• Open access
  • Published: 29 April 2022

Potential impacts of synthetic food dyes on activity and attention in children: a review of the human and animal evidence

  • Mark D. Miller   ORCID: orcid.org/0000-0002-9301-0093 1 ,
  • Craig Steinmaus 1 ,
  • Mari S. Golub 1 ,
  • Rosemary Castorina 2 ,
  • Ruwan Thilakartne 2 ,
  • Asa Bradman 2 , 3 &
  • Melanie A. Marty 1  

Environmental Health volume  21 , Article number:  45 ( 2022 ) Cite this article

46k Accesses

30 Citations

498 Altmetric

Metrics details

Concern that synthetic food dyes may impact behavior in children prompted a review by the California Office of Environmental Health Hazard Assessment (OEHHA). OEHHA conducted a systematic review of the epidemiologic research on synthetic food dyes and neurobehavioral outcomes in children with or without identified behavioral disorders (particularly attention and activity). We also conducted a search of the animal toxicology literature to identify studies of neurobehavioral effects in laboratory animals exposed to synthetic food dyes. Finally, we conducted a hazard characterization of the potential neurobehavioral impacts of food dye consumption. We identified 27 clinical trials of children exposed to synthetic food dyes in this review, of which 25 were challenge studies. All studies used a cross-over design and most were double blinded and the cross-over design was randomized. Sixteen (64%) out of 25 challenge studies identified some evidence of a positive association, and in 13 (52%) the association was statistically significant. These studies support a relationship between food dye exposure and adverse behavioral outcomes in children. Animal toxicology literature provides additional support for effects on behavior. Together, the human clinical trials and animal toxicology literature support an association between synthetic food dyes and behavioral impacts in children. The current Food and Drug Administration (FDA) acceptable daily intakes are based on older studies that were not designed to assess the types of behavioral effects observed in children. For four dyes where adequate dose-response data from animal and human studies were available, comparisons of the effective doses in studies that measured behavioral or brain effects following exposure to synthetic food dyes indicate that the basis of the ADIs may not be adequate to protect neurobehavior in susceptible children. There is a need to re-evaluate exposure in children and for additional research to provide a more complete database for establishing ADIs protective of neurobehavioral effects.

Peer Review reports

Concerns about possible associations between exposure to synthetic food dyes and the exacerbation of symptoms of Attention Deficit/Hyperactivity Disorder (ADHD) in children have surfaced periodically since the 1970s. The concern prompted the California legislature to request a review by the California Environmental Protection Agency’s Office of Environmental Health Hazard Assessment (OEHHA) of available studies to evaluate whether the synthetic food dyes currently allowed in foods and medications in the United States impact neurobehavior in children [ 1 ]. This paper provides an overview of key portions of OEHHA’s peer-reviewed assessment, specifically the evaluation of the clinical trials of synthetic food dyes in children and available animal toxicology studies, as well as discussion of our hazard characterization and the possible public health implications of our findings.

Our evaluation focused on seven of the nine food dyes subject to FD&C batch certification by the US Food and Drug Administration (FDA) and approved for general use in food in the US (Table  1 ). These seven dyes contribute nearly all of the exposure to synthetic food dyes for the general US public [ 1 ]. The term “FD&C batch-certified” refers to the Food Drug and Cosmetic Act requirements for chemical analysis of each manufactured batch of food dye to ensure that specific contaminants are present below legal limits. OEHHA evaluated the literature to determine whether there is any evidence supporting the association of exposure to synthetic food dyes with adverse neurobehavioral impacts in children in the general population with or without a diagnosis of ADHD.

The literature review methods were designed to identify all the literature most relevant to the assessment of evidence on the neurological or neurobehavioral effects of the synthetic food dyes listed in Table 1 . The search was executed to identify peer-reviewed open-source and proprietary journal articles, print and digital books, reports, and gray literature that potentially reported relevant toxicological and epidemiological information. We also included Citrus Red No. 2 and Orange B/CI Acid Orange in the search terms since these food dyes are part of an overlapping literature that might contain information on the commonly used FD&C synthetic food dyes. PubMed MeSH browser (PubMed MeSH browser) and PubChem ( PubChem ) were used to identify subject headings, other index terms and synonyms for the food dyes of interest and their metabolites, as well as for the concepts related to exposure, food, mechanisms of action, and neurological outcomes. Preliminary searches were run and results reviewed to identify additional terms. The concepts were combined in the following manner:

((food/dietary terms) AND (specific food dye terms)) OR ((specific food dye terms) AND (neurological outcome terms) OR (general exposure terms) OR (mechanisms of action terms))

The detailed search strategy executed in PubMed on November 26, 2018 is summarized in the additional information (Table A.1). This search was run again to capture literature updates, on March 8, 2019 and April 22, 2019, and again in October 2020.

Additional databases (PubMed, Embase, Scopus) and other data sources (European Food Safety Authority (EFSA) Journal, EFSA Scientific Output, US FDA Safety Information Office, University of California, San Francisco Food Industry Documents Archive, and Dyes and Pigments Journal) were also searched; strategies were tailored according to the search features unique to each database and data source. Relevant literature was also identified from citations in individual articles. In addition, we searched NIH RePort to identify additional unpublished clinical trials or animal research. In our systematic review of the epidemiologic research on synthetic food dyes and neurobehavioral outcomes in children, we summarized the major strengths and weaknesses of each study, described any consistencies across study results, and if heterogeneity exists, identified its sources as far as possible [ 1 ].

Our epidemiologic review focused on clinical trials. A major advantage of this type of study is that investigators generally have control over the exposure which can help reduce bias and confounding compared to other study designs. Next, we conducted systematic evaluations of study methods and quality to ensure an emphasis on the high quality studies for our conclusions. In evaluating study quality, we utilized criteria based on the National Toxicology Program’s OHAT Risk of Bias Rating Tool [ 2 ]. We modified these to be specific to randomized clinical trials (RCT) on artificial food dyes and childhood neurobehavior. We examined several key characteristics of each study to assess study quality including design, participant selection, exposure levels, age groups, washout period, infractions, outcome metric, and funding (Table A.2). This table also includes key information on results including statistical significance, effect size, dose-response, and subgroups. The coding used in our statistical analyses and quality scoring is provided in Tables A.3 and A.4. These tables show the criteria used to evaluate study quality, which included randomization, placebo use, dropout rate, blinding, whether dose-response was assessed, outcome metric validation, replication, and adequate washout. All this information was considered in making our overall conclusions about the human study results.

In determining whether the study reported an association, we define association as either a statistically significant outcome ( p value <.05 or 95% confidence intervals that excluded 1.0 for relative risk estimates or 0 for mean differences) or an effect size ≥20% or standardized effect size ≥0.20. Most studies involved small sample sizes and thus may not have had sufficient statistical power to identify effects that are relatively small but still of public health importance. Because of this, in addition to statistical significance, bias and effect size were also considered in our evaluations of association and causal inference. There are several arguments against solely using statistical significance to identify associations [ 3 , 4 ].

We searched the animal toxicology literature and identified numerous studies of neurobehavioral effects in laboratory animals exposed to synthetic food dyes. These included studies of exposures during prenatal, infant, and juvenile development, examining neurobehavioral effects in the offspring manifest during development and/or later in adult animals. The availability of studies at different developmental stages allowed a comprehensive review of adverse developmental effects, although it limited the ability to compare results across study designs, as exposures during different developmental stages may manifest differently later in life. The OEHHA report reviewed all available studies and provided strengths and limitations for the individual studies [ 1 ].

Acceptable Daily Intakes (ADIs) for synthetic food dyes were established by the US FDA between the 1960s and the1980s based on general toxicology studies. OEHHA therefore also evaluated whether newer studies that included neurobehavioral assessment would be useful for developing updated acceptable exposure levels that explicitly account for and protect against neurobehavioral effects of individual food dyes. OEHHA compared the results of those specific studies to the existing US FDA ADIs, as well as ADIs developed by the Joint FAO/WHO Expert Committee on Food Additives (JECFA).

Review of clinical trial studies

In total, 27 clinical trials were identified that met each of the following criteria:

Human study

Clinical trial design

Participants were given a known quantity of synthetic food dyes or a diet low in or eliminating synthetic food dyes

A neurobehavioral outcome related to hyperactivity or inattention was assessed

The majority of participants were children ≤19 years of age

The effects of an active ingredient or elimination diet were compared to those of a placebo

Studies were excluded if they were:

Studies involving cohort, case-control, or cross-sectional designs

Studies that assessed the effects of a broad range of food groups, including elimination studies, and did not specifically evaluate synthetic food dyes. Any effect identified in such studies would be difficult to ascribe specifically to synthetic food dyes.

No exclusions were made based on the number of participants, participation rates, blinding, randomization, or source (e.g., government reports), although each of these factors was considered in our review of study quality and in our overall conclusions.

Figure  1 presents the results of our literature search as the number of clinical studies reporting adverse neurobehavioral outcomes by key study variables. Of the 27 studies meeting our criteria for inclusion, 25 involved challenge studies, which we consider most relevant as they directly challenge children with food dyes, and two involved diet elimination studies. Detailed descriptions of the 25 included challenge studies are provided in Table A.2. Table  2 below summarizes the characteristics and overall findings of the reviewed challenge studies. Several studies of exposure to dye mixtures also included other dyes not used in the US.

figure 1

Number of clinical studies reporting positive associations by key study variables

The most frequent study locations were in the US (44%), followed by the UK (22%), and Australia and Canada (15% each). The mean number of participants was 44 (range 1–297). All studies used cross-over designs. In the cross-over design, each subject receives each treatment (including placebo) and, thus, the subjects serve as their own controls, which minimizes bias and confounding. Most challenge studies were double-blinded and the cross-over design was randomized, although in two studies the use of blinding was unclear. Randomization was either not done or was unclear in seven studies. Six studies assessed tartrazine only, whereas the rest studied mixtures of common dyes. The average dose assessed was 55.8 mg/day (range 1.2 to 250 mg/day, doses relevant to children’s exposure in the US). In all but one challenge study, participants were placed on an elimination diet during the study. Most studies (70%) used a validated or otherwise commonly accepted metric to assess neurobehavioral outcomes, with the most common being the Conners Parent scale.

