum is T = 2π√ (l / g ) where: T = time period for one oscillation (s) l = length of pendulum (m) g = acceleration due to gravity (m s-2. A graph of T 2 against l should be a straight line graph, showing that T 2 ∝ l. This line may indicate that more readings are needed as the plotted points may ...

  6. PDF Lab 6.Simple Pendulum

    Lab 6. imple Pendulum. Simple PendulumGoalsTo design and perform experiments that show what factors, or parameters, affect the time required for one oscillation of a compact mass attached to a light strin. (a simple pendulum).To use a simple pendulum in an appropriate manner to determine the local ac.

  7. PDF The Simple Pendulum

    The Simple PendulumSample lab. The Simple PendulumIn this laboratory, you will investigate the effects of a few different physical variables on the period o. a simple pendulum. The variables we consider are mass, length of the pendulum, and angle of. nitial dislocation.Your pendulum will consist of a light string and a "bob" (the weight at the.

  8. Better accuracy from simple pendulums

    Abstract. This chapter deals with simple pendulums and with several things that can be done to improve their accuracy. Most of the items have only a minor effect on accuracy, but they add up. The pendulum should be enclosed in a case to protect it from the air currents of an open room, which will push the pendulum around and give erratic timing.

  9. PDF PHYSICS LABORATORY: The Simple Pendulum

    This goal of this experiment was to determine an experimental value for g using the simple pendulum equation and measuring the period against varying lengths of string. The mass at the end of the string was held constant at 200 g. From the graph of T2 against l, the final experimental value of g was found to be 9.99 ± 0.38 ms-2". This

  10. 16.4 The Simple Pendulum

    Figure 1. A simple pendulum has a small-diameter bob and a string that has a very small mass but is strong enough not to stretch appreciably. The linear displacement from equilibrium is s, the length of the arc. Also shown are the forces on the bob, which result in a net force of −mg sinθ toward the equilibrium position—that is, a ...

  11. DOC TAP304-0: Simple pendulum

    Measure the restoring force for a simple pendulum. TAP 304-1: The simple pendulum. Student experiment: Testing the relationship T = 2 √ (l/g) Test the relationship T = 2 √ (l/g) for a simple pendulum. Students could decide for themselves which measurements to make, which quantities to vary, and how to process and interpret the results.

  12. Simple Harmonic Motion: Pendulum

    This cool physics demo illustrates the simple harmonic motion of a pendulum while teaching kids the important concepts of potential and kinetic energy. ... Disclaimer and Safety Precautions ... In this simple circular motion experiment, you'll observe tangential velocity and learn about how acceleration and centripetal force affect an object. ...

  13. PDF Experiment 1: Simple Pendulum

    PHY-108 : Physics Lab 1 (Mechanics of Particles) Experiment 1: Simple Pendulum A simple pendulum consists of a small object (known as the bob) suspended from an inextensible string of negligible mass. When left undisturbed the bob hangs motionless with the string vertical. If the bob is pulled to one end and let go it begins to swing back and ...

  14. Sources of Errors and Precautions in Simple Pendulum and Glass ...

    Sources of Errors and Precautions in Simple Pendulum and Glass Block - Free download as Word Doc (.doc / .docx), PDF File (.pdf), Text File (.txt) or read online for ...

  15. Sample lab procedure and report The Simple Pendulum

    A. Using the heaviest bob, vary the length of the pendulum. It is easiest to do this by. keeping the string attached to the bob but changing the string's connection to the support. above it. B. Measure the period for five different lengths of string. Measure the length from the. anchor point to the center of the bob.

  16. Simple Pendulum Experiment Class 11

    The effective length of a simple pendulum, L = l + h + r. Where l is the length of the thread, h is length of hook, r is radius of bob. The simple pendulum produces Simple Harmonic Motion (SHM) as the acceleration of the pendulum bob is directly proportional to its displacement from the mean position and is always directed towards it.

  17. Simple pendulum experiments

    Advanced students may enjoy extracting the value of the gravitational field strength, g , by this indirect method. In different teaching schemes, class experiments with pendulums take several forms: experiments to demonstrate relationships or verify laws; training in techniques of timing and observing; scientific investigation; and, an accurate ...

  18. Simple Pendulum

    Many lab activities can be conducted with our Wireless, PASPORT, or even ScienceWorkshop sensors and equipment. For assistance with substituting compatible instruments, contact PASCO Technical Support. We're here to help. Students use a photogate and pendulum to determine the physical properties of a simple pendulum that affect its period, and ...

  19. What are the two precautions taken to ensure accurate results in simple

    Some precautions to take while doing a simple pendulum experiment include ensuring the pendulum is hung securely, keeping the amplitude of the swing small to avoid instability, taking measurements ...

  20. Quora

    We would like to show you a description here but the site won't allow us.