Directional and non-directional hypothesis: A Comprehensive Guide

Karolina Konopka

Customer support manager

Karolina Konopka

Want to talk with us?

In the world of research and statistical analysis, hypotheses play a crucial role in formulating and testing scientific claims. Understanding the differences between directional and non-directional hypothesis is essential for designing sound experiments and drawing accurate conclusions. Whether you’re a student, researcher, or simply curious about the foundations of hypothesis testing, this guide will equip you with the knowledge and tools to navigate this fundamental aspect of scientific inquiry.

Understanding Directional Hypothesis

Understanding directional hypotheses is crucial for conducting hypothesis-driven research, as they guide the selection of appropriate statistical tests and aid in the interpretation of results. By incorporating directional hypotheses, researchers can make more precise predictions, contribute to scientific knowledge, and advance their fields of study.

Definition of directional hypothesis

Directional hypotheses, also known as one-tailed hypotheses, are statements in research that make specific predictions about the direction of a relationship or difference between variables. Unlike non-directional hypotheses, which simply state that there is a relationship or difference without specifying its direction, directional hypotheses provide a focused and precise expectation.

A directional hypothesis predicts either a positive or negative relationship between variables or predicts that one group will perform better than another. It asserts a specific direction of effect or outcome. For example, a directional hypothesis could state that “increased exposure to sunlight will lead to an improvement in mood” or “participants who receive the experimental treatment will exhibit higher levels of cognitive performance compared to the control group.”

Directional hypotheses are formulated based on existing theory, prior research, or logical reasoning, and they guide the researcher’s expectations and analysis. They allow for more targeted predictions and enable researchers to test specific hypotheses using appropriate statistical tests.

The role of directional hypothesis in research

Directional hypotheses also play a significant role in research surveys. Let’s explore their role specifically in the context of survey research:

  • Objective-driven surveys : Directional hypotheses help align survey research with specific objectives. By formulating directional hypotheses, researchers can focus on gathering data that directly addresses the predicted relationship or difference between variables of interest.
  • Question design and measurement : Directional hypotheses guide the design of survey question types and the selection of appropriate measurement scales. They ensure that the questions are tailored to capture the specific aspects related to the predicted direction, enabling researchers to obtain more targeted and relevant data from survey respondents.
  • Data analysis and interpretation : Directional hypotheses assist in data analysis by directing researchers towards appropriate statistical tests and methods. Researchers can analyze the survey data to specifically test the predicted relationship or difference, enhancing the accuracy and reliability of their findings. The results can then be interpreted within the context of the directional hypothesis, providing more meaningful insights.
  • Practical implications and decision-making : Directional hypotheses in surveys often have practical implications. When the predicted relationship or difference is confirmed, it informs decision-making processes, program development, or interventions. The survey findings based on directional hypotheses can guide organizations, policymakers, or practitioners in making informed choices to achieve desired outcomes.
  • Replication and further research : Directional hypotheses in survey research contribute to the replication and extension of studies. Researchers can replicate the survey with different populations or contexts to assess the generalizability of the predicted relationships. Furthermore, if the directional hypothesis is supported, it encourages further research to explore underlying mechanisms or boundary conditions.

By incorporating directional hypotheses in survey research, researchers can align their objectives, design effective surveys, conduct focused data analysis, and derive practical insights. They provide a framework for organizing survey research and contribute to the accumulation of knowledge in the field.

Examples of research questions for directional hypothesis

Here are some examples of research questions that lend themselves to directional hypotheses:

  • Does increased daily exercise lead to a decrease in body weight among sedentary adults?
  • Is there a positive relationship between study hours and academic performance among college students?
  • Does exposure to violent video games result in an increase in aggressive behavior among adolescents?
  • Does the implementation of a mindfulness-based intervention lead to a reduction in stress levels among working professionals?
  • Is there a difference in customer satisfaction between Product A and Product B, with Product A expected to have higher satisfaction ratings?
  • Does the use of social media influence self-esteem levels, with higher social media usage associated with lower self-esteem?
  • Is there a negative relationship between job satisfaction and employee turnover, indicating that lower job satisfaction leads to higher turnover rates?
  • Does the administration of a specific medication result in a decrease in symptoms among individuals with a particular medical condition?
  • Does increased access to early childhood education lead to improved cognitive development in preschool-aged children?
  • Is there a difference in purchase intention between advertisements with celebrity endorsements and advertisements without, with celebrity endorsements expected to have a higher impact?

These research questions generate specific predictions about the direction of the relationship or difference between variables and can be tested using appropriate research methods and statistical analyses.

Definition of non-directional hypothesis

Non-directional hypotheses, also known as two-tailed hypotheses, are statements in research that indicate the presence of a relationship or difference between variables without specifying the direction of the effect. Instead of making predictions about the specific direction of the relationship or difference, non-directional hypotheses simply state that there is an association or distinction between the variables of interest.

Non-directional hypotheses are often used when there is no prior theoretical basis or clear expectation about the direction of the relationship. They leave the possibility open for either a positive or negative relationship, or for both groups to differ in some way without specifying which group will perform better or worse.

Advantages and utility of non-directional hypothesis

Non-directional hypotheses in survey s offer several advantages and utilities, providing flexibility and comprehensive analysis of survey data. Here are some of the key advantages and utilities of using non-directional hypotheses in surveys:

  • Exploration of Relationships : Non-directional hypotheses allow researchers to explore and examine relationships between variables without assuming a specific direction. This is particularly useful in surveys where the relationship between variables may not be well-known or there may be conflicting evidence regarding the direction of the effect.
  • Flexibility in Question Design : With non-directional hypotheses, survey questions can be designed to measure the relationship between variables without being biased towards a particular outcome. This flexibility allows researchers to collect data and analyze the results more objectively.
  • Open to Unexpected Findings : Non-directional hypotheses enable researchers to be open to unexpected or surprising findings in survey data. By not committing to a specific direction of the effect, researchers can identify and explore relationships that may not have been initially anticipated, leading to new insights and discoveries.
  • Comprehensive Analysis : Non-directional hypotheses promote comprehensive analysis of survey data by considering the possibility of an effect in either direction. Researchers can assess the magnitude and significance of relationships without limiting their analysis to only one possible outcome.
  • S tatistical Validity : Non-directional hypotheses in surveys allow for the use of two-tailed statistical tests, which provide a more conservative and robust assessment of significance. Two-tailed tests consider both positive and negative deviations from the null hypothesis, ensuring accurate and reliable statistical analysis of survey data.
  • Exploratory Research : Non-directional hypotheses are particularly useful in exploratory research, where the goal is to gather initial insights and generate hypotheses. Surveys with non-directional hypotheses can help researchers explore various relationships and identify patterns that can guide further research or hypothesis development.

It is worth noting that the choice between directional and non-directional hypotheses in surveys depends on the research objectives, existing knowledge, and the specific variables being investigated. Researchers should carefully consider the advantages and limitations of each approach and select the one that aligns best with their research goals and survey design.

  • Share with others
  • Twitter Twitter Icon
  • LinkedIn LinkedIn Icon

Related posts

Mastering matrix questions: the complete guide + one special technique, microsurveys: complete guide, recurring surveys: the ultimate guide, close-ended questions: definition, types, and examples, top 10 typeform alternatives and competitors, 15 best google forms alternatives and competitors, get answers today.

  • No credit card required
  • No time limit on Free plan

You can modify this template in every possible way.

All templates work great on every device.

Directional vs Non-Directional Hypothesis: Key Difference

In statistics, a directional hypothesis, also known as a one-tailed hypothesis, is a type of hypothesis that predicts the direction of the relationship between variables or the direction of the difference between groups.

example of directional hypothesis in research

The introduction of a directional hypothesis in a research study provides an overview of the specific prediction being made about the relationship between variables or the difference between groups. It sets the stage for the research question and outlines the expected direction of the findings. The introduction typically includes the following elements:

Research Context: Begin by introducing the general topic or research area that the study is focused on. Provide background information and highlight the significance of the research question.

Research Question: Clearly state the specific research question that the study aims to answer. This question should be directly related to the variables being investigated.

Previous Research: Summarize relevant literature or previous studies that have explored similar or related topics. This helps establish the existing knowledge base and provides a rationale for the hypothesis.

Hypothesis Statement: Present the directional hypothesis clearly and concisely. State the predicted relationship between variables or the expected difference between groups. For example, if studying the impact of a new teaching method on student performance, a directional hypothesis could be, “Students who receive the new teaching method will demonstrate higher test scores compared to students who receive the traditional teaching method.”

Justification: Provide a logical explanation for the directional hypothesis based on the existing literature or theoretical framework . Discuss any previous findings, theories, or empirical evidence that support the predicted direction of the relationship or difference.

Objectives: Outline the specific objectives or aims of the study, which should align with the research question and hypothesis. These objectives help guide the research process and provide a clear focus for the study.

By including these elements in the introduction of a research study, the directional hypothesis is introduced effectively, providing a clear and justified prediction about the expected outcome of the research.

When formulating a directional hypothesis, researchers make a specific prediction about the expected relationship or difference between variables. They specify whether they expect an increase or decrease in the dependent variable, or whether one group will score higher or lower than another group

What is Directional Hypothesis?

With a correlational study, a directional hypothesis states that there is a positive (or negative) correlation between two variables. When a hypothesis states the direction of the results, it is referred to as a directional (one-tailed) hypothesis; this is because it states that the results go in one direction.

Definition:

A directional hypothesis is a one-tailed hypothesis that states the direction of the difference or relationship (e.g. boys are more helpful than girls).

Research Question: Does exercise have a positive impact on mood?

Directional Hypothesis: Engaging in regular exercise will result in an increase in positive mood compared to a sedentary lifestyle.

In this example, the directional hypothesis predicts that regular exercise will have a specific effect on mood, specifically leading to an increase in positive mood. The researcher expects that individuals who engage in regular exercise will experience improvements in their overall mood compared to individuals who lead a sedentary lifestyle.

It’s important to note that this is just one example, and directional hypotheses can be formulated in various research areas and contexts. The key is to make a specific prediction about the direction of the relationship or difference between variables based on prior knowledge or theoretical considerations.

Advantages of Directional Hypothesis

There are several advantages to using a directional hypothesis in research studies. Here are a few key benefits:

Specific Prediction:

A directional hypothesis allows researchers to make a specific prediction about the expected relationship or difference between variables. This provides a clear focus for the study and helps guide the research process. It also allows for more precise interpretation of the results.

Testable and Refutable:

Directional hypotheses can be tested and either supported or refuted by empirical evidence. Researchers can design their study and select appropriate statistical tests to specifically examine the predicted direction of the relationship or difference. This enhances the rigor and validity of the research.

Efficiency and Resource Allocation:

By making a specific prediction, researchers can allocate their resources more efficiently. They can focus on collecting data and conducting analyses that directly test the directional hypothesis, rather than exploring all possible directions or relationships. This can save time, effort, and resources.

Theory Development:

Directional hypotheses contribute to the development of theories and scientific knowledge. When a directional hypothesis is supported by empirical evidence, it provides support for existing theories or helps generate new theories. This advancement in knowledge can guide future research and understanding in the field.

Practical Applications:

Directional hypotheses can have practical implications and applications. If a hypothesis predicts a specific direction of change, such as the effectiveness of a treatment or intervention, it can inform decision-making and guide practical applications in fields such as medicine, psychology, or education.

Enhanced Communication:

Directional hypotheses facilitate clearer communication of research findings. When researchers have made specific predictions about the direction of the relationship or difference, they can effectively communicate their results to both academic and non-academic audiences. This promotes better understanding and application of the research outcomes.

It’s important to note that while directional hypotheses offer advantages, they also require stronger evidence to support them compared to non-directional hypotheses. Researchers should carefully consider the research context, existing literature, and theoretical considerations before formulating a directional hypothesis.

Disadvantages of Directional Hypothesis

While directional hypotheses have their advantages, there are also some potential disadvantages to consider:

Risk of Type I Error:

Directional hypotheses increase the risk of committing a Type I error , also known as a false positive. By focusing on a specific predicted direction, researchers may overlook the possibility of an opposite or null effect. If the actual relationship or difference does not align with the predicted direction, researchers may incorrectly conclude that there is no effect when, in fact, there may be.

Narrow Focus:

Directional hypotheses restrict the scope of investigation to a specific predicted direction. This narrow focus may overlook other potential relationships, nuances, or alternative explanations. Researchers may miss valuable insights or unexpected findings by excluding other possibilities from consideration.

Limited Generalizability:

Directional hypotheses may limit the generalizability of findings. If the study supports the predicted direction, the results may only apply to the specific context and conditions outlined in the hypothesis. Generalizing the findings to different populations, settings, or variables may require further research.

Biased Interpretation:

Directional hypotheses can introduce bias in the interpretation of results. Researchers may be inclined to selectively focus on evidence that supports the predicted direction while downplaying or ignoring contradictory evidence. This can hinder objectivity and lead to biased conclusions.

Increased Sample Size Requirements:

Directional hypotheses often require larger sample sizes compared to non-directional hypotheses. This is because statistical power needs to be sufficient to detect the predicted direction with a reasonable level of confidence. Larger samples can be more time-consuming and resource-intensive to obtain.

Reduced Flexibility:

Directional hypotheses limit flexibility in data analysis and statistical testing. Researchers may feel compelled to use specific statistical tests or analytical approaches that align with the predicted direction, potentially overlooking alternative methods that may be more appropriate or informative.

It’s important to weigh these disadvantages against the specific research context and objectives when deciding whether to use a directional hypothesis. In some cases, a non-directional hypothesis may be more suitable, allowing for a more exploratory and comprehensive investigation of the research question.

Non-Directional Hypothesis:

A non-directional hypothesis, also known as a two-tailed hypothesis, is a type of hypothesis that does not specify the direction of the relationship between variables or the difference between groups. Instead of predicting a specific direction, a non-directional hypothesis suggests that there will be a significant relationship or difference, without indicating whether it will be positive or negative, higher or lower, etc.

The introduction of a non-directional hypothesis in a research study provides an overview of the general prediction being made about the relationship between variables or the difference between groups, without specifying the direction. It sets the stage for the research question and outlines the expectation of a significant relationship or difference. The introduction typically includes the following elements:

Research Context:

Begin by introducing the general topic or research area that the study is focused on. Provide background information and highlight the significance of the research question.

Research Question:

Clearly state the specific research question that the study aims to answer. This question should be directly related to the variables being investigated.

Previous Research:

Summarize relevant literature or previous studies that have explored similar or related topics. This helps establish the existing knowledge base and provides a rationale for the hypothesis.

Hypothesis Statement:

Present the non-directional hypothesis clearly and concisely. State that there is an expected relationship or difference between variables or groups without specifying the direction. For example, if studying the relationship between socioeconomic status and academic achievement, a non-directional hypothesis could be, “There is a significant relationship between socioeconomic status and academic achievement.”

Justification:

Provide a logical explanation for the non-directional hypothesis based on the existing literature or theoretical framework. Discuss any previous findings, theories, or empirical evidence that support the notion of a relationship or difference between the variables or groups.

Objectives:

Outline the specific objectives or aims of the study, which should align with the research question and hypothesis. These objectives help guide the research process and provide a clear focus for the study.

By including these elements in the introduction of a research study, the non-directional hypothesis is introduced effectively, indicating the expectation of a significant relationship or difference without specifying the direction

What is Non-directional hypothesis?

In a non-directional hypothesis, researchers acknowledge that there may be an effect or relationship between variables but do not make a specific prediction about the direction of that effect. This allows for a more exploratory approach to data analysis and interpretation

If a hypothesis does not state a direction but simply says that one factor affects another, or that there is an association or correlation between two variables then it is called a non-directional (two-tailed) hypothesis.

Research Question: Is there a relationship between social media usage and self-esteem ?

Non-Directional Hypothesis: There is a significant relationship between social media usage and self-esteem.

In this example, the non-directional hypothesis suggests that there is a relationship between social media usage and self-esteem without specifying whether higher social media usage is associated with higher or lower self-esteem. The hypothesis acknowledges the possibility of an effect but does not make a specific prediction about the direction of that effect.

It’s important to note that this is just one example, and non-directional hypotheses can be formulated in various research areas and contexts. The key is to indicate the expectation of a significant relationship or difference without specifying the direction, allowing for a more exploratory approach to data analysis and interpretation.

Advantages of Non-directional hypothesis

Non-directional hypotheses, also known as two-tailed hypotheses, offer several advantages in research studies. Here are some of the key advantages:

Flexibility in Data Analysis:

Non-directional hypotheses allow for flexibility in data analysis. Researchers are not constrained by a specific predicted direction and can explore the relationship or difference in various ways. This flexibility enables a more comprehensive examination of the data, considering both positive and negative associations or differences.

Objective and Open-Minded Approach:

Non-directional hypotheses promote an objective and open-minded approach to research. Researchers do not have preconceived notions about the direction of the relationship or difference, which helps mitigate biases in data interpretation. They can objectively analyze the data without being influenced by their initial expectations.

Comprehensive Understanding:

By not specifying the direction, non-directional hypotheses facilitate a comprehensive understanding of the relationship or difference being investigated. Researchers can explore and consider all possible outcomes, leading to a more nuanced interpretation of the findings. This broader perspective can provide deeper insights into the research question.

Greater Sensitivity:

Non-directional hypotheses can be more sensitive to detecting unexpected or surprising relationships or differences. Researchers are not solely focused on confirming a specific predicted direction, but rather on uncovering any significant association or difference. This increased sensitivity allows for the identification of novel patterns and relationships that may have been overlooked with a directional hypothesis.