Sixteen (64%) out of 25 challenge studies identified some evidence of an association and in 13 (52%), the association was statistically significant (Fig.  1 and Table 2 ; Table A.2). Associations (either large effect sizes or statistically significant results) were most commonly identified in studies that assessed neurobehavioral outcomes using information from the child’s parents. Out of eight challenge studies that provided results for both parents and teachers, four found associations only when examining parent reports [ 5 , 6 , 7 , 8 ], one found associations for both parent and teacher reports [ 9 ], two did not report an association for any outcome metric [ 10 , 11 ], and one found an association only for another metric [ 12 ].

Positive associations were also more frequently reported in studies published after the year 1990 (83.3 vs. 57.9%, p  = 0.26), in studies that used validated metrics for assessing outcome (70.6 vs. 50.0%, p  = 0.17) and in studies with larger numbers of participants (see Fig. 1 and Table 2 ). The reason why more recent studies tended to report associations compared to earlier studies is unclear.

While two positive studies tested mixes of dyes plus preservatives [ 13 , 14 ], the large majority did not include preservatives and many of these (59.1% overall), identified associations between these dyes and adverse effects on neurobehavior with 10 of them reporting associations that were statistically significant [ 5 , 7 , 15 , 16 , 17 ].

Rowe and Rowe [ 17 ] saw a dose-response pattern between increasing doses of 1, 2, 5, 10, 20, and 50 mg of Yellow No. 5 (tartrazine) per day and worsening behavioral scores. Only two other studies reported information on dose-response, one using multiple dyes and one with Yellow No. 5 alone, with neither finding a clear dose-response pattern [ 18 , 19 ] However, Rowe and Rowe used many more doses and had a larger sample size than the other two studies. These differences and other study design issues may have affected whether a dose-response could be seen.

We could not divide studies based solely on age as there was a wide range of ages studied with broad overlap across studies reviewed. However, based on sensitivity analyses examining age, in three studies, results varied minimally [ 11 , 17 , 20 ], while in three others, greater effects were seen in younger participants [ 5 , 14 , 21 ].

Nigg et al., 2012 meta-analysis

A high-quality meta-analysis [ 22 ] is supportive of the hypothesis that synthetic food dye exposures is associated with adverse behavioral effects in children. This study identified statistically significant summary associations for findings based on parent reports or on attention tests, with effect sizes about one-sixth to one-third of those seen for improvements from ADHD medications. Nigg et al. estimated that 8% of children with ADHD may have symptoms related to synthetic food dyes. Our report evaluated the same studies used in the Nigg et al. meta-analysis as well as two pilot or preliminary reports [ 7 , 19 ], two studies with only 1–2 participants [ 8 , 16 ], and a study published after the meta-analysis was published [ 10 ]. These five studies reported mixed results. It is unlikely their inclusion in a meta-analysis would dramatically affect its results because most of these studies had small sample sizes. Additionally, the Lok et al. study [ 23 ] did not present means and standard deviations for analyses comparing placebo to artificial food dyes, and as such would be difficult to include in meta-analysis with most other studies.

Bias and confounding

As documented in Tables S.2-S.4 we performed extensive evaluations of quality for each study. One strength of our findings is that they are based on clinical trials with cross-over designs and placebo control. Non-compliance can lead to exposure misclassification in clinical trials, but we found that infraction rates were generally low in the studies when they were reported. Potential confounding can be markedly reduced with the use of cross-over designs since subjects are being compared to themselves. Bias that may be introduced by the expectations of the researchers and participants is minimized by use of blinding and placebo control. We performed a sensitivity analysis in which we only included studies that were double-blinded and had the cross-over randomized, and found that our conclusions were similar to that of our analysis that included all studies (Table 2 , rows for RCDP).

Recruitment strategies and participation rates were not always clearly described in the studies, and most seemed to involve convenience samples. The use of convenience samples or low participation rates can introduce bias. However, in studies in which the participants, parents, and others were blinded, we found no clear evidence or obvious reason that convenience sampling or low participation might cause false positive results. While convenience sampling and low participation rates might affect the generalizability of some studies, we see no reason why they would affect the ability of a study to examine whether at least some children might be adversely affected by synthetic food dyes, especially given the cross-over design.

Adjustments for publication bias by Nigg et al. [ 22 ] attenuated summary effect sizes in the meta-analysis, although several remained statistically significant. However, these adjustment methods are imperfect. In addition, given the widespread interest in the potential health effects of synthetic food dyes, it seems unlikely that well-conducted clinical trials would remain unpublished resulting in publication bias.

Susceptibility

From the studies reviewed, it appears that not all children react to the dyes with adverse behavioral outcomes. Possible explanations for this sensitivity are not clear. Studies that included only children who were previously diagnosed with hyperactivity were not more likely to report positive associations between synthetic food dye exposure and poorer behavioral outcomes. Stevenson et al. [ 24 ] found that children (both 3 year-olds and 8/9 year-olds) with certain polymorphisms in histamine degradation genes had greater adverse responses to synthetic food dyes. In addition, gene polymorphisms in the dopamine transporter gene in 8/9 year-old children moderated the effects of the food dyes. Since histamine plays a role as a neurotransmitter in the brain and is involved in wakefulness, polymorphisms in the histamine degradation genes are a plausible basis for varied behavioral sensitivity to dyes associated with histamine release. Replication of this study and further research of the impacts of gene polymorphisms on response to food dyes are needed.

Review of animal toxicology studies

Animal toxicology studies were used by FDA as the basis for regulatory risk assessments of food dyes [ 25 ]. All current dye registrations were made between 1969 and 1986 based on studies performed 35 to 50 years ago. These studies were not designed to assess neurobehavioral endpoints. Dye registration was accompanied by derivation of an “acceptable daily intake” (ADI) based on these studies. FDA ADIs have not been updated since original dye registration, although there have been several reviews of specific effects since then, the latest in 2011 [ 25 ].

Our review of animal toxicology studies was intended to examine neurobehavioral toxicity of food dyes and included any study administering one or more of the FDA registered food dyes and measuring a behavioral endpoint. We obtained 25 reports from the peer-reviewed literature. Two reports could not be reviewed due to lack of study information. The 23 studies reviewed had the following characteristics:

Rodent models (rats or mice)

Oral administrations (diet or gavage)

Dosing with individual dyes (14 studies) or dye mixtures (9 studies) (Fig.  2 )

Dosing included at or below that in studies used to establish FDA ADIs

Durations ranging from a single dose to lifetime daily dosing (Fig.  3 )

Behavioral endpoints including preweaning motor development, spontaneous motor activity and/or learning and memory tests

Comparison of dosed and control groups

figure 2

Number of animal developmental neurobehavioral toxicity studies by dye and year

figure 3

Experimental designs of developmental neurotoxicity studies in animals with synthetic food dye exposures

The study designs varied (Fig. 3 ) and included exposures during prenatal, infant, juvenile and adult life stages, and examined neurobehavioral effects during development and/or adulthood. Due to the wide range of designs, an overall integration of findings was not possible but a broader picture of the potential for food dye neurobehavioral toxicity is seen. Details of the studies are presented in Table A.5 and A.6. Detailed evaluation and interpretation of each study is reported in the OEHHA document [ 1 ]. First author and dates of publication are shown.

Details from all the studies reviewed in this section are shown in Table A.5.

Findings from these studies have greatly advanced our knowledge of neurobehavioral effects of synthetic food dyes:

Long term consequences of exposure during pregnancy [ 26 , 27 , 28 , 29 ]. This is the first research using the classical developmental neurotoxicology (DNT) design where exposure begins during pregnancy to identify long-term effects of perinatal exposure. Prior regulatory developmental toxicology studies have been limited to effects on mortality, malformation, and growth. There are no studies in humans using exposure in pregnancy.

Effects of synthetic food dyes on behavior in adult rats after a single administration [ 30 , 31 ]. These are the only available animal studies measuring behavior shortly after a single dye administration.

Behavioral effects when synthetic food dyes are administered at juvenile/adolescent life stages [ 32 , 33 ]

Effects on behavior in adult rodents with chronic exposures [ 31 , 34 , 35 , 36 ]. Due to the emphasis on behavioral effects in children, more general studies of neurobehavioral toxicity in adults have been lacking but have recently been undertaken in animal models.

Prevention of effects of synthetic food dyes on behavior by antioxidants [ 35 , 36 ]. This line of investigation has also been pursued for other aspects of dye toxicity [ 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 ]

Brain changes associated with behavioral effects [ 26 , 29 , 30 , 31 , 34 , 35 , 36 ]. Emerging research in the last 10 years has begun to explore effects of synthetic food dye exposures on the brain at doses that affect behavior.

Individual dye studies

A series of neurobehavioral studies of individual dyes has been performed by one laboratory in Japan for 5 of the 7 food dyes approved for use in the US [ 46 , 47 , 48 , 49 , 50 , 51 ]. These studies used lifetime exposure beginning prior to parental mating. Details of the studies can be found in Table A.5. For three of the dyes, behavioral effects were identified at doses below those producing the toxicological effects used to establish the FDA ADIs. Several considerations limit the use of these studies in assessing food dye risk to children, including reproductive toxicity in the studies, multiple life stage exposure, dosing both before and during testing, and lack of litter-based statistics for preweaning endpoints.

Eight studies were from US laboratories, all published prior to 1987. We did not find any programmatic investigator-initiated research on neurobehavioral effects of food dyes currently being performed in the US.

The US FDA supported early studies of three synthetic food dyes (Yellow No. 5, Red No. 3, Red No. 40) that also used lifetime exposures beginning prior to or shortly after conception and continuing through adult animal testing [ 52 , 53 , 54 ]. Dosing was based on known non-behavioral toxicity of the dyes. Behavioral effects were reported for Red No. 3 [ 54 ] and Red No. 40 [ 53 ] using an extensive test battery.

The other 5 studies of individual dyes were conducted more recently and administered individual dyes to postpubertal (adolescent and adult) rodents [ 30 , 31 , 34 , 35 , 36 ]. These investigators were interested in specific hypotheses about food dye mechanism of action and included brain assays: brain microhistomorphometry [ 35 , 36 ]; measures of oxidative stress [ 34 ]; and measures of influence on the serotonin system [ 30 , 31 ].

