• Skip to secondary menu
  • Skip to main content
  • Skip to primary sidebar

Statistics By Jim

Making statistics intuitive

Control Group in an Experiment

By Jim Frost 3 Comments

A control group in an experiment does not receive the treatment. Instead, it serves as a comparison group for the treatments. Researchers compare the results of a treatment group to the control group to determine the effect size, also known as the treatment effect.

Scientist performing an experiment that has a control group.

Imagine that a treatment group receives a vaccine and it has an infection rate of 10%. By itself, you don’t know if that’s an improvement. However, if you also have an unvaccinated control group with an infection rate of 20%, you know the vaccine improved the outcome by 10 percentage points.

By serving as a basis for comparison, the control group reveals the treatment’s effect.

Related post : Effect Sizes in Statistics

Using Control Groups in Experiments

Most experiments include a control group and at least one treatment group. In an ideal experiment, the subjects in all groups start with the same overall characteristics except that those in the treatment groups receive a treatment. When the groups are otherwise equivalent before treatment begins, you can attribute differences after the experiment to the treatments.

Randomized controlled trials (RCTs) assign subjects to the treatment and control groups randomly. This process helps ensure the groups are comparable when treatment begins. Consequently, treatment effects are the most likely cause for differences between groups at the end of the study. Statisticians consider RCTs to be the gold standard. To learn more about this process, read my post, Random Assignment in Experiments .

Observational studies either can’t use randomized groups or don’t use them because they’re too costly or problematic. In these studies, the characteristics of the control group might be different from the treatment groups at the start of the study, making it difficult to estimate the treatment effect accurately at the end. Case-Control studies are a specific type of observational study that uses a control group.

For these types of studies, analytical methods and design choices, such as regression analysis and matching, can help statistically mitigate confounding variables. Matching involves selecting participants with similar characteristics. For each participant in the treatment group, the researchers find a subject with comparable traits to include in the control group. To learn more about this type of study and matching, read my post, Observational Studies Explained .

Control groups are key way to increase the internal validity of an experiment. To learn more, read my post about internal and external validity .

Randomized versus non-randomized control groups are just several of the different types you can have. We’ll look at more kinds later!

Related posts : When to Use Regression Analysis

Example of a Control Group

Suppose we want to determine whether regular vitamin consumption affects the risk of dying. Our experiment has the following two experimental groups:

  • Control group : Does not consume vitamin supplements
  • Treatment group : Regularly consumes vitamin supplements.

In this experiment, we randomly assign subjects to the two groups. Because we use random assignment, the two groups start with similar characteristics, including healthy habits, physical attributes, medical conditions, and other factors affecting the outcome. The intentional introduction of vitamin supplements in the treatment group is the only systematic difference between the groups.

After the experiment is complete, we compare the death risk between the treatment and control groups. Because the groups started roughly equal, we can reasonably attribute differences in death risk at the end of the study to vitamin consumption. By having the control group as the basis of comparison, the effect of vitamin consumption becomes clear!

Types of Control Groups

Researchers can use different types of control groups in their experiments. Earlier, you learned about the random versus non-random kinds, but there are other variations. You can use various types depending on your research goals, constraints, and ethical issues, among other things.

Negative Control Group

The group introduces a condition that the researchers expect won’t have an effect. This group typically receives no treatment. These experiments compare the effectiveness of the experimental treatment to no treatment. For example, in a vaccine study, a negative control group does not get the vaccine.

Positive Control Group

Positive control groups typically receive a standard treatment that science has already proven effective. These groups serve as a benchmark for the performance of a conventional treatment. In this vein, experiments with positive control groups compare the effectiveness of a new treatment to a standard one.

For example, an old blood pressure medicine can be the treatment in a positive control group, while the treatment group receives the new, experimental blood pressure medicine. The researchers want to determine whether the new treatment is better than the previous treatment.

In these studies, subjects can still take the standard medication for their condition, a potentially critical ethics issue.

Placebo Control Group

Placebo control groups introduce a treatment lookalike that will not affect the outcome. Standard examples of placebos are sugar pills and saline solution injections instead of genuine medicine. The key is that the placebo looks like the actual treatment. Researchers use this approach when the recipients’ belief that they’re receiving the treatment might influence their outcomes. By using placebos, the experiment controls for these psychological benefits. The researchers want to determine whether the treatment performs better than the placebo effect.

Learn more about the Placebo Effect .

Blinded Control Groups

If the subject’s awareness of their group assignment might affect their outcomes, the researchers can use a blinded experimental design that does not tell participants their group membership. Typically, blinded control groups will receive placebos, as described above. In a double-blinded control group, both subjects and researchers don’t know group assignments.

Waitlist Control Group

When there is a waitlist to receive a new treatment, those on the waitlist can serve as a control group until they receive treatment. This type of design avoids ethical concerns about withholding a better treatment until the study finishes. This design can be a variation of a positive control group because the subjects might be using conventional medicines while on the waitlist.

Historical Control Group

When historical data for a comparison group exists, it can serve as a control group for an experiment. The group doesn’t exist in the study, but the researchers compare the treatment group to the existing data. For example, the researchers might have infection rate data for unvaccinated individuals to compare to the infection rate among the vaccinated participants in their study. This approach allows everyone in the experiment to receive the new treatment. However, differences in place, time, and other circumstances can reduce the value of these comparisons. In other words, other factors might account for the apparent effects.

Share this:

control group role in experiment

Reader Interactions

' src=

December 19, 2021 at 9:17 am

Thank you very much Jim for your quick and comprehensive feedback. Extremely helpful!! Regards, Arthur

' src=

December 17, 2021 at 4:46 pm

Thank you very much Jim, very interesting article.

Can I select a control group at the end of intervention/experiment? Currently I am managing a project in rural Cambodia in five villages, however I did not select any comparison/control site at the beginning. Since I know there are other villages which have not been exposed to any type of intervention, can i select them as a control site during my end-line data collection or it will not be a legitimate control? Thank you very much, Arthur

' src=

December 18, 2021 at 1:51 am

You might be able to use that approach, but it’s not ideal. The ideal is to have control groups defined at the beginning of the study. You can use the untreated villages as a type of historical control groups that I talk about in this article. Or, if they’re awaiting to receive the intervention, it might be akin to a waitlist control group.

If you go that route, you’ll need to consider whether there was some systematic reason why these villages have not received any intervention. For example, are the villages in question more remote? And, if there is a systematic reason, would that affect your outcome variable? More generally, are they systematically different? How well do the untreated villages represent your target population?

If you had selected control villages at the beginning, you’d have been better able to ensure there weren’t any systematic differences between the villages receiving interventions and those that didn’t.

If the villages that didn’t receive any interventions are systematically different, you’ll need to incorporate that into your interpretation of the results. Are they different in ways that affect the outcomes you’re measuring? Can those differences account for the difference in outcomes between the treated and untreated villages? Hopefully, you’d be able to measure those differences between untreated/treated villages.

So, yes, you can use that approach. It’s not perfect and there will potentially be more things for you to consider and factor into your conclusions. Despite these drawbacks, it’s possible that using a pseudo control group like that is better than not doing that because at least you can make comparisons to something. Otherwise, you won’t know whether the outcomes in the intervention villages represent an improvement! Just be aware of the extra considerations!

Best of luck with your research!

Comments and Questions Cancel reply

Back Home

  • Science Notes Posts
  • Contact Science Notes
  • Todd Helmenstine Biography
  • Anne Helmenstine Biography
  • Free Printable Periodic Tables (PDF and PNG)
  • Periodic Table Wallpapers
  • Interactive Periodic Table
  • Periodic Table Posters
  • Science Experiments for Kids
  • How to Grow Crystals
  • Chemistry Projects
  • Fire and Flames Projects
  • Holiday Science
  • Chemistry Problems With Answers
  • Physics Problems
  • Unit Conversion Example Problems
  • Chemistry Worksheets
  • Biology Worksheets
  • Periodic Table Worksheets
  • Physical Science Worksheets
  • Science Lab Worksheets
  • My Amazon Books

Control Group Definition and Examples

Control Group in an Experiment

The control group is the set of subjects that does not receive the treatment in a study. In other words, it is the group where the independent variable is held constant. This is important because the control group is a baseline for measuring the effects of a treatment in an experiment or study. A controlled experiment is one which includes one or more control groups.

  • The experimental group experiences a treatment or change in the independent variable. In contrast, the independent variable is constant in the control group.
  • A control group is important because it allows meaningful comparison. The researcher compares the experimental group to it to assess whether or not there is a relationship between the independent and dependent variable and the magnitude of the effect.
  • There are different types of control groups. A controlled experiment has one more control group.

Control Group vs Experimental Group

The only difference between the control group and experimental group is that subjects in the experimental group receive the treatment being studied, while participants in the control group do not. Otherwise, all other variables between the two groups are the same.

Control Group vs Control Variable

A control group is not the same thing as a control variable. A control variable or controlled variable is any factor that is held constant during an experiment. Examples of common control variables include temperature, duration, and sample size. The control variables are the same for both the control and experimental groups.

Types of Control Groups

There are different types of control groups:

  • Placebo group : A placebo group receives a placebo , which is a fake treatment that resembles the treatment in every respect except for the active ingredient. Both the placebo and treatment may contain inactive ingredients that produce side effects. Without a placebo group, these effects might be attributed to the treatment.
  • Positive control group : A positive control group has conditions that guarantee a positive test result. The positive control group demonstrates an experiment is capable of producing a positive result. Positive controls help researchers identify problems with an experiment.
  • Negative control group : A negative control group consists of subjects that are not exposed to a treatment. For example, in an experiment looking at the effect of fertilizer on plant growth, the negative control group receives no fertilizer.
  • Natural control group : A natural control group usually is a set of subjects who naturally differ from the experimental group. For example, if you compare the effects of a treatment on women who have had children, the natural control group includes women who have not had children. Non-smokers are a natural control group in comparison to smokers.
  • Randomized control group : The subjects in a randomized control group are randomly selected from a larger pool of subjects. Often, subjects are randomly assigned to either the control or experimental group. Randomization reduces bias in an experiment. There are different methods of randomly assigning test subjects.

Control Group Examples

Here are some examples of different control groups in action:

Negative Control and Placebo Group

For example, consider a study of a new cancer drug. The experimental group receives the drug. The placebo group receives a placebo, which contains the same ingredients as the drug formulation, minus the active ingredient. The negative control group receives no treatment. The reason for including the negative group is because the placebo group experiences some level of placebo effect, which is a response to experiencing some form of false treatment.

Positive and Negative Controls

For example, consider an experiment looking at whether a new drug kills bacteria. The experimental group exposes bacterial cultures to the drug. If the group survives, the drug is ineffective. If the group dies, the drug is effective.

The positive control group has a culture of bacteria that carry a drug resistance gene. If the bacteria survive drug exposure (as intended), then it shows the growth medium and conditions allow bacterial growth. If the positive control group dies, it indicates a problem with the experimental conditions. A negative control group of bacteria lacking drug resistance should die. If the negative control group survives, something is wrong with the experimental conditions.

  • Bailey, R. A. (2008).  Design of Comparative Experiments . Cambridge University Press. ISBN 978-0-521-68357-9.
  • Chaplin, S. (2006). “The placebo response: an important part of treatment”.  Prescriber . 17 (5): 16–22. doi: 10.1002/psb.344
  • Hinkelmann, Klaus; Kempthorne, Oscar (2008).  Design and Analysis of Experiments, Volume I: Introduction to Experimental Design  (2nd ed.). Wiley. ISBN 978-0-471-72756-9.
  • Pithon, M.M. (2013). “Importance of the control group in scientific research.” Dental Press J Orthod . 18 (6):13-14. doi: 10.1590/s2176-94512013000600003
  • Stigler, Stephen M. (1992). “A Historical View of Statistical Concepts in Psychology and Educational Research”. American Journal of Education . 101 (1): 60–70. doi: 10.1086/444032

Related Posts

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Sweepstakes
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

What Is a Control Group?