Replication and Generalizability:

Non-directional hypotheses support replication studies and enhance the generalizability of findings. By not restricting the investigation to a specific predicted direction, the results can be more applicable to different populations, contexts, or conditions. This broader applicability strengthens the validity and reliability of the research.

Hypothesis Generation:

Non-directional hypotheses can serve as a foundation for generating new hypotheses and research questions. Significant findings without a specific predicted direction can lead to further investigations and the formulation of more focused directional hypotheses in subsequent studies.

It’s important to consider the specific research context and objectives when deciding between a directional or non-directional hypothesis. Non-directional hypotheses are particularly useful when researchers are exploring new areas or when there is limited existing knowledge about the relationship or difference being studied.

Disadvantages of Non-directional hypothesis

Non-directional hypotheses have their advantages, there are also some potential disadvantages to consider:

Lack of Specificity: Non-directional hypotheses do not provide a specific prediction about the direction of the relationship or difference between variables. This lack of specificity may limit the interpretability and practical implications of the findings. Stakeholders may desire clear guidance on the expected direction of the effect.

Non-directional hypotheses often require larger sample sizes compared to directional hypotheses. This is because statistical power needs to be sufficient to detect any significant relationship or difference, regardless of the direction. Obtaining larger samples can be more time-consuming, resource-intensive, and costly.

Reduced Precision:

By not specifying the direction, non-directional hypotheses may result in less precise findings. Researchers may obtain statistically significant results indicating a relationship or difference, but the lack of direction may hinder their ability to understand the practical implications or mechanism behind the effect.

Potential for Post-hoc Interpretation:

Non-directional hypotheses can increase the risk of post-hoc interpretation of results. Researchers may be tempted to selectively interpret and highlight only the significant findings that support their preconceived notions or expectations, leading to biased interpretations.

Limited Theoretical Guidance:

Non-directional hypotheses may lack theoretical guidance in terms of understanding the underlying mechanisms or causal pathways. Without a specific predicted direction, it can be challenging to develop a comprehensive theoretical framework to explain the relationship or difference being studied.

Potential Missed Opportunities:

Non-directional hypotheses may limit the exploration of specific directions or subgroups within the data. By not focusing on a specific direction, researchers may miss important nuances or interactions that could contribute to a deeper understanding of the phenomenon under investigation.

It’s important to carefully consider the research question, available literature, and research objectives when deciding whether to use a non-directional hypothesis. Depending on the context and goals of the study, a non-directional hypothesis may be appropriate, but researchers should also be aware of the potential limitations and address them accordingly in their research design and interpretation of results.

Difference between directional and non-directional hypothesis

the main difference between a directional hypothesis and a non-directional hypothesis lies in the specificity of the prediction made about the relationship between variables or the difference between groups.

Directional Hypothesis:

A directional hypothesis, also known as a one-tailed hypothesis, makes a specific prediction about the direction of the relationship or difference. It states the expected outcome, whether it is a positive or negative relationship, a higher or lower value, an increase or decrease, etc. The directional hypothesis guides the research in a focused manner, specifying the direction to be tested.

Example: “Students who receive tutoring will demonstrate higher test scores compared to students who do not receive tutoring.”

A non-directional hypothesis, also known as a two-tailed hypothesis, does not specify the direction of the relationship or difference. It acknowledges the possibility of a relationship or difference between variables without predicting a specific direction. The non-directional hypothesis allows for exploration and analysis of both positive and negative associations or differences.

Example: “There is a significant relationship between sleep quality and academic performance.”

In summary, a directional hypothesis makes a specific prediction about the direction of the relationship or difference, while a non-directional hypothesis suggests a relationship or difference without specifying the direction. The choice between the two depends on the research question, existing literature, and the researcher’s objectives. Directional hypotheses provide a focused prediction, while non-directional hypotheses allow for more exploratory analysis .

When to use Directional Hypothesis?

A directional hypothesis is appropriate to use in specific situations where researchers have a clear theoretical or empirical basis for predicting the direction of the relationship or difference between variables. Here are some scenarios where a directional hypothesis is commonly employed:

Prior Research and Theoretical Framework: When previous studies, existing theories, or established empirical evidence strongly suggest a specific direction of the relationship or difference, a directional hypothesis can be formulated. Researchers can build upon the existing knowledge base and make a focused prediction based on this prior information.

Cause-and-Effect Relationships: In studies aiming to establish cause-and-effect relationships, directional hypotheses are often used. When there is a clear theoretical understanding of the causal relationship between variables, researchers can predict the expected direction of the effect based on the proposed mechanism.

Specific Research Objectives: If the research study has specific objectives that require a clear prediction about the direction, a directional hypothesis can be appropriate. For instance, if the aim is to test the effectiveness of a particular intervention or treatment, a directional hypothesis can guide the evaluation by predicting the expected positive or negative outcome.

Practical Applications: Directional hypotheses are useful when the research findings have direct practical implications. For example, in fields such as medicine, psychology, or education, researchers may formulate directional hypotheses to predict the effects of certain interventions or treatments on patient outcomes or educational achievement.

Hypothesis-Testing Approach: Researchers who adopt a hypothesis-testing approach, where they aim to confirm or disconfirm specific predictions, often use directional hypotheses. This approach involves formulating a specific hypothesis and conducting statistical tests to determine whether the data support or refute the predicted direction of the relationship or difference.

When to use non directional hypothesis?

A non-directional hypothesis, also known as a two-tailed hypothesis, is appropriate to use in several situations where researchers do not have a specific prediction about the direction of the relationship or difference between variables. Here are some scenarios where a non-directional hypothesis is commonly employed:

Exploratory Research:

When the research aims to explore a new area or investigate a relationship that has limited prior research or theoretical guidance, a non-directional hypothesis is often used. It allows researchers to gather initial data and insights without being constrained by a specific predicted direction.

Preliminary Studies:

Non-directional hypotheses are useful in preliminary or pilot studies that seek to gather preliminary evidence and generate hypotheses for further investigation. By using a non-directional hypothesis, researchers can gather initial data to inform the development of more specific hypotheses in subsequent studies.

Neutral Expectations:

If researchers have no theoretical or empirical basis to predict the direction of the relationship or difference, a non-directional hypothesis is appropriate. This may occur in situations where there is a lack of prior research, conflicting findings, or inconclusive evidence to support a specific direction.

Comparative Studies:

In studies where the objective is to compare two or more groups or conditions, a non-directional hypothesis is commonly used. The focus is on determining whether a significant difference exists, without making specific predictions about which group or condition will have higher or lower values.

Data-Driven Approach:

When researchers adopt a data-driven or exploratory approach to analysis, non-directional hypotheses are preferred. Instead of testing specific predictions, the aim is to explore the data, identify patterns, and generate hypotheses based on the observed relationships or differences.

Hypothesis-Generating Studies:

Non-directional hypotheses are often used in studies aimed at generating new hypotheses and research questions. By exploring associations or differences without specifying the direction, researchers can identify potential relationships or factors that can serve as a basis for future research.

Strategies to improve directional and non-directional hypothesis

To improve the quality of both directional and non-directional hypotheses, researchers can employ various strategies. Here are some strategies to enhance the formulation of hypotheses:

Strategies to Improve Directional Hypotheses:

Review existing literature:.

Conduct a thorough review of relevant literature to identify previous research findings, theories, and empirical evidence related to the variables of interest. This will help inform and support the formulation of a specific directional hypothesis based on existing knowledge.

Develop a Theoretical Framework:

Build a theoretical framework that outlines the expected causal relationship between variables. The theoretical framework should provide a clear rationale for predicting the direction of the relationship based on established theories or concepts.

Conduct Pilot Studies:

Conducting pilot studies or preliminary research can provide valuable insights and data to inform the formulation of a directional hypothesis. Initial findings can help researchers identify patterns or relationships that support a specific predicted direction.

Seek Expert Input:

Seek input from experts or colleagues in the field who have expertise in the area of study. Discuss the research question and hypothesis with them to obtain valuable insights, perspectives, and feedback that can help refine and improve the directional hypothesis.

Clearly Define Variables:

Clearly define and operationalize the variables in the hypothesis to ensure precision and clarity. This will help avoid ambiguity and ensure that the hypothesis is testable and measurable.

Strategies to Improve Non-Directional Hypotheses:

Preliminary exploration:.

Conduct initial exploratory research to gather preliminary data and insights on the relationship or difference between variables. This can provide a foundation for formulating a non-directional hypothesis based on observed patterns or trends.

Analyze Existing Data:

Analyze existing datasets to identify potential relationships or differences. Exploratory data analysis techniques such as data visualization, descriptive statistics, and correlation analysis can help uncover initial insights that can guide the formulation of a non-directional hypothesis.

Use Exploratory Research Designs:

Employ exploratory research designs such as qualitative studies, case studies, or grounded theory approaches. These designs allow researchers to gather rich data and explore relationships or differences without preconceived notions about the direction.

Consider Alternative Explanations:

When formulating a non-directional hypothesis, consider alternative explanations or potential factors that may influence the relationship or difference between variables. This can help ensure a comprehensive and nuanced understanding of the phenomenon under investigation.

Refine Based on Initial Findings:

Refine the non-directional hypothesis based on initial findings and observations from exploratory analyses. These findings can guide the formulation of more specific hypotheses in subsequent studies or inform the direction of further research.

In conclusion, both directional and non-directional hypotheses have their merits and are valuable in different research contexts.

 Here’s a summary of the key points regarding directional and non-directional hypotheses:

  • A directional hypothesis makes a specific prediction about the direction of the relationship or difference between variables.
  • It is appropriate when there is a clear theoretical or empirical basis for predicting the direction.
  • Directional hypotheses provide a focused approach, guiding the research towards confirming or refuting a specific predicted direction.
  • They are useful in studies where cause-and-effect relationships are being examined or when specific practical implications are desired.
  • Directional hypotheses require careful consideration of prior research, theoretical frameworks, and available evidence.
  • A non-directional hypothesis does not specify the direction of the relationship or difference between variables.
  • It is employed when there is limited prior knowledge, conflicting findings, or a desire for exploratory analysis.
  • Non-directional hypotheses allow for flexibility and open-mindedness in exploring the data, considering both positive and negative associations or differences.
  • They are suitable for preliminary studies, exploratory research, or when the research question does not have a clear predicted direction.
  • Non-directional hypotheses are beneficial for generating new hypotheses, replication studies, and enhancing generalizability.

In both cases, it is essential to ensure that hypotheses are clear, testable, and aligned with the research objectives. Researchers should also be open to revising and refining hypotheses based on the findings and feedback obtained during the research process. The choice between a directional and non-directional hypothesis depends on factors such as the research question, available literature, theoretical frameworks, and the specific objectives of the study. Researchers should carefully consider these factors to determine the most appropriate type of hypothesis to use in their research

psychologyrocks

Hypotheses; directional and non-directional, what is the difference between an experimental and an alternative hypothesis.

Nothing much! If the study is a true experiment then we can call the hypothesis “an experimental hypothesis”, a prediction is made about how the IV causes an effect on the DV. In a study which does not involve the direct manipulation of an IV, i.e. a natural or quasi-experiment or any other quantitative research method (e.g. survey) has been used, then we call it an “alternative hypothesis”, it is the alternative to the null.

Directional hypothesis: A directional (or one-tailed hypothesis) states which way you think the results are going to go, for example in an experimental study we might say…”Participants who have been deprived of sleep for 24 hours will have more cold symptoms the week after exposure to a virus than participants who have not been sleep deprived”; the hypothesis compares the two groups/conditions and states which one will ….have more/less, be quicker/slower, etc.

If we had a correlational study, the directional hypothesis would state whether we expect a positive or a negative correlation, we are stating how the two variables will be related to each other, e.g. there will be a positive correlation between the number of stressful life events experienced in the last year and the number of coughs and colds suffered, whereby the more life events you have suffered the more coughs and cold you will have had”. The directional hypothesis can also state a negative correlation, e.g. the higher the number of face-book friends, the lower the life satisfaction score “

Non-directional hypothesis: A non-directional (or two tailed hypothesis) simply states that there will be a difference between the two groups/conditions but does not say which will be greater/smaller, quicker/slower etc. Using our example above we would say “There will be a difference between the number of cold symptoms experienced in the following week after exposure to a virus for those participants who have been sleep deprived for 24 hours compared with those who have not been sleep deprived for 24 hours.”

When the study is correlational, we simply state that variables will be correlated but do not state whether the relationship will be positive or negative, e.g. there will be a significant correlation between variable A and variable B.

Null hypothesis The null hypothesis states that the alternative or experimental hypothesis is NOT the case, if your experimental hypothesis was directional you would say…

Participants who have been deprived of sleep for 24 hours will NOT have more cold symptoms in the following week after exposure to a virus than participants who have not been sleep deprived and any difference that does arise will be due to chance alone.

or with a directional correlational hypothesis….

There will NOT be a positive correlation between the number of stress life events experienced in the last year and the number of coughs and colds suffered, whereby the more life events you have suffered the more coughs and cold you will have had”

With a non-directional or  two tailed hypothesis…

There will be NO difference between the number of cold symptoms experienced in the following week after exposure to a virus for those participants who have been sleep deprived for 24 hours compared with those who have not been sleep deprived for 24 hours.

or for a correlational …

there will be NO correlation between variable A and variable B.

When it comes to conducting an inferential stats test, if you have a directional hypothesis , you must do a one tailed test to find out whether your observed value is significant. If you have a non-directional hypothesis , you must do a two tailed test .

Exam Techniques/Advice

  • Remember, a decent hypothesis will contain two variables, in the case of an experimental hypothesis there will be an IV and a DV; in a correlational hypothesis there will be two co-variables
  • both variables need to be fully operationalised to score the marks, that is you need to be very clear and specific about what you mean by your IV and your DV; if someone wanted to repeat your study, they should be able to look at your hypothesis and know exactly what to change between the two groups/conditions and exactly what to measure (including any units/explanation of rating scales etc, e.g. “where 1 is low and 7 is high”)
  • double check the question, did it ask for a directional or non-directional hypothesis?
  • if you were asked for a null hypothesis, make sure you always include the phrase “and any difference/correlation (is your study experimental or correlational?) that does arise will be due to chance alone”

Practice Questions:

  • Mr Faraz wants to compare the levels of attendance between his psychology group and those of Mr Simon, who teaches a different psychology group. Which of the following is a suitable directional (one tailed) hypothesis for Mr Faraz’s investigation?

A There will be a difference in the levels of attendance between the two psychology groups.

B Students’ level of attendance will be higher in Mr Faraz’s group than Mr Simon’s group.

C Any difference in the levels of attendance between the two psychology groups is due to chance.

D The level of attendance of the students will depend upon who is teaching the groups.

2. Tracy works for the local council. The council is thinking about reducing the number of people it employs to pick up litter from the street. Tracy has been asked to carry out a study to see if having the streets cleaned at less regular intervals will affect the amount of litter the public will drop. She studies a street to compare how much litter is dropped at two different times, once when it has just been cleaned and once after it has not been cleaned for a month.

Write a fully operationalised non-directional (two-tailed) hypothesis for Tracy’s study. (2)

3. Jamila is conducting a practical investigation to look at gender differences in carrying out visuo-spatial tasks. She decides to give males and females a jigsaw puzzle and will time them to see who completes it the fastest. She uses a random sample of pupils from a local school to get her participants.

(a) Write a fully operationalised directional (one tailed) hypothesis for Jamila’s study. (2) (b) Outline one strength and one weakness of the random sampling method. You may refer to Jamila’s use of this type of sampling in your answer. (4)

4. Which of the following is a non-directional (two tailed) hypothesis?

A There is a difference in driving ability with men being better drivers than women

B Women are better at concentrating on more than one thing at a time than men

C Women spend more time doing the cooking and cleaning than men

D There is a difference in the number of men and women who participate in sports

Revision Activities

writing-hypotheses-revision-sheet

Quizizz link for teachers: https://quizizz.com/admin/quiz/5bf03f51add785001bc5a09e

By Psychstix by Mandy wood

Share this:

' src=

  • Already have a WordPress.com account? Log in now.
  • Subscribe Subscribed
  • Copy shortlink
  • Report this content
  • View post in Reader
  • Manage subscriptions
  • Collapse this bar

What is a Directional Hypothesis? (Definition & Examples)

Table of Contents

A directional hypothesis is a type of hypothesis that predicts the direction of the relationship between two variables. It states that there will be a specific and expected change in one variable based on the change in the other variable. This type of hypothesis is often used in experiments and research studies to make a clear prediction and guide the direction of the study. For example, “Increasing the amount of exercise will lead to a decrease in cholesterol levels” is a directional hypothesis as it predicts a specific direction of change in cholesterol levels based on the change in exercise. In contrast, a non-directional hypothesis would simply state that there is a relationship between exercise and cholesterol levels without specifying the direction of the relationship. Overall, a directional hypothesis helps researchers to make informed and focused conclusions about the relationship between variables.

A statistical hypothesis is an assumption about a . For example, we may assume that the mean height of a male in the U.S. is 70 inches.

The assumption about the height is the statistical hypothesis and the true mean height of a male in the U.S. is the population parameter .

To test whether a statistical hypothesis about a population parameter is true, we obtain a random sample from the population and perform a hypothesis test on the sample data.