Mixture studies

Early studies used dye mixtures designed to parallel US food dye exposure at that time [ 33 , 55 , 56 , 57 , 58 ]. More recent studies used dosing based on a multiple of regulatory ADIs [ 27 , 28 , 29 , 32 ]. Study details are presented in Table A.6. Animal mixture studies, like children’s mixture studies, are valuable for hazard identification, but not for ADI development, which is based on each dye individually.

The two studies using synthetic food dye mixtures that are most relevant to the studies in children reported behavioral effect during dye administration to immature rats [ 32 , 33 ]. Both studies reported effects on regulation of spontaneous motor activity. Shaywitz et al. [ 33 ] used a mixture based on human exposure and found greater activity in rats dosed at twice the estimated average exposure at that time in children. Erickson et al. [ 32 ] found increased movement time using a mixture of dyes in drinking water, each dye at a dose less than 2 times the FDA ADI.

One series of studies examined exposure to a mixture of synthetic food dyes during pregnancy [ 27 , 28 , 29 ]. The 9 dyes were administered at either the JECFA ADI [ 28 ] or 100 times the JECFA ADI [ 27 , 29 ]. Six of the seven FDA registered food dyes were included. Effects on activity and emotionality were reported with testing of one-month old (early adolescence) and three-month old (adulthood) offspring, but learning and memory tests were not affected.

Behavioral endpoints

Behavioral assessments were primarily conducted in a few domains: preweaning motor development (4 studies), spontaneous motor activity (21 studies), and trial-based learning and memory tests (18 studies). Some recent studies included emotionality tests [ 27 , 28 , 29 , 32 ].

Spontaneous motor activity, a sensitive and widely used test in developmental neurotoxicology, was the most frequently used test in animal dye studies because of the findings of hyperactivity in children’s studies. While the test apparatus and specific endpoints affected (vertical/horizontal activity, speed, distance, duration) varied, altered regulation of activity was seen in 17 of the 21 of the studies.

Sensitivity of learning and memory tests in developmental neurotoxicology is less consistent [ 59 , 60 ]. For the food dye studies we examined, tests included shock-motivated avoidance, food motivated mazes, and water mazes, with 12 of 18 studies reporting dye effects. Our review found that many of the test results could not be used for risk assessment due to design and statistical issues. For example, some studies did not use litter-based statistics.

Brain assays in behavioral studies

Many animal studies we reviewed conducted brain assays that evaluated a number of parameters with a focus on neurotransmitter systems. Early studies did not identify effects of synthetic food dye exposures on tissue catecholamine neurotransmitter concentrations [ 33 , 55 , 56 , 57 ]. More recent studies identified effects on gene receptor expression, enzyme activity in neurotransmitter systems, and localized changes in neurotransmitter levels [ 26 , 29 , 30 , 31 ]. Also, brain histomorphology assessed with contemporary methods has identified effects (decreased medial prefrontal cortex volume, decreased numbers of glia and neurons, changes in dendritic morphology) of the two most used food dyes, Red No. 40 and Yellow No. 5 [ 35 , 36 ]. Protective effects of antioxidants [ 35 , 36 ], as well as changes in brain anti-oxidant defense systems [ 34 ] provide evidence for oxidative stress as a mechanism of toxicity. Two other papers with no behavioral measures found markers of oxidative stress in the brain after in vivo treatment of rats with Yellow No. 5 [ 61 , 62 ].

Data from a human study provide evidence for a mechanism involving the neurotransmitter histamine. The investigators demonstrated that polymorphisms in the histamine degradation gene for histamine-N-methyltransferase influences response to a dye mixture [ 24 ]. In addition to its role in the inflammatory process, histamine is recognized for its role in regulating synaptic transmission alone and in concert with other neurotransmitters [ 2 ].

Considering both in vivo and in vitro research, other potential pathways for food dye neurotoxicity have been suggested [ 63 , 64 , 65 ].

Endocrine (thyroid, estrogen) mediated effects

Interference with neuronal proliferation and differentiation

Effects secondary to general physiological toxicity

Immune mediated effects

Interference with nutrient bioavailability

The relevance of the animal toxicology findings to humans ingesting synthetic food dyes in food and medications would be better understood with more information about food dye toxicokinetics. In particular, the breakdown of azo dyes in the gut prior to absorption requires toxicological examination of metabolites. Future studies should evaluate whether the parent compounds act on the gut to influence behavior via the gut-brain axis [ 66 ].

Hazard characterization

The studies that form the basis of the FDA (and JECFA) ADIs are many decades old and as such were not capable of detecting the types of neurobehavioral outcomes measured in later animal studies, or in clinical trials in children consuming synthetic food dyes.

Nonetheless, OEHHA first compared the US FDA ADIs and the No-Observed-Adverse-Effect Levels (NOAELs) from which they were derived to NOAELs from the animal toxicology studies that were reviewed [ 1 ]. Next, we compared the estimated food dye exposures (mg/kg/d) from food consumption to available regulatory benchmarks in a traditional Hazard Index approach for noncancer health effects. The Hazard Index approach divides estimated exposures by a toxicity benchmark. If that ratio is greater than 1, then it is indicative of a possible risk of adverse noncancer effects. Finally, we compared the ADIs to NOAELs and Lowest-Observed-Adverse-Effect Levels (LOAELs) observed in the few key animal and human studies of sufficient quality. This comparison should help inform future revisions of the ADIs aimed at protecting children from neurobehavioral effects.

Comparing neurobehavioral effect levels to FDA ADI NOAELs

To derive the ADI for each dye, US FDA divided NOAELs reported by investigators from animal studies by a factor of 100. While reviewing animal neurobehavioral toxicology studies, we compared the effective doses (LOAELs) to animal NOAELs used by US FDA to derive human ADIs (hereinafter referred to as ADI NOAELs). The purpose of this comparison was to see if neurobehavioral effects were found at doses that FDA determined were not causing effects in the older general toxicology studies . Tables  3 and 4 presents these comparisons for both developmental and adult neurotoxicology studies where a single dye was administered.

Comparing food dye exposures to available regulatory benchmarks

OEHHA [ 1 ] derived exposure estimates based on NHANES 2015–2016 Dietary Interview data, and information on food dye concentration data sourced from Doell et al. [ 67 ]. We calculated single-day and two-day average cumulative daily synthetic food dye intake estimates (mg/person/day) for the following demographic categories:

Pregnant women 18 years and older

Women of childbearing age (18–49 years)

Children: 0- < 2 years, 2- < 5 years, 5- < 9 years, 9- < 16 years, and 16–18 years

We estimated daily synthetic food dye intakes (mg/person/day) for

The typical-exposure scenario , which represents exposure to a given FD&C batch-certified synthetic food dye for a typical consumer, an individual who may not always eat products with the lowest or highest levels of that food dye but some combination of both.

The high-exposure scenario , which represents the highest exposure where the individual is only consuming products with the highest levels of that food dye.

We divided each individual’s FD&C batch-certified synthetic food dye intake estimate (mg/person/day) by their body weight (kg) reported in NHANES 2015–16 [ 68 ] to produce synthetic food dye dose estimates in units of mg/kg/day. The most commonly consumed dyes for the various age ranges of children expressed as the mean of typical-exposure scenario estimates were Red No. 40 (ranged from 0.11 to 0.3 mg/kg-day), Red No. 3 (ranged 0.02 to 0.54 mg/kg-d), Yellow No. 5 (ranged from 0.05 to 0.19 mg/kg-d) and Yellow No. 6. (ranged from 0.05–0.20 mg/kg-d) [ 1 ]. The 95th percentile of the high-exposure scenario estimates ranged from about 1 to 8 mg/kg-day for these four dyes. Children’s exposures tended to be higher than adult women.

We compared the synthetic food dye dose estimates to the US FDA and JECFA ADIs (Table  5 ) by calculating the ratio of the dose estimates to the established ADIs [ 25 , 69 , 70 , 71 , 72 ] as the Hazard Index. Hazard index > 1 signifies that the food dye exposure estimates (mg/kg/day) exceeded the established ADI.

With the exception of FD&C Red No. 3, all exposure estimates (mg/kg/day) from foods were below the US FDA or JECFA ADIs. The Hazard Indices (HI) that exceeded 1 for Red No. 3 are bolded in Table  6 . Children’s single day mean FD&C Red No. 3 exposure estimates for typical- and high-exposure scenarios ranged from 0.01 to 0.60, not exceeding the FDA ADI of 2.5 mg/kg-day. The 95th percentile exposure estimates ranged up to 3.16 (although it represents few children). For several age categories the mean single day typical- and high-exposure scenarios exceeded the JECFA ADI of 0.1 mg/kg-day, with HI ranging from 0.21 to 15; the 0 < 2 year age category had the highest HI.

Comparing US FDA ADIs to key neurobehavioral studies

There are several animal studies and one human study that could be used to evaluate whether existing ADIs are protective of neurobehavioral effects for Red No. 3, Red No. 40, Yellow No. 5 and Yellow No. 6. No suitable studies of green or blue dyes were found for this comparison.

Tanaka et al. [ 48 ] conducted a developmental toxicity study of Red No. 3 where various doses were administered via diet from preconception through PND 63 and reported increased activity measurements in female offspring. For adult female dams, more turning was reported in the high-dose group than in controls. Activity in male offspring was affected at 3 weeks of age ( p  < 0.01 for linear dose trend), but not at 8 weeks of age. In the female offspring at 8 weeks, statistically significant dose-dependent dye-induced increases in activity were seen, but not at 3 weeks of age. These included number of activity bouts, distance traveled in each bout, greater speed, total time moving and total distance. This interesting finding of greater activity is particularly valuable because of the absence of more severe developmental toxicity.

The NOAEL was 24 mg/kg/day for the female offspring. This NOAEL is a factor of 10 higher than the FDA ADI of 2.5 mg/kg/day. If one were to apply the same methodology as US FDA (dividing the NOAEL by a factor of 100) to derive an ADI, the resulting ADI would be a factor of 10 lower.