Control Groups vs. Experimental Groups in Psychology Research

Doug Corrance/The Image Bank/Getty Images

Control Group vs. Experimental Group

Types of control groups.

In simple terms, the control group comprises participants who do not receive the experimental treatment. When conducting an experiment, these people are randomly assigned to this group. They also closely resemble the participants who are in the experimental group or the individuals who receive the treatment.

Experimenters utilize variables to make comparisons between an experimental group and a control group. A variable is something that researchers can manipulate, measure, and control in an experiment. The independent variable is the aspect of the experiment that the researchers manipulate (or the treatment). The dependent variable is what the researchers measure to see if the independent variable had an effect.

While they do not receive the treatment, the control group does play a vital role in the research process. Experimenters compare the experimental group to the control group to determine if the treatment had an effect.

By serving as a comparison group, researchers can isolate the independent variable and look at the impact it had.

The simplest way to determine the difference between a control group and an experimental group is to determine which group receives the treatment and which does not. To ensure that the results can then be compared accurately, the two groups should be otherwise identical.

Not exposed to the treatment (the independent variable)

Used to provide a baseline to compare results against

May receive a placebo treatment

Exposed to the treatment

Used to measure the effects of the independent variable

Identical to the control group aside from their exposure to the treatment

Why a Control Group Is Important

While the control group does not receive treatment, it does play a critical role in the experimental process. This group serves as a benchmark, allowing researchers to compare the experimental group to the control group to see what sort of impact changes to the independent variable produced.  

Because participants have been randomly assigned to either the control group or the experimental group, it can be assumed that the groups are comparable.

Any differences between the two groups are, therefore, the result of the manipulations of the independent variable. The experimenters carry out the exact same procedures with both groups with the exception of the manipulation of the independent variable in the experimental group.

There are a number of different types of control groups that might be utilized in psychology research. Some of these include:

  • Positive control groups : In this case, researchers already know that a treatment is effective but want to learn more about the impact of variations of the treatment. In this case, the control group receives the treatment that is known to work, while the experimental group receives the variation so that researchers can learn more about how it performs and compares to the control.
  • Negative control group : In this type of control group, the participants are not given a treatment. The experimental group can then be compared to the group that did not experience any change or results.
  • Placebo control group : This type of control group receives a placebo treatment that they believe will have an effect. This control group allows researchers to examine the impact of the placebo effect and how the experimental treatment compared to the placebo treatment.
  • Randomized control group : This type of control group involves using random selection to help ensure that the participants in the control group accurately reflect the demographics of the larger population.
  • Natural control group : This type of control group is naturally selected, often by situational factors. For example, researchers might compare people who have experienced trauma due to war to people who have not experienced war. The people who have not experienced war-related trauma would be the control group.

Examples of Control Groups

Control groups can be used in a variety of situations. For example, imagine a study in which researchers example how distractions during an exam influence test results. The control group would take an exam in a setting with no distractions, while the experimental groups would be exposed to different distractions. The results of the exam would then be compared to see the effects that distractions had on test scores.

Experiments that look at the effects of medications on certain conditions are also examples of how a control group can be used in research. For example, researchers looking at the effectiveness of a new antidepressant might use a control group that receives a placebo and an experimental group that receives the new medication. At the end of the study, researchers would compare measures of depression for both groups to determine what impact the new medication had.

After the experiment is complete, researchers can then look at the test results and start making comparisons between the control group and the experimental group.

Uses for Control Groups

Researchers utilize control groups to conduct research in a range of different fields. Some common uses include:

  • Psychology : Researchers utilize control groups to learn more about mental health, behaviors, and treatments.
  • Medicine : Control groups can be used to learn more about certain health conditions, assess how well medications work to treat these conditions, and assess potential side effects that may result.
  • Education : Educational researchers utilize control groups to learn more about how different curriculums, programs, or instructional methods impact student outcomes.
  • Marketing : Researchers utilize control groups to learn more about how consumers respond to advertising and marketing efforts.

Malay S, Chung KC. The choice of controls for providing validity and evidence in clinical research . Plast Reconstr Surg. 2012 Oct;130(4):959-965. doi:10.1097/PRS.0b013e318262f4c8

National Cancer Institute. Control group.

Pithon MM. Importance of the control group in scientific research . Dental Press J Orthod. 2013;18(6):13-14. doi:10.1590/s2176-94512013000600003

Karlsson P, Bergmark A. Compared with what? An analysis of control-group types in Cochrane and Campbell reviews of psychosocial treatment efficacy with substance use disorders . Addiction . 2015;110(3):420-8. doi:10.1111/add.12799

Myers A, Hansen C. Experimental Psychology . Belmont, CA: Cengage Learning; 2012.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

control group role in experiment

Understanding Control Groups for Research

control group role in experiment

Introduction

What are control groups in research, examples of control groups in research, control group vs. experimental group, types of control groups, control groups in non-experimental research.

A control group is typically thought of as the baseline in an experiment. In an experiment, clinical trial, or other sort of controlled study, there are at least two groups whose results are compared against each other.

The experimental group receives some sort of treatment, and their results are compared against those of the control group, which is not given the treatment. This is important to determine whether there is an identifiable causal relationship between the treatment and the resulting effects.

As intuitive as this may sound, there is an entire methodology that is useful to understanding the role of the control group in experimental research and as part of a broader concept in research. This article will examine the particulars of that methodology so you can design your research more rigorously .

control group role in experiment

Suppose that a friend or colleague of yours has a headache. You give them some over-the-counter medicine to relieve some of the pain. Shortly after they take the medicine, the pain is gone and they feel better. In casual settings, we can assume that it must be the medicine that was the cause of their headache going away.

In scientific research, however, we don't really know if the medicine made a difference or if the headache would have gone away on its own. Maybe in the time it took for the headache to go away, they ate or drank something that might have had an effect. Perhaps they had a quick nap that helped relieve the tension from the headache. Without rigorously exploring this phenomenon , any number of confounding factors exist that can make us question the actual efficacy of any particular treatment.

Experimental research relies on observing differences between the two groups by "controlling" the independent variable , or in the case of our example above, the medicine that is given or not given depending on the group. The dependent variable in this case is the change in how the person suffering the headache feels, and the difference between taking and not taking the medicine is evidence (or lack thereof) that the treatment is effective.

The catch is that, between the control group and other groups (typically called experimental groups), it's important to ensure that all other factors are the same or at least as similar as possible. Things such as age, fitness level, and even occupation can affect the likelihood someone has a headache and whether a certain medication is effective.

Faced with this dynamic, researchers try to make sure that participants in their control group and experimental group are as similar as possible to each other, with the only difference being the treatment they receive.

Experimental research is often associated with scientists in lab coats holding beakers containing liquids with funny colors. Clinical trials that deal with medical treatments rely primarily, if not exclusively, on experimental research designs involving comparisons between control and experimental groups.

However, many studies in the social sciences also employ some sort of experimental design which calls for the use of control groups. This type of research is useful when researchers are trying to confirm or challenge an existing notion or measure the difference in effects.

Workplace efficiency research

How might a company know if an employee training program is effective? They may decide to pilot the program to a small group of their employees before they implement the training to their entire workforce.

If they adopt an experimental design, they could compare results between an experimental group of workers who participate in the training program against a control group who continues as per usual without any additional training.

control group role in experiment

Qualitative data analysis starts with ATLAS.ti

Turn data into rich insights with our powerful data analysis software. Get started with a free trial.

Mental health research

Music certainly has profound effects on psychology, but what kind of music would be most effective for concentration? Here, a researcher might be interested in having participants in a control group perform a series of tasks in an environment with no background music, and participants in multiple experimental groups perform those same tasks with background music of different genres. The subsequent analysis could determine how well people perform with classical music, jazz music, or no music at all in the background.

Educational research

Suppose that you want to improve reading ability among elementary school students, and there is research on a particular teaching method that is associated with facilitating reading comprehension. How do you measure the effects of that teaching method?

A study could be conducted on two groups of otherwise equally proficient students to measure the difference in test scores. The teacher delivers the same instruction to the control group as they have to previous students, but they teach the experimental group using the new technique. A reading test after a certain amount of instruction could determine the extent of effectiveness of the new teaching method.

control group role in experiment

As you can see from the three examples above, experimental groups are the counterbalance to control groups. A control group offers an essential point of comparison. For an experimental study to be considered credible, it must establish a baseline against which novel research is conducted.

Researchers can determine the makeup of their experimental and control groups from their literature review . Remember that the objective of a review is to establish what is known about the object of inquiry and what is not known. Where experimental groups explore the unknown aspects of scientific knowledge, a control group is a sort of simulation of what would happen if the treatment or intervention was not administered. As a result, it will benefit researchers to have a foundational knowledge of the existing research to create a credible control group against which experimental results are compared, especially in terms of remaining sensitive to relevant participant characteristics that could confound the effects of your treatment or intervention so that you can appropriately distribute participants between the experimental and control groups.

There are multiple control groups to consider depending on the study you are looking to conduct. All of them are variations of the basic control group used to establish a baseline for experimental conditions.

No-treatment control group

This kind of control group is common when trying to establish the effects of an experimental treatment against the absence of treatment. This is arguably the most straightforward approach to an experimental design as it aims to directly demonstrate how a certain change in conditions produces an effect.

Placebo control group

In this case, the control group receives some sort of treatment under the exact same procedures as those in the experimental group. The only difference in this case is that the treatment in the placebo control group has already been judged to be ineffective, except that the research participants don't know that it is ineffective.

Placebo control groups (or negative control groups) are useful for allowing researchers to account for any psychological or affective factors that might impact the outcomes. The negative control group exists to explicitly eliminate factors other than changes in the independent variable conditions as causes of the effects experienced in the experimental group.

Positive control group

Contrasted with a no-treatment control group, a positive control group employs a treatment against which the treatment in the experimental group is compared. However, unlike in a placebo group, participants in a positive control group receive treatment that is known to have an effect.

If we were to use our first example of headache medicine, a researcher could compare results between medication that is commonly known as effective against the newer medication that the researcher thinks is more effective. Positive control groups are useful for validating experimental results when compared against familiar results.

Historical control group

Rather than study participants in control group conditions, researchers may employ existing data to create historical control groups. This form of control group is useful for examining changing conditions over time, particularly when incorporating past conditions that can't be replicated in the analysis.

Qualitative research more often relies on non-experimental research such as observations and interviews to examine phenomena in their natural environments. This sort of research is more suited for inductive and exploratory inquiries, not confirmatory studies meant to test or measure a phenomenon.

That said, the broader concept of a control group is still present in observational and interview research in the form of a comparison group. Comparison groups are used in qualitative research designs to show differences between phenomena, with the exception being that there is no baseline against which data is analyzed.

Comparison groups are useful when an experimental environment cannot produce results that would be applicable to real-world conditions. Research inquiries examining the social world face challenges of having too many variables to control, making observations and interviews across comparable groups more appropriate for data collection than clinical or sterile environments.

control group role in experiment

Analyze data and generate rich results with ATLAS.ti

Try out a free trial of ATLAS.ti to see how you can make the most of your qualitative data.

control group role in experiment

Control Group: The Key Elements In Experimental Research

Understand the design and interpretation of control group in research experiments for powerful conclusions

' src=

The control group constitutes a baseline for comparison, enabling researchers to assess the true effects of independent variables . Researchers can effectively assess the impact of independent variables and discern causation from correlation, by comparing the results of experimental groups to those of control groups. This article will highlight the significance and implementation of control groups in research experiments, and explain their role in ensuring scientific methodology and reliable findings. We will explore the fundamental principles of control groups, examine their types , and discuss their importance in minimizing biases and confounding factors.

What Is A Control Group?

A control group is a fundamental component of scientific experiments designed to compare and evaluate the effects of an intervention or treatment. It serves as a baseline against which the experimental group is measured. The control group consists of individuals or subjects who do not receive the experimental treatment but are otherwise subjected to the same conditions and procedures as the experimental group. Working with a control group, researchers can assess the specific impact of the intervention by comparing the outcomes between the experimental and control groups.