Whenever we perform a hypothesis test, we always write down a null and alternative hypothesis:

  • Null Hypothesis (H 0 ): The sample data occurs purely from chance.
  • Alternative Hypothesis (H A ): The sample data is influenced by some non-random cause.

A hypothesis test can either contain a directional hypothesis or a non-directional hypothesis:

  • Directional hypothesis: The alternative hypothesis contains the less than (“<“) or greater than (“>”) sign. This indicates that we’re testing whether or not there is a positive or negative effect.
  • Non-directional hypothesis: The alternative hypothesis contains the not equal (“≠”) sign. This indicates that we’re testing whether or not there is some effect, without specifying the direction of the effect.

Note that directional hypothesis tests are also called “one-tailed” tests and non-directional hypothesis tests are also called “two-tailed” tests.

Check out the following examples to gain a better understanding of directional vs. non-directional hypothesis tests.

Example 1: Baseball Programs

A baseball coach believes a certain 4-week program will increase the mean hitting percentage of his players, which is currently 0.285.

To test this, he measures the hitting percentage of each of his players before and after participating in the program.

He then performs a hypothesis test using the following hypotheses:

  • H 0 : μ = .285 (the program will have no effect on the mean hitting percentage)
  • H A : μ > .285 (the program will cause mean hitting percentage to increase)

This is an example of a directional hypothesis because the alternative hypothesis contains the greater than “>” sign. The coach believes that the program will influence the mean hitting percentage of his players in a positive direction.

Example 2: Plant Growth

A biologist believes that a certain pesticide will cause plants to grow less during a one-month period than they normally do, which is currently 10 inches.

She then performs a hypothesis test using the following hypotheses:

  • H 0 : μ = 10 inches (the pesticide will have no effect on the mean plant growth)
  • H A : μ < 10 inches (the pesticide will cause mean plant growth to decrease)

This is also an example of a directional hypothesis because the alternative hypothesis contains the less than “<” sign. The biologist believes that the pesticide will influence the mean plant growth in a negative direction.

Example 3: Studying Technique

A professor believes that a certain studying technique will influence the mean score that her students receive on a certain exam, but she’s unsure if it will increase or decrease the mean score, which is currently 82.

To test this, she lets each student use the studying technique for one month leading up to the exam and then administers the same exam to each of the students.

  • H 0 : μ = 82 (the studying technique will have no effect on the mean exam score)
  • H A : μ ≠ 82 (the studying technique will cause the mean exam score to be different than 82)

This is an example of a non-directional hypothesis because the alternative hypothesis contains the not equal “≠” sign. The professor believes that the studying technique will influence the mean exam score, but doesn’t specify whether it will cause the mean score to increase or decrease.

Related terms:

  • Directional Hypothesis
  • What is a directional hypothesis?
  • What are five examples of a null hypothesis?
  • How to Perform Hypothesis Testing in Python (With Examples)
  • How to Write Hypothesis Test Conclusions (With Examples)
  • 4 Examples of Hypothesis Testing in Real Life?
  • What is the definition of the Central Limit Theorem and can you provide some examples of its application?
  • What is the definition of concomitant variable and what are some examples?
  • What is the definition of omitted variable bias and what are some examples of it?
  • What is Curvilinear Regression? (Definition & Examples)
  • Dissertation Proofreading and Editing
  • Dissertation Service
  • Dissertation Proposal Service
  • Dissertation Chapter
  • Dissertation Topic and Outline
  • Statistical Analysis Services
  • Model Answers and Exam Notes
  • Dissertation Samples
  • Essay Writing Service
  • Assignment Service
  • Report Service
  • Coursework Service
  • Literature Review Service
  • Reflective Report Service
  • Presentation Service
  • Poster Service
  • Criminal Psychology Dissertation Topics | List of Trending Ideas With Research Aims
  • Cognitive Psychology Dissertation Topics | 10 Top Ideas For Research in 2024
  • Social Psychology Dissertation Topics | 10 Latest Research Ideas
  • Top 10 Clinical Psychology Dissertation Topics with Research Aims
  • Educational Psychology Dissertation Topics | 10 Interesting Ideas For Research
  • Customer Service Dissertation Topics | List of Latest Ideas For Students
  • 15 Interesting Music Dissertation Topics
  • Business Intelligence Dissertation Topics | List of Top Ideas With Research Aims
  • Physical Education Dissertation Topics | 15 Interesting Title Examples
  • 15 Top Forensic Science Dissertation Topics with Research Aims
  • Islamic Finance Dissertation Topics | List of 15 Top Ideas With Research Aims
  • Dissertation Examples
  • Dissertation Proposal Examples
  • Essay Examples
  • Report Examples
  • Coursework Examples
  • Assignment Examples
  • Literature Review Examples
  • Dissertation Topic and Outline Examples
  • Dissertation Chapter Examples
  • Dissertation Help
  • Dissertation Topics
  • Academic Library
  • Assignment Plagiarism Checker
  • Coursework Plagiarism Checke
  • Dissertation Plagiarism Checker
  • Thesis Plagiarism Checker
  • Report Plagiarism Checke
  • Plagiarism Remover Service
  • Plagiarism Checker Free Service
  • Turnitin Plagiarism Checker Free Service
  • Free Plagiarism Checker for Students
  • Difference Between Paraphrasing & Plagiarism
  • Free Similarity Checker
  • How Plagiarism Checkers Work?
  • How to Cite Sources to Avoid Plagiarism?
  • Free Topics
  • Get a Free Quote

Premier-Dissertations-Logo-1

  • Report Generating Service
  • Model Answers and Exam Notes Writing
  • Reflective or Personal Report Writing
  • Poster Writing
  • Literature Review Writing
  • Premier Sample Dissertations
  • Course Work
  • Cognitive Psychology Dissertation Topics
  • Physical Education Dissertation Topics
  • 15 Top Forensic Science Dissertation Topics
  • Top 10 Clinical Psychology Dissertation Topics
  • Islamic Finance Dissertation Topics
  • Social Psychology Dissertation Topics
  • Educational Psychology Dissertation Topics
  • Business Intelligence Dissertation Topics
  • Customer Service Dissertation Topics
  • Criminal Psychology Dissertation Topics

example of directional hypothesis in research

  • Literature Review Example
  • Report Example
  • Assignment Example
  • Coursework Example

example of directional hypothesis in research

  • Coursework Plagiarism Checker
  • Turnitin Plagiarism Checker
  • Paraphrasing and Plagiarism
  • Best Dissertation Plagiarism Checker
  • Report Plagiarism Checker
  • Similarity Checker
  • Plagiarism Checker Free
  • FREE Topics

Get an experienced writer start working

Review our examples before placing an order, learn how to draft academic papers, research hypotheses: directional vs. non-directional hypotheses.

Is AP Psychology Hard? Exploring the Challenges and Rewards

Is AP Psychology Hard? Exploring the Challenges and Rewards

Quantitative Research Titles and Topics

280+ Quantitative Research Titles and Topics

example of directional hypothesis in research

  • Dissertation

Research Hypotheses: Directional vs. Non-Directional Hypotheses

A research hypothesis is a statement that predicts or expects a relationship between variables, and it is tested through research. To create a hypothesis, researchers often review existing literature on the topic. This hypothesis is based on theories, observations, or empirical evidence. It guides the research process, including experiment design, data collection, and analysis. Ultimately, the hypothesis aims to predict the outcome of the study.

What is a Hypothesis in a Dissertation?

This article compares directional and non-directional hypotheses and provides guidelines for writing an effective hypothesis in research. The study explores the differences in predictions and research design implications between the two hypotheses.

3-Step  Dissertation Process!

example of directional hypothesis in research

Get 3+ Topics

example of directional hypothesis in research

Dissertation Proposal

example of directional hypothesis in research

Get Final Dissertation

Types of hypothesis.

There are two main types of hypotheses in research:

Null Hypothesis (H0) 

The null hypothesis is the default assumption in statistical analysis that there is no significant relationship or effect between the variables being studied. It suggests that any observed differences or relationships are due to chance.

Alternative Hypothesis (Ha or H1)

The alternative hypothesis proposes a significant relationship or effect between variables, contradicting the null hypothesis. It reflects the researcher's expectations based on existing theories or observations.

What is Directional Hypotheses?

A directional hypothesis is a type of hypothesis that is used to predict a specific change or outcome in a research study. It is typically used when researchers have a clear idea of the direction in which they expect their results to go, either an increase or decrease, and want to test this prediction. By making a directional hypothesis, researchers can focus their research efforts and design studies that are more likely to uncover meaningful results. In essence, a directional hypothesis is a statement that predicts the direction of the change that is expected to occur between two groups or variables that are being investigated.

Examples of Directional Hypothesis

Example 1: Online versus Traditional Classroom Learning

For instance, consider a study comparing the average study time of college students in online courses versus those in traditional classroom settings. Drawing on prior research indicating that online learning might lead to reduced engagement, a potential directional hypothesis could be: "Students enrolled in online classes will spend fewer weekly study hours than those in traditional classrooms."

In this scenario, our hypothesis presents a clear expectation—that the average number of weekly study hours among online learners will be lower than that of traditional learners. If the actual findings reveal no significant difference or even higher study times among online learners, then our hypothesis would be refuted.

Example 2: Carbon Dioxide Levels and Global Warming

A directional hypothesis in this scenario would propose a specific change in direction between these two variables. For instance, a directional hypothesis might state that as carbon dioxide levels increase, global temperatures will also rise. This hypothesis suggests a causal relationship between the increase in CO2 levels and the phenomenon of global warming, indicating a direction of change in global temperatures corresponding to changes in CO2 levels.

What is a Non-Directional Hypotheses?

In scientific research, a non-directional hypothesis, or null hypothesis, is a statement that suggests the absence of a relationship or difference between the variables being studied. This type of hypothesis is used to test the validity of a research question by assuming that there is no significant effect or relationship between the variables under investigation. The null hypothesis is typically tested against an alternative hypothesis, which proposes that there is a significant effect or relationship between the variables. If the null hypothesis is rejected, it means that there is enough evidence to suggest that the alternative hypothesis is true, and the variables are indeed related or different from each other.

Non-Directional Hypothesis Example

Example: Is there a difference in anxiety levels between students who receive traditional classroom instruction and those who participate in online learning?

In this non-directional hypothesis, researchers are interested in understanding if there's a disparity in anxiety levels between students who are taught in traditional classrooms versus those who learn online. The non-directional hypothesis posits that there won't be any notable variance in anxiety levels between the two groups. This means that the researchers are not predicting whether one group will have higher or lower anxiety levels; rather, they are exploring if there's any difference at all.

Testimonials

Very satisfied students

This is our reason for working. We want to make all students happy, every day. Review us on Sitejabber

Directional vs. Non-Directional Hypotheses in Research

Both directional and non directional hypothesis have their place in research, and choosing the appropriate type depends on the research question being investigated. Researchers can use directional or non-directional hypotheses in their studies, depending on their specific expectations about the relationship between variables. A directional hypothesis predicts a specific direction of change, while a non-directional hypothesis predicts that there will be a difference between groups or conditions without specifying the direction of that difference. It's important to understand the difference between these types of hypotheses to conduct rigorous and insightful research. Directional hypotheses are useful when researchers want to test a specific expectation about the relationship between variables, while non-directional hypotheses are more appropriate when researchers simply want to test if there is any difference between groups or conditions.

How to Write an Effective Hypothesis in Research?

Writing an effective hypothesis involves several key steps to ensure clarity, testability, and relevance to the research question. Here's a guide on how to write an effective hypothesis:

  • Identify the Research Question: Start by clearly defining the research question or problem you want to investigate. Your hypothesis should directly address this question.
  • State the Null Hypothesis: The null hypothesis (H0) is a statement that there is no relationship or effect between the variables being studied. It serves as the default assumption and is typically stated as the absence of an effect or difference.
  • Formulate the Alternative Hypothesis: The alternative hypothesis (H1 or Ha) is the statement that contradicts the null hypothesis and suggests that there is a relationship or effect between the variables. It reflects what you expect to find in your research.
  • Make it Testable: Your hypothesis should be testable through empirical observation or experimentation. This means that there must be a way to collect data or evidence to support or refute the hypothesis.
  • Be Specific and Clear: Clearly state the variables involved and the expected relationship between them. Avoid vague or ambiguous language to ensure that your hypothesis is easy to understand and interpret.
  • Use Quantifiable Terms: Whenever possible, use quantifiable terms or measurable variables in your hypothesis. This makes it easier to collect data and analyze results objectively.
  • Consider the Scope: Ensure that your hypothesis is focused and specific to the research hypothesis at hand. Avoid making broad generalizations that are difficult to test or validate.
  • Revise and Refine: Once you've drafted your hypothesis, review it carefully to ensure accuracy and coherence. Revise as needed to clarify any ambiguities or inconsistencies.

Need Help with Academic Writing? Get a Response within 24 Hours!

How Does It Work ?

example of directional hypothesis in research

Fill the Form

Please fill the free topic form and share your requirements

example of directional hypothesis in research

Writer Starts Working

The writer starts to find a topic for you (based on your requirements)

example of directional hypothesis in research

3+ Topics Emailed!

The writer shared custom topics with you within 24 hours

In conclusion, directional hypotheses predict whether variables will increase or decrease, providing a definite expectation about the direction of the relationship under investigation. Non-directional hypotheses, on the other hand, only claim that there is a difference between variables without specifying the direction of the change, leaving it open to any possibility. Both types of hypotheses play an important role in guiding research investigations and developing testable predictions.

Get 3+ Free   Dissertation Topics within 24 hours?

Your Number

Academic Level Select Academic Level Undergraduate Masters PhD

Area of Research

Editor Arsalan

Editor Arsalan

Related posts.

Dissertation Interview Questions Everything You Need To Know

Dissertation Interview Questions | Everything You Need To Know

Conducting Interviews for Your Dissertation A Comprehensive Guide

Conducting Interviews for Your Dissertation | A Comprehensive Guide

Gibbs' Reflective Cycle

What is Gibbs’ Reflective Cycle and How Can It Benefit You? | Applications and Example

Comments are closed.

Research Hypotheses: Directional vs. Non-Directional Hypotheses

11 Examples of Directional Hypothesis

A directional hypothesis is a precise, educated guess at the direction of an outcome, such as a declared difference in variable sets or an increase or decline.

Directional Hypothesis

For example, a directional hypothesis may propose that, in a study examining how sleep deprivation affects cognitive performance, cognitive performance (the dependent variable) decreases as sleep deprivation (the independent variable) increases. Such a hypothesis shows a directional relationship that is clear and indicates a specific increase or decrease.

An assumption regarding a population parameter is known as a statistical hypothesis. For instance, we can estimate that a man’s average height in the United States is 75 inches.

Null and Alternative Hypothesis

A null and alternative hypothesis are always reported when conducting a hypothesis test:

Directional Hypothesis and a Non-directional Hypothesis

A hypothesis test can include either a directional hypothesis or a non-directional hypothesis.

It should be noted that tests with directional hypothesis are also known as “one-tailed” tests, while non-directional hypothesis tests are known as “two-tailed” tests.

1. Sugar Intake and Oral Health

2. heart health and exercise.

Based on research findings, it is suggested that an increase in regular physical exercise (independent variable) is associated with a decrease in the risk of heart disease (dependent variable). The directional hypothesis proposes that individuals who engage in routine workouts are expected to have lower odds of developing heart-related disorders.

3. Eye Strain and Screen Time

4. screen time and the quality of sleep, 5. sleep quality and traffic noise.

In the field of urban planning research, a common assumption is that an increase in traffic noise (independent variable) is linked to a decrease in sleep quality (dependent variable). Elevated noise levels, especially during the night, are believed to cause disturbances in sleep, resulting in a decline in sleep quality.

6. Employee Turnover And Job Satisfaction:

7. water intake and kidney health, 8. healthy eating and weight.

It is believed that healthy eating, as the independent variable, positively impacts body weight, the dependent variable. For instance, the hypothesis could posit that an increase in the consumption of healthy foods leads to a decrease in an individual’s body weight.

9. Skin Health And Sun Exposure:

10. academic performance and study hours, 11. exercise and stress levels.

In the field of mental health, a common proposal suggests that an increase in physical activity (independent variable) is linked to a decrease in stress levels (dependent variable). Regular exercise is recognized for triggering the release of endorphins, the body’s natural mood enhancers, contributing to stress relief.

Other articles

Related posts, types of research questions, 8 types of validity in research | examples, operationalization of variables in research | examples | benefits, 10 types of variables in research: definitions and examples, what is a theoretical framework examples, types of reliability in research | example | ppt, independent vs. dependent variable, 4 research proposal examples | proposal sample, how to write a literature review in research: a step-by-step guide, how to write an abstract for a research paper.

directional and non-directional hypothesis in survey

Directional vs Non-Directional Hypothesis – Collect Feedback More Effectively 

To conduct a perfect survey, you should know the basics of good research . That’s why in Startquestion we would like to share with you our knowledge about basic terms connected to online surveys and feedback gathering . Knowing the basis you can create surveys and conduct research in more effective ways and thanks to this get meaningful feedback from your customers, employees, and users. That’s enough for the introduction – let’s get to work. This time we will tell you about the hypothesis .

What is a Hypothesis?

A Hypothesis can be described as a theoretical statement built upon some evidence so that it can be tested as if it is true or false. In other words, a hypothesis is a speculation or an idea, based on insufficient evidence that allows it further analysis and experimentation.  