The studies by Dalal and Poddar [ 30 , 31 ] (Table A.5) provide unique information on brain serotonin pathway changes, and on behavioral changes in young adult animals either following single gavage administration or following 15 or 30 day exposures to Red No. 3. In their first study, the investigators measured activity (vertical rearing frequency detected automatically) for 5 min at 30 to 60 min intervals up to 9 h post-dosing after single gavage doses of 0, 1, 10, 100 or 200 mg/kg. A dose-dependent pattern of diminished activity was observed that reached a low at 2 h after dye administration and then returned to baseline by 7 h (Fig. 1 in Dalal and Poddar (2009)). The effect of diminished activity was replicated in an experiment demonstrating reversal of this effect by inhibitors of monoamine oxidase (MAO), the enzyme that metabolizes serotonin. In the second report, the investigators administered the same doses daily for a period of 15 or 30 days and activity was measured following the last administration. Following the 15 or 30 day treatments, activity was increased rather than decreased in a dose-dependent fashion (Fig. 1 in Dalal and Poddar (2010)). One explanation for these contrasting results is the role of two neuronal corticotrophin releasing factor (CRF) receptors that determine an active versus passive response to stress [ 73 ]. The NOAEL from these studies is 1 mg/kg/day based on changes in vertical activity in male rats, on increased serotonin levels in specific brain regions, and increased plasma cortisone levels. The NOAEL of 1 mg/kg/day in these studies is lower than the FDA ADI of 2.5 mg/kg/day. If one were to use a 100-fold safety factor with this NOAEL, the ADI would be 0.01 mg/kg/day.

Red no. 40 and yellow no. 5

Noorafshan et al. [ 35 ] administered Red No. 40 to adult male rats ( N  = 10 per dose group) at doses of 0, 7, or 70 mg/kg/day (Table A.6) with and without 200 mg/kg/day of the anti-inflammatory molecule taurine, by gavage for 6 weeks. Both Red No. 40 treated groups performed more reference memory errors and working memory errors in the radial arm maze than controls ( p  < 0.01). Taurine administration mitigated this effect. Histomorphology and stereology found that, in the high dose Red No. 40 group, the medial prefrontal cortex volume was smaller, and there were fewer neurons and glial cells in this brain area. Interpretation of these results is somewhat complicated by the lack of information on body weight and brain weight. The LOAEL is 7 mg/kg/day for this study, which is the same as the US FDA and JECFA ADI of 7 mg/kg/day.

These investigators used the same protocol to evaluate the effect of another azo dye, Yellow No. 5 [ 36 ]. Adult male rats ( N =  10 per dose group) were gavaged with Yellow No. 5 at 0, 5, or 50 mg/kg/day for 7 weeks with and without vitamin E. Exploration time in the novel object test was decreased at the high dose (p < 0.01). More days were required for Yellow No. 5 treated rats (low- and high-dose groups were combined) to reach the learning criterion in the radial arm maze test, and more errors occurred during the learning and retention phases. The brain assays demonstrated a smaller volume of the medial prefrontal cortex in the high-dose group, and lower cell count and shorter dendrites with lower spine density at both doses; qualitative alterations in cell shape were described. These effects were ameliorated by concomitant administration of the antioxidant vitamin E. The LOAEL was 5 mg/kg/day, based on morphometry, the same as the US FDA ADI of 5 mg/kg/day and lower than the JECFA ADI of 10 mg/kg/day. If this study were to be used as the basis for setting an ADI, the resulting ADI would be considerably lower than the existing ADI. Changes in the medial prefrontal cortex can be directly related to the cognitive performance of the animals, as this part of the rodent brain is involved in spatial memory, decision-making and attention [ 35 , 74 ], and may predict similar effects in children.

One study in children used several doses and demonstrated a dose response effect on behavioral scores for Yellow No. 5 [ 17 ]. For this study, the investigators recruited 34 children whose parents had brought them to the Royal Children’s Hospital in Melbourne to be evaluated for hyperactivity and 20 children whose parents had no concern about behavior. The children, ranging in age from 2 to 14 years, were enrolled in a double blind, placebo-controlled repeated measures study of the effects of Yellow No. 5 on behavioral score. The investigators developed a Behavioral Rating Inventory for this study that included 11 items measuring irritability, 9 items that measured sleep disturbance, 4 items that measured restlessness, 3 items that measured aggression and 3 items that measured attention span. In addition, the investigators also used the Conners 10-item Abbreviated Parent-Teacher Questionnaire to assess behavior, which focuses on attention related problems. Children were placed on a dye-free diet for at least 6 weeks before the trial, and then given doses (randomly) of 0, 1, 2, 5, 10, or 20 mg Yellow No. 5 with 2 days in between each dosing. Parents rated the behavior daily using the two instruments.

The investigators found 24 children who had significant behavioral responses to dye challenge, based on ranking the behavioral scores for the six dye-challenge days paired with a set of placebo days; these children were labelled as reactors. The mean behavioral scores on dye-challenge days were significantly different than the scores for the placebo (day before) challenge for all dose/placebo pairs ( p  < 0.05) in the reactors, while the nonreactors showed random fluctuations in behavioral scores. Using repeated measures ANOVA on the six dye-challenge scores with reactors and nonreactors as the between-groups factor, the authors report a significant between-groups effect ( p  < 0.001). There was a dose-dependent effect and the mean score difference between the reactor and the nonreactor groups were significant at doses of 2 mg and higher (p < 0.05). There were no significant differences in mean behavioral rating between the groups on the placebo days. OEHHA identifies 1 mg tartrazine as a NOAEL. The children ranged from 2 to 14 years, with a mean of 7 years. To determine a NOAEL dosage, OEHHA divided the NOAEL of 1 mg by a reference body weight of 25.5 kg for the mean age of 7 years (US EPA, 2011, Table 8–10, based on NHANES 1988–1994); a NOAEL dosage of 0.04 mg/kg/day is obtained. This NOAEL is more than 100-fold lower than the US FDA ADI for Yellow No. 5 of 5 mg/kg/day.

While not all of the human trials demonstrated effects of mixtures of food dyes or of Yellow No. 5 on behavior, the findings of Rowe and Rowe [ 17 ] are supported by some of the other clinical trials in children (Table  7 ). Note that in all these studies, effects were observed at estimated doses lower than the US FDA ADI for Yellow No. 5 of 5 mg/kg/day. One study [ 9 ] reports that in a six-week open trial of the Feingold diet in 55 subjects, ages 3 to 15 years, who had been suspected of reacting to food dyes, 40 children demonstrated improvement when on the Feingold diet, based on assessment of attention span, activity level, distractability, frustration tolerance, and social and manipulative skills by therapists, and teacher and parent questionnaires. In the same study, 8 of the children were challenged with Yellow No. 5 using a double-blinded cross-over design, and two of these children were observed to exhibit strong behavioral responses to the dye. Based on reference body weights for children ages 3 to 15 years, the dosages employed in that study [ 9 ] would have been 0.9–2.7 mg/kg/day. In a double-blind crossover study of 22 children, 4 to 8 years of age, both objective tests for attention and parent and teacher ratings (Conners Parent Teacher Rating Scale) were administered before and after a 4 week dye-free diet, after a 2 week Yellow No. 5 (5 mg daily) challenge and after a 4 week washout dye-free diet [ 7 ]. The investigators report statistically significant effects of Yellow No. 5 based on parental ratings in a subgroup of children whose mothers had reported improved behavior while on the elimination diet. The dose for this range of ages and body weights to the children would be 0.2 to 0.3 mg/kg/day. Levy and Hobbs [ 75 ] reported that mothers’ ratings using the Conners scale were an average of 13% lower when children ( N  = 8) ate placebo cookies compared to those containing Yellow No. 5, in a 2 week crossover trial with daily ratings by parents for a 3 h period after eating the cookies. While there were no statistically significant differences noted, the authors reported that this effect “just failed to reach the .05 level of significance”. The dose of Yellow No. 5 in this study was about 0.1 to 0.2 mg/kg/day.

Taken together, these studies provide support for an effect of Yellow No. 5 on behavior and for use of a neurobehavioral endpoint to determine a safe level of exposure for Yellow No. 5 to protect children who respond to this food dye.

Yellow no. 6

There is only one study of Yellow No. 6 with neurobehavioral endpoints [ 47 ]. Some neurobehavioral effects in offspring were reported for preweaning development and maze learning, but it was not possible to draw firm conclusions due to the statistical approach and varying group sizes in the study.

Goldenring et al. demonstrated that sulfanilic acid (1 mg/kg/day I.p.), a common metabolite of the azo food dyes Yellow No. 5 and Yellow No. 6, increased activity in pups following direct administration assessed three times during a treatment extending throughout juvenile development [ 55 ].

Honohan et al. reported gastrointestinal absorption of sulfanilic acid of 37.4% [ 76 , 77 ]. The 1 mg/kg intraperitoneal dose of sulfanilic acid used by Goldenring et al. would be equivalent to 2.7 mg/kg produced in the gastrointestinal tract, which in turn would result from metabolism of 7 mg/kg of orally administered Yellow No. 5. Thus, one could view 7 mg/kg−/day of Yellow No. 6 to be a free-standing LOAEL. This LOAEL is about twice the FDA (3.75 mg/kg/day) and JECFA (4 mg/kg/day) ADIs for Yellow No. 6. The study by Goldenring et al. [ 55 ] indicates the ADIs for Yellow No. 6 may not be adequately protective of neurobehavioral effects.

Current evidence from studies in humans, largely from controlled exposure studies in children, supports a relationship between food dye exposure and adverse behavioral outcomes in children, both with and without pre-existing behavioral disorders. There appears to be considerable interindividual variability in the sensitivity to synthetic food dyes. While there were a range of results in the studies we identified, the majority reported at least some evidence of an association, including higher quality studies. Importantly, none of the factors we examined (e.g., parent vs teacher report, publication year, validated outcome metric) explained the majority of the heterogeneity seen across the study results. For example, although a large fraction of the studies published since 1990 reported statistically significant results (5 of 6 challenge studies), many studies published before 1990 also reported statistically significant results (8 of 19). And, while studies using a validated outcome metric were more likely to report associations, several studies without validated outcome metrics reported similar associations. Despite the various study limitations, we were unable to identify strong evidence for any apparent biases or other factors that invalidated the positive results reported in the literature.

Studies of Yellow No. 5 alone provide evidence that this dye affects children’s behavior. Most of the challenge studies involved administering multiple dyes at the same time so no single offending agent could be identified from those studies. Regardless, studies involving mixtures more closely represent real-life scenarios, where most children are exposed to multiple dyes in a single day.