Related article: The Role Of Experimental Groups In Research

The Role Of A Control Group In Scientific Experiments

A control group plays a crucial role in scientific experiments as it enables researchers to establish a valid cause-and-effect relationship between the experimental treatment and the observed outcomes. By comparing the experimental group’s results with those of the control group, researchers can determine whether any observed effects are due to the treatment or other factors. The control group serves as a standard for comparison, helping to isolate the specific influence of the intervention being tested. It provides a baseline against which experimental group outcomes can be evaluated and allows researchers to draw accurate conclusions about the treatment’s efficacy or the impact of other variables being studied.

Why Is A Control Group Necessary?

Including a control group in scientific experiments is essential for ensuring the reliability and validity of the findings. Without a control group, it becomes challenging to determine whether any observed changes or effects are truly attributable to the intervention or simply a result of chance or other factors. The control group allows researchers to differentiate between the effects of the experimental treatment and background noise or confounding variables because it provides a reference point. A well-designed control group is crucial for generating reliable and meaningful results, intensifying the scientific rigor of the study, and supporting evidence-based decision-making in various fields of research.

Types Of Control Groups

In scientific experiments, different types of control groups are used to ensure accurate and meaningful results. These control groups help researchers compare the effects of an intervention or treatment against a reference point. Four common types of control groups are negative controls, positive controls, placebo controls, and randomized control groups.

Negative Controls

Negative controls are an integral part of scientific experiments, serving as a reference to establish the absence of a specific effect. In these control groups, no treatment is administered, allowing researchers to compare the outcomes with the experimental group. Researchers can identify and account for confounding variables and background effects that may influence the results when they include negative control groups. This ensures the specificity of the treatment and enhances the validity of the study. Negative controls can take various forms, such as placebos or control groups receiving no treatment, depending on the research question.

Positive controls

Positive controls are references to validate the reliability and sensitivity of the experimental setup. In these control groups, a known treatment or condition is applied to generate an expected response or outcome. By including positive controls, researchers can assess whether the experimental conditions and methodology are capable of detecting the desired effect. Positive controls act as a benchmark, providing evidence that the experimental system is functioning properly and capable of producing the anticipated results. This helps researchers ensure the validity and accuracy of their findings by confirming that the experimental conditions are conducive to detecting the intended response.

Placebo controls

Placebo controls play a significant role in medical and clinical research by providing a baseline for comparison and evaluating the effectiveness of a new treatment or intervention. In a placebo control group, participants receive an inactive substance or sham procedure that is indistinguishable from the active treatment being tested. The purpose of the placebo control is to assess the specific effects of the treatment by comparing it to the effects observed in the placebo group. By administering a placebo, researchers can account for the psychological and physiological responses that may occur simply due to the participants’ belief in receiving treatment. This helps determine the true efficacy of the active treatment, as any observed improvements in the treatment group can be attributed to the treatment itself, beyond the placebo effect. Placebo controls are essential in clinical trials and other studies to minimize bias, establish the true therapeutic benefits of treatment, and ensure the reliability of the results.

Randomized Control Group

Randomized control groups are an essential component of research studies as they introduce unpredictability to control factors. By randomly assigning participants to either the control or treatment group, researchers ensure that the variables not specifically tested are evenly distributed. This randomization helps eliminate bias and allows for accurate analysis of the independent variable. By using randomized control groups, researchers can draw reliable conclusions about the impact of the variables being studied. 

Quasi-Experimental Designs And Their Role In Social Policy Studies

Quasi-experimental designs in social policy studies often utilize control groups to assess the impact of interventions or policies on a target population. While these designs do not involve random assignment of participants to groups, they still incorporate a control group to establish a baseline for comparison. The control group consists of individuals who do not receive the intervention or policy being studied, allowing researchers to evaluate the effects of the intervention by comparing outcomes between the treatment group and the control group. This helps control for confounding variables and provides insights into a causal relationship between the intervention and the observed outcomes. 

Implementing Control Groups In Experimental Design And Analysis

Control groups serve as a reference point against which the effects of experimental interventions can be measured. They provide a baseline to compare with the treatment group, allowing researchers to determine the true impact of the variables under investigation. This approach helps establish causal relationships and increases the internal validity of the research. 

Randomized Controlled Experiments (RCTs) For Public Policy Studies

Randomized controlled experiments are widely used in public policy studies. RCTs involve randomly assigning participants to either a treatment group or a control group. The treatment group receives the intervention or policy being tested, while the control group does not. RCTs help ensure that any observed differences between the groups are not due to pre-existing factors, increasing the reliability of the study’s findings. RCTs are particularly valuable in evaluating the impact of public policies and interventions on a large scale.

Non-Experimental Research Vs. Actual Experimentation

When determining the baseline for comparison in research, researchers must consider whether to use non-experimental research or actual experimentation. Non-experimental research involves observing and analyzing existing data without manipulating any variables. This approach is helpful in situations where it is not feasible or ethical to conduct an experiment. On the other hand, actual experimentation involves actively manipulating variables and comparing groups with and without the intervention. While actual experimentation provides stronger causal evidence, non-experimental research can still provide valuable insights when experiments are not possible.

Identifying Confounding Variables And Factors

Confounding variables and factors are extraneous variables that can influence the relationship between the independent and dependent variables in a study. Identifying and controlling for confounding variables is crucial to ensure accurate and valid results. Researchers employ various techniques to address confounding variables, such as random assignment of participants to groups, matching participants based on relevant characteristics, or statistical techniques like regression analysis. By accounting for confounding variables, researchers can strengthen the internal validity of their studies and draw more accurate conclusions about the relationship between variables.

The Vital Role Of The Control Group In Scientific Methodology And Analysis

In experimental studies, the control group serves as a standard against which the effects of a particular intervention or treatment are measured. By keeping all variables constant except for the one being studied, researchers can isolate the true impact of the intervention. This helps to establish causality and determine whether the observed effects are indeed due to the intervention or simply a result of other factors.

In addition to experimental studies, control groups are also essential in observational and epidemiological research. They help researchers account for potential biases and confounding factors when analyzing the relationship between variables. By comparing a group exposed to a certain risk factor or condition with a similar group that is not exposed, researchers can better understand the true impact of the risk factor or condition on the outcome of interest.

Overall, the control group serves as a guide in scientific methodology and analysis. It allows researchers to draw valid and reliable conclusions, enhance the internal validity of their studies, and provide more robust evidence for decision-making in various fields, including medicine, psychology, biology, and social sciences.

Mind the Graph Has 200+ Pre-Made Beautiful Templates For Professional Infographics

Mind the Graph is a powerful platform that offers valuable assistance to scientists in their research endeavors. With a collection of over 200 pre-made templates, Mind the Graph enables scientists to effortlessly create professional and visually captivating infographics. These templates are the foundation for conveying complex scientific concepts, data, and research findings in a visually engaging manner. Professionals can simply choose from a wide range of visually appealing templates and customize them with their own data, illustrations, and text to effectively communicate their scientific discoveries. Sign up for free and start your first design now.

Related Articles

experimental group

Subscribe to our newsletter

Exclusive high quality content about effective visual communication in science.

Sign Up for Free

Try the best infographic maker and promote your research with scientifically-accurate beautiful figures

no credit card required

Content tags

en_US

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • Control Groups and Treatment Groups | Uses & Examples

Control Groups & Treatment Groups | Uses & Examples

Published on 6 May 2022 by Lauren Thomas . Revised on 13 April 2023.

In a scientific study, a control group is used to establish a cause-and-effect relationship by isolating the effect of an independent variable .

Researchers change the independent variable in the treatment group and keep it constant in the control group. Then they compare the results of these groups.

Control groups in research

Using a control group means that any change in the dependent variable can be attributed to the independent variable.

Table of contents

Control groups in experiments, control groups in non-experimental research, importance of control groups, frequently asked questions about control groups.

Control groups are essential to experimental design . When researchers are interested in the impact of a new treatment, they randomly divide their study participants into at least two groups:

  • The treatment group (also called the experimental group ) receives the treatment whose effect the researcher is interested in.
  • The control group receives either no treatment, a standard treatment whose effect is already known, or a placebo (a fake treatment).

The treatment is any independent variable manipulated by the experimenters, and its exact form depends on the type of research being performed. In a medical trial, it might be a new drug or therapy. In public policy studies, it could be a new social policy that some receive and not others.

In a well-designed experiment, all variables apart from the treatment should be kept constant between the two groups. This means researchers can correctly measure the entire effect of the treatment without interference from confounding variables .

  • You pay the students in the treatment group for achieving high grades.
  • Students in the control group do not receive any money.

Studies can also include more than one treatment or control group. Researchers might want to examine the impact of multiple treatments at once, or compare a new treatment to several alternatives currently available.

  • The treatment group gets the new pill.
  • Control group 1 gets an identical-looking sugar pill (a placebo).
  • Control group 2 gets a pill already approved to treat high blood pressure.

Since the only variable that differs between the three groups is the type of pill, any differences in average blood pressure between the three groups can be credited to the type of pill they received.

  • The difference between the treatment group and control group 1 demonstrates the effectiveness of the pill as compared to no treatment.
  • The difference between the treatment group and control group 2 shows whether the new pill improves on treatments already available on the market.

Prevent plagiarism, run a free check.

Although control groups are more common in experimental research, they can be used in other types of research too. Researchers generally rely on non-experimental control groups in two cases: quasi-experimental or matching design.

Control groups in quasi-experimental design

While true experiments rely on random assignment to the treatment or control groups, quasi-experimental design uses some criterion other than randomisation to assign people.

Often, these assignments are not controlled by researchers, but are pre-existing groups that have received different treatments. For example, researchers could study the effects of a new teaching method that was applied in some classes in a school but not others, or study the impact of a new policy that is implemented in one region but not in the neighbouring region.

In these cases, the classes that did not use the new teaching method, or the region that did not implement the new policy, is the control group.

Control groups in matching design

In correlational research , matching represents a potential alternate option when you cannot use either true or quasi-experimental designs.

In matching designs, the researcher matches individuals who received the ‘treatment’, or independent variable under study, to others who did not – the control group.

Each member of the treatment group thus has a counterpart in the control group identical in every way possible outside of the treatment. This ensures that the treatment is the only source of potential differences in outcomes between the two groups.

Control groups help ensure the internal validity of your research. You might see a difference over time in your dependent variable in your treatment group. However, without a control group, it is difficult to know whether the change has arisen from the treatment. It is possible that the change is due to some other variables.

If you use a control group that is identical in every other way to the treatment group, you know that the treatment – the only difference between the two groups – must be what has caused the change.

For example, people often recover from illnesses or injuries over time regardless of whether they’ve received effective treatment or not. Thus, without a control group, it’s difficult to determine whether improvements in medical conditions come from a treatment or just the natural progression of time.

Risks from invalid control groups

If your control group differs from the treatment group in ways that you haven’t accounted for, your results may reflect the interference of confounding variables instead of your independent variable.

Minimising this risk

A few methods can aid you in minimising the risk from invalid control groups.

  • Ensure that all potential confounding variables are accounted for , preferably through an experimental design if possible, since it is difficult to control for all the possible confounders outside of an experimental environment.
  • Use double-blinding . This will prevent the members of each group from modifying their behavior based on whether they were placed in the treatment or control group, which could then lead to biased outcomes.
  • Randomly assign your subjects into control and treatment groups. This method will allow you to not only minimise the differences between the two groups on confounding variables that you can directly observe, but also those you cannot.

An experimental group, also known as a treatment group, receives the treatment whose effect researchers wish to study, whereas a control group does not. They should be identical in all other ways.

A true experiment (aka a controlled experiment) always includes at least one control group that doesn’t receive the experimental treatment.

However, some experiments use a within-subjects design to test treatments without a control group. In these designs, you usually compare one group’s outcomes before and after a treatment (instead of comparing outcomes between different groups).