The purpose of a hypothetical statement is to work like a prediction based on studied research and to provide some estimated results before it ha happens in a real position. There can be more than one hypothesis statement involved in a research study, where you need to question and explore different aspects of a proposed research topic. Before putting your research into directional vs non-directional hypotheses, let’s have some basic knowledge.

Most often, a hypothesis describes a relation between two or more variables. It includes:

An Independent variable – One that is controlled by the researcher

Dependent Variable – The variable that the researcher observes in association with the Independent variable.

Try one of the best survey tools for free!

Start trial period without any credit card or subscription. Easily conduct your research and gather feedback via link, social media, email, and more.

Create first survey

No credit card required · Cancel any time · GDRP Compilant

How to write an effective Hypothesis?

To write an effective hypothesis follow these essential steps.

  • Inquire a Question

The very first step in writing an effective hypothesis is raising a question. Outline the research question very carefully keeping your research purpose in mind. Build it in a precise and targeted way. Here you must be clear about the research question vs hypothesis. A research question is the very beginning point of writing an effective hypothesis.

Do Literature Review

Once you are done with constructing your research question, you can start the literature review. A literature review is a collection of preliminary research studies done on the same or relevant topics. There is a diversified range of literature reviews. The most common ones are academic journals but it is not confined to that. It can be anything including your research, data collection, and observation.

At this point, you can build a conceptual framework. It can be defined as a visual representation of the estimated relationship between two variables subjected to research.

Frame an Answer

After a collection of literature reviews, you can find ways how to answer the question. Expect this stage as a point where you will be able to make a stand upon what you believe might have the exact outcome of your research. You must formulate this answer statement clearly and concisely.

Build a Hypothesis

At this point, you can firmly build your hypothesis. By now, you knew the answer to your question so make a hypothesis that includes:

  • Applicable Variables                     
  • Particular Group being Studied (Who/What)
  • Probable Outcome of the Experiment

Remember, your hypothesis is a calculated assumption, it has to be constructed as a sentence, not a question. This is where research question vs hypothesis starts making sense.

Refine a Hypothesis

Make necessary amendments to the constructed hypothesis keeping in mind that it has to be targeted and provable. Moreover, you might encounter certain circumstances where you will be studying the difference between one or more groups. It can be correlational research. In such instances, you must have to testify the relationships that you believe you will find in the subject variables and through this research.

Build Null Hypothesis

Certain research studies require some statistical investigation to perform a data collection. Whenever applying any scientific method to construct a hypothesis, you must have adequate knowledge of the Null Hypothesis and an Alternative hypothesis.

Null Hypothesis: 

A null Hypothesis denotes that there is no statistical relationship between the subject variables. It is applicable for a single group of variables or two groups of variables. A Null Hypothesis is denoted as an H0. This is the type of hypothesis that the researcher tries to invalidate. Some of the examples of null hypotheses are:

–        Hyperactivity is not associated with eating sugar.

–        All roses have an equal amount of petals.

–        A person’s preference for a dress is not linked to its color.

Alternative Hypothesis: 

An alternative hypothesis is a statement that is simply inverse or opposite of the null hypothesis and denoted as H1. Simply saying, it is an alternative statement for the null hypothesis. The same examples will go this way as an alternative hypothesis:

–        Hyperactivity is associated with eating sugar.

–        All roses do not have an equal amount of petals.

–        A person’s preference for a dress is linked to its color.

Start your research right now: use professional survey templates

  • Brand Awareness Survey
  • Survey for the thesis
  • Website Evaluation Survey

See more templates

Types of Hypothesis

Apart from null and alternative hypotheses, research hypotheses can be categorized into different types. Let’s have a look at them:

Simple Hypothesis:

This type of hypothesis is used to state a relationship between a particular independent variable and only a dependent variable.

Complex Hypothesis:

A statement that states the relationship between two or more independent variables and two or more dependent variables, is termed a complex hypothesis.

Associative and Causal Hypothesis:

This type of hypothesis involves predicting that there is a point of interdependency between two variables. It says that any kind of change in one variable will cause a change in the other one.  Similarly, a casual hypothesis says that a change in the dependent variable is due to some variations in the independent variable.

Directional vs non-directional hypothesis

Directional hypothesis:.

A hypothesis that is built upon a certain directional relationship between two variables and constructed upon an already existing theory, is called a directional hypothesis. To understand more about what is directional hypothesis here is an example, Girls perform better than boys (‘better than’ shows the direction predicted)

Non-directional Hypothesis:

It involves an open-ended non-directional hypothesis that predicts that the independent variable will influence the dependent variable; however, the nature or direction of a relationship between two subject variables is not defined or clear.

For Example, there will be a difference in the performance of girls & boys (Not defining what kind of difference)

As a professional, we suggest you apply a non-directional alternative hypothesis when you are not sure of the direction of the relationship. Maybe you’re observing potential gender differences on some psychological test, but you don’t know whether men or women would have the higher ratio. Normally, this would say that you are lacking practical knowledge about the proposed variables. A directional test should be more common for tests. 

Urszula Kamburov-Niepewna

Author: Ula Kamburov-Niepewna

Updated: 18 November 2022

example of directional hypothesis in research

How to Build a Successful Closed-Loop Feedback System

A successful closed-loop system enhances the customer experience, drives innovation, strengthens brand loyalty, and boosts the bottom line. Learn how to harness the power of feedback, close the loop, and unlock your business's full potential.

example of directional hypothesis in research

Customer Journey Map: How to Create Them Easily?

Understanding your customers' experiences can elevate your business from good to great. Customer journey mapping, a powerful visual tool, uncovers every interaction customers have with your brand, highlighting pain points and opportunities for improvement.

example of directional hypothesis in research

Importance and Methodology of the Voice of the Customer

Voice of the Customer (VoC) is more than just collecting feedback—it's the foundation of a client-focused strategy that can drive innovation, improve customer satisfaction, and gain a competitive advantage.

helpful professor logo

15 Hypothesis Examples

15 Hypothesis Examples

Chris Drew (PhD)

Dr. Chris Drew is the founder of the Helpful Professor. He holds a PhD in education and has published over 20 articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education. [Image Descriptor: Photo of Chris]

Learn about our Editorial Process

hypothesis definition and example, explained below

A hypothesis is defined as a testable prediction , and is used primarily in scientific experiments as a potential or predicted outcome that scientists attempt to prove or disprove (Atkinson et al., 2021; Tan, 2022).

In my types of hypothesis article, I outlined 13 different hypotheses, including the directional hypothesis (which makes a prediction about an effect of a treatment will be positive or negative) and the associative hypothesis (which makes a prediction about the association between two variables).

This article will dive into some interesting examples of hypotheses and examine potential ways you might test each one.

Hypothesis Examples

1. “inadequate sleep decreases memory retention”.

Field: Psychology

Type: Causal Hypothesis A causal hypothesis explores the effect of one variable on another. This example posits that a lack of adequate sleep causes decreased memory retention. In other words, if you are not getting enough sleep, your ability to remember and recall information may suffer.

How to Test:

To test this hypothesis, you might devise an experiment whereby your participants are divided into two groups: one receives an average of 8 hours of sleep per night for a week, while the other gets less than the recommended sleep amount.

During this time, all participants would daily study and recall new, specific information. You’d then measure memory retention of this information for both groups using standard memory tests and compare the results.

Should the group with less sleep have statistically significant poorer memory scores, the hypothesis would be supported.

Ensuring the integrity of the experiment requires taking into account factors such as individual health differences, stress levels, and daily nutrition.

Relevant Study: Sleep loss, learning capacity and academic performance (Curcio, Ferrara & De Gennaro, 2006)

2. “Increase in Temperature Leads to Increase in Kinetic Energy”

Field: Physics

Type: Deductive Hypothesis The deductive hypothesis applies the logic of deductive reasoning – it moves from a general premise to a more specific conclusion. This specific hypothesis assumes that as temperature increases, the kinetic energy of particles also increases – that is, when you heat something up, its particles move around more rapidly.

This hypothesis could be examined by heating a gas in a controlled environment and capturing the movement of its particles as a function of temperature.

You’d gradually increase the temperature and measure the kinetic energy of the gas particles with each increment. If the kinetic energy consistently rises with the temperature, your hypothesis gets supporting evidence.

Variables such as pressure and volume of the gas would need to be held constant to ensure validity of results.

3. “Children Raised in Bilingual Homes Develop Better Cognitive Skills”

Field: Psychology/Linguistics

Type: Comparative Hypothesis The comparative hypothesis posits a difference between two or more groups based on certain variables. In this context, you might propose that children raised in bilingual homes have superior cognitive skills compared to those raised in monolingual homes.

Testing this hypothesis could involve identifying two groups of children: those raised in bilingual homes, and those raised in monolingual homes.

Cognitive skills in both groups would be evaluated using a standard cognitive ability test at different stages of development. The examination would be repeated over a significant time period for consistency.

If the group raised in bilingual homes persistently scores higher than the other, the hypothesis would thereby be supported.

The challenge for the researcher would be controlling for other variables that could impact cognitive development, such as socio-economic status, education level of parents, and parenting styles.

Relevant Study: The cognitive benefits of being bilingual (Marian & Shook, 2012)

4. “High-Fiber Diet Leads to Lower Incidences of Cardiovascular Diseases”

Field: Medicine/Nutrition

Type: Alternative Hypothesis The alternative hypothesis suggests an alternative to a null hypothesis. In this context, the implied null hypothesis could be that diet has no effect on cardiovascular health, which the alternative hypothesis contradicts by suggesting that a high-fiber diet leads to fewer instances of cardiovascular diseases.

To test this hypothesis, a longitudinal study could be conducted on two groups of participants; one adheres to a high-fiber diet, while the other follows a diet low in fiber.

After a fixed period, the cardiovascular health of participants in both groups could be analyzed and compared. If the group following a high-fiber diet has a lower number of recorded cases of cardiovascular diseases, it would provide evidence supporting the hypothesis.

Control measures should be implemented to exclude the influence of other lifestyle and genetic factors that contribute to cardiovascular health.

Relevant Study: Dietary fiber, inflammation, and cardiovascular disease (King, 2005)

5. “Gravity Influences the Directional Growth of Plants”

Field: Agronomy / Botany

Type: Explanatory Hypothesis An explanatory hypothesis attempts to explain a phenomenon. In this case, the hypothesis proposes that gravity affects how plants direct their growth – both above-ground (toward sunlight) and below-ground (towards water and other resources).

The testing could be conducted by growing plants in a rotating cylinder to create artificial gravity.

Observations on the direction of growth, over a specified period, can provide insights into the influencing factors. If plants consistently direct their growth in a manner that indicates the influence of gravitational pull, the hypothesis is substantiated.

It is crucial to ensure that other growth-influencing factors, such as light and water, are uniformly distributed so that only gravity influences the directional growth.

6. “The Implementation of Gamified Learning Improves Students’ Motivation”

Field: Education

Type: Relational Hypothesis The relational hypothesis describes the relation between two variables. Here, the hypothesis is that the implementation of gamified learning has a positive effect on the motivation of students.

To validate this proposition, two sets of classes could be compared: one that implements a learning approach with game-based elements, and another that follows a traditional learning approach.

The students’ motivation levels could be gauged by monitoring their engagement, performance, and feedback over a considerable timeframe.

If the students engaged in the gamified learning context present higher levels of motivation and achievement, the hypothesis would be supported.

Control measures ought to be put into place to account for individual differences, including prior knowledge and attitudes towards learning.

Relevant Study: Does educational gamification improve students’ motivation? (Chapman & Rich, 2018)

7. “Mathematics Anxiety Negatively Affects Performance”

Field: Educational Psychology

Type: Research Hypothesis The research hypothesis involves making a prediction that will be tested. In this case, the hypothesis proposes that a student’s anxiety about math can negatively influence their performance in math-related tasks.

To assess this hypothesis, researchers must first measure the mathematics anxiety levels of a sample of students using a validated instrument, such as the Mathematics Anxiety Rating Scale.

Then, the students’ performance in mathematics would be evaluated through standard testing. If there’s a negative correlation between the levels of math anxiety and math performance (meaning as anxiety increases, performance decreases), the hypothesis would be supported.

It would be crucial to control for relevant factors such as overall academic performance and previous mathematical achievement.

8. “Disruption of Natural Sleep Cycle Impairs Worker Productivity”

Field: Organizational Psychology

Type: Operational Hypothesis The operational hypothesis involves defining the variables in measurable terms. In this example, the hypothesis posits that disrupting the natural sleep cycle, for instance through shift work or irregular working hours, can lessen productivity among workers.

To test this hypothesis, you could collect data from workers who maintain regular working hours and those with irregular schedules.

Measuring productivity could involve examining the worker’s ability to complete tasks, the quality of their work, and their efficiency.

If workers with interrupted sleep cycles demonstrate lower productivity compared to those with regular sleep patterns, it would lend support to the hypothesis.

Consideration should be given to potential confounding variables such as job type, worker age, and overall health.

9. “Regular Physical Activity Reduces the Risk of Depression”

Field: Health Psychology

Type: Predictive Hypothesis A predictive hypothesis involves making a prediction about the outcome of a study based on the observed relationship between variables. In this case, it is hypothesized that individuals who engage in regular physical activity are less likely to suffer from depression.

Longitudinal studies would suit to test this hypothesis, tracking participants’ levels of physical activity and their mental health status over time.

The level of physical activity could be self-reported or monitored, while mental health status could be assessed using standard diagnostic tools or surveys.

If data analysis shows that participants maintaining regular physical activity have a lower incidence of depression, this would endorse the hypothesis.

However, care should be taken to control other lifestyle and behavioral factors that could intervene with the results.

Relevant Study: Regular physical exercise and its association with depression (Kim, 2022)

10. “Regular Meditation Enhances Emotional Stability”

Type: Empirical Hypothesis In the empirical hypothesis, predictions are based on amassed empirical evidence . This particular hypothesis theorizes that frequent meditation leads to improved emotional stability, resonating with numerous studies linking meditation to a variety of psychological benefits.

Earlier studies reported some correlations, but to test this hypothesis directly, you’d organize an experiment where one group meditates regularly over a set period while a control group doesn’t.

Both groups’ emotional stability levels would be measured at the start and end of the experiment using a validated emotional stability assessment.

If regular meditators display noticeable improvements in emotional stability compared to the control group, the hypothesis gains credit.

You’d have to ensure a similar emotional baseline for all participants at the start to avoid skewed results.

11. “Children Exposed to Reading at an Early Age Show Superior Academic Progress”

Type: Directional Hypothesis The directional hypothesis predicts the direction of an expected relationship between variables. Here, the hypothesis anticipates that early exposure to reading positively affects a child’s academic advancement.

A longitudinal study tracking children’s reading habits from an early age and their consequent academic performance could validate this hypothesis.

Parents could report their children’s exposure to reading at home, while standardized school exam results would provide a measure of academic achievement.

If the children exposed to early reading consistently perform better acadically, it gives weight to the hypothesis.

However, it would be important to control for variables that might impact academic performance, such as socioeconomic background, parental education level, and school quality.

12. “Adopting Energy-efficient Technologies Reduces Carbon Footprint of Industries”

Field: Environmental Science

Type: Descriptive Hypothesis A descriptive hypothesis predicts the existence of an association or pattern related to variables. In this scenario, the hypothesis suggests that industries adopting energy-efficient technologies will resultantly show a reduced carbon footprint.

Global industries making use of energy-efficient technologies could track their carbon emissions over time. At the same time, others not implementing such technologies continue their regular tracking.

After a defined time, the carbon emission data of both groups could be compared. If industries that adopted energy-efficient technologies demonstrate a notable reduction in their carbon footprints, the hypothesis would hold strong.

In the experiment, you would exclude variations brought by factors such as industry type, size, and location.

13. “Reduced Screen Time Improves Sleep Quality”

Type: Simple Hypothesis The simple hypothesis is a prediction about the relationship between two variables, excluding any other variables from consideration. This example posits that by reducing time spent on devices like smartphones and computers, an individual should experience improved sleep quality.

A sample group would need to reduce their daily screen time for a pre-determined period. Sleep quality before and after the reduction could be measured using self-report sleep diaries and objective measures like actigraphy, monitoring movement and wakefulness during sleep.

If the data shows that sleep quality improved post the screen time reduction, the hypothesis would be validated.

Other aspects affecting sleep quality, like caffeine intake, should be controlled during the experiment.

Relevant Study: Screen time use impacts low‐income preschool children’s sleep quality, tiredness, and ability to fall asleep (Waller et al., 2021)

14. Engaging in Brain-Training Games Improves Cognitive Functioning in Elderly

Field: Gerontology

Type: Inductive Hypothesis Inductive hypotheses are based on observations leading to broader generalizations and theories. In this context, the hypothesis deduces from observed instances that engaging in brain-training games can help improve cognitive functioning in the elderly.

A longitudinal study could be conducted where an experimental group of elderly people partakes in regular brain-training games.

Their cognitive functioning could be assessed at the start of the study and at regular intervals using standard neuropsychological tests.

If the group engaging in brain-training games shows better cognitive functioning scores over time compared to a control group not playing these games, the hypothesis would be supported.

15. Farming Practices Influence Soil Erosion Rates

Type: Null Hypothesis A null hypothesis is a negative statement assuming no relationship or difference between variables. The hypothesis in this context asserts there’s no effect of different farming practices on the rates of soil erosion.