Importantly, impacts on behavior and/or neurotransmitter systems or cellular architecture in the brain have been observed in animal studies. Several studies examining exposures during development, during pregnancy only, or as adolescents or adults reported changes in activity using a variety of metrics either in the offspring or in the adolescent or adult animals. In utero exposure was observed to have behavioral effects in the adult offspring. Thus, the animal literature provides support for behavioral effects of synthetic food dyes, including those most often consumed.

Taken together, the scientific literature supports an effect of synthetic food dye exposures on neurobehavior in children at environmentally relevant exposure levels.

Comparing estimated exposures we derived from the 2015–16 NHANES dietary interview to the FDA and JECFA ADIs revealed that for most dyes we analyzed, exposures do not exceed the ADIs. The exception is Red No. 3, where the Hazard Index based on the mean ranged up to 15 for the youngest age groups (Table 6 ).

Comparisons of the effective doses in some of the animal studies that measured behavioral or brain effects following exposure to synthetic food dyes indicates that the basis of the FDA ADIs are not adequate to protect neurobehavior in susceptible children. Three of the studies using developmental exposures reported LOAELS that were below the NOAEL that was used for the FDA ADI. Almost all studies in mature animals that measured behavioral changes and/or changes in the brain found effects of the synthetic food dyes at doses lower than the NOAELs used by the US FDA for the derivation of the ADIs. Several studies observe effects on behavior in animals at doses close to or even lower than the existing FDA ADIs. As noted above, the animal studies that form the basis of the FDA ADIs were not capable of detecting the types of neurobehavioral outcomes observed in many human challenge studies.

For four of the dyes with adequate animal studies explicitly reporting neurobehavioral effects, applying results from these studies would result in lower ADIs and likely exceedances of those ADIs from typical food consumption by children. Consumption of over-the-counter medications and vitamins adds to the exposure from foods [ 78 , 79 ].

If the ADI for Yellow No. 5 were based on the one study that evaluated a dose-response in children for behavioral effects, the ADI would be considerably lower. The human challenge studies provide support for an effect of Yellow No. 5 on behavior and for use of a neurobehavioral endpoint to determine a safe level of exposure for Yellow No. 5 to protect children who respond to this food dye.

It is not possible to compare the results of the animal or human mixtures studies to an ADI for a single dye. However, Erikson et al. [ 32 ] reported increased activity in male rats administered synthetic food dye mixtures where each dye was given at less than twice the ADI NOAEL. Shaywitz et al. [ 33 ] and Goldenring et al. [ 56 ] found greater activity and decreased habituation in a rodent model following administration of mixtures at doses near the ADIs. These mixture doses are in the range of doses in human mixture studies. Doses used in the human mixture studies were designed to mimic actual exposures in children.

A broad range of potential mechanisms by which the synthetic food dyes may impact behavior in susceptible children have been proposed. Additional research is warranted including:

Animal testing in immature animals that includes a within-subjects design and measures of neurobehavior more similar to those in the human studies.

Studies of the toxicokinetics of food dyes in humans and animals using modern techniques and including exposures during different life stages.

Mechanistic studies and studies of underlying genetic susceptibility.

Additional adequately powered clinical trials in children of the FD&C batch-certified synthetic food dyes with a cross-over, placebo-controlled, double blinded design utilizing validated outcome measures, inclusion of behavioral assessments by parents, and objective tests of attention and other behavioral measures by trained psychometricians. Such studies should attempt to evaluate whether the response differs by age, gender, ethnicity, race, or socioeconomic status through a design that evaluates dosing on a mg/kg/day basis.

Studies that evaluate the potential long-term impacts of repeated exposures to food dyes in children.

Such research would provide additional data to inform appropriate acceptable daily intakes that explicitly protect children from neurobehavioral effects. In the short-term, the neurobehavioral effects of synthetic food dyes in children should be acknowledged and steps taken to reduce exposure to these dyes in potentially susceptible children.

Availability of data and materials

As this is a review, data sharing is not applicable to this article as no datasets were generated during the current study. Details of the studies we reviewed are contained in the supplementary tables. The study quality review and coding are available in the supplementary files. Exposure estimates were based on the National Health and Nutrition Examination Survey conducted in 2015 and 2016: CDC. 2017. NHANES 2015–2016 Demographics Data. Available: https://wwwn.cdc.gov/nchs/nhanes/search/datapage.aspx?Component=Demographics & CycleBeginYear = 2015: CDC. 2018. NHANES Dietary Data. Available: https://wwwn.cdc.gov/nchs/nhanes/Search/DataPage.aspx?Component=Dietary . CDC. 2019. National Health and Nutrition Examination Survey. Available: https://www.cdc.gov/nchs/nhanes/index.htm .

Abbreviations

Attention deficit hyperactivity disorder

Acceptable daily intake

Corticotrophin releasing factor

Developmental neurotoxicology

US Food and Drug Administration

The NOAEL used by FDA to derive the current FDA ADI

Food Drug and Cosmetic Act, referring to dyes that must be batch-certified per FDA regulations

Food and Agriculture Organization of the World Health Organization

Joint FAO/WHO Expert Committee on Food Additives

lowest-observed-adverse-effect level in a study

Mg of substance per kg body weight per day

Monoamine oxidase

National Institutes of Health

National Toxicology Program

National Health and Nutrition Examination Survey

No-observed-adverse-effect level in a study

Office of Environmental Health Hazard Assessment, California Environmental Protection Agency

Office of Health Assessment and Translation

Postnatal day

Randomized clinical trial

Clinical trials that are randomized cross-over design, double-blinded and placebo controlled

United Kingdom

United States Food and Drug Administration

OEHHA. Potential neurobehavioral effects of synthetic food dyes in children.: Children's environmental health center, Office of Environmental Health Hazard Assessment. California Environmental Protection Agency. 2021; [Available from: https://oehha.ca.gov/media/downloads/risk-assessment/report/healthefftsassess041621.pdf .

Scammell TE, Jackson AC, Franks NP, Wisden W, Dauvilliers Y. Histamine: neural circuits and new medications. Sleep. 2019;42(1):zsy183.

Article   Google Scholar  

Amrhein V, Greenland S, McShane B. Scientists rise up against statistical significance. Nature. 2019;567(7748):305–7.

Article   CAS   Google Scholar  

Rafi Z, Greenland S. Semantic and cognitive tools to aid statistical science: replace confidence and significance by compatibility and surprise. BMC Med Res Methodol. 2020;20(1):244.

Goyette GH, Connors CK, Petti TA, Curtis LE. Effects of artificial colors on hyperkinetic children: a double-blind challenge study [proceedings]. Psychopharmacol Bull. 1978;14(2):39–40.

CAS   Google Scholar  

Harley JP, Matthews CG, Eichman P. Synthetic food colors and hyperactivity in children: a double-blind challenge experiment. Pediatrics. 1978;62(6):975–83.

Levy F, Dumbrell S, Hobbes G, Ryan M, Wilton N, Woodhill JM. Hyperkinesis and diet: a double-blind crossover trial with a tartrazine challenge. Med J Aust. 1978;1(2):61–4.

Mattes JA. A crossover study of artificial food colorings in a hyperkinetic child. Am J Psychiatry. 1978;135(8):987–8.

Rowe KS. Synthetic food colourings and 'hyperactivity': a double-blind crossover study. Aust Paediatr J. 1988;24(2):143–7.

Leo L, Loong C, Ho XL, Raman MFB, Suan MYT, Loke WM. Occurrence of azo food dyes and their effects on cellular inflammatory responses. Nutrition. 2018;46:36–40.

Mattes JA, Gittelman R. Effects of artificial food colorings in children with hyperactive symptoms: a critical review and results of a controlled study. Arch Gen Psychiatry. 1981;38(6):714–8.

Thorley G. Pilot study to assess Behavioural and cognitive effects of artificial food Colours in a Group of Retarded Children. Dev Med Child Neurol. 1984;26(1):56–61.

Bateman B. The effects of a double blind, placebo controlled, artificial food colourings and benzoate preservative challenge on hyperactivity in a general population sample of preschool children. Arch Dis Child. 2004;89(6):506–11.

McCann D, Barrett A, Cooper A, Crumpler D, Dalen L, Grimshaw K, et al. Food additives and hyperactive behaviour in 3-year-old and 8/9-year-old children in the community: a randomised, double-blinded, placebo-controlled trial. Lancet. 2007;370:8.

Pollock I, Warner JO. Effect of artificial food colours on childhood behaviour. Arch Dis Child. 1990;65(1):74–7.

Rose TL. The functional relationship between artificial food colors and hyperactivity. J Appl Behav Anal. 1978;11(4):439–46.

Rowe KS, Rowe KJ. Synthetic food coloring and behavior: A dose response effect in a double-blind, placebo-controlled, repeated-measures study. J Pediatr. 1994;125(5 PART 1):691–8.

David TJ. Reactions to dietary tartrazine. Arch Dis Child. 1987;62(2):119–22.

Augustine GJ Jr, Levitan H. Neurotransmitter release from a vertebrate neuromuscular synapse affected by a food dye. Science. 1980;207(4438):1489–90.

Adams W. Lack of behavioral effects from Feingold diet violations. Percept Mot Skills. 1981;52(1):307–13.

Harley JP, Ray RS, Tomasi L, Eichman PL, Matthews CG, Chun R, et al. Hyperkinesis and food additives: testing the Feingold hypothesis. Pediatrics. 1978;61(6):818–28.

Nigg JT, Lewis K, Edinger T, Falk M. Meta-analysis of attention-deficit/hyperactivity disorder or attention-deficit/hyperactivity disorder symptoms, restriction diet, and synthetic food color additives. J Am Acad Child Adolesc Psychiatry. 2012;51(1):86–97.e8.

Lok KYW, Chan RSM, Lee VWY, Leung PW, Leung C, Leung J, et al. Food additives and behavior in 8- to 9-year-old children in Hong Kong: a randomized, double-blind, placebo-controlled trial. J Dev Pediatr Psychiatr. 2013;34(9):642.

Google Scholar  

Stevenson J, Sonuga-Barke E, McCann D, Grimshaw K, Parker KM, Rose-Zerilli MJ, et al. The role of histamine degradation gene polymorphisms in moderating the effects of food additives on children's ADHD symptoms. Am J Psychiatry. 2010;167(9):1108–15.