For strong internal validity , it’s usually best to include a control group if possible. Without a control group, it’s harder to be certain that the outcome was caused by the experimental treatment and not by other variables.

In a controlled experiment , all extraneous variables are held constant so that they can’t influence the results. Controlled experiments require:

  • A control group that receives a standard treatment, a fake treatment, or no treatment
  • Random assignment of participants to ensure the groups are equivalent

Depending on your study topic, there are various other methods of controlling variables .

A confounding variable , also called a confounder or confounding factor, is a third variable in a study examining a potential cause-and-effect relationship.

A confounding variable is related to both the supposed cause and the supposed effect of the study. It can be difficult to separate the true effect of the independent variable from the effect of the confounding variable.

In your research design , it’s important to identify potential confounding variables and plan how you will reduce their impact.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Thomas, L. (2023, April 13). Control Groups & Treatment Groups | Uses & Examples. Scribbr. Retrieved 3 September 2024, from https://www.scribbr.co.uk/research-methods/control-groups/

Is this article helpful?

Lauren Thomas

Lauren Thomas

Other students also liked, controlled experiments | methods & examples of control, a quick guide to experimental design | 5 steps & examples, correlation vs causation | differences, designs & examples.

Encyclopedia Britannica

  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • Games & Quizzes
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center
  • Where was science invented?
  • When did science begin?

Blackboard inscribed with scientific formulas and calculations in physics and mathematics

control group

Our editors will review what you’ve submitted and determine whether to revise the article.

  • Verywell Mind - What Is a Control Group?
  • National Center for Biotechnology Information - PubMed Central - Control Group Design: Enhancing Rigor in Research of Mind-Body Therapies for Depression

control group , the standard to which comparisons are made in an experiment. Many experiments are designed to include a control group and one or more experimental groups; in fact, some scholars reserve the term experiment for study designs that include a control group. Ideally, the control group and the experimental groups are identical in every way except that the experimental groups are subjected to treatments or interventions believed to have an effect on the outcome of interest while the control group is not. Inclusion of a control group greatly strengthens researchers’ ability to draw conclusions from a study. Indeed, only in the presence of a control group can a researcher determine whether a treatment under investigation truly has a significant effect on an experimental group, and the possibility of making an erroneous conclusion is reduced. See also scientific method .

A typical use of a control group is in an experiment in which the effect of a treatment is unknown and comparisons between the control group and the experimental group are used to measure the effect of the treatment. For instance, in a pharmaceutical study to determine the effectiveness of a new drug on the treatment of migraines , the experimental group will be administered the new drug and the control group will be administered a placebo (a drug that is inert, or assumed to have no effect). Each group is then given the same questionnaire and asked to rate the effectiveness of the drug in relieving symptoms . If the new drug is effective, the experimental group is expected to have a significantly better response to it than the control group. Another possible design is to include several experimental groups, each of which is given a different dosage of the new drug, plus one control group. In this design, the analyst will compare results from each of the experimental groups to the control group. This type of experiment allows the researcher to determine not only if the drug is effective but also the effectiveness of different dosages. In the absence of a control group, the researcher’s ability to draw conclusions about the new drug is greatly weakened, due to the placebo effect and other threats to validity. Comparisons between the experimental groups with different dosages can be made without including a control group, but there is no way to know if any of the dosages of the new drug are more or less effective than the placebo.

It is important that every aspect of the experimental environment be as alike as possible for all subjects in the experiment. If conditions are different for the experimental and control groups, it is impossible to know whether differences between groups are actually due to the difference in treatments or to the difference in environment. For example, in the new migraine drug study, it would be a poor study design to administer the questionnaire to the experimental group in a hospital setting while asking the control group to complete it at home. Such a study could lead to a misleading conclusion, because differences in responses between the experimental and control groups could have been due to the effect of the drug or could have been due to the conditions under which the data were collected. For instance, perhaps the experimental group received better instructions or was more motivated by being in the hospital setting to give accurate responses than the control group.

In non-laboratory and nonclinical experiments, such as field experiments in ecology or economics , even well-designed experiments are subject to numerous and complex variables that cannot always be managed across the control group and experimental groups. Randomization, in which individuals or groups of individuals are randomly assigned to the treatment and control groups, is an important tool to eliminate selection bias and can aid in disentangling the effects of the experimental treatment from other confounding factors. Appropriate sample sizes are also important.

A control group study can be managed in two different ways. In a single-blind study, the researcher will know whether a particular subject is in the control group, but the subject will not know. In a double-blind study , neither the subject nor the researcher will know which treatment the subject is receiving. In many cases, a double-blind study is preferable to a single-blind study, since the researcher cannot inadvertently affect the results or their interpretation by treating a control subject differently from an experimental subject.

Control Group vs Experimental Group

Julia Simkus

Editor at Simply Psychology

BA (Hons) Psychology, Princeton University

Julia Simkus is a graduate of Princeton University with a Bachelor of Arts in Psychology. She is currently studying for a Master's Degree in Counseling for Mental Health and Wellness in September 2023. Julia's research has been published in peer reviewed journals.

Learn about our Editorial Process

Saul McLeod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

In a controlled experiment , scientists compare a control group, and an experimental group is identical in all respects except for one difference – experimental manipulation.

Differences

Unlike the experimental group, the control group is not exposed to the independent variable under investigation. So, it provides a baseline against which any changes in the experimental group can be compared.

Since experimental manipulation is the only difference between the experimental and control groups, we can be sure that any differences between the two are due to experimental manipulation rather than chance.

Almost all experimental studies are designed to include a control group and one or more experimental groups. In most cases, participants are randomly assigned to either a control or experimental group.

Because participants are randomly assigned to either group, we can assume that the groups are identical except for manipulating the independent variable in the experimental group.

It is important that every aspect of the experimental environment is the same and that the experimenters carry out the exact same procedures with both groups so researchers can confidently conclude that any differences between groups are actually due to the difference in treatments.

Control Group

A control group consists of participants who do not receive any experimental treatment. The control participants serve as a comparison group.

The control group is matched as closely as possible to the experimental group, including age, gender, social class, ethnicity, etc.

The difference between the control and experimental groups is that the control group is not exposed to the independent variable , which is thought to be the cause of the behavior being investigated.

Researchers will compare the individuals in the control group to those in the experimental group to isolate the independent variable and examine its impact.

The control group is important because it serves as a baseline, enabling researchers to see what impact changes to the independent variable produce and strengthening researchers’ ability to draw conclusions from a study.

Without the presence of a control group, a researcher cannot determine whether a particular treatment truly has an effect on an experimental group.

Control groups are critical to the scientific method as they help ensure the internal validity of a study.

Assume you want to test a new medication for ADHD . One group would receive the new medication, and the other group would receive a pill that looked exactly the same as the one that the others received, but it would be a placebo. The group that takes the placebo would be the control group.

Types of Control Groups

Positive control group.

  • A positive control group is an experimental control that will produce a known response or the desired effect.
  • A positive control is used to ensure a test’s success and confirm an experiment’s validity.
  • For example, when testing for a new medication, an already commercially available medication could serve as the positive control.

Negative Control Group

  • A negative control group is an experimental control that does not result in the desired outcome of the experiment.
  • A negative control is used to ensure that there is no response to the treatment and help identify the influence of external factors on the test.
  • An example of a negative control would be using a placebo when testing for a new medication.

Experimental Group

An experimental group consists of participants exposed to a particular manipulation of the independent variable. These are the participants who receive the treatment of interest.

Researchers will compare the responses of the experimental group to those of a control group to see if the independent variable impacted the participants.

An experiment must have at least one control group and one experimental group; however, a single experiment can include multiple experimental groups, which are all compared against the control group.

Having multiple experimental groups enables researchers to vary different levels of an experimental variable and compare the effects of these changes to the control group and among each other.

Assume you want to study to determine if listening to different types of music can help with focus while studying.

You randomly assign participants to one of three groups: one group that listens to music with lyrics, one group that listens to music without lyrics, and another group that listens to no music.

The group of participants listening to no music while studying is the control group, and the groups listening to music, whether with or without lyrics, are the two experimental groups.

Frequently Asked Questions

1. what is the difference between the control group and the experimental group in an experimental study.

Put simply; an experimental group is a group that receives the variable, or treatment, that the researchers are testing, whereas the control group does not. These two groups should be identical in all other aspects.

2. What is the purpose of a control group in an experiment

A control group is essential in experimental research because it:

Provides a baseline against which the effects of the manipulated variable (the independent variable) can be measured.

Helps to ensure that any changes observed in the experimental group are indeed due to the manipulation of the independent variable and not due to other extraneous or confounding factors.

Helps to account for the placebo effect, where participants’ beliefs about the treatment can influence their behavior or responses.

In essence, it increases the internal validity of the results and the confidence we can have in the conclusions.

3. Do experimental studies always need a control group?

Not all experiments require a control group, but a true “controlled experiment” does require at least one control group. For example, experiments that use a within-subjects design do not have a control group.

In  within-subjects designs , all participants experience every condition and are tested before and after being exposed to treatment.

These experimental designs tend to have weaker internal validity as it is more difficult for a researcher to be confident that the outcome was caused by the experimental treatment and not by a confounding variable.

4. Can a study include more than one control group?

Yes, studies can include multiple control groups. For example, if several distinct groups of subjects do not receive the treatment, these would be the control groups.

5. How is the control group treated differently from the experimental groups?

The control group and the experimental group(s) are treated identically except for one key difference: exposure to the independent variable, which is the factor being tested. The experimental group is subjected to the independent variable, whereas the control group is not.

This distinction allows researchers to measure the effect of the independent variable on the experimental group by comparing it to the control group, which serves as a baseline or standard.

Bailey, R. A. (2008). Design of Comparative Experiments. Cambridge University Press. ISBN 978-0-521-68357-9.

Hinkelmann, Klaus; Kempthorne, Oscar (2008). Design and Analysis of Experiments, Volume I: Introduction to Experimental Design (2nd ed.). Wiley. ISBN 978-0-471-72756-9.

Print Friendly, PDF & Email

Cassandra Logo

The Importance of Control Group Analysis in Scientific Research

Control groups are a fundamental component of scientific research, serving as a benchmark to measure the effects of experimental treatments. By comparing outcomes between the control group and the experimental group, researchers can attribute changes in the dependent variable to the independent variable, thus ensuring the internal validity of the study. Without control groups, it becomes challenging to draw accurate conclusions and determine the true efficacy of a treatment or intervention.

Key Takeaways

  • Control groups are essential for ensuring the internal validity of scientific research.
  • They serve as a baseline to compare the effects of the independent variable on the dependent variable.
  • Control groups help in avoiding research biases and confounding variables.
  • Different types of control groups, such as positive, negative, and placebo, are used depending on the study design.
  • Properly designed control groups enhance the reproducibility and reliability of research findings.

The Role of Control Groups in Ensuring Internal Validity

Control groups are critical to the scientific method as they help ensure the internal validity of a study. Without a control group, it’s harder to be certain that the outcome was caused by the experimental treatment and not by other variables. This is essential for drawing accurate conclusions and avoiding research bias.

Defining Internal Validity

Internal validity refers to the extent to which a study can demonstrate a causal relationship between the treatment and the observed outcome. It ensures that the results are due to the independent variable and not other factors. Control groups play a pivotal role in maintaining this validity by providing a baseline for comparison.

How Control Groups Enhance Validity

Control groups help account for the placebo effect, where participants’ beliefs about the treatment can influence their behavior or responses. By comparing the treatment group to the control group, researchers can isolate the effect of the treatment itself. This increases the internal validity of the results and the confidence we can have in the conclusions.

Examples of Validity in Research

Consider a study testing a new medication for ADHD. One group receives the new medication, while the other group receives a placebo. The placebo group serves as the control group, allowing researchers to determine if changes in the treatment group are due to the medication or other variables. This method is crucial for the future of measurement: triangulating MTA, MMM, and incrementality testing . Triangulation offers a holistic view of marketing effectiveness, optimizing resource allocation for brands.