Comparing soil erosion rates in areas with different farming practices over a considerable timeframe could help test this hypothesis.

If, statistically, the farming practices do not lead to differences in soil erosion rates, the null hypothesis is accepted.

However, if marked variation appears, the null hypothesis is rejected, meaning farming practices do influence soil erosion rates. It would be crucial to control for external factors like weather, soil type, and natural vegetation.

The variety of hypotheses mentioned above underscores the diversity of research constructs inherent in different fields, each with its unique purpose and way of testing.

While researchers may develop hypotheses primarily as tools to define and narrow the focus of the study, these hypotheses also serve as valuable guiding forces for the data collection and analysis procedures, making the research process more efficient and direction-focused.

Hypotheses serve as a compass for any form of academic research. The diverse examples provided, from Psychology to Educational Studies, Environmental Science to Gerontology, clearly demonstrate how certain hypotheses suit specific fields more aptly than others.

It is important to underline that although these varied hypotheses differ in their structure and methods of testing, each endorses the fundamental value of empiricism in research. Evidence-based decision making remains at the heart of scholarly inquiry, regardless of the research field, thus aligning all hypotheses to the core purpose of scientific investigation.

Testing hypotheses is an essential part of the scientific method . By doing so, researchers can either confirm their predictions, giving further validity to an existing theory, or they might uncover new insights that could potentially shift the field’s understanding of a particular phenomenon. In either case, hypotheses serve as the stepping stones for scientific exploration and discovery.

Atkinson, P., Delamont, S., Cernat, A., Sakshaug, J. W., & Williams, R. A. (2021).  SAGE research methods foundations . SAGE Publications Ltd.

Curcio, G., Ferrara, M., & De Gennaro, L. (2006). Sleep loss, learning capacity and academic performance.  Sleep medicine reviews ,  10 (5), 323-337.

Kim, J. H. (2022). Regular physical exercise and its association with depression: A population-based study short title: Exercise and depression.  Psychiatry Research ,  309 , 114406.

King, D. E. (2005). Dietary fiber, inflammation, and cardiovascular disease.  Molecular nutrition & food research ,  49 (6), 594-600.

Marian, V., & Shook, A. (2012, September). The cognitive benefits of being bilingual. In Cerebrum: the Dana forum on brain science (Vol. 2012). Dana Foundation.

Tan, W. C. K. (2022). Research Methods: A Practical Guide For Students And Researchers (Second Edition) . World Scientific Publishing Company.

Waller, N. A., Zhang, N., Cocci, A. H., D’Agostino, C., Wesolek‐Greenson, S., Wheelock, K., … & Resnicow, K. (2021). Screen time use impacts low‐income preschool children’s sleep quality, tiredness, and ability to fall asleep. Child: care, health and development, 47 (5), 618-626.

Chris

  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 10 Reasons you’re Perpetually Single
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 20 Montessori Toddler Bedrooms (Design Inspiration)
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 21 Montessori Homeschool Setups
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 101 Hidden Talents Examples

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

Read With Us

Write For Us

We Are Constantly Looking For Writers And Contributors To Help Us Create Great Content For Our Blog Visitors.

How To Write A Directional Hypothesis

How To Write A Directional Hypothesis

Directional hypotheses are often used in experimental research, where the researcher is able to manipulate the independent variable and measure the effect on the dependent variable. For example, a researcher might hypothesize that students who receive tutoring will score higher on math tests than students who do not receive tutoring.

To write a directional hypothesis, you need to have a good understanding of the relationship between the two variables you are interested in. You can review existing research to learn more about the relationship, or you can conduct your own pilot study.

Once you have a good understanding of the relationship, you can state your directional hypothesis in a clear and concise way. The hypothesis should be specific enough that it can be tested, but it should also be broad enough to be meaningful.

Here are some tips for writing a directional hypothesis:

1. Start by identifying the independent and dependent variables in your study. The independent variable is the variable that you are manipulating, and the dependent variable is the variable that you are measuring

2. State the predicted direction of the relationship between the two variables. For example, will the independent variable increase or decrease the dependent variable?

3. Use clear and concise language. Avoid using jargon or technical terms that your readers may not understand.

4. Make sure that your hypothesis is testable. You should be able to collect data to test your hypothesis and determine whether or not it is supported.

Here are some examples of directional hypotheses:

1. Students who receive tutoring will score higher on math tests than students who do not receive tutoring.

2. People who exercise regularly will have lower blood pressure than people who do not exercise regularly.

3. Children who grow up in poverty are more likely to experience health problems as adults.

ReadWithUs:

ReadWithUs provides online tutoring in the UK to help students of all ages and abilities succeed. Our experienced and qualified tutors can help students with a variety of subjects, including math, English, science, and history. We also offer tutoring for specific exams, such as the GCSEs and A-Levels.

To learn more about our online tutoring services, visit our website at http://readwithus.org.uk/

Tips for writing a strong directional hypothesis

1. Be specific. The more specific your hypothesis is, the easier it will be to test.

4. Be realistic. Your hypothesis should be based on existing research and your own understanding of the topic.

3. Be testable. Your hypothesis should be able to be tested using data collection and statistical analysis.

4. Be clear and concise. Your hypothesis should be easy to understand and interpret.

Directional hypotheses can be a powerful tool for scientific research. By writing a strong directional hypothesis, you can increase your chances of obtaining meaningful results. If you are struggling to write a directional hypothesis, don't hesitate to seek help from a mentor or colleague.

example of directional hypothesis in research

Examples

Two Tailed Hypothesis

Ai generator.

example of directional hypothesis in research

In the vast realm of scientific inquiry, the two-tailed hypothesis holds a special place, serving as a compass for researchers exploring possibilities in two opposing directions. Instead of predicting a specific direction of the relationship between variables, it remains open to outcomes on both ends of the spectrum. Understanding how to craft such a hypothesis, enriched with insights and nuances, can elevate the robustness of one’s research. Delve into its world, discover thesis statement examples, learn the art of its formulation, and grasp tips to master its intricacies.

What is Two Tailed Hypothesis? – Definition

A two-tailed hypothesis, also known as a non-directional hypothesis , is a type of hypothesis used in statistical testing that predicts a relationship between variables without specifying the direction of the relationship. In other words, it tests for the possibility of the relationship in both directions. This approach is used when a researcher believes there might be a difference due to the experiment but doesn’t have enough preliminary evidence or basis to predict a specific direction of that difference.

What is an example of a Two Tailed hypothesis statement?

Let’s consider a study on the impact of a new teaching method on student performance:

Hypothesis Statement : The new teaching method will have an effect on student performance.

Notice that the hypothesis doesn’t specify whether the effect will be positive or negative (i.e., whether student performance will improve or decline). It’s open to both possibilities, making it a two-tailed hypothesis.

Two Tailed Hypothesis Statement Examples

The two-tailed hypothesis, an essential tool in research, doesn’t predict a specific directional outcome between variables. Instead, it posits that an effect exists, without specifying its nature. This approach offers flexibility, as it remains open to both positive and negative outcomes. Below are various examples from diverse fields to shed light on this versatile research method. You may also be interested to browse through our other  one-tailed hypothesis .

  • Sleep and Cognitive Ability : Sleep duration affects cognitive performance in adults.
  • Dietary Fiber and Digestion : Consumption of dietary fiber influences digestion rates.
  • Exercise and Stress Levels : Engaging in physical activity impacts stress levels.
  • Vitamin C and Immunity : Intake of Vitamin C has an effect on immunity strength.
  • Noise Levels and Concentration : Ambient noise levels influence individual concentration ability.
  • Artificial Sweeteners and Appetite : Consumption of artificial sweeteners affects appetite.
  • UV Light and Skin Health : Exposure to UV light influences skin health.
  • Coffee Intake and Sleep Quality : Consuming coffee has an effect on sleep quality.
  • Air Pollution and Respiratory Issues : Levels of air pollution impact respiratory health.
  • Meditation and Blood Pressure : Practicing meditation affects blood pressure readings.
  • Pet Ownership and Loneliness : Having a pet influences feelings of loneliness.
  • Green Spaces and Mental Wellbeing : Exposure to green spaces impacts mental health.
  • Music Tempo and Heart Rate : Listening to music of varying tempos affects heart rate.
  • Chocolate Consumption and Mood : Eating chocolate has an effect on mood.
  • Social Media Usage and Self-Esteem : The frequency of social media usage influences self-esteem.
  • E-reading and Eye Strain : Using e-readers affects eye strain levels.
  • Vegan Diets and Energy Levels : Following a vegan diet influences daily energy levels.
  • Carbonated Drinks and Tooth Decay : Consumption of carbonated drinks has an effect on tooth decay rates.
  • Distance Learning and Student Engagement : Engaging in distance learning impacts student involvement.
  • Organic Foods and Health Perceptions : Consuming organic foods influences perceptions of health.
  • Urban Living and Stress Levels : Living in urban environments affects stress levels.
  • Plant-Based Diets and Cholesterol : Adopting a plant-based diet impacts cholesterol levels.
  • Virtual Reality Training and Skill Acquisition : Using virtual reality for training influences the rate of skill acquisition.
  • Video Game Play and Hand-Eye Coordination : Playing video games has an effect on hand-eye coordination.
  • Aromatherapy and Sleep Quality : Using aromatherapy impacts the quality of sleep.
  • Bilingualism and Cognitive Flexibility : Being bilingual affects cognitive flexibility.
  • Microplastics and Marine Health : The presence of microplastics in oceans influences marine organism health.
  • Yoga Practice and Joint Health : Engaging in yoga has an effect on joint health.
  • Processed Foods and Metabolism : Consuming processed foods impacts metabolic rates.
  • Home Schooling and Social Skills : Being homeschooled influences the development of social skills.
  • Smartphone Usage and Attention Span : Regular smartphone use affects attention spans.
  • E-commerce and Consumer Trust : Engaging with e-commerce platforms influences levels of consumer trust.
  • Work-from-Home and Productivity : The practice of working from home has an effect on productivity levels.
  • Classical Music and Plant Growth : Exposing plants to classical music impacts their growth rate.
  • Public Transport and Community Engagement : Using public transport influences community engagement levels.
  • Digital Note-taking and Memory Retention : Taking notes digitally affects memory retention.
  • Acoustic Music and Relaxation : Listening to acoustic music impacts feelings of relaxation.
  • GMO Foods and Public Perception : Consuming GMO foods influences public perception of food safety.
  • LED Lights and Eye Comfort : Using LED lights affects visual comfort.
  • Fast Fashion and Consumer Satisfaction : Engaging with fast fashion brands influences consumer satisfaction levels.
  • Diverse Teams and Innovation : Working in diverse teams impacts the level of innovation.
  • Local Produce and Nutritional Value : Consuming local produce affects its nutritional value.
  • Podcasts and Language Acquisition : Listening to podcasts influences the speed of language acquisition.
  • Augmented Reality and Learning Efficiency : Using augmented reality in education has an effect on learning efficiency.
  • Museums and Historical Interest : Visiting museums impacts interest in history.
  • E-books vs. Physical Books and Reading Retention : The type of book, whether e-book or physical, affects memory retention from reading.
  • Biophilic Design and Worker Well-being : Implementing biophilic designs in office spaces influences worker well-being.
  • Recycled Products and Consumer Preference : Using recycled materials in products impacts consumer preferences.
  • Interactive Learning and Critical Thinking : Engaging in interactive learning environments affects the development of critical thinking skills.
  • High-Intensity Training and Muscle Growth : Participating in high-intensity training has an effect on muscle growth rate.
  • Pet Therapy and Anxiety Levels : Engaging with therapy animals influences anxiety levels.
  • 3D Printing and Manufacturing Efficiency : Implementing 3D printing in manufacturing affects production efficiency.
  • Electric Cars and Public Adoption Rates : Introducing more electric cars impacts the rate of public adoption.
  • Ancient Architectural Study and Modern Design Inspiration : Studying ancient architecture influences modern design inspirations.
  • Natural Lighting and Productivity : The amount of natural lighting in a workspace affects worker productivity.
  • Streaming Platforms and Traditional TV Viewing : The rise of streaming platforms has an effect on traditional TV viewing habits.
  • Handwritten Notes and Conceptual Understanding : Taking notes by hand influences the depth of conceptual understanding.
  • Urban Farming and Community Engagement : Implementing urban farming practices impacts levels of community engagement.
  • Influencer Marketing and Brand Loyalty : Collaborating with influencers affects brand loyalty among consumers.
  • Online Workshops and Skill Enhancement : Participating in online workshops influences skill enhancement.
  • Virtual Reality and Empathy Development : Using virtual reality experiences influences the development of empathy.
  • Gardening and Mental Well-being : Engaging in gardening activities affects overall mental well-being.
  • Drones and Wildlife Observation : The use of drones impacts the accuracy of wildlife observations.
  • Artificial Intelligence and Job Markets : The introduction of artificial intelligence in industries has an effect on job availability.
  • Online Reviews and Purchase Decisions : Reading online reviews influences purchase decisions for consumers.
  • Blockchain Technology and Financial Security : Implementing blockchain technology affects financial transaction security.
  • Minimalism and Life Satisfaction : Adopting a minimalist lifestyle influences levels of life satisfaction.
  • Microlearning and Long-term Retention : Engaging in microlearning practices impacts long-term information retention.
  • Virtual Teams and Communication Efficiency : Operating in virtual teams has an effect on the efficiency of communication.
  • Plant Music and Growth Rates : Exposing plants to specific music frequencies influences their growth rates.
  • Green Building Practices and Energy Consumption : Implementing green building designs affects overall energy consumption.
  • Fermented Foods and Gut Health : Consuming fermented foods impacts gut health.
  • Digital Art Platforms and Creative Expression : Using digital art platforms influences levels of creative expression.
  • Aquatic Therapy and Physical Rehabilitation : Engaging in aquatic therapy has an effect on the rate of physical rehabilitation.
  • Solar Energy and Utility Bills : Adopting solar energy solutions influences monthly utility bills.
  • Immersive Theatre and Audience Engagement : Experiencing immersive theatre performances affects audience engagement levels.
  • Podcast Popularity and Radio Listening Habits : The rise in podcast popularity impacts traditional radio listening habits.
  • Vertical Farming and Crop Yield : Implementing vertical farming techniques has an effect on crop yields.
  • DIY Culture and Craftsmanship Appreciation : The rise of DIY culture influences public appreciation for craftsmanship.
  • Crowdsourcing and Solution Innovation : Utilizing crowdsourcing methods affects the innovativeness of solutions derived.
  • Urban Beekeeping and Local Biodiversity : Introducing urban beekeeping practices impacts local biodiversity levels.
  • Digital Nomad Lifestyle and Work-Life Balance : Adopting a digital nomad lifestyle affects perceptions of work-life balance.
  • Virtual Tours and Tourism Interest : Offering virtual tours of destinations influences interest in real-life visits.
  • Neurofeedback Training and Cognitive Abilities : Engaging in neurofeedback training has an effect on various cognitive abilities.
  • Sensory Gardens and Stress Reduction : Visiting sensory gardens impacts levels of stress reduction.
  • Subscription Box Services and Consumer Spending : The popularity of subscription box services influences overall consumer spending patterns.
  • Makerspaces and Community Collaboration : Introducing makerspaces in communities affects collaboration levels among members.
  • Remote Work and Company Loyalty : Adopting long-term remote work policies impacts employee loyalty towards the company.
  • Upcycling and Environmental Awareness : Engaging in upcycling activities influences levels of environmental awareness.
  • Mixed Reality in Education and Engagement : Implementing mixed reality tools in education affects student engagement.
  • Microtransactions in Gaming and Player Commitment : The presence of microtransactions in video games impacts player commitment and longevity.
  • Floating Architecture and Sustainable Living : Adopting floating architectural solutions influences perceptions of sustainable living.
  • Edible Packaging and Waste Reduction : Introducing edible packaging in markets has an effect on overall waste reduction.
  • Space Tourism and Interest in Astronomy : The advent of space tourism influences the general public’s interest in astronomy.
  • Urban Green Roofs and Air Quality : Implementing green roofs in urban settings impacts the local air quality.
  • Smart Mirrors and Fitness Consistency : Using smart mirrors for workouts affects consistency in fitness routines.
  • Open Source Software and Technological Innovation : Promoting open-source software has an effect on the rate of technological innovation.
  • Microgreens and Nutrient Intake : Consuming microgreens influences nutrient intake.
  • Aquaponics and Sustainable Farming : Implementing aquaponic systems impacts perceptions of sustainable farming.
  • Esports Popularity and Physical Sport Engagement : The rise of esports affects engagement in traditional physical sports.

Two Tailed Hypothesis Statement Examples in Research

In academic research, a two-tailed hypothesis is versatile, not pointing to a specific direction of effect but remaining open to outcomes on both ends of the spectrum. Such hypothesis aim to determine if a particular variable affects another, without specifying how. Here are examples tailored to research scenarios.

  • Interdisciplinary Collaboration and Innovation : Engaging in interdisciplinary collaborations impacts the degree of innovation in research findings.
  • Open Access Journals and Citation Rates : Publishing in open-access journals influences the citation rates of the papers.
  • Research Grants and Publication Quality : Receiving larger research grants affects the quality of resulting publications.
  • Laboratory Environment and Data Accuracy : The physical conditions of a research laboratory impact the accuracy of experimental data.
  • Peer Review Process and Research Integrity : The stringency of the peer review process influences the overall integrity of published research.
  • Researcher Mobility and Knowledge Transfer : The mobility of researchers between institutions affects the rate of knowledge transfer.
  • Interdisciplinary Conferences and Networking Opportunities : Attending interdisciplinary conferences impacts the depth and breadth of networking opportunities.
  • Qualitative Methods and Research Depth : Incorporating qualitative methods in research affects the depth of findings.
  • Data Visualization Tools and Research Comprehension : Utilizing advanced data visualization tools influences the comprehension of complex research data.
  • Collaborative Tools and Research Efficiency : The adoption of modern collaborative tools impacts research efficiency and productivity.