FDA Background document for the food advisory committee: Certified color additives in food and possible association with attention deficit hyperactivity disorder in children. March 30–31, 2011. FDA; 2011.

Ceyhan BM, Gultekin F, Doguc DK, Kulac E. Effects of maternally exposed coloring food additives on receptor expressions related to learning and memory in rats. Food Chem Toxicol. 2013;56:145–8.

Doguc DK, Aylak F, Ilhan I, Kulac E, Gultekin F. Are there any remarkable effects of prenatal exposure to food colourings on neurobehaviour and learning process in rat offspring? Nutr Neurosci. 2015;18(1):12–21.

Doguc DK, Ceyhan BM, Ozturk M, Gultekin F. Effects of maternally exposed colouring food additives on cognitive performance in rats. Toxicol Ind Health. 2013;29(7):616–23.

Doguc DK, Deniz F, Ilhan I, Ergonul E, Gultekin F. Prenatal exposure to artificial food colorings alters NMDA receptor subunit concentrations in rat hippocampus. Nutr Neurosci. 2019;1-11.

Dalal A, Poddar MK. Short-term erythrosine B-induced inhibition of the brain regional serotonergic activity suppresses motor activity (exploratory behavior) of young adult mammals. Pharmacol Biochem Behav. 2009;92(4):574–82.

Dalal A, Poddar MK. Involvement of high plasma corticosterone status and activation of brain regional serotonin metabolism in long-term erythrosine-induced rearing motor hyper activity in young adult male rats. Toxicol Mech Methods. 2010;20(6):287–97.

Erickson ZT, Falkenberg EA, Metz GA. Lifespan psychomotor behaviour profiles of multigenerational prenatal stress and artificial food dye effects in rats. PLoS One. 2014;9(6):e92132.

Shaywitz BA, Goldenring JR, Wool RS. Effects of chronic administration of food colorings on activity levels and cognitive performance in developing rat pups treated with 6-hydroxydopamine. Neurobehav Toxicol. 1979;1(1):41–7.

Gao Y, Li C, Shen J, Yin H, An X, Jin H. Effect of food azo dye Tartrazine on learning and memory functions in mice and rats, and the possible mechanisms involved. J Food Sci. 2011;76(6):T125–T9.

Noorafshan A, Hashemi M, Karbalay-Doust S, Karimi F. High dose Allura red, rather than the ADI dose, induces structural and behavioral changes in the medial prefrontal cortex of rats and taurine can protect it. Acta Histochem. 2018;120(6):586–94.

Rafati A, Nourzei N, Karbalay-Doust S, Noorafshan A. Using vitamin E to prevent the impairment in behavioral test, cell loss and dendrite changes in medial prefrontal cortex induced by tartrazine in rats. Acta Histochem. 2017;119(2):172–80.

Abd-Elhakim YM, Hashem MM, El-Metwally AE, Anwar A, Abo-El-Sooud K, Moustafa GG, et al. Comparative haemato-immunotoxic impacts of long-term exposure to tartrazine and chlorophyll in rats. Int Immunopharmacol. 2018;63:145–54.

Abd-Elhakim YM, Moustafa GG, Hashem MM, Ali HA, Abo-El-Sooud K, El-Metwally AE. Influence of the long-term exposure to tartrazine and chlorophyll on the fibrogenic signalling pathway in liver and kidney of rats: the expression patterns of collagen 1-alpha, TGFbeta-1, fibronectin, and caspase-3 genes. Environ Sci Pollut Res Int. 2019;26(12):12368–78.

Al-Seeni MN, El Rabey HA, Al-Hamed AM, Zamazami MA. Nigella sativa oil protects against tartrazine toxicity in male rats. Toxicol Rep. 2018;5:146–55.

El-Desoky GE, Abdel-Ghaffar A, Al-Othman ZA, Habila MA, Al-Sheikh YA, Ghneim HK, et al. Curcumin protects against tartrazine-mediated oxidative stress and hepatotoxicity in male rats. Eur Rev Med Pharmacol Sci. 2017;21(3):635–45.

El-Sakhawy MA, Mohamed DW, Ahmed YH. Histological and immunohistochemical evaluation of the effect of tartrazine on the cerebellum, submandibular glands, and kidneys of adult male albino rats. Environ Sci Pollut Res Int. 2019;26:9574–84.

Elbanna K, Sarhan OM, Khider M, Elmogy M, Abulreesh HH, Shaaban MR. Microbiological, histological, and biochemical evidence for the adverse effects of food azo dyes on rats. J Food Drug Anal. 2017;25(3):667–80.

Erdemli ME, Gul M, Altinoz E, Zayman E, Aksungur Z, Bag HG. The protective role of crocin in tartrazine induced nephrotoxicity in Wistar rats. Biomed Pharmacother. 2017;96:930–5.

Khayyat LI, Essawy AE, Sorour JM, Soffar A. Sunset yellow and Allura red modulate Bcl2 and COX2 expression levels and confer oxidative stress-mediated renal and hepatic toxicity in male rats. PeerJ. 2018;2018(9).

Velioglu C, Erdemli ME, Gul M, Erdemli Z, Zayman E, Bag HG, et al. Protective effect of crocin on food azo dye tartrazine-induced hepatic damage by improving biochemical parameters and oxidative stress biomarkers in rats. Gen Physiol Biophys. 2019;38(1):73–82.

Tanaka T. Reproductive and neurobehavioral effects of Allura red AC administered to mice in the diet. Toxicology. 1994;92(1–3):169–77.

Tanaka T. Reproductive and neurobehavioral effects of sunset yellow FCF administered to mice in the diet. Toxicol Ind Health. 1996;12(1):69–79.

Tanaka T. Reproductive and neurobehavioural toxicity study of erythrosine administered to mice in the diet. Food Chem Toxicol. 2001;39(5):447–54.

Tanaka T. Reproductive and neurobehavioural toxicity study of tartrazine administered to mice in the diet. Food Chem Toxicol. 2006;44(2):179–87.

Tanaka T, Takahashi O, Oishi S, Ogata A. Effects of tartrazine on exploratory behavior in a three-generation toxicity study in mice. Reprod Toxicol. 2008;26(2):156–63.

Tanaka T, Takahashi O, Inomata A, Ogata A, Nakae D. Reproductive and neurobehavioral effects of brilliant blue FCF in mice. Birth Defects Res Part B: Dev Reprod Toxicol. 2012;95(6):395–409.

Sobotka TJ, Brodie RE, Spaid SL. Tartrazine and the developing nervous system of rats. J Toxicol Environ Health. 1977;2(5):1211–20.

Vorhees C, Butcher R, Brunner R, Wootten V, Sobotka T. Developmental toxicity and psychotoxicity of FD and C red dye no. 40 (Allura red AC) in rats. Toxicology. 1983b;28(3):207–17.

Vorhees C, Butcher R, Brunner R, Wootten V, Sobotka T. A developmental toxicity and psychotoxicity evaluation of FD and C red dye #3 (erythrosine) in rats. Arch Toxicol. 1983a;53(4):253–64.

Goldenring JR, Batter DK, Shaywitz BA. Sulfanilic acid: behavioral changes related to azo food dyes in developing rats. Neurobehav Toxicol Teratol. 1982;4(1):43–9.

Goldenring JR, Wool RS, Shaywitz BA, Batter DK, Cohen DJ, Young JG, et al. Effects of continuous gastric infusion of food dyes on developing rat pups. Life Sci. 1980;27(20):1897–904.

Kantor MA, Trout JR, Lachance PA. Food dyes produce minimal effects on locomotor activity and vitamin B-6 levels in Postweanling rats. J Nutr. 1984;114(8):1402–12.

Reisen CA, Rothblat LA. Effect of certified artificial food coloring on learning and activity level in rats. Neurobehav Toxicol Teratol. 1986;8(3):317–20.

Raffaele KC, Rowland J, May B, Makris SL, Schumacher K, Scarano LJ. The use of developmental neurotoxicity data in pesticide risk assessments. Neurotoxicol Teratol. 2010;32(5):563–72.

Vorhees CV, Williams MT. Issues in the design, analysis, and application of rodent developmental neurotoxicology studies. Neurotoxicol Teratol. 2021;87:107018.

Bhatt D, Vyas K, Singh S, John PJ, Soni I. Tartrazine induced neurobiochemical alterations in rat brain sub-regions. Food Chem Toxicol. 2018;113:322–7.

Mohamed AA-R, Galal AAA, Elewa YHA. Comparative protective effects of royal jelly and cod liver oil against neurotoxic impact of tartrazine on male rat pups brain. Acta Histochem. 2015;117(7):649–58.

Chappell GA, Britt JK, Borghoff SJ. Systematic assessment of mechanistic data for FDA-certified food colors and neurodevelopmental processes. Food Chem Toxicol. 2020;140:111310.

Pham N, Miller MD, Marty M. Using high-throughput screening to evaluate perturbations potentially linked to neurobehavioral outcomes: a case study using publicly available tools on FDA batch-certified synthetic food dyes. Chem Res Toxicol. 2021;34(11):2319–30.

Stevens LJ, Kuczek T, Burgess JR, Stochelski MA, Arnold LE, Galland L. Mechanisms of behavioral, atopic, and other reactions to artificial food colors in children. Nutr Rev. 2013;71(5):268–81.

Dam SA, Mostert JC, Szopinska-Tokov JW, Bloemendaal M, Amato M, Arias-Vasquez A. The role of the gut-brain Axis in attention-deficit/hyperactivity disorder. Gastroenterol Clin N Am. 2019;48(3):407–31.

Doell DL, Folmer DE, Lee HS, Butts KM, Carberry SE. Exposure estimate for FD&C colour additives for the US population. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2016;33(5):782–97.

CDC. NHANES 2015–2016 Demographics Data 2017 [updated 2018/10/30/. Available from: https://wwwn.cdc.gov/nchs/nhanes/search/datapage.aspx? Component=Demographics&CycleBeginYear=2015.

WHO JECFA. Evaluation of certain food additives: eighty-second report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organization; 2016 2016. Report No.: 978 92 4 121000 3 Contract No.: no. 1000).

WHO JECFA. Evaluation of certain food additives: eighty-sixth report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organization; 2019 2019. Contract No.: No. 1014.