Types of Control Groups in Scientific Research

Control groups are critical to the scientific method as they help ensure the internal validity of a study. Using a control group means that any change in the dependent variable can be attributed to the independent variable. This helps avoid extraneous variables or confounding variables from impacting your work, as well as a few types of research bias, like omitted variable bias.

Positive Control Groups

Positive control groups are used to ensure that the experimental setup is capable of producing results. For example, if you are testing a new drug, a positive control group might receive a treatment that is already known to produce a certain effect. This helps to confirm that the experimental conditions are working as expected.

Negative Control Groups

Negative control groups are used to ensure that no confounding variable has affected the results. In a drug trial, a negative control group might receive a placebo, which is a treatment that has no therapeutic effect. This helps to show that any changes in the experimental group are due to the treatment itself and not some other factor.

Placebo Control Groups

Placebo control groups are a specific type of negative control group used in clinical trials. Participants in the placebo group receive a treatment that looks identical to the experimental treatment but has no active ingredient. This helps to account for the placebo effect, where participants experience changes simply because they believe they are receiving a treatment.

In clinical trials, the use of placebo control groups is essential for determining the true efficacy of a new treatment. Without this control, it would be difficult to distinguish between the actual effects of the treatment and the psychological impact of believing one is being treated.

Designing Experiments with Control Groups

Designing experiments with control groups is a critical aspect of scientific research. It ensures that the results are reliable and can be attributed to the variables being tested. Here, we will discuss the key elements involved in this process.

Random Assignment

Random assignment is the process of assigning participants to different groups using randomization. This method ensures that each participant has an equal chance of being placed in any group, thereby eliminating selection bias. Random assignment is crucial for maintaining the internal validity of an experiment. For example, in a marketing experiment design, participants might be randomly assigned to either a control group or an experimental group to test the effectiveness of a new advertising strategy.

Blinding and Control Groups

Blinding is a technique used to prevent bias in research. In a single-blind experiment, the participants do not know whether they are in the control group or the experimental group. In a double-blind experiment, neither the participants nor the researchers know who is in which group. This method is particularly useful in medical research, where the placebo effect can influence results. For instance, in a study testing a new drug, blinding ensures that neither the patients nor the doctors know who is receiving the actual medication and who is receiving a placebo.

Maintaining Consistency

Maintaining consistency across all groups in an experiment is essential for obtaining valid results. This means that all conditions, except for the variable being tested, should be kept the same for both the control and experimental groups. For example, in geo experiments, researchers might implement geo-based incrementality testing to measure the real impact of a marketing campaign. By keeping all other variables constant, they can accurately determine the effectiveness of the campaign.

In any well-designed experiment, the control group serves as a benchmark, allowing researchers to measure the true effect of the independent variable. This is especially important in fields like marketing budget planning, where understanding the actual impact of different strategies can lead to more informed decisions.

Challenges and Limitations of Control Group Analysis

Ethical considerations.

When conducting Control Group Analysis , researchers must navigate various ethical dilemmas. For instance, withholding a potentially beneficial treatment from the control group can raise ethical concerns. Balancing the need for rigorous scientific methods with ethical responsibilities is crucial. Researchers often use alternative methodologies to address these challenges, such as crossover designs where participants receive both the treatment and control conditions at different times.

Practical Limitations

Implementing control groups can be resource-intensive. Researchers may face constraints related to time, budget, and participant availability. These limitations can impact the scope and scale of the study. Additionally, maintaining consistency across control and treatment groups can be challenging, especially in long-term studies. Practical solutions include using automated systems for data collection and employing robust randomization techniques.

Addressing Confounding Variables

Confounding variables can significantly impact the validity of a study. These are variables that the researcher failed to control or eliminate, which can cause a false association between the treatment and the outcome. To mitigate this, researchers can use techniques like stratified randomization and matching. Identifying and addressing confounding variables is essential for enhancing the reliability of the results.

Ensuring the internal validity of your research often hinges on how well you manage these challenges. By addressing ethical considerations, practical limitations, and confounding variables, you can significantly improve the robustness of your Control Group Analysis.

Case Studies Highlighting the Importance of Control Groups

Medical research examples.

In medical research, control groups are indispensable for determining the effectiveness of new treatments . For instance, in a clinical trial for a new drug, one group receives the drug while the control group receives a placebo. This setup helps in measuring the Incremental Lift in patient recovery rates attributable to the drug, rather than other factors.

Control groups in medical research ensure that the observed effects are due to the treatment and not external variables.

Psychological Studies

Psychological studies often use control groups to understand the impact of various interventions. For example, a study on the effects of cognitive-behavioral therapy (CBT) for depression might have one group undergo CBT while the control group receives no treatment. This helps in isolating the Incremental Contribution of CBT to improvements in mental health.

Social Science Research

In social science research, control groups help in understanding societal trends and behaviors. For example, a study on the impact of educational programs on student performance might have a control group that does not participate in the program. This allows researchers to measure the Conversion Lift in academic performance due to the educational intervention.

Without control groups, it would be challenging to attribute changes in the dependent variable to the independent variable accurately.

Measuring the Effectiveness of Control Groups

Baseline comparisons.

An important factor when measuring the effectiveness of a control group is the uniformity of samples. Ensuring the control group is both random and representative of the entire population will lead to more dependable results. The control group serves as a baseline , enabling researchers to see what impact changes to the independent variable produce and strengthening researchers’ ability to draw conclusions from a study.

Without the presence of a control group, a researcher cannot determine whether a particular treatment truly has an effect on an experimental group.

Statistical Methods

A chi-squared statistic can reveal differences between the observed results and the results you would expect if there was no relationship in the data. For example, the expectation of variations to have zero impact on conversion rate can be tested using this method. Here are some steps to execute this analysis:

  • Define the null hypothesis that there is no difference between the control and test groups.
  • Collect data from both groups.
  • Calculate the chi-squared statistic.
  • Compare the calculated value with the critical value from the chi-squared distribution table.
  • Draw conclusions based on the comparison.

Interpreting Results

When interpreting results, it is crucial to consider the size of the control group. The tradeoff between confidence levels in the results and the opportunity cost of implementing a more successful variation should not be taken lightly. For instance, if the experiment is run on a population size of only 100 participants, a 5% control group would be only 5 individuals, which would certainly diminish the significance of the results. Therefore, maintaining an adequately sized control group is essential for reliable conclusions.

The Impact of Control Groups on Research Outcomes

Drawing accurate conclusions.

Control groups are essential for drawing accurate conclusions in scientific research. By comparing the treatment group to the control group, researchers can isolate the effect of the independent variable. This helps in determining whether the observed changes are due to the treatment or other external factors. For instance, in medical research , a control group receiving a placebo can help identify the true efficacy of a new drug.

Avoiding Research Bias

Control groups play a crucial role in avoiding research bias. They help mitigate the impact of confounding variables and ensure that the results are not skewed by external influences. This is particularly important in psychological studies , where participant expectations can influence outcomes. By using control groups, researchers can ensure that any observed effects are due to the treatment itself and not other factors.

Enhancing Reproducibility

The use of control groups enhances the reproducibility of research findings. When other researchers can replicate the study and achieve similar results, it strengthens the validity of the original findings. This is vital for the advancement of scientific knowledge. For example, in social science research , control groups help in verifying the impact of interventions across different populations and settings.

Control groups are the backbone of rigorous scientific research, ensuring that findings are both valid and reliable.
  • isolate the effect
  • medical research
  • psychological studies
  • social science research

In conclusion, control group analysis is indispensable in scientific research. Control groups serve as a baseline, allowing researchers to attribute changes in the dependent variable directly to the independent variable, thereby ensuring the internal validity of the study. Without control groups, it becomes challenging to determine whether observed changes are due to the treatment or other extraneous variables. By providing a clear comparison, control groups enhance the reliability and credibility of research findings, making them a cornerstone of the scientific method. Therefore, the inclusion of control groups in experimental design is not just beneficial but essential for drawing accurate and meaningful conclusions.

Frequently Asked Questions

What is a control group in scientific research.

A control group is a group of participants in an experiment who do not receive the experimental treatment. They serve as a baseline to compare the results of the experimental group against.

Why are control groups important in scientific research?

Control groups help ensure the internal validity of research by providing a baseline. This allows researchers to determine if changes in the dependent variable are due to the independent variable or other factors.

What are the different types of control groups?

There are several types of control groups, including positive control groups, negative control groups, and placebo control groups. Each type serves a different purpose in validating the results of an experiment.

How do control groups enhance the validity of an experiment?

Control groups enhance validity by isolating the effect of the independent variable. This helps to avoid confounding variables and research biases, ensuring that the observed effects are due to the treatment.

What are some challenges associated with using control groups?

Challenges include ethical considerations, practical limitations, and the need to address confounding variables. Researchers must design their studies carefully to mitigate these issues.

Can you provide an example of a control group in research?

In medical research, a control group might receive a placebo while the experimental group receives the actual medication. This allows researchers to determine if the medication has a real effect compared to no treatment.

Measure and Optimize your Media

Related articles.

Cassandra Logo White

All Subjects

Control Group

A control group is a group in an experiment that does not receive the treatment or intervention being tested, serving as a benchmark to compare against the experimental group. This helps researchers isolate the effects of the treatment and understand any changes that occur as a result of it. The control group plays a crucial role in minimizing variables that could affect the outcome, allowing for more accurate interpretations of data.

5 Must Know Facts For Your Next Test

  • The control group helps establish a baseline for comparison, making it easier to see if changes in the experimental group are due to the treatment.
  • Without a control group, researchers may misinterpret results, as any observed effects could be due to other factors rather than the treatment itself.
  • In many experiments, participants in the control group may receive a placebo, which helps ensure that both groups experience similar conditions except for the treatment being tested.
  • Control groups are essential in scientific research to enhance the reliability and validity of findings, ensuring conclusions drawn from data are well-founded.
  • The concept of control groups is foundational in various fields of research, including medicine, psychology, and social sciences, where controlled experiments are critical for discovering causal relationships.

Review Questions

  • Having a control group enhances reliability by providing a standard for comparison against the experimental group. This allows researchers to determine whether changes observed in the experimental group are truly due to the treatment or if they could be attributed to other factors. By minimizing external variables and isolating the effect of the treatment, researchers can draw more accurate conclusions from their experiments.
  • Researchers must consider ethical implications such as informed consent and ensuring that participants in the control group are not deprived of potentially beneficial treatments. It's essential to ensure that participants understand their role and any risks involved in joining a study. Additionally, when a treatment proves effective after testing, researchers should have plans to provide this treatment to control group participants who initially received no intervention.
  • Eliminating control groups would significantly hinder scientific knowledge and societal advancements by increasing the likelihood of erroneous conclusions. Without proper comparisons, researchers might misattribute effects to treatments without solid evidence, leading to ineffective or harmful practices being adopted. This can stall progress in fields like medicine and psychology, where understanding causal relationships is crucial for developing effective interventions and policies that benefit society as a whole.

Related terms

Experimental Group : The experimental group is the group in an experiment that receives the treatment or intervention being tested, allowing researchers to observe the effects of this treatment.

Independent Variable : The independent variable is the factor that is manipulated or changed in an experiment to test its effects on the dependent variable.

Dependent Variable : The dependent variable is the outcome or response that is measured in an experiment to assess the impact of changes made to the independent variable.

" Control Group " appears in:

Study guides ( 2 ).