Two Tailed Testing Hypothesis Statement Examples

In hypothesis testing , a two-tailed test examines the possibility of a relationship in both directions. Unlike one-tailed tests, it doesn’t anticipate a specific direction of the relationship. The following are examples that encapsulate this approach within varied testing scenarios.

  • Load Testing and Website Speed : Conducting load testing on a website influences its loading speed.
  • A/B Testing and Conversion Rates : Implementing A/B testing affects the conversion rates of a webpage.
  • Drug Efficacy Testing and Patient Recovery : Testing a new drug’s efficacy impacts patient recovery rates.
  • Usability Testing and User Engagement : Conducting usability testing on an app influences user engagement metrics.
  • Genetic Testing and Disease Prediction : Utilizing genetic testing affects the accuracy of disease prediction.
  • Water Quality Testing and Contaminant Levels : Performing water quality tests influences our understanding of contaminant levels.
  • Battery Life Testing and Device Longevity : Conducting battery life tests impacts claims about device longevity.
  • Product Safety Testing and Recall Rates : Implementing rigorous product safety tests affects the rate of product recalls.
  • Emissions Testing and Pollution Control : Undertaking emissions testing on vehicles influences pollution control measures.
  • Material Strength Testing and Product Durability : Testing the strength of materials affects predictions about product durability.

How do you know if a hypothesis is two-tailed?

To determine if a hypothesis is two-tailed, you must look at the nature of the prediction. A two-tailed hypothesis is neutral concerning the direction of the predicted relationship or difference between groups. It simply predicts a difference or relationship without specifying whether it will be positive, negative, greater, or lesser. The hypothesis tests for effects in both directions.

What is one-tailed and two-tailed Hypothesis test with example?

In hypothesis testing, the choice between a one-tailed and a two-tailed test is determined by the nature of the research question.

One-tailed hypothesis: This tests for a specific direction of the effect. It predicts the direction of the relationship or difference between groups. For example, a one-tailed hypothesis might state: “The new drug will reduce symptoms more effectively than the standard treatment.”

Two-tailed hypothesis: This doesn’t specify the direction. It predicts that there will be a difference, but it doesn’t forecast whether the difference will be positive or negative. For example, a two-tailed hypothesis might state: “The new drug will have a different effect on symptoms compared to the standard treatment.”

What is a two-tailed hypothesis in psychology?

In psychology, a two-tailed hypothesis is frequently used when researchers are exploring new areas or relationships without a strong prior basis to predict the direction of findings. For instance, a psychologist might use a two-tailed hypothesis to explore whether a new therapeutic method has different outcomes than a traditional method, without predicting whether the outcomes will be better or worse.

What does a two-tailed alternative hypothesis look like?

A two-tailed alternative hypothesis is generally framed to show that a parameter is simply different from a certain value, without specifying the direction of the difference. Using mathematical notation, for a population mean (?) and a proposed value (k), the two-tailed hypothesis would look like: H1: ? ? k.

How do you write a Two-Tailed hypothesis statement? – A Step by Step Guide

  • Identify the Variables: Start by identifying the independent and dependent variables you want to study.
  • Formulate a Relationship: Consider the potential relationship between these variables without setting a direction.
  • Avoid Directional Language: Words like “increase”, “decrease”, “more than”, or “less than” should be avoided as they point to a one-tailed hypothesis.
  • Keep it Simple: The statement should be clear, concise, and to the point.
  • Use Neutral Language: For instance, words like “affects”, “influences”, or “has an impact on” can be used to indicate a relationship without specifying a direction.
  • Finalize the Statement: Once the relationship is clear in your mind, form a coherent sentence that describes the relationship between your variables.

Tips for Writing Two Tailed Hypothesis

  • Start Broad: Given that you’re not seeking a specific direction, it’s okay to start with a broad idea.
  • Be Objective: Avoid letting any biases or expectations shape your hypothesis.
  • Stay Informed: Familiarize yourself with existing research on the topic to ensure your hypothesis is novel and not inadvertently directional.
  • Seek Feedback: Share your hypothesis with colleagues or mentors to ensure it’s indeed non-directional.
  • Revisit and Refine: As with any research process, be open to revisiting and refining your hypothesis as you delve deeper into the literature or collect preliminary data.

Twitter

Text prompt

  • Instructive
  • Professional

10 Examples of Public speaking

20 Examples of Gas lighting

example of directional hypothesis in research

The election of a Democrat as the Texas governor, without a shift in party control of the state legislature, would result in a divided government. In this scenario, the power of the executive branch, specifically the gubernatorial power, would see a decrease.

example of directional hypothesis in research

Snapsolve any problem by taking a picture. Try it in the Numerade app?

  • Open access
  • Published: 31 August 2024

Genetic causal association between lipidomic profiles, inflammatory proteomics, and aortic stenosis: a Mendelian randomization investigation

  • Linwen Zhu 1   na1 ,
  • Ni Li 1 , 2   na1 ,
  • Huoshun Shi 1 ,
  • Guofeng Shao 1 &
  • Lebo Sun 1  

European Journal of Medical Research volume  29 , Article number:  446 ( 2024 ) Cite this article

Metrics details

Aortic stenosis (AS) is a prevalent and serious valvular heart disease with a complex etiology involving genetic predispositions, lipid dysregulation, and inflammation. The specific roles of lipid and protein biomarkers in AS development are not fully elucidated. This study aimed to elucidate the causal relationships between lipidome, inflammatory proteins, and AS using Mendelian randomization (MR), identifying potential therapeutic targets.

Utilizing data from large-scale genome-wide association studies (GWAS) and genome-wide protein quantitative trait loci (pQTL) studies, we conducted MR analyses on 179 plasma lipidome and 91 inflammatory proteins to assess their causal associations with AS. Our approach included Inverse Variance Weighting (IVW), Wald ratio, and robust adjusted profile score (RAPS) analyses to refine these associations. MR-Egger regression was used to address directional horizontal pleiotropy.

Our MR analysis showed that genetically predicted 50 lipids were associated with AS, including 38 as risk factors [(9 Sterol ester, 18 Phosphatidylcholine, 4 Phosphatidylethanolamine, 1 Phosphatidylinositol and 6 Triacylglycerol)] and 12 as protective. Sterol ester (27:1/17:1) emerged as the most significant risk factor with an odds ratio (OR) of 3.11. Additionally, two inflammatory proteins, fibroblast growth factor 19 (FGF19) (OR = 0.830, P  = 0.015), and interleukin 6 (IL-6) (OR = 0.729, P  = 1.79E-04) were significantly associated with reduced AS risk. However, a two-step MR analysis showed no significant mediated correlations between these proteins and the lipid–AS pathway.

This study reveals complex lipid and protein interactions in AS, identifying potential molecular targets for therapy. These results go beyond traditional lipid profiling and significantly advance our genetic and molecular understanding of AS, highlighting potential pathways for intervention and prevention.

Introduction

Aortic stenosis (AS) is one of the most common and severe valvular heart diseases in developed countries with a prevalence of 1–3% in individuals over 70 years old, characterized by the narrowing of the aortic valve, significantly impacting global morbidity and mortality [ 1 , 2 ]. The clinical significance of AS lies in its potential to cause serious symptoms and complications, including heart failure, stroke and even death [ 2 ]. Traditionally, the development of AS has been attributed to age-related degenerative processes, including calcification and fibrosis of the aortic valve. Emerging evidence suggests that the pathogenesis of AS is multifactorial, involving complex interactions between genetic factors, lipid infiltration, inflammation, and fibrocalcific pathways [ 3 , 4 , 5 ]. Lipid-lowering therapies, antihypertensive drugs, and anticalcification therapies are the main drug classes studied in AS [ 6 ]. Despite advancements in understanding its pathophysiology, the pathogenesis involving lipid metabolic pathways and inflammatory processes remains incompletely elucidated. Research has highlighted the potential roles of lipid dysregulation and inflammation in the progression of AS, suggesting a complex interplay between the two, which could be key in prognostic assessment and developing targeted therapeutic strategies [ 7 , 8 , 9 , 10 ]. Moreover, broader spectrum of AS-related lipidome identification contributes to personalized management of lipid-lowering therapy.

The advent of genomics research and the advancements in proteomics have ushered in a new era of cardiovascular research, enabling a deeper exploration of the genetic and molecular mechanisms underlying AS. Recent genome-wide association studies (GWAS) of AS have identified 6 new genomic regions associated with the disease, underscoring the roles of lipid metabolism, inflammation, cellular senescence, and obesity in the pathophysiology of AS [ 11 ]. Additionally, a phenome-wide association study indicated the importance of lipid abnormalities and inflammation in the etiology of AS, specifically, Mendelian randomization (MR) studies supported the potential causal relationships of specific lipid species and inflammatory proteins in AS, providing insights into its molecular etiology [ 12 , 13 ]. These studies suggest that in addition to traditional risk factors, such as hypertension and hypercholesterolemia, specific components of the lipidome and proteome could significantly influence the risk and progression of AS. Furthermore, GWAS extending the plasma lipidome has fundamentally changed our understanding of the genetic variations behind lipid levels, aiding in the improvement of cardiovascular disease risk assessment [ 14 ]. Very large-scale genetic studies have been performed on standard lipids [ 15 ], and despite the much smaller sample size of the lipidome GWAS, they have identified novel lipid-associated genetic variants. Newly published GWAS on 179 lipid species and 91 inflammatory proteins promise to establish new perspectives on potential genetic targets associated with AS [ 14 , 16 ].

This study builds upon these foundational insights, utilizing MR to investigate the causal relationships between a broad spectrum of lipids, inflammatory proteins, and AS. By integrating genomic data with lipidomic and proteomic analyses, we seek to elucidate the complex molecular landscape of AS, identifying potential biomarkers and therapeutic targets. Understanding these intricate relationships hopes to advance personalized medicine approaches for the prevention and treatment of AS, potentially transforming the prognosis for patients with this challenging condition.

Study program

Our research aimed to discern the heritable risk factors associated with AS by focusing on lipid profiles and inflammatory markers. Utilizing a two-sample MR approach, we evaluated the genetic predisposition to 179 distinct lipid groups and 91 inflammatory protein groups. This endeavor leveraged genetic instrumental variables (IVs) representing the heritability of these lipid and inflammatory markers, drawing from comprehensive GWAS of the respective traits. Moreover, we explored the intermediary role of inflammation in the lipid-induced AS risk pathway, applying a two-step MR to deduce potential mediating effects [ 17 ].

Access to the GWAS dataset

The genetic underpinnings of our analysis stem from a cutting-edge genetic cohort study on AS, incorporating a genome-wide meta-analysis spanning 11.6 million genetic variants across ten cohorts with 653,867 individuals of European descent, including 13,765 AS cases [ 12 ]. The complete GWAS summary is accessible via the Common Metabolic Diseases Knowledge Portal (CMDKP, https://cvd.hugeamp.org/dinspector.html?dataset=Chen2023_AorticStenosis_EU ). Furthermore, lipidomic data were sourced from an exhaustive genome-wide investigation of 179 lipid species in a Finnish cohort [ 14 ], with findings and data available for download from the HGRI-EBI Catalog ( https://www.ebi.ac.uk/gwas/publications/37907536 ) (accession numbers: GCST90277238-GCST90277416). Detailed information on each summary data is provided in Supplementary Table 1. Inflammatory protein data were derived from a genome-wide protein quantitative trait loci (pQTL) study, also cataloged in the HGRI-EBI, encompassing 14,824 European participants [ 16 ] ( https://www.ebi.ac.uk/gwas/publications/37563310 ) (accession numbers: GCST90274758 to GCST90274848). Detailed information on each GWAS is available in Supplementary Table 2. All datasets adhered to ethical guidelines established in their original studies, negating the need for additional ethical approval for this reanalysis.

Genetic proxies for causal analysis

The causality inference between lipid profiles, inflammatory proteins, and AS necessitated IVs as genetic proxies. Selection of gene IVs for each trait was based on the most significant genetic correlations ( P  < 5 × 10^-8) identified in the GWAS datasets, adhering to stringent criteria for independence and minimal linkage disequilibrium (r 2  < 0.001 in a 10,000 kb window). In addition, SNPs were excluded if the value of the F-statistic was less than 10, indicating that the SNP had a weak instrumental likelihood. The assumptions of strong correlation and IV independence are essential requirements for MR analyses to be valid, and those phenotypes that do not satisfy these requirements for SNPs will be considered to have no usable genetic tools and will not be used in subsequent analyses [ 18 ]. Based on the hypothesis of MR's hypothesis of exclusion restriction, to ensure the validity of our MR analysis, we performed an extensive review of the literature and relevant genetic databases to compile a list of known risk factors for AS, such as hypertension, cholesterol levels, smoking status, diabetes, and other cardiovascular conditions. For each SNP identified as an IV, secondary GWAS analyses were conducted to determine associations with these potential confounders. SNPs showing significant associations ( P  < 1 × 10^-5 and r 2  > 0.8) with any confounders were flagged, and those showing significant associations ( P  < 1 × 10^-8) in the outcome GWAS were removed. This exclusion process ensured that the remaining SNPs were associated only with lipid and inflammatory protein levels and not with confounding factors that may influence AS risk.

Statistical analysis

Causal effects of the lipidome, inflammatory proteome, and as.

Upon the selection of IVs for each category within the lipid and inflammatory proteomes, our investigation proceeded to evaluate their potential causal relationships with AS using the TwoSampleMR package (version 0.5.8) in R (version 4.3.1). This analysis utilized distinct methodologies based on the number and nature of the available IVs per trait. For analyses involving multiple IVs per trait, we applied the Inverse Variance Weighting (IVW) method. This approach assumes the validity of all selected IVs and posits that there are no interactive effects between them, making it particularly suited for complex IVs scenarios. Conversely, in cases where only a single IV was available for a given trait, we utilized the Wald ratio method, offering a direct estimation of causality for singular exposures [ 19 ]. Additionally, to enhance the reliability of our findings and mitigate the incidence of false positives (Type I errors), we incorporated the MR-robust adjusted profile score (MR-RAPS) method through mr.raps package (version 0.4.1) [ 20 ]. This technique adjusts profile scores to achieve a consistent and asymptotically normal estimation, thereby refining the precision of our MR analyses. Given the exploratory nature of this work, we set a significance threshold of P  < 0.05, opting not to adjust for multiple comparisons via Bonferroni correction [ 21 ]. This strategy aimed to maximize the identification of potential targets associated with AS. In instances where more than three IVs were analyzed for a single trait, we employed MR-Egger regression to assess whether the identified SNPs exhibited pleiotropic effects that could confound the relationship between the primary exposures (lipids and proteins) and AS [ 22 ]. MR-RAPS accounts for potential pleiotropy and provides robust causal estimates. An intercept P value exceeding 0.05 indicated a lack of significant pleiotropic effects, further validating our causal inferences.