WHO JECFA. Evaluation of certain food additives: eighty-fourth report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organization; 2017 2017. Report No.: 978–92–4-121016-4 Contract No.: no. 1007.

WHO JECFA. Evaluation of certain food additives and contaminants: seventy-fourth report of the joint FAO/WHO expert committee on food additives: world health. Organization. 2011.

Waselus M, Nazzaro C, Valentino RJ, Van Bockstaele EJ. Stress-induced redistribution of corticotropin-releasing factor receptor subtypes in the dorsal raphe nucleus. Biol Psychiatry. 2009;66(1):76–83.

Heidbreder CA, Groenewegen HJ. The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci Biobehav Rev. 2003;27(6):555–79.

Levy F, Hobbes G. Hyperkinesis and diet: a replication study. Am J Psychiatry. 1978;135(12):1559–60.

Honohan T, Enderlin FE, Ryerson BA. Absorption, Metabolism and excretion of the azo food dyes amaranth, sunset yellow and tartrazine after oral administration to rats. Fed Proc 1976;35(3):No.682.

Honohan T, Enderlin FE, Ryerson BA, Parkinson TM. Intestinal absorption of polymeric derivatives of the food dyes sunset yellow and tartrazine in rats. Xenobiotica. 1977;7(12):765–74.

Lehmkuhler AL, Miller MD, Bradman A, Castorina R, Mitchell AE. Dataset of certified food dye levels in over the counter medicines and vitamins intended for consumption by children and pregnant women. Data Brief. 2020;32:106073.

Thilakaratne R, Castorina R, Gillan M, Han D, Pattabhiraman T, Nirula A, et al. Exposures to FD&C synthetic color additives from over-the-counter medications and vitamins in United States children and pregnant women. J Expo Sci Environ Epidemiol. 2022.

Download references

Acknowledgements

The authors would like to acknowledge Marjannie Akintunde, Ph.D. for help organizing information from available animal toxicology studies for the OEHHA (2021) review, and Nancy Firchow for library services.

The California state legislature appropriated funding to conduct this review. The legislature had no input into or control over the design of the study, collection, analysis, or interpretation of the data, or writing, reviewing or editing the manuscript.

Author information

Authors and affiliations.

Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, 1515 Clay St, Oakland CA, and 1001 I St, Sacramento, California, USA

Mark D. Miller, Craig Steinmaus, Mari S. Golub & Melanie A. Marty

Center for Environmental Research and Community Health, School of Public Health, University of California, 2121 Berkeley Way, Berkeley, California, USA

Rosemary Castorina, Ruwan Thilakartne & Asa Bradman

Department of Public Health, School of Social Sciences, Humanities and Arts, University of California, Merced, 5200 N Lake Road, Merced, CA, USA

Asa Bradman

You can also search for this author in PubMed   Google Scholar

Contributions

MDM and MAM were involved in conception, interpretation of results, and substantially drafted, reviewed and edited the paper. CS designed and conducted the review of the clinical trials of food dyes in children. MSG designed and conducted the review of animal toxicology studies. RC, RT, and AB conducted the exposure assessment and subsequent calculations of hazard index. All authors reviewed the paper.

Corresponding author

Correspondence to Mark D. Miller .

Ethics declarations

Ethics approval and consent to participate.

Not applicable.

Consent for publication

Competing interests.

AB is a volunteer member of the Board of Trustees for The Organic Center, a non-profit organization addressing scientific issues about organic food and agriculture, and is a member of the USDA National Organic Standards Board. The rest of the authors declare that they have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Additional file 1: table a.1..

Search Strategy. This table illustrates the literature search strategy. Table A.2 . Clinical trials of synthetic food dyes and neurobehavioral outcomes in children: study details. This table provides study details for the 25 challenge studies in children reviewed by OEHHA. Table A.3 . Clinical trials of synthetic food dyes and neurobehavioral outcomes: coding. This table provides the variables and coding used in the study quality analysis. Table A.4 . Coding dictionary. This table defines the variables and numerical codes used in the study quality evaluation. Table A.5 . Individual dyes. Developmental and adolescent/adult studies. This table provides study details of the animal toxicology studies of individual dyes reviewed by OEHHA. Table A.6 . Dye mixtures. Developmental and adolescent/adult studies. This table provides study details of the animal toxicology studies of dye mixtures reviewed by OEHHA

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Miller, M.D., Steinmaus, C., Golub, M.S. et al. Potential impacts of synthetic food dyes on activity and attention in children: a review of the human and animal evidence. Environ Health 21 , 45 (2022). https://doi.org/10.1186/s12940-022-00849-9

Download citation

Received : 12 January 2022

Accepted : 29 March 2022

Published : 29 April 2022

DOI : https://doi.org/10.1186/s12940-022-00849-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Synthetic food dyes
  • Clinical trials
  • Animal toxicology

Environmental Health

ISSN: 1476-069X

research paper on food dyes

  • Current Students

New report shows artificial food coloring causes hyperactivity in some kids

  • 2 min. read ▪ Published May 24, 2021
  • Share on LinkedIn
  • Share on Facebook
  • Share on X (Twitter)

A report released in April 2021 by the state of California—with contributors from UC Berkeley and UC Davis—confirmed the long-suspected belief that the consumption of synthetic food dyes can cause hyperactivity and other neurobehavioral issues for some children.

The report also found that federal rules for safe amounts of consumption of synthetic food dyes do not reflect the most current research and may not be protecting children’s behavioral health.

Over the past 20 years, the percentage of American children and adolescents diagnosed with Attention Deficit/Hyperactivity Disorder (ADHD) has increased from an estimated 6.1% to 10.2%. Concerns over ADHD and other behavioral disorders led the California Legislature to ask the California Environmental Protection Agency’s Office of Environmental Health Hazard Assessment (OEHHA) to conduct the report, which is based on two years of extensive evaluation of existing studies on the seven synthetic food dyes currently approved by the FDA.

“Evidence shows that synthetic food dyes are associated with adverse neurobehavioral outcomes in some children,” said OEHHA Director Lauren Zeise. “With increasing numbers of U.S. children diagnosed with behavioral disorders, this assessment can inform efforts to protect children from exposures that may exacerbate behavioral problems.”

Researchers found that all of the FDA’s Acceptable Daily Intake levels (ADIs) for synthetic food dyes are based on 35- to 70-year-old studies that were not designed to detect the types of behavioral effects that have been observed in children. Comparisons with newer studies indicate that the current ADIs may not adequately protect children from behavioral effects.

“This is the most comprehensive study examining dietary exposure to artificial food coloring in vulnerable populations such as young children and pregnant women. We found that children tended to have higher exposures than adults, and some exposures might exceed regulatory guidelines,” said UC Berkeley Environmental Health Sciences Professor Asa Bradman, who contributed to the report. “We also observed higher exposures in lower-income populations, pointing to the need to improve consumption of, and access to, healthier food.”

  • Link to full report
  • Reporting from KQED

More in category “Research Highlights”:

How reddit helps one expert understand post-roe abortion access in america, first study to measure toxic metals in tampons shows arsenic and lead, among other contaminants, wildfires increasingly threaten oil and gas drill sites, compounding potential health risks, study says, the legacy of eugenics.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • My Bibliography
  • Collections
  • Citation manager

Save citation to file

Email citation, add to collections.

  • Create a new collection
  • Add to an existing collection

Add to My Bibliography

Your saved search, create a file for external citation management software, your rss feed.

  • Search in PubMed
  • Search in NLM Catalog
  • Add to Search

Artificial food dyes and attention deficit hyperactivity disorder

Affiliation.

  • 1 Department of Psychology, Tufts University, Medford, Massachusetts, USA. [email protected]
  • PMID: 21729092
  • DOI: 10.1111/j.1753-4887.2011.00385.x

Attention deficit hyperactivity disorder (ADHD) is one of the most common behavioral disorders in children. Symptoms of ADHD include hyperactivity, low frustration tolerance, impulsivity, and inattention. While the biological pathways leading to ADHD are not clearly delineated, a number of genetic and environmental risk factors for the disorder are recognized. In the early 1970s, research conducted by Dr. Benjamin Feingold found that when hyperactive children were given a diet free of artificial food additives and dyes, symptoms of hyperactivity were reduced. While some clinical studies supported these findings, more rigorous empirical studies conducted over the next 20 years were less positive. As a result, research on the role of food additives in contributing to ADHD waned. In recent years, however, interest in this area has revived. In response to more recent research and public petitions, in December 2009 the British government requested that food manufacturers remove most artificial food dyes from their products. While these strictures could have positive effects on behavior, the removal of food dyes is not a panacea for ADHD, which is a multifaceted disorder with both biological and environmental underpinnings.

© 2011 International Life Sciences Institute.