  • Science Education - 1.1 The Nature of Science and Scientific Inquiry
  • Science Education - 11.2 Analyzing and Interpreting Research Data

Subjects ( 56 )

  • AP Psychology
  • AP Statistics
  • Advanced Communication Research Methods
  • Advanced Design Strategy and Software
  • Advertising Copywriting
  • Advertising Strategy
  • Applied Impact Evaluation
  • Art Therapy
  • Biostatistics
  • Business Process Optimization
  • Business Storytelling
  • Causal Inference
  • Cognitive Psychology
  • College Biology
  • College Introductory Statistics
  • Communication Research Methods
  • Computational Biology
  • Computational Neuroscience
  • Criminology
  • Critical Thinking
  • Customer Insights
  • Data, Inference, and Decisions
  • Design Strategy and Software
  • Developmental Psychology
  • E-commerce Strategies
  • Educational Psychology
  • Engineering Applications of Statistics
  • Epidemiology
  • Experimental Design
  • Fundamentals of Ecology
  • Game Theory
  • Health Campaigns
  • Honors Biology
  • Honors Statistics
  • Interactive Marketing Strategy
  • Intro to Business Statistics
  • Introduction to Biostatistics
  • Introduction to Environmental Science
  • Introduction to Epidemiology
  • Introduction to Political Research
  • Introductory Probability and Statistics for Business
  • Machine Learning Engineering
  • Market Research: Tools and Techniques for Data Collection and Analysis
  • Media Effects
  • Media Expression and Communication
  • Methods of Mathematics: Calculus, Statistics, and Combinatorics
  • Physical Science
  • Physiology of Motivated Behaviors
  • Predictive Analytics in Business
  • Probability and Statistics
  • Professionalism and Research in Nursing
  • Public Policy Analysis
  • Screen Language
  • Social Psychology
  • Strategic Improvisation in Business

© 2024 Fiveable Inc. All rights reserved.

Ap® and sat® are trademarks registered by the college board, which is not affiliated with, and does not endorse this website..

  • COVID-19 Tracker
  • Biochemistry
  • Anatomy & Physiology
  • Microbiology
  • Neuroscience
  • Animal Kingdom
  • NGSS High School
  • Latest News
  • Editors’ Picks
  • Weekly Digest
  • Quotes about Biology

Biology Dictionary

Control Group

BD Editors

Reviewed by: BD Editors

Control Group Definition

In scientific experiments, the control group is the group of subject that receive no treatment or a standardized treatment. Without the control group, there would be nothing to compare the treatment group to. When statistics refer to something being “X times more likely to happen” they are referring to the difference in the measurement between the treatment and control group. The control group provides a baseline in the experiment. The variable that is being studied in the experiment is not changed or is limited to zero in the control group. This insures that the effects of the variable are being studied. Most experiments try to add the variable back in increments to different treatment groups, to really begin to discern the effects of the variable in the system.

Ideally, the control group is subject to the same exact conditions as the treatment groups. This insures that only the effects produced by the variable are being measured. In a study of plants, for instance, all the plants would ideally be in the same room, with the same light and air conditions. In biological studies, it is also important that the organisms in the treatment and control groups come from the same population. Ideally, the organisms would all be clones of each other, to reduce genetic differences. This is the case in many artificially selected lab species, which have been selected to be very similar to each other. This ensures that the results obtained are valid.

Examples of Control Group

Testing enzyme strength.

In a simple biological lab experiment, students can test the effects of different concentrations of enzyme. The student can prepare a stock solution of enzyme by spitting into a beaker. Human spit contains the enzyme amylase, which breaks down starches. The concentration of enzyme can be varied by dividing the stock solution and adding in various amounts of water. Once various solutions of different strength enzyme have been produced, the experiment can begin.

In several treatment beakers are placed the following ingredients: starch, iodine, and the different solutions of enzyme. In the control group, a beaker is filled with starch and iodine, but no enzyme. When iodine is in the presence of starch, it turns black. As the enzyme depletes the starch in each beaker, the solution clears up and is a lighter yellow or brown color. In this way, the student can tell how long the enzymes in each beaker take to completely process the same amount of substrate. The control group is important because it will tell the student if the starch breaks down without the enzyme, which it will, given enough time.

Testing Drugs and the Placebo Effect

When drugs are tested on humans, control groups are also used. Although control groups were just considered good science, they have found an interesting phenomena in drug trials. Oftentimes, control groups in drug trials consist of people who also have the disease or ailment, but who don’t receive the medicine being tested. Instead, to keep the control group the same as the treatment groups, the patients in the control group are also given a pill. This is a sugar pill usually and contains no medicine. This practice of having a control group is important for drug trial, because it validates the results obtained. However, the control groups have also demonstrated an interesting effect, known as the placebo effect

In some drug trials, where the control group is given a fake medicine, patients start to see results. Scientists call this the placebo effect, and as of yet it is mostly unexplained. Some scientists have suggested that people get better simply because they believed they were going to get better, but this theory remains untested. Other scientists claim that unknown variables in the experiment caused the patients to get better. This theory remains unproven, as well.

Related Biology Terms

  • Treatment Group – The group that receives the variable, or altered amounts of the variable.
  • Variable – The part of the experiment being studied which is changed, or altered, throughout the experiment.
  • Scientific Method – The steps scientist follow to ensure their results are valid and reproducible.
  • Placebo Effect – A phenomenon when patients in the control group experience the same effects as those in the treatment group, though no treatment was given.

Cite This Article

Subscribe to our newsletter, privacy policy, terms of service, scholarship, latest posts, white blood cell, t cell immunity, satellite cells, embryonic stem cells, popular topics, amino acids, digestive system, mitochondria, acetic acid.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • What Is a Controlled Experiment? | Definitions & Examples

What Is a Controlled Experiment? | Definitions & Examples

Published on April 19, 2021 by Pritha Bhandari . Revised on June 22, 2023.

In experiments , researchers manipulate independent variables to test their effects on dependent variables. In a controlled experiment , all variables other than the independent variable are controlled or held constant so they don’t influence the dependent variable.

Controlling variables can involve:

  • holding variables at a constant or restricted level (e.g., keeping room temperature fixed).
  • measuring variables to statistically control for them in your analyses.
  • balancing variables across your experiment through randomization (e.g., using a random order of tasks).

Table of contents

Why does control matter in experiments, methods of control, problems with controlled experiments, other interesting articles, frequently asked questions about controlled experiments.

Control in experiments is critical for internal validity , which allows you to establish a cause-and-effect relationship between variables. Strong validity also helps you avoid research biases , particularly ones related to issues with generalizability (like sampling bias and selection bias .)

  • Your independent variable is the color used in advertising.
  • Your dependent variable is the price that participants are willing to pay for a standard fast food meal.

Extraneous variables are factors that you’re not interested in studying, but that can still influence the dependent variable. For strong internal validity, you need to remove their effects from your experiment.

  • Design and description of the meal,
  • Study environment (e.g., temperature or lighting),
  • Participant’s frequency of buying fast food,
  • Participant’s familiarity with the specific fast food brand,
  • Participant’s socioeconomic status.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

control group role in experiment

You can control some variables by standardizing your data collection procedures. All participants should be tested in the same environment with identical materials. Only the independent variable (e.g., ad color) should be systematically changed between groups.

Other extraneous variables can be controlled through your sampling procedures . Ideally, you’ll select a sample that’s representative of your target population by using relevant inclusion and exclusion criteria (e.g., including participants from a specific income bracket, and not including participants with color blindness).

By measuring extraneous participant variables (e.g., age or gender) that may affect your experimental results, you can also include them in later analyses.

After gathering your participants, you’ll need to place them into groups to test different independent variable treatments. The types of groups and method of assigning participants to groups will help you implement control in your experiment.

Control groups

Controlled experiments require control groups . Control groups allow you to test a comparable treatment, no treatment, or a fake treatment (e.g., a placebo to control for a placebo effect ), and compare the outcome with your experimental treatment.

You can assess whether it’s your treatment specifically that caused the outcomes, or whether time or any other treatment might have resulted in the same effects.

To test the effect of colors in advertising, each participant is placed in one of two groups:

  • A control group that’s presented with red advertisements for a fast food meal.
  • An experimental group that’s presented with green advertisements for the same fast food meal.

Random assignment

To avoid systematic differences and selection bias between the participants in your control and treatment groups, you should use random assignment .

This helps ensure that any extraneous participant variables are evenly distributed, allowing for a valid comparison between groups .

Random assignment is a hallmark of a “true experiment”—it differentiates true experiments from quasi-experiments .

Masking (blinding)

Masking in experiments means hiding condition assignment from participants or researchers—or, in a double-blind study , from both. It’s often used in clinical studies that test new treatments or drugs and is critical for avoiding several types of research bias .

Sometimes, researchers may unintentionally encourage participants to behave in ways that support their hypotheses , leading to observer bias . In other cases, cues in the study environment may signal the goal of the experiment to participants and influence their responses. These are called demand characteristics . If participants behave a particular way due to awareness of being observed (called a Hawthorne effect ), your results could be invalidated.

Using masking means that participants don’t know whether they’re in the control group or the experimental group. This helps you control biases from participants or researchers that could influence your study results.

You use an online survey form to present the advertisements to participants, and you leave the room while each participant completes the survey on the computer so that you can’t tell which condition each participant was in.

Although controlled experiments are the strongest way to test causal relationships, they also involve some challenges.

Difficult to control all variables

Especially in research with human participants, it’s impossible to hold all extraneous variables constant, because every individual has different experiences that may influence their perception, attitudes, or behaviors.

But measuring or restricting extraneous variables allows you to limit their influence or statistically control for them in your study.

Risk of low external validity

Controlled experiments have disadvantages when it comes to external validity —the extent to which your results can be generalized to broad populations and settings.

The more controlled your experiment is, the less it resembles real world contexts. That makes it harder to apply your findings outside of a controlled setting.

There’s always a tradeoff between internal and external validity . It’s important to consider your research aims when deciding whether to prioritize control or generalizability in your experiment.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Student’s  t -distribution
  • Normal distribution
  • Null and Alternative Hypotheses
  • Chi square tests
  • Confidence interval
  • Quartiles & Quantiles
  • Cluster sampling
  • Stratified sampling
  • Data cleansing
  • Reproducibility vs Replicability
  • Peer review
  • Prospective cohort study

Research bias

  • Implicit bias
  • Cognitive bias
  • Placebo effect
  • Hawthorne effect
  • Hindsight bias
  • Affect heuristic
  • Social desirability bias

Prevent plagiarism. Run a free check.

In a controlled experiment , all extraneous variables are held constant so that they can’t influence the results. Controlled experiments require:

  • A control group that receives a standard treatment, a fake treatment, or no treatment.
  • Random assignment of participants to ensure the groups are equivalent.

Depending on your study topic, there are various other methods of controlling variables .

An experimental group, also known as a treatment group, receives the treatment whose effect researchers wish to study, whereas a control group does not. They should be identical in all other ways.

Experimental design means planning a set of procedures to investigate a relationship between variables . To design a controlled experiment, you need:

  • A testable hypothesis
  • At least one independent variable that can be precisely manipulated
  • At least one dependent variable that can be precisely measured

When designing the experiment, you decide:

  • How you will manipulate the variable(s)
  • How you will control for any potential confounding variables
  • How many subjects or samples will be included in the study
  • How subjects will be assigned to treatment levels

Experimental design is essential to the internal and external validity of your experiment.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bhandari, P. (2023, June 22). What Is a Controlled Experiment? | Definitions & Examples. Scribbr. Retrieved September 3, 2024, from https://www.scribbr.com/methodology/controlled-experiment/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, extraneous variables | examples, types & controls, guide to experimental design | overview, steps, & examples, how to write a lab report, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

What is a control group?

Last updated

6 February 2023

Reviewed by

The independent variable is the thing the researchers are testing. They are trying to determine whether it’s responsible for any change that occurs in the experiment. The research control group is key for this as it allows them to isolate the independent variable’s effect on the experiment.

Make research less tedious

Dovetail streamlines research to help you uncover and share actionable insights

  • What is a control group in simple terms?

Splitting the audience you’re testing into two identical groups will give you a control group and an experimental group.

Nothing will change for the control group during the research. For example, this group would receive a placebo in pharmaceutical research.

In contrast, one key variable changes for the experimental group. In a pharmaceutical experiment, researchers might administer a different drug. In advertising research, this might involve increasing the experimental group’s exposure to ads.

When evaluating the results, researchers will compare those obtained from the experimental group against the control group. The control group is the baseline.