Investigating the intermediary role of inflammatory proteins

Given that lipid abnormalities can stimulate the immune-inflammatory response of the body affecting inflammatory protein levels, this segment of our study focused on exploring the potential pathway through which lipids may modulate the risk of AS via their influence on inflammatory proteins. We employed a two-step MR approach to quantify the indirect effects of lipids on AS risk via inflammatory proteins. The purpose of this mediation analysis was to determine whether and to what extent inflammatory proteins serve as a conduit through which lipids can influence the risk of developing AS. Initially, our analysis identified the direct causal relationship between lipid profiles and AS. This relationship was quantified as the overall effect size (β_total). Next, we identified inflammatory proteins that were demonstrably linked to AS through causal associations. The effect size of these proteins on AS was denoted as β_1, which was calculated contingent upon statistical significance. Building on these foundations, we explored the relationship between AS-pertinent lipids and the identified inflammatory proteins. This relationship was marked as β_2. This process allowed us to propose a speculative indirect pathway where lipids could potentially alter the risk of AS through shifts in the levels of specific inflammatory proteins. The direct mediated effect was calculated using the formula β′ = β_total—β_1 * β_2. Figure  1 outlines the key steps of our mediation analysis, from identifying direct causal relationships to exploring indirect pathways and calculating mediated effects. Given the complex and varied nature of lipid and inflammatory protein phenotypes, we maintained a discovery-oriented approach. The threshold for significance in our IVW or Wald ratio tests, along with robust analytical methods, was consistently set at P  < 0.05. This threshold facilitated the exploration of genetic correlations, aiming to unearth potential mechanistic links between lipid levels, inflammatory response, and the emergence of AS.

figure 1

Two-step Mendelian randomization design for investigating the mediating role of inflammatory proteins in the relationship between lipids and aortic stenosis. The direct causal relationship between the 179 plasma lipidome and AS is quantified as the overall effect size (β_total). Step 1 assessed the causal relationship between inflammatory proteins and AS, and Step 2 assessed the causal relationship between lipid profiles significantly associated with AS and 91 inflammatory proteins. The indirect pathway was calculated using the product of β_1 and β_2, indicating how lipids affect AS through changes in inflammatory protein levels. The overall direct effect was calculated as β′ = β_total—β_1 * β_2, which helps to discern the indirect effect of lipids on AS risk mediated through inflammatory proteins

Lipids genetically associated with AS

Our comprehensive analysis begins with identifying [ 23 ] genetic IVs for a broad spectrum of 179 lipids to investigate their potential causal relationships [ 23 ]with AS through MR. Adhering to the MR hypothesis criteria, we successfully pinpoint IVs for 162 lipid species, with F-statistic values indicating strong instrumental validity, ranging between 29.79 and 1946.15, thereby mitigating concerns over potential weak instrument bias (Supplementary Table 3). Subsequent application of the IVW/Wald ratio methods, post harmonization with AS GWAS data, reveals that 54 lipid species exhibit significant causal associations with AS. This initial finding underscores a substantial subset of the lipidome’s potential influence on AS risk (Fig.  2 A, Supplementary Table 4). Further scrutiny through robust RAPS analysis leads to the exclusion of four lipids due to statistical insignificance, narrowing down the list to 50 lipid species with demonstrable causal relationships with AS. Among these, 38 lipids (9 Sterol ester, 18 Phosphatidylcholine, 4 Phosphatidylethanolamine, 1 Phosphatidylinositol, and 6 Triacylglycerol) are identified as risk factors associated with an increased likelihood of AS (Odds Ratio, OR > 1), while 12 exhibit protective characteristics (OR < 1). Notably, Sterol ester (27:1/17:1) emerges as the lipid with the highest OR of 3.11, indicating a robust association with elevated AS risk (Fig.  2 B, Table  1 ). To address potential concerns regarding the multiplicity of levels, the Egger intercept test is applied for phenotypes with more than three IVs, consistently showing P values greater than 0.05. This result suggests an absence of directional pleiotropy, thus reinforcing the validity of our causal inferences (Table  2 ).

figure 2

Mendelian randomization results for lipidome and aortic stenosis. A Volcano plot reveals that 54 lipid species exhibited significant causal associations with AS (red dots). B Bubble plot shows that significant causal associations of 50 lipid species with AS were assessed by robust MR, of which 38 were risk factors and 12 were protective factors. OR, odds ratio

Inflammatory proteins genetically linked to AS

The role of inflammation in the progression of AS is well-documented. To elucidate which specific inflammatory mediators bear a significant genetic linkage to AS, we embark on identifying IVs across a panel of 91 plasma inflammatory proteins. Our criteria for selection ensure that 74 of these proteins have SNPs as IVs suitable for MR analysis, with F-statistic values indicating robust instrument strength, spanning from 29.72 to 1180.19 (Supplementary Table 5). Further analysis, utilizing the IVW/Wald ratio methods, reveals significant causal relationships for two inflammatory proteins: fibroblast growth factor 19 (FGF19) and interleukin-6 (IL-6). Notably, the analysis indicates that reduced levels of FGF19 (OR = 0.830, P  = 0.015) and IL-6 (OR = 0.729, P  = 1.79E-04) are significantly associated with an increased risk of developing AS (Fig.  3 , Supplementary Table 6). These findings suggest a protective role of higher blood concentrations of these proteins against the disease. Robust RAPS analysis further reinforces the causal link between these inflammatory mediators and AS, offering a consistent and reliable assessment of their impact (Table  1 ), and the Egger intercept test does not support the presence of pleiotropy ( P  > 0.05) (Table  2 ).

figure 3

Heatmap of the Mendelian randomization results for the inflammatory proteome and aortic stenosis. Two significant inflammatory proteins are labeled in red. * P  < 0.05, *** P  < 0.001

Identification of inflammatory mediators involved in the lipid-AS causal pathway

To elucidate the potential mediating role of inflammatory proteins in the lipid-induced pathogenesis of AS, we employ a two-step MR approach. This analysis aims to discern any mediated correlations between 50 lipid species and the levels of FGF19 and IL-6, which are previously identified as causally associated with AS. Our general and robust MR estimates for the relationship between these lipids and FGF19 levels do not reveal any significant mediated correlations, suggesting that FGF19 does not act as a mediator in the lipid-AS effector pathway (Fig.  4 , Supplementary Table 7). Similarly, the MR analysis investigating the causal link between lipids associated with AS and IL-6 levels yields null causal estimates. This finding implies that, within the scope of our analysis, IL-6 levels do not mediate the effect of lipids on AS risk (Fig.  5 , Supplementary Table 8).

figure 4

Mediated Mendelian randomization results of lipidome causally associated with aortic stenosis and fibroblast growth factor 19 levels. nsnp, number of single nucleotide polymorphisms

figure 5

Mediated Mendelian randomization results of lipidome causally associated with aortic stenosis and interleukin-6 levels

Our study begins to explore the genetic basis of AS, focusing on the causal roles of the lipidome and inflammatory proteins. Our investigation into the causal relationships between specific lipid types and AS provides important insights, clarifying complex relationships beyond traditional cardiovascular risk factors. We identified 54 lipid species with significant causal relationships to AS, 38 of which are associated with increased risk, and 12 associated with decreased risk, highlighting the complicated role of lipid metabolism in the pathogenesis of AS [ 24 ]. Specifically, the observed significant OR for Sterol ester (27:1/17:1) highlights the potential of certain lipid profiles as pivotal biomarkers or drivers of AS [ 24 ]. Notably, our analysis also indicates that lower levels of FGF19 and IL-6 are associated with increased AS risk. Nevertheless, subsequent research into the potential mediating roles of these inflammatory proteins in the lipid-AS pathway yielded null results, indicating more complex interactions.

The identification of lipids causally linked to AS reinforces the critical role of lipid metabolism in the pathogenesis of disease. This aligns with increasing literature suggesting that, in addition to traditional risk factors, specific lipid profiles may have a direct impact on the cardiovascular system, thereby influencing the development of AS [ 3 , 7 , 12 , 13 , 25 , 26 ]. The identification of 54 lipids causally related to AS not only reinforces the lipid hypothesis in the pathogenesis of AS but also expands our understanding of lipid involvement beyond traditional lipid markers like low-density lipoprotein cholesterol [ 14 , 15 , 27 ]. The significant risk association with Sterol ester levels suggests that certain lipid molecules may contribute to valvular calcification or inflammation, two key processes in the development of AS, through specific pathways [ 3 , 5 , 12 ]. This granularity in the involvement of lipids in AS offers a more refined perspective for potential therapeutic targets. Traditionally, lipid-lowering therapies, especially statins, have shown varied outcomes in AS treatment, which could be due to their broad target spectrum [ 28 , 29 , 30 ]. However, recent studies suggest the potential for more targeted lipid-modifying strategies. Combination lipid-lowering therapy as a first-line strategy in very high-risk patients has been discussed, emphasizing the importance of intensive LDL-C lowering [ 31 ]. Furthermore, the dawn of a new era of targeted lipid-lowering therapies has been heralded, with novel biological and therapeutic discoveries offering insight into innovative targeting strategies that have increased efficacy and improved tolerability [ 32 ]. Our findings suggest the possibility of more targeted lipid-modifying strategies that could more effectively mitigate AS progression, tailored to the specific lipid profiles causally linked to the disease. This approach aligns with the current shift toward precision medicine, where treatment is customized based on individual genetic, environmental, and lifestyle factors. The exploration of lipid-modifying drug targets has highlighted the potential for personalized interventions in lipid management [ 33 ].

Furthermore, the causal association between lower levels of FGF19 and IL-6 and increased AS risk provides insights into the protective roles these inflammatory mediators may play in the disease’s pathology. While inflammation is a recognized contributor to AS, our findings suggest that specific proteins might alleviate the disease’s progression. These results prompt a reevaluation of the inflammation hypothesis in AS, pointing out the differential impacts of inflammatory mediators on cardiovascular health [ 8 , 9 ]. Although our research on the mediated roles of inflammatory proteins did not demonstrate a direct pathway through which lipids influence AS via inflammation, it does not diminish the potential relevance of the lipid-inflammation relationship in AS pathology. The complex interplay between lipid levels and inflammatory processes remains an area ripe for further exploration, particularly considering the diverse roles of various lipid types and inflammatory mediators. Understanding this dynamic could reveal new insights into AS mechanisms, offering new avenues for interventions that address both lipid dysregulation and inflammation.

Given the complexity of AS, our study emphasizes the need for further research to untangle the intricate web of genetic, metabolic, and inflammatory factors leading to its pathogenesis. Future studies should explore potential interactions between different lipid types, a broader range of inflammatory mediators, and their cumulative impact on AS. Additionally, integrating advanced omics technologies could illuminate the molecular mechanisms driving these associations, providing a more comprehensive understanding of AS etiology and identifying novel therapeutic targets. Interventional studies targeting specific lipid molecules could provide empirical evidence of their role in AS pathogenesis and their potential therapeutic value.

Our research delves into the lipidome and proteome, offering a comprehensive analysis of the causal relationships between lipid types, inflammatory proteins, and AS. This dual focus enriches our understanding and presents the subtleties of AS pathogenesis, where both lipid metabolism and inflammatory processes play significant roles. The study's strengths include the robust methodology of MR, which clarifies causal pathways using genetic proxies, and a wide-ranging analysis including various lipids and proteins, highlighting potential therapeutic targets. However, while MR is a powerful tool for inferring causality, it is subject to certain biases, such as pleiotropy, where genetic variants influence multiple traits, potentially confounding the results. We attempted to mitigate this using robust statistical methods like MR-Egger and MR-RAPS, but some residual bias may remain. The cross-sectional nature of GWAS data also limits our ability to infer temporal relationships. Although MR can help establish causality, it cannot fully address the directionality of the relationships between lipids, inflammatory proteins, and AS. Other challenges, such as the generalizability of the study across different populations, the complex interactions between metabolic and inflammatory pathways, and translating these genetic insights into practical clinical interventions, remain. Additionally, the data sources themselves also introduce potential sources of bias. For example, measurement bias in the lipidomic and proteomic data could affect the reliability of our findings [ 23 ]. Lipid and protein levels can be influenced by various pre-analytical and analytical factors, leading to measurement variability. This variability can introduce noise into the data, potentially obscuring true associations or creating spurious ones. Despite these obstacles, our integrated approach to studying the lipidome and proteome emphasizes the complexity of AS and paves the way for new diagnostic and therapeutic strategies, highlighting the importance of a multifaceted understanding of cardiovascular diseases.

Our investigation provides novel insights into the genetic and molecular landscape of AS, identifying key lipid and inflammatory proteins that influence the disease. We found certain lipids that increase AS risk and others that may protect against it, along with evidence that proteins like FGF19 and IL-6 could lower AS risk. Although we did not find direct links between these proteins and how lipids affect AS, our results opened up new avenues for targeted treatments. By deepening our understanding of AS’s underlying causes, we pave the way for personalized approaches to managing this condition, offering hope for better prevention and therapy options in future.

Availability of data and materials

All data supporting the findings of this study are included in this article and its supplementary materials.

Dutta P, James JF, Kazik H, Lincoln J. Genetic and developmental contributors to aortic stenosis. Circ Res. 2021;128(9):1330–43. https://doi.org/10.1161/circresaha.120.317978 .

Article   CAS   PubMed   PubMed Central   Google Scholar  

Zakkar M, Bryan AJ, Angelini GD. Aortic stenosis: diagnosis and management. J BMJ. 2016;355:i5425. https://doi.org/10.1136/bmj.i5425 .

Article   CAS   Google Scholar  

Phua K, Chew NW, Kong WK, Tan RS, Ye L, Poh KK. The mechanistic pathways of oxidative stress in aortic stenosis and clinical implications. Theranostics. 2022;12(11):5189–203. https://doi.org/10.7150/thno.71813 .

Trimaille A, Hmadeh S, Matsushita K, Marchandot B, Kauffenstein G, Morel O. Aortic stenosis and the haemostatic system. Cardiovasc Res. 2023;119(6):1310–23. https://doi.org/10.1093/cvr/cvac192 .

Article   CAS   PubMed   Google Scholar  

Lindman BR, Clavel MA, Mathieu P, Iung B, Lancellotti P, Otto CM, Pibarot P. Calcific aortic stenosis. Nat Rev Dis Primers. 2016;2:16006. https://doi.org/10.1038/nrdp.2016.6 .

Article   PubMed   PubMed Central   Google Scholar  

Marquis-Gravel G, Redfors B, Leon MB, Généreux P. Medical treatment of aortic stenosis. Circulation. 2016;134(22):1766–84. https://doi.org/10.1161/circulationaha.116.023997 .

Mohty D, Pibarot P, Després JP, Côté C, Arsenault B, Cartier A, Cosnay P, Couture C, Mathieu P. Association between plasma LDL particle size, valvular accumulation of oxidized LDL, and inflammation in patients with aortic stenosis. Arterioscler Thromb Vasc Biol. 2008;28(1):187–93. https://doi.org/10.1161/atvbaha.107.154989 .

Vidula MK, Orlenko A, Zhao L, Salvador L, Small AM, Horton E, Cohen JB, Adusumalli S, Denduluri S, Kobayashi T, Hyman M, Fiorilli P, Magro C, Singh B, Pourmussa B, Greczylo C, Basso M, Ebert C, Yarde M, Li Z, Cvijic ME, Wang Z, Walsh A, Maranville J, Kick E, Luettgen J, Adam L, Schafer P, Ramirez-Valle F, Seiffert D, Moore JH, Gordon D, Chirinos JA. Plasma biomarkers associated with adverse outcomes in patients with calcific aortic stenosis. Eur J Heart Fail. 2021;23(12):2021–32. https://doi.org/10.1002/ejhf.2361 .

Scisciola L, Paolisso P, Belmonte M, Gallinoro E, Delrue L, Taktaz F, Fontanella RA, Degrieck I, Pesapane A, Casselman F, Puocci A, Franzese M, Van Praet F, Torella M, Marfella R, De Feo M, Bartunek J, Paolisso G, Barbato E, Barbieri M, Vanderheyden M. Myocardial sodium-glucose cotransporter 2 expression and cardiac remodelling in patients with severe aortic stenosis: the BIO-AS study. Eur J Heart Fail. 2024. https://doi.org/10.1002/ejhf.3145 .

Article   PubMed   Google Scholar  

Greve AM. High low-density lipoprotein levels and high risk of aortic stenosis. Eur Heart J. 2020;41(20):1941. https://doi.org/10.1093/eurheartj/ehaa296 .

Small AM, Peloso GM, Linefsky J, Aragam J, Galloway A, Tanukonda V, Wang LC, Yu Z, Sunitha Selvaraj M, Farber-Eger EH, Baker MT, Setia-Verma S, Lee SSK, Preuss M, Ritchie MD, Damrauer SM, Rader DJ, Wells QS, Loos R, Lubitz SA, Thanassoulis G, Cho K, Wilson PWF, Natarajan P, O’Donnell CJ. Multiancestry genome-wide association study of aortic stenosis identifies multiple novel loci in the million veteran program. Circulation. 2023;147(12):942–55. https://doi.org/10.1161/circulationaha.122.061451 .

Yu Chen H, Dina C, Small AM, Shaffer CM, Levinson RT, Helgadóttir A, Capoulade R, Munter HM, Martinsson A, Cairns BJ, Trudsø LC, Hoekstra M, Burr HA, Marsh TW, Damrauer SM, Dufresne L, Le Scouarnec S, Messika-Zeitoun D, Ranatunga DK, Whitmer RA, Bonnefond A, Sveinbjornsson G, Daníelsen R, Arnar DO, Thorgeirsson G, Thorsteinsdottir U, Gudbjartsson DF, Hólm H, Ghouse J, Olesen MS, Christensen AH, Mikkelsen S, Jacobsen RL, Dowsett J, Pedersen OBV, Erikstrup C, Ostrowski SR, O’Donnell CJ, Budoff MJ, Gudnason V, Post WS, Rotter JI, Lathrop M, Bundgaard H, Johansson B, Ljungberg J, Näslund U, Le Tourneau T, Smith JG, Wells QS, Söderberg S, Stefánsson K, Schott JJ, Rader DJ, Clarke R, Engert JC, Thanassoulis G. Dyslipidemia, inflammation, calcification, and adiposity in aortic stenosis: a genome-wide study. Eur Heart J. 2023;44(21):1927–39. https://doi.org/10.1093/eurheartj/ehad142 .

Smith JG, Luk K, Schulz CA, Engert JC, Do R, Hindy G, Rukh G, Dufresne L, Almgren P, Owens DS, Harris TB, Peloso GM, Kerr KF, Wong Q, Smith AV, Budoff MJ, Rotter JI, Cupples LA, Rich S, Kathiresan S, Orho-Melander M, Gudnason V, O’Donnell CJ, Post WS, Thanassoulis G. Association of low-density lipoprotein cholesterol-related genetic variants with aortic valve calcium and incident aortic stenosis. JAMA. 2014;312(17):1764–71. https://doi.org/10.1001/jama.2014.13959 .

Ottensmann L, Tabassum R, Ruotsalainen SE, Gerl MJ, Klose C, Widén E, Simons K, Ripatti S, Pirinen M. Genome-wide association analysis of plasma lipidome identifies 495 genetic associations. Nat Commun. 2023;14(1):6934. https://doi.org/10.1038/s41467-023-42532-8 .