In research where the two groups are truly identical, seeing different results between the groups suggests they were caused by the independent variable—the only thing that changed.

Control gr oup examples

Examples of control groups in research exist in a wide range of business contexts. For example:

You want to test whether a 15% loyalty discount for repeat purchases would positively impact retention and revenue. So, you send a discount email to 50% of your customers who were randomly selected. The other 50% of customers are your control group.

You want to test whether a personal sales call will increase your chance of a sales conversion. You add this step to your existing nurturing campaign for a randomly selected portion of leads. Those who don’t receive a phone call are your control group.

You want to test whether different product packaging can change brand perceptions. To do this, you change the packaging for a randomly selected portion of customers. Customers who receive the same packaging as before are your control group. Sending a survey to all customers about their brand perceptions before and after the experiment will reveal the impact of the new packaging.

These are just some of the countless examples of control groups. Perhaps the most well-known example is in the medical field, where placebos treatments are used. Control groups receive placebo treatments under the exact same conditions as the experimental group to determine the treatment’s effects.

  • The importance of control groups

Control groups matter in research because they act as the benchmark to establish your results’ validity . They enable you to compare the results you see in your experimental group and determine if the variable you changed caused a different outcome. 

Control groups and experimental groups should be identical in their makeup and environment in every possible way. You’ll be able to draw more definitive conclusions as long as the research process is identical for both groups. In other words, working with control groups improves your research’s internal validity .

  • Control groups in experiments

Control groups are most common in experimental research, where you’re trying to determine the impact of a variable you’re changing. You split your research group into two groups that are as identical as possible. One receives a placebo, for example, while the other receives a treatment.

In this environment, the identical makeup of the group is essential. The most common way to accomplish this is by randomly splitting the group in two and ensuring that any variables you’re not testing remain the same throughout the research process.

You can also conduct experiments with multiple control groups. For example, when testing new ad messaging, the split between two control groups and one experimental group may be as follows:

Control group 1 receives no advertising

Control group 2 receives the existing advertising

Control group 3 receives the new ad messaging

This more complex type of experiment can test both the overall impact of ads and how much of that impact you could attribute to the new messaging.

  • Control groups in non-experimental research

Control groups are less common in non-experimental research but can still be useful. They most commonly occur in the following process designs:

Matching design

In this research process, every person in the experimental group is matched to one other person based on their environmental and demographic similarities.

This is most common when randomly selecting two groups on a broader scale would not result in them being equal. It can help you ensure that the control group or individual continues to act as the baseline for the variable you are studying.

Quasi-experimental design

This is where multiple groups are part of the research, but they are not randomly assigned to test and control conditions.

Quasi-experimental design is most common when the groups you are studying already exist, like customers being shown new ad messaging versus non-customers. The control group in this example is made up of your non-customers, as the variable did not change for them.

  • Two common types of control groups

While control groups tend to be similar across research contexts, they generally fall into two categories: negative and positive control groups.

Negative control groups

The independent variable does not change in a negative control group. This group represents the true status quo, and you would test the experimental group against it.

Examples of negative control groups include many of the experiments listed above, like only changing product packaging or only offering a discount for one group of customers.

Positive control groups

In positive control groups, the independent variable is changed where it is already known to have an effect. You would compare this group’s results against those from the experimental group receiving a variation of the same independent variable. This would enable you to determine if the effect changes.

In the example of a multi-control group experiment seen above, control group 1 (receiving no advertising) is a negative control group, while control group 2 (receiving the current level of advertising) is a positive control group.

Should you be using a customer insights hub?

Do you want to discover previous research faster?

Do you share your research findings with others?

Do you analyze research data?

Start for free today, add your research, and get to key insights faster

Editor’s picks

Last updated: 18 April 2023

Last updated: 27 February 2023

Last updated: 22 August 2024

Last updated: 5 February 2023

Last updated: 16 August 2024

Last updated: 9 March 2023

Last updated: 30 April 2024

Last updated: 12 December 2023

Last updated: 11 March 2024

Last updated: 4 July 2024

Last updated: 6 March 2024

Last updated: 5 March 2024

Last updated: 13 May 2024

Latest articles

Related topics, .css-je19u9{-webkit-align-items:flex-end;-webkit-box-align:flex-end;-ms-flex-align:flex-end;align-items:flex-end;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;-webkit-box-flex-wrap:wrap;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;-webkit-box-pack:center;-ms-flex-pack:center;-webkit-justify-content:center;justify-content:center;row-gap:0;text-align:center;max-width:671px;}@media (max-width: 1079px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}}@media (max-width: 799px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}} decide what to .css-1kiodld{max-height:56px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}@media (max-width: 1079px){.css-1kiodld{display:none;}} build next, decide what to build next, log in or sign up.

Get started for free

control group role in experiment

Extract insights from Customer & Employee Interviews. At Scale.

Define control group in an experiment: explained.

Insight7

Home » Define Control Group in an Experiment: Explained

Understanding the Experimental Baseline Group is crucial for analyzing any experiment effectively. The experimental baseline group provides a reference point against which the outcomes of different treatments can be measured. This group typically remains untouched by the experimental manipulation, allowing researchers to observe variations in response that can arise solely from the treatment group.

By establishing a clear distinction between the experimental and control groups, researchers can isolate the effects of their interventions more accurately. This understanding not only enhances the validity of findings but also assists in drawing reliable conclusions about causality and effectiveness. Overall, the experimental baseline group serves as a foundation for sound scientific inquiry.

What Is a Control Group?

A control group serves as a critical component in experimental research, providing a standardized comparison point. It comprises participants who do not receive the treatment or intervention that the experimental group does. This group allows researchers to isolate the effects of that intervention by highlighting any changes caused specifically by it compared to those occurring in a natural setting.

In many studies, the control group is referred to as an experimental baseline group. Its purpose is to measure any changes that might occur due to external factors, instead of the treatment. For example, if a new medication is tested, the control group may receive a placebo. By analyzing data from both groups, researchers can better understand the efficacy and safety of the intervention. Thus, understanding the role of a control group is essential for interpreting experimental results accurately.

Definition and Purpose of a Control Group

A control group, often referred to as an experimental baseline group, serves a crucial function in scientific experiments. It remains unchanged or unexposed to the treatment being tested. This allows researchers to understand the effects of the treatment by providing a point of comparison. In other words, a control group helps eliminate alternative explanations for the observed phenomenon, ensuring that any changes in the experimental group can be confidently attributed to the treatment itself.

The purpose of a control group extends beyond mere comparison. It embodies the principle of scientific rigor, providing a framework within which hypotheses can be tested effectively. Researchers gain insights by analyzing differences in outcomes between the control group and the experimental group, enhancing the validity of the study’s results. Ultimately, this comparative analysis is fundamental for drawing sound conclusions and understanding the true impact of the experimental intervention.

Types of Control Groups in Experiments

Control groups are vital in experimental design, and understanding their types helps clarify their roles. The experimental baseline group serves as a conventional starting point, allowing researchers to contrast their findings against a standard. This group does not receive any treatment or intervention during the study, making it an essential reference for evaluating the effectiveness of various manipulations in an experiment.

In addition to the experimental baseline group, there are other categories worth noting. One category is the placebo group, which receives a treatment that is inactive but appears real. This helps ascertain whether any observed effects are due to treatment or participants' expectations. Another type is the historical control group, where past data from similar subjects is utilized as a comparison, allowing researchers to analyze outcomes without active participation in a new experiment. Each type of control group serves a unique purpose, enhancing the credibility of research findings.

Experimental Baseline Group: Key Role in Research

The Experimental Baseline Group plays a crucial role in the scientific process. This group serves as a standard or reference point against which changes in an experimental group are measured. By maintaining consistent conditions, researchers can isolate the effects of the treatment being tested. This allows for a clearer understanding of how specific variables impact the outcomes of a study.

Moreover, the Experimental Baseline Group helps mitigate confounding factors that could skew the results. By ensuring that the baseline group is as similar as possible to the experimental group, any observed effects can be attributed more reliably to the intervention. This foundational approach bolsters the credibility of the research findings and provides a framework for replicating studies in the future. Overall, the significance of the Experimental Baseline Group cannot be overstated in achieving valid and reliable research conclusions.

Importance of an Experimental Baseline Group for Valid Results

An experimental baseline group serves as a critical reference point in any scientific inquiry. By ensuring that this group is established, researchers can isolate the effects of the variable being tested. For valid results, comparing the experimental group against this baseline allows for a clear understanding of how changes impact outcomes. Without a baseline, it becomes challenging to ascertain the true effects and significance of the experimental treatment, leading to potential misinterpretations.

The importance of an experimental baseline group extends beyond mere comparison. It enhances the reliability and credibility of the results generated during the experiment. By controlling external factors, researchers can confidently attribute variations to the variable under study. In essence, the baseline group is crucial for establishing cause-and-effect relationships, a cornerstone of any robust experimental design. This practice ultimately elevates the integrity and scientific value of research outcomes.

Common Misconceptions About the Experimental Baseline Group

Many misconceptions surround the concept of an experimental baseline group. One common misunderstanding is that the baseline group simply serves as a passive reference point. In reality, the experimental baseline group plays a crucial role in establishing context for experimental outcomes and evaluating the effects of the independent variable. Researchers often utilize these groups to ensure that the results observed are truly reflective of the treatment, rather than external factors.

Another misconception is that all baseline groups are identical in characteristics, which is not always the case. These groups can vary significantly in demographics and other factors. The key is to match these characteristics as closely as possible to ensure the reliability of results. Understanding these nuances helps clarify the importance of experimental baseline groups in the broader context of scientific research and the validity of experimental conclusions.

Setting Up Your Experimental Baseline Group

Setting up your experimental baseline group is a crucial step in ensuring reliable results. The experimental baseline group serves as a standard against which you can measure the effects of your experiment. Start by identifying the factors that will remain constant throughout the study, while allowing for the independent variable to vary. This setup enables you to isolate the impact of the experimental conditions from other variables that may skew your results.

Next, ensure that your baseline group closely resembles your experimental group in relevant characteristics. This may include demographics, prior knowledge, or other pertinent factors. Maintaining similarity between these groups will strengthen the validity of your findings. Additionally, consider the number of participants needed in both groups to achieve statistical significance. A well-established experimental baseline group aids in drawing clear conclusions, making your experiment's outcomes more meaningful and impactful.

Steps to Select an Appropriate Control Group

Selecting an appropriate control group is vital for ensuring reliable experiment results. Begin by identifying the characteristics that your experimental baseline group should have. This group should mirror the population that will receive the treatment or intervention, minus the effect of that treatment. Next, consider the size of the control group, taking into account the statistical power needed to detect significant differences.

Once these considerations are made, random selection plays a key role. Randomly assigning participants to the control group minimizes biases and enhances the validity of the experiment. Finally, monitor the control group for consistency in conditions. Ensuring that both the experimental and control groups experience similar environments and measurements is crucial for drawing accurate conclusions. By following these steps, you can effectively select a control group that bolsters the integrity of your experiments.

Ensuring Reliability and Consistency in Your Control Group

To ensure reliability and consistency in your control group, it’s essential to establish clear protocols during your experiment. Have all participants in the Experimental Baseline Group matched closely in characteristics to those in the experimental group. This includes factors such as age, gender, and any other relevant variables. Ensuring that both groups are homogeneous helps eliminate external influences that may skew results.

Next, implement rigorous data collection procedures. Standardize the way data is gathered to minimize variations that could arise from inconsistent methods. Consider using technology to facilitate uniform data collection across all participants. Finally, regularly monitor and evaluate the processes used during your research. By identifying inconsistencies early, you can correct them promptly, thus maintaining the integrity of your control group throughout the experiment. Consistency in these practices ultimately leads to more dependable and valid findings.

Conclusion: The Critical Role of the Experimental Baseline Group in Research

The Experimental Baseline Group plays a crucial role in evaluating research outcomes. By serving as a standard for comparison, it allows researchers to assess the effectiveness of the intervention being tested. This group remains unexposed to the experimental treatment, providing a clear contrast that highlights the intervention's impact on the experimental group.

Understanding the significance of this baseline is essential for reliable research results. It minimizes biases and contextual factors that could skew findings, ensuring that conclusions drawn from the data are valid and actionable. Ultimately, a well-defined baseline group strengthens the integrity of research, leading to more trustworthy insights and informed decision-making.

Turn interviews into actionable insights

On this Page

Random Sampling Definition in Research

You may also like, top 5 online usability testing tools.

Insight7

5 Best UX Research Tools for 2024

Understanding tree sorting ux: 6 key points.

Unlock Insights from Interviews 10x faster

control group role in experiment

  • Request demo
  • Get started for free

What Is a Controlled Experiment?

Definition and Example

  • Scientific Method
  • Chemical Laws
  • Periodic Table
  • Projects & Experiments
  • Biochemistry
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

A controlled experiment is one in which everything is held constant except for one variable . Usually, a set of data is taken to be a control group , which is commonly the normal or usual state, and one or more other groups are examined where all conditions are identical to the control group and to each other except for one variable.

Sometimes it's necessary to change more than one variable, but all of the other experimental conditions will be controlled so that only the variables being examined change. And what is measured is the variables' amount or the way in which they change.

Controlled Experiment

  • A controlled experiment is simply an experiment in which all factors are held constant except for one: the independent variable.
  • A common type of controlled experiment compares a control group against an experimental group. All variables are identical between the two groups except for the factor being tested.
  • The advantage of a controlled experiment is that it is easier to eliminate uncertainty about the significance of the results.

Example of a Controlled Experiment

Let's say you want to know if the type of soil affects how long it takes a seed to germinate, and you decide to set up a controlled experiment to answer the question. You might take five identical pots, fill each with a different type of soil, plant identical bean seeds in each pot, place the pots in a sunny window, water them equally, and measure how long it takes for the seeds in each pot to sprout.

This is a controlled experiment because your goal is to keep every variable constant except the type of soil you use. You control these features.

Why Controlled Experiments Are Important

The big advantage of a controlled experiment is that you can eliminate much of the uncertainty about your results. If you couldn't control each variable, you might end up with a confusing outcome.

For example, if you planted different types of seeds in each of the pots, trying to determine if soil type affected germination, you might find some types of seeds germinate faster than others. You wouldn't be able to say, with any degree of certainty, that the rate of germination was due to the type of soil. It might as well have been due to the type of seeds.

Or, if you had placed some pots in a sunny window and some in the shade or watered some pots more than others, you could get mixed results. The value of a controlled experiment is that it yields a high degree of confidence in the outcome. You know which variable caused or did not cause a change.

Are All Experiments Controlled?

No, they are not. It's still possible to obtain useful data from uncontrolled experiments, but it's harder to draw conclusions based on the data.

An example of an area where controlled experiments are difficult is human testing. Say you want to know if a new diet pill helps with weight loss. You can collect a sample of people, give each of them the pill, and measure their weight. You can try to control as many variables as possible, such as how much exercise they get or how many calories they eat.

However, you will have several uncontrolled variables, which may include age, gender, genetic predisposition toward a high or low metabolism, how overweight they were before starting the test, whether they inadvertently eat something that interacts with the drug, etc.

Scientists try to record as much data as possible when conducting uncontrolled experiments, so they can see additional factors that may be affecting their results. Although it is harder to draw conclusions from uncontrolled experiments, new patterns often emerge that would not have been observable in a controlled experiment.

For example, you may notice the diet drug seems to work for female subjects, but not for male subjects, and this may lead to further experimentation and a possible breakthrough. If you had only been able to perform a controlled experiment, perhaps on male clones alone, you would have missed this connection.

  • Box, George E. P., et al.  Statistics for Experimenters: Design, Innovation, and Discovery . Wiley-Interscience, a John Wiley & Soncs, Inc., Publication, 2005. 
  • Creswell, John W.  Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research . Pearson/Merrill Prentice Hall, 2008.
  • Pronzato, L. "Optimal experimental design and some related control problems". Automatica . 2008.
  • Robbins, H. "Some Aspects of the Sequential Design of Experiments". Bulletin of the American Mathematical Society . 1952.
  • Understanding Simple vs Controlled Experiments
  • What Is the Difference Between a Control Variable and Control Group?
  • The Role of a Controlled Variable in an Experiment
  • Scientific Variable
  • DRY MIX Experiment Variables Acronym
  • Six Steps of the Scientific Method
  • Scientific Method Vocabulary Terms
  • What Are the Elements of a Good Hypothesis?
  • Scientific Method Flow Chart
  • What Is an Experimental Constant?
  • Scientific Hypothesis Examples
  • What Are Examples of a Hypothesis?
  • What Is a Hypothesis? (Science)
  • Null Hypothesis Examples
  • What Is a Testable Hypothesis?
  • Random Error vs. Systematic Error

We've detected unusual activity from your computer network

To continue, please click the box below to let us know you're not a robot.

Why did this happen?

Please make sure your browser supports JavaScript and cookies and that you are not blocking them from loading. For more information you can review our Terms of Service and Cookie Policy .

For inquiries related to this message please contact our support team and provide the reference ID below.

COMMENTS

  1. Control Groups and Treatment Groups

    A true experiment (a.k.a. a controlled experiment) always includes at least one control group that doesn't receive the experimental treatment.. However, some experiments use a within-subjects design to test treatments without a control group. In these designs, you usually compare one group's outcomes before and after a treatment (instead of comparing outcomes between different groups).

  2. What Is a Control Group? Definition and Explanation

    A control group in a scientific experiment is a group separated from the rest of the experiment, where the independent variable being tested cannot influence the results. This isolates the independent variable's effects on the experiment and can help rule out alternative explanations of the experimental results. Control groups can also be separated into two other types: positive or negative.

  3. Control Group in an Experiment

    A control group in an experiment does not receive the treatment. Instead, it serves as a comparison group for the treatments. Researchers compare the results of a treatment group to the control group to determine the effect size, also known as the treatment effect.. A control group is important because it is a benchmark that allows scientists to draw conclusions about the treatment's ...

  4. Control Group Definition and Examples

    The control group in an experiment is the set of subjects that do not receive the treatment. The control group is the set of subjects that does not receive the treatment in a study. In other words, it is the group where the independent variable is held constant. This is important because the control group is a baseline for measuring the effects of a treatment in an experiment or study.

  5. What Is a Control Group?

    Positive control groups: In this case, researchers already know that a treatment is effective but want to learn more about the impact of variations of the treatment.In this case, the control group receives the treatment that is known to work, while the experimental group receives the variation so that researchers can learn more about how it performs and compares to the control.

  6. What are Control Groups?

    A control group is typically thought of as the baseline in an experiment. In an experiment, clinical trial, or other sort of controlled study, there are at least two groups whose results are compared against each other. The experimental group receives some sort of treatment, and their results are compared against those of the control group ...

  7. Control Group: The Key Elements In Experimental Research

    Related article: The Role Of Experimental Groups In Research. The Role Of A Control Group In Scientific Experiments. A control group plays a crucial role in scientific experiments as it enables researchers to establish a valid cause-and-effect relationship between the experimental treatment and the observed outcomes.

  8. Control Groups & Treatment Groups

    To test its effectiveness, you run an experiment with a treatment and two control groups. The treatment group gets the new pill. Control group 1 gets an identical-looking sugar pill (a placebo). Control group 2 gets a pill already approved to treat high blood pressure. Since the only variable that differs between the three groups is the type of ...

  9. Control group

    They write new content and verify and edit content received from contributors. control group, the standard to which comparisons are made in an experiment. Many experiments are designed to include a control group and one or more experimental groups; in fact, some scholars reserve the term experiment for study designs that include a control group ...

  10. What Is a Controlled Experiment?

    In an experiment, the control is a standard or baseline group not exposed to the experimental treatment or manipulation.It serves as a comparison group to the experimental group, which does receive the treatment or manipulation. The control group helps to account for other variables that might influence the outcome, allowing researchers to attribute differences in results more confidently to ...

  11. Control Group Vs Experimental Group In Science

    In a controlled experiment, scientists compare a control group, and an experimental group is identical in all respects except for one difference - experimental manipulation.. Differences. Unlike the experimental group, the control group is not exposed to the independent variable under investigation. So, it provides a baseline against which any changes in the experimental group can be compared.

  12. The Importance of Control Group Analysis in Scientific Research

    The Role of Control Groups in Ensuring Internal Validity. ... In any well-designed experiment, the control group serves as a benchmark, allowing researchers to measure the true effect of the independent variable. This is especially important in fields like marketing budget planning, where understanding the actual impact of different strategies ...

  13. Control Group

    A control group is a group in an experiment that does not receive the treatment or intervention being tested, serving as a benchmark to compare against the experimental group. This helps researchers isolate the effects of the treatment and understand any changes that occur as a result of it. The control group plays a crucial role in minimizing variables that could affect the outcome, allowing ...

  14. Control Group

    Control Group Definition. In scientific experiments, the control group is the group of subject that receive no treatment or a standardized treatment. Without the control group, there would be nothing to compare the treatment group to. When statistics refer to something being "X times more likely to happen" they are referring to the ...

  15. How to Use Experiment Control Groups

    Understanding the control group's role enhances Control Group Utilization in experiments. It helps in identifying any differences in behavior or outcomes between the groups. There are two primary aspects of a control group: the first is the absence of the treatment, and the second is the similar characteristics shared with the experimental group.

  16. What Is a Controlled Experiment?

    Revised on June 22, 2023. In experiments, researchers manipulate independent variables to test their effects on dependent variables. In a controlled experiment, all variables other than the independent variable are controlled or held constant so they don't influence the dependent variable. Controlling variables can involve:

  17. Control Group and Experimental Group Explained

    Defining the Control Group. In experiment design basics, defining the control group is crucial for conducting valid research. ... Understanding the role of the control group helps in interpreting results accurately. It sets a clear framework for analysis, clarifying whether the outcomes are due to the intervention or other influences. By ...

  18. What is Control Group? Types, Examples, and Pros & Cons

    Hugh Good. A control group is a common tool that researchers use. It allows them to prove a cause-and-effect relationship with an independent variable. This variable does not change for the control group. In this sense, the control group is the status quo. Researchers compare the effects in the experimental group against the control group.

  19. Define Control Group in an Experiment: Explained

    Thus, understanding the role of a control group is essential for interpreting experimental results accurately. Definition and Purpose of a Control Group. A control group, often referred to as an experimental baseline group, serves a crucial function in scientific experiments. It remains unchanged or unexposed to the treatment being tested.

  20. Control Group

    A control group is an essential part of any experiment. It is a group of subjects who are not exposed to the independent variable being tested. The purpose of a control group is to provide a baseline against which the results from the treatment group can be compared. Without a control group, it would be impossible to determine whether the ...

  21. Control Group Definition, Purpose & Examples

    A control group is a group in the experiment which a variable is not being tested, such as a test subject that does not receive any treatment. Control groups serve as important benchmarks to ...

  22. The Difference Between Control Group and Experimental Group

    The control group and experimental group are compared against each other in an experiment. The only difference between the two groups is that the independent variable is changed in the experimental group. The independent variable is "controlled", or held constant, in the control group. A single experiment may include multiple experimental ...

  23. What is a Control Group?

    Cite this lesson. In experimental research, the control group is the group of participants that do not receive the experimental treatment and serves as the standard for comparison. Learn about the ...

  24. What Is a Controlled Experiment?

    Controlled Experiment. A controlled experiment is simply an experiment in which all factors are held constant except for one: the independent variable. A common type of controlled experiment compares a control group against an experimental group. All variables are identical between the two groups except for the factor being tested.

  25. Value Partners Founder to Quit as Chinese Broker Asserts Control

    Value Partners Group Ltd. founder Cheah Cheng Hye plans to give up his co-chairman role as Chinese brokerage GF Securities Co. reshuffles the senior ranks at the Hong Kong asset manager after ...