Klarin D, Damrauer SM, Cho K, Sun YV, Teslovich TM, Honerlaw J, Gagnon DR, DuVall SL, Li J, Peloso GM, Chaffin M, Small AM, Huang J, Tang H, Lynch JA, Ho YL, Liu DJ, Emdin CA, Li AH, Huffman JE, Lee JS, Natarajan P, Chowdhury R, Saleheen D, Vujkovic M, Baras A, Pyarajan S, Di Angelantonio E, Neale BM, Naheed A, Khera AV, Danesh J, Chang KM, Abecasis G, Willer C, Dewey FE, Carey DJ, Concato J, Gaziano JM, O’Donnell CJ, Tsao PS, Kathiresan S, Rader DJ, Wilson PWF, Assimes TL. Genetics of blood lipids among ~300,000 multi-ethnic participants of the million veteran program. Nat Genet. 2018;50(11):1514–23. https://doi.org/10.1038/s41588-018-0222-9 .

Zhao JH, Stacey D, Eriksson N, Macdonald-Dunlop E, Hedman ÅK, Kalnapenkis A, Enroth S, Cozzetto D, Digby-Bell J, Marten J, Folkersen L, Herder C, Jonsson L, Bergen SE, Gieger C, Needham EJ, Surendran P, Paul DS, Polasek O, Thorand B, Grallert H, Roden M, Võsa U, Esko T, Hayward C, Johansson Å, Gyllensten U, Powell N, Hansson O, Mattsson-Carlgren N, Joshi PK, Danesh J, Padyukov L, Klareskog L, Landén M, Wilson JF, Siegbahn A, Wallentin L, Mälarstig A, Butterworth AS, Peters JE. Genetics of circulating inflammatory proteins identifies drivers of immune-mediated disease risk and therapeutic targets. Nat Immunol. 2023;24(9):1540–51. https://doi.org/10.1038/s41590-023-01588-w .

Carter AR, Sanderson E, Hammerton G, Richmond RC, Davey Smith G, Heron J, Taylor AE, Davies NM, Howe LD. Mendelian randomisation for mediation analysis: current methods and challenges for implementation. Eur J Epidemiol. 2021;36(5):465–78. https://doi.org/10.1007/s10654-021-00757-1 .

Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet. 2014;23(R1):R89-98. https://doi.org/10.1093/hmg/ddu328 .

Zhou X, Wang L, Xiao J, Sun J, Yu L, Zhang H, Meng X, Yuan S, Timofeeva M, Law PJ, Houlston RS, Ding K, Dunlop MG, Theodoratou E, Li X. Alcohol consumption, DNA methylation and colorectal cancer risk: results from pooled cohort studies and Mendelian randomization analysis. Int J Cancer. 2022;151(1):83–94. https://doi.org/10.1002/ijc.33945 .

Zhao Q, Wang J, Hemani G, Bowden J, Small DS. Statistical inference in two-sample summary-data Mendelian randomization using robust adjusted profile score. Ann. Statist. 2020;48(3):1742-1769. https://doi.org/10.1214/19-AOS1866 .

Samuels J, Bienvenu OJ, Krasnow J, Wang Y, Grados MA, Cullen B, Goes FS, Maher B, Greenberg BD, McLaughlin NC, Rasmussen SA, Fyer AJ, Knowles JA, McCracken JT, Piacentini J, Geller D, Stewart SE, Murphy DL, Shugart YY, Riddle MA, Nestadt G. General personality dimensions, impairment and treatment response in obsessive-compulsive disorder. Personal Ment Health. 2020;14(2):186–98. https://doi.org/10.1002/pmh.1472 .

Kuppa A, Tripathi H, Al-Darraji A, Tarhuni WM, Abdel-Latif A. C-Reactive protein levels and risk of cardiovascular diseases: a two-sample bidirectional Mendelian randomization study. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms24119129 .

Kyle JE, Aimo L, Bridge AJ, Clair G, Fedorova M, Helms JB, Molenaar MR, Ni Z, Orešič M, Slenter D, Willighagen E, Webb-Robertson B-JM. Interpreting the lipidome: bioinformatic approaches to embrace the complexity. Metabolomics. 2021;17(6):55. https://doi.org/10.1007/s11306-021-01802-6 .

Ahluwalia K, Ebright B, Chow K, Dave P, Mead A, Poblete R, Louie SG, Asante I. Lipidomics in understanding pathophysiology and pharmacologic effects in inflammatory diseases: considerations for drug development. Metabolites. 2022;12(4):333. https://doi.org/10.3390/metabo12040333 .

Thanassoulis G, Campbell CY, Owens DS, Smith JG, Smith AV, Peloso GM, Kerr KF, Pechlivanis S, Budoff MJ, Harris TB, Malhotra R, O’Brien KD, Kamstrup PR, Nordestgaard BG, Tybjaerg-Hansen A, Allison MA, Aspelund T, Criqui MH, Heckbert SR, Hwang SJ, Liu Y, Sjogren M, van der Pals J, Kälsch H, Mühleisen TW, Nöthen MM, Cupples LA, Caslake M, Di Angelantonio E, Danesh J, Rotter JI, Sigurdsson S, Wong Q, Erbel R, Kathiresan S, Melander O, Gudnason V, O’Donnell CJ, Post WS. Genetic associations with valvular calcification and aortic stenosis. N Engl J Med. 2013;368(6):503–12. https://doi.org/10.1056/NEJMoa1109034 .

Kronenberg F, Mora S, Stroes ESG, Ference BA, Arsenault BJ, Berglund L, Dweck MR, Koschinsky M, Lambert G, Mach F, McNeal CJ, Moriarty PM, Natarajan P, Nordestgaard BG, Parhofer KG, Virani SS, von Eckardstein A, Watts GF, Stock JK, Ray KK, Tokgözoğlu LS, Catapano AL. Lipoprotein(a) in atherosclerotic cardiovascular disease and aortic stenosis: a European atherosclerosis society consensus statement. Eur Heart J. 2022;43(39):3925–46. https://doi.org/10.1093/eurheartj/ehac361 .

Tabassum R, Ripatti S. Integrating lipidomics and genomics: emerging tools to understand cardiovascular diseases. Cell Mol Life Sci CMLS. 2021;78(6):2565–84. https://doi.org/10.1007/s00018-020-03715-4 .

Cowell SJ, Newby DE, Prescott RJ, Bloomfield P, Reid J, Northridge DB, Boon NA. A randomized trial of intensive lipid-lowering therapy in calcific aortic stenosis. N Engl J Med. 2005;352(23):2389–97. https://doi.org/10.1056/NEJMoa043876 .

Liebe V, Brueckmann M, Borggrefe M, Kaden JJ. Statin therapy of calcific aortic stenosis: hype or hope? Eur Heart J. 2006;27(7):773–8. https://doi.org/10.1093/eurheartj/ehi697 .

Afshar M, Yazdan-Ashoori S, Engert JC, Thanassoulis G. Drugs for prevention and treatment of aortic stenosis: how close are we? Can J Cardiol. 2021;37(7):1016–26. https://doi.org/10.1016/j.cjca.2021.02.017 .

Ray KK, Reeskamp LF, Laufs U, Banach M, Mach F, Tokgözoğlu LS, Connolly DL, Gerrits AJ, Stroes ESG, Masana L, Kastelein JJP. Combination lipid-lowering therapy as first-line strategy in very high-risk patients. Eur Heart J. 2021;43(8):830–3. https://doi.org/10.1093/eurheartj/ehab718 .

Tokgözoğlu L, Libby P. The dawn of a new era of targeted lipid-lowering therapies. Eur Heart J. 2022;43(34):3198–208. https://doi.org/10.1093/eurheartj/ehab841 .

Jiang Z, Gu X-J, Su W-M, Duan Q-Q, Yin K-F, Ren Y-L, Wang Y, Cao B, Chen Y-P. Discovery and exploration of lipid-modifying drug targets for ALS by Mendelian randomization. Mol Neurobiol. 2024. https://doi.org/10.1007/s12035-024-04007-9 .

Download references

Acknowledgements

This work was supported by the Zhejiang Medical and Health Science and Technology Plan Project (no. 2022KY1095, 2024KY298), Ningbo Medical Treatment Center Li Huili Hospital “Huili Fund” (no. 2022YB015), Ningbo “Technology Innovation 2025” Major Special Project (no. 2022Z150), Ningbo Top Medical and Health Research Program (no. 2022030107), Ningbo Health Branding Subject Fund (no. PPXK2018-01), and Wu Jieping Medical Foundation Special Fund for Clinical Research (no. 320.6750.2022-22-41). The funding body played no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

Author information

Linwen Zhu and Ni Li have equal contribution.

Authors and Affiliations

Department of Cardiovascular Surgery, Lihuili Hospital Affiliated to Ningbo University, Ningbo, 315041, Zhejiang, China

Linwen Zhu, Ni Li, Huoshun Shi, Guofeng Shao & Lebo Sun

Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China

You can also search for this author in PubMed   Google Scholar

Contributions

L. Z. and N. L. Conceptualization, Data interpretation, Writing-Original draft preparation, Software, Resources. L. S. and G. S. Conceptualization, Writing-review & editing, Funding acquisition. L. Z. and H. S. Methodology, Investigation, Supervision.

Corresponding authors

Correspondence to Guofeng Shao or Lebo Sun .

Ethics declarations

Ethics approval and consent to participate.

All datasets complied with the ethical guidelines established in their original studies, so no additional ethical approval was required for this reanalysis.

Consent for publication

All authors approved the final version and agreed to be responsible for the study.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

40001_2024_2014_moesm1_esm.xlsx.

Additional file 1: Table S1. Detailed information on the genome-wide association studies (GWAS) of 179 lipids. Table S2. Detailed information on the GWAS of 91 inflammatory proteins. Table S3. Genetic instrumental variables for lipid groups. Table S4. Mendelian randomization estimates of lipidome and aortic stenosis. Table S5. Genetic instrumental variables of inflammatory proteomes. Table S6. Mendelian randomization estimates of inflammatory proteomes and aortic stenosis. Table S7. Mediated Mendelian randomization results of lipid groups and fibroblast growth factor 19 levels assessed using robust adjusted profile score (RAPS) approach. Table S8. Mediated Mendelian randomization results of lipid groups and interleukin-6 levels assessed using robust adjusted profile score (RAPS) approach.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/ .

Reprints and permissions

About this article

Cite this article.

Zhu, L., Li, N., Shi, H. et al. Genetic causal association between lipidomic profiles, inflammatory proteomics, and aortic stenosis: a Mendelian randomization investigation. Eur J Med Res 29 , 446 (2024). https://doi.org/10.1186/s40001-024-02014-z

Download citation

Received : 25 March 2024

Accepted : 06 August 2024

Published : 31 August 2024

DOI : https://doi.org/10.1186/s40001-024-02014-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Aortic stenosis
  • Inflammatory proteins
  • Mendelian randomization
  • Sterol ester
  • Fibroblast growth factor 19
  • Interleukin 6

European Journal of Medical Research

ISSN: 2047-783X

example of directional hypothesis in research

COMMENTS

  1. Directional Hypothesis: Definition and 10 Examples

    Directional Hypothesis Examples. 1. Exercise and Heart Health. Research suggests that as regular physical exercise (independent variable) increases, the risk of heart disease (dependent variable) decreases (Jakicic, Davis, Rogers, King, Marcus, Helsel, Rickman, Wahed, Belle, 2016). In this example, a directional hypothesis anticipates that the ...

  2. What is a Directional Hypothesis? (Definition & Examples)

    A hypothesis test can either contain a directional hypothesis or a non-directional hypothesis: Directional hypothesis: The alternative hypothesis contains the less than ("<") or greater than (">") sign. This indicates that we're testing whether or not there is a positive or negative effect.

  3. Directional and non-directional hypothesis: A Comprehensive Guide

    Directional hypotheses, also known as one-tailed hypotheses, are statements in research that make specific predictions about the direction of a relationship or difference between variables. Unlike non-directional hypotheses, which simply state that there is a relationship or difference without specifying its direction, directional hypotheses ...

  4. Directional vs Non-Directional Hypothesis: Key Difference

    In summary, a directional hypothesis makes a specific prediction about the direction of the relationship or difference, while a non-directional hypothesis suggests a relationship or difference without specifying the direction. The choice between the two depends on the research question, existing literature, and the researcher's objectives.

  5. Hypotheses; directional and non-directional

    The directional hypothesis can also state a negative correlation, e.g. the higher the number of face-book friends, the lower the life satisfaction score ". Non-directional hypothesis: A non-directional (or two tailed hypothesis) simply states that there will be a difference between the two groups/conditions but does not say which will be ...

  6. Directional vs. Non-Directional Hypothesis in Research

    In the world of research and statistical analysis, formulating hypotheses is a crucial step in the scientific process. Hypotheses guide researchers in making predictions and testing relationships between variables. When it comes to hypotheses, there are two main types: directional and non-directional.

  7. Research Hypothesis: Definition, Types, Examples and Quick Tips

    A research hypothesis is an assumption or a tentative explanation for a specific process observed during research. Unlike a guess, research hypothesis is a calculated, educated guess proven or disproven through research methods.

  8. What is a Directional Hypothesis? (Definition & Examples)

    A directional hypothesis is a type of hypothesis that predicts the direction of the relationship between two variables. It states that there will be a specific and expected change in one variable based on the change in the other variable. This type of hypothesis is often used in experiments and research studies to make a clear prediction and ...

  9. Research Hypotheses: Directional vs. Non-Directional Hypotheses

    This article compares directional and non-directional hypotheses and provides guidelines for writing an effective hypothesis in research. The study explores the differences in predictions and research design implications between the two hypotheses.

  10. Research Hypothesis In Psychology: Types, & Examples

    A research supposition, in its plural form "hypotheses," is a specific, testable prediction over the anticipated results of a study, established at its outset. The research hypothesis is often referred to as the alternatives theory.

  11. 11 Examples of Directional Hypothesis

    A directional hypothesis is a precise, educated guess at the direction of an outcome, such as a declared difference in variable sets or an increase or decline.

  12. Directional & Non-Directional Hypothesis

    The purpose of a hypothetical statement is to work like a prediction based on studied research and to provide some estimated results before it ha happens in a real position. There can be more than one hypothesis statement involved in a research study, where you need to question and explore different aspects of a proposed research topic. Before putting your research into directional vs non ...

  13. Directional Hypothesis Statement

    Directional Hypothesis Statement Grasping the intricacies of a directional hypothesis is a stepping stone in advanced research. It offers a clear perspective, pointing towards a specific prediction. From meticulously crafted examples to a thesis statement writing guide, and invaluable tips - this segment shines a light on the essence of formulating a precise and informed directional ...

  14. 15 Hypothesis Examples (2024)

    15 Hypothesis Examples. A hypothesis is defined as a testable prediction, and is used primarily in scientific experiments as a potential or predicted outcome that scientists attempt to prove or disprove (Atkinson et al., 2021; Tan, 2022). In my types of hypothesis article, I outlined 13 different hypotheses, including the directional hypothesis ...

  15. How To Write A Directional Hypothesis

    Directional hypotheses are often used in experimental research, where the researcher is able to manipulate the independent variable and measure the effect on the dependent variable. For example, a researcher might hypothesize that students who receive tutoring will score higher on math tests than students who do not receive tutoring.

  16. Descriptive and Inferential Statistics Flashcards

    We can predict one variable's influence on another through the use of regression. __________ is an example of a directional research hypothesis.

  17. Non Directional Hypothesis

    Non-Directional Hypothesis Statement Examples in Research These research hypothesis examples focus on research studies in general, covering a wide range of topics and relationships. For instance, the second example suggests that employee training might be related to workplace productivity, without indicating whether the training would lead to higher or lower productivity.

  18. Two Tailed Hypothesis

    Two Tailed Hypothesis Statement Examples The two-tailed hypothesis, an essential tool in research, doesn't predict a specific directional outcome between variables. Instead, it posits that an effect exists, without specifying its nature. This approach offers flexibility, as it remains open to both positive and negative outcomes.

  19. Solved: Two

    In a sample consisting of 200 of the graduates from last year's class, 6 6% have entered jobs related to their field of study. i) Formulate the Null and Alternative Hypotheses The director's statement is non-directional and leads to null and alternative hypothese s of mu _0=II=0.70 the proportion of graduates entering jobs in their field is 0.70.

  20. The statement "More high school boys than girls will ...

    VIDEO ANSWER: We can understand the parameters of the coupon rate is 9 % per annum paid semi -annually maturity in 20 years caliber in five years and a price to call of 1050. The yield to maturity is going to be 8 % per annum and the yield to call is

  21. Hypothesis #1: Adopted children who are given the option to ...

    The sample of n is equal to 80 observations and the one left sample is 55 percent. The null hypothesis becomes H0 if p equals to 0.50 against the argumentive hypothesis H1 Here the significance level of alpha is. ... Research hypothesis: A new mother's stress will go down when she uses her infant's nap time to engage in deep breathing and light

  22. Genetic causal association between lipidomic profiles, inflammatory

    Lipids genetically associated with AS. Our comprehensive analysis begins with identifying [] genetic IVs for a broad spectrum of 179 lipids to investigate their potential causal relationships []with AS through MR.Adhering to the MR hypothesis criteria, we successfully pinpoint IVs for 162 lipid species, with F-statistic values indicating strong instrumental validity, ranging between 29.79 and ...

  23. Non directional hypothesis #shorts #ytshorts

    A non-directional hypothesis is a type of research hypothesis that doesn't specify the direction of the relationship or difference between two variables. For...