PubMed Disclaimer

Similar articles

  • Health-related quality of life in children and adolescents who have a diagnosis of attention-deficit/hyperactivity disorder. Klassen AF, Miller A, Fine S. Klassen AF, et al. Pediatrics. 2004 Nov;114(5):e541-7. doi: 10.1542/peds.2004-0844. Pediatrics. 2004. PMID: 15520087
  • The influence of components of diet on the symptoms of ADHD in children. Konikowska K, Regulska-Ilow B, Rózańska D. Konikowska K, et al. Rocz Panstw Zakl Hig. 2012;63(2):127-34. Rocz Panstw Zakl Hig. 2012. PMID: 22928358 Review.
  • Artificial food colouring and hyperactivity symptoms in children. [No authors listed] [No authors listed] Prescrire Int. 2009 Oct;18(103):215. Prescrire Int. 2009. PMID: 19882794
  • Foods and additives are common causes of the attention deficit hyperactive disorder in children. Boris M, Mandel FS. Boris M, et al. Ann Allergy. 1994 May;72(5):462-8. Ann Allergy. 1994. PMID: 8179235 Review.
  • [The role of zinc in the treatment of hyperactivity disorder in children]. Dodig-Curković K, Dovhanj J, Curković M, Dodig-Radić J, Degmecić D. Dodig-Curković K, et al. Acta Med Croatica. 2009 Oct;63(4):307-13. Acta Med Croatica. 2009. PMID: 20034331 Review. Croatian.
  • The Impact of Integrating a Low-Lectin Diet with Traditional ADHD Treatments on Gut Microbiota Composition and Symptom Improvement in Children - A Cohort Study. Long L, Peng H, Chen X, Wang F, Long W, Cheng M, Ma J. Long L, et al. Neuropsychiatr Dis Treat. 2024 Mar 9;20:535-549. doi: 10.2147/NDT.S449186. eCollection 2024. Neuropsychiatr Dis Treat. 2024. PMID: 38482022 Free PMC article.
  • Color and Stability of Anthocyanins of Chagalapoli ( Ardisia compressa K.) Fruit Added to an Isotonic Beverage as Microcapsules and as Free Extract. Antonio-Gómez MV, Salinas-Moreno Y, Hernández-Rosas F, Herrera-Corredor JA, Contreras-Oliva A. Antonio-Gómez MV, et al. Foods. 2023 May 16;12(10):2009. doi: 10.3390/foods12102009. Foods. 2023. PMID: 37238826 Free PMC article.
  • Trialling a microbiome-targeted dietary intervention in children with ADHD-the rationale and a non-randomised feasibility study. Lawrence K, Myrissa K, Toribio-Mateas M, Minini L, Gregory AM. Lawrence K, et al. Pilot Feasibility Stud. 2022 May 23;8(1):108. doi: 10.1186/s40814-022-01058-4. Pilot Feasibility Stud. 2022. PMID: 35606889 Free PMC article.
  • Food additives in childhood: a review on consumption and health consequences. Kraemer MVDS, Fernandes AC, Chaddad MCC, Uggioni PL, Rodrigues VM, Bernardo GL, Proença RPDC. Kraemer MVDS, et al. Rev Saude Publica. 2022 May 6;56:32. doi: 10.11606/s1518-8787.2022056004060. eCollection 2022. Rev Saude Publica. 2022. PMID: 35544885 Free PMC article. Review.
  • Revealing the Effect of MnO 2 , Activated Carbon and MnO 2 /Activated Carbon on Chitosan Polymer Host Fabricated Co NPs: Antibacterial Performance and Degradation of Organic Compounds. Mohammed Ali HSH, Sumiya, Anwar Y, Al-Ghamdi YO, Fakieh M, Khan SA. Mohammed Ali HSH, et al. Polymers (Basel). 2022 Feb 6;14(3):627. doi: 10.3390/polym14030627. Polymers (Basel). 2022. PMID: 35160616 Free PMC article.

Publication types

  • Search in MeSH

Related information

Linkout - more resources, full text sources.

  • Ovid Technologies, Inc.
  • Silverchair Information Systems
  • Genetic Alliance
  • MedlinePlus Health Information

Research Materials

  • NCI CPTC Antibody Characterization Program

full text provider logo

  • Citation Manager

NCBI Literature Resources

MeSH PMC Bookshelf Disclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.

  • Corpus ID: 6923583

Identification of synthetic food dyes in beverages by thin layer chromatography.

  • N. Zahra , Alim-un-Nisa , +2 authors K. Saeed
  • Published 2015

Tables from this paper

table 1

9 Citations

Identification of synthetic food colours in selected confectioneries and beverages in jaffna district, sri lanka, thin-layer chromatography applied in quality assessment of beverages derived from fruits, a review of thin layer chromatography methods for determination of authenticity of foods and dietary supplements, microalgal pigments carotenoids and chlorophyll as potential natural colorants to cakes, encapsulation of carotenoids as food colorants via formation of cyclodextrin inclusion complexes: a review, chromatographic behavior of selected dyes on silica and cellulose micro-tlc plates: potential application as target substances for extraction, chromatographic, and/or microfluidic systems, recent developments in industrial applications of nanoemulsions., the printability of wool fabric with synthetic food dyes, analysis of instrumental methods of detection of synthetic food dyes, 11 references, determination of synthetic food dyes in commercial soft drinks by tlc and ion-pair hplc., determination of three dyes in commercial soft drinks using hla/go and liquid chromatography, sudan dyes: are they dangerous for human health, food dyes a rainbow of risks, food additives, essential nutrients and neurodevelopmental behavioural disorders in children: a brief review., isolation, separation and identification of synthetic food colors, the effects of a double blind, placebo controlled, artificial food colourings and benzoate preservative challenge on hyperactivity in a general population sample of preschool children, food dyes impair performance of hyperactive children on a laboratory learning test., false elevation of serum protein-bound-iodine caused by red colored drugs or foods., related papers.

Showing 1 through 3 of 0 Related Papers

  • Introduction
  • Article Information

OR indicates odds ratio. Comparing extreme quintiles of intake, artificially sweetened beverages, and artificial sweeteners were associated with greater risk of depression (strict definition) after multivariable regression.

Data Sharing Statement

  • Errors in the Table JAMA Network Open Correction October 18, 2023

See More About

Sign up for emails based on your interests, select your interests.

Customize your JAMA Network experience by selecting one or more topics from the list below.

  • Academic Medicine
  • Acid Base, Electrolytes, Fluids
  • Allergy and Clinical Immunology
  • American Indian or Alaska Natives
  • Anesthesiology
  • Anticoagulation
  • Art and Images in Psychiatry
  • Artificial Intelligence
  • Assisted Reproduction
  • Bleeding and Transfusion
  • Caring for the Critically Ill Patient
  • Challenges in Clinical Electrocardiography
  • Climate and Health
  • Climate Change
  • Clinical Challenge
  • Clinical Decision Support
  • Clinical Implications of Basic Neuroscience
  • Clinical Pharmacy and Pharmacology
  • Complementary and Alternative Medicine
  • Consensus Statements
  • Coronavirus (COVID-19)
  • Critical Care Medicine
  • Cultural Competency
  • Dental Medicine
  • Dermatology
  • Diabetes and Endocrinology
  • Diagnostic Test Interpretation
  • Drug Development
  • Electronic Health Records
  • Emergency Medicine
  • End of Life, Hospice, Palliative Care
  • Environmental Health
  • Equity, Diversity, and Inclusion
  • Facial Plastic Surgery
  • Gastroenterology and Hepatology
  • Genetics and Genomics
  • Genomics and Precision Health
  • Global Health
  • Guide to Statistics and Methods
  • Hair Disorders
  • Health Care Delivery Models
  • Health Care Economics, Insurance, Payment
  • Health Care Quality
  • Health Care Reform
  • Health Care Safety
  • Health Care Workforce
  • Health Disparities
  • Health Inequities
  • Health Policy
  • Health Systems Science
  • History of Medicine
  • Hypertension
  • Images in Neurology
  • Implementation Science
  • Infectious Diseases
  • Innovations in Health Care Delivery
  • JAMA Infographic
  • Law and Medicine
  • Leading Change
  • Less is More
  • LGBTQIA Medicine
  • Lifestyle Behaviors
  • Medical Coding
  • Medical Devices and Equipment
  • Medical Education
  • Medical Education and Training
  • Medical Journals and Publishing
  • Mobile Health and Telemedicine
  • Narrative Medicine
  • Neuroscience and Psychiatry
  • Notable Notes
  • Nutrition, Obesity, Exercise
  • Obstetrics and Gynecology
  • Occupational Health
  • Ophthalmology
  • Orthopedics
  • Otolaryngology
  • Pain Medicine
  • Palliative Care
  • Pathology and Laboratory Medicine
  • Patient Care
  • Patient Information
  • Performance Improvement
  • Performance Measures
  • Perioperative Care and Consultation
  • Pharmacoeconomics
  • Pharmacoepidemiology
  • Pharmacogenetics
  • Pharmacy and Clinical Pharmacology
  • Physical Medicine and Rehabilitation
  • Physical Therapy
  • Physician Leadership
  • Population Health
  • Primary Care
  • Professional Well-being
  • Professionalism
  • Psychiatry and Behavioral Health
  • Public Health
  • Pulmonary Medicine
  • Regulatory Agencies
  • Reproductive Health
  • Research, Methods, Statistics
  • Resuscitation
  • Rheumatology
  • Risk Management
  • Scientific Discovery and the Future of Medicine
  • Shared Decision Making and Communication
  • Sleep Medicine
  • Sports Medicine
  • Stem Cell Transplantation
  • Substance Use and Addiction Medicine
  • Surgical Innovation
  • Surgical Pearls
  • Teachable Moment
  • Technology and Finance
  • The Art of JAMA
  • The Arts and Medicine
  • The Rational Clinical Examination
  • Tobacco and e-Cigarettes
  • Translational Medicine
  • Trauma and Injury
  • Treatment Adherence
  • Ultrasonography
  • Users' Guide to the Medical Literature
  • Vaccination
  • Venous Thromboembolism
  • Veterans Health
  • Women's Health
  • Workflow and Process
  • Wound Care, Infection, Healing

Get the latest research based on your areas of interest.

Others also liked.

  • Download PDF
  • X Facebook More LinkedIn

Samuthpongtorn C , Nguyen LH , Okereke OI, et al. Consumption of Ultraprocessed Food and Risk of Depression. JAMA Netw Open. 2023;6(9):e2334770. doi:10.1001/jamanetworkopen.2023.34770

Manage citations:

© 2024

  • Permissions

Consumption of Ultraprocessed Food and Risk of Depression

  • 1 Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston
  • 2 Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston
  • 3 Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston
  • 4 Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
  • 5 Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
  • 6 Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
  • 7 Broad Institute of MIT and Harvard, Cambridge, Massachusetts
  • 8 Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
  • Correction Errors in the Table JAMA Network Open

Increasing evidence suggests that diet may influence risk of depression. 1 - 3 Despite extensive data linking ultraprocessed foods (UPF; ie, energy-dense, palatable, and ready-to-eat items) with human disease, 4 evidence examining the association between UPF consumption and depression is scant. Prior studies have been hampered by short-term dietary data 1 , 2 and a limited ability to account for potential confounders. 1 , 3 Additionally, no study has identified which UPF foods and/or ingredients that may be associated with risk of depression or how the timing of UPF consumption may be associated. Therefore, we investigated the prospective association between UPF and its components with incident depression.

This cohort study was approved by the institutional review board (IRB) at the Brigham and Women’s Hospital and the Harvard T.H. Chan School of Public Health. The return of a completed questionnaire was accepted by the IRB as implied informed consent. The study adhered to the Strengthening the Reporting of Observational Studies in Epidemiology ( STROBE ) reporting guideline.

We conducted a prospective study in the Nurses’ Health Study II between 2003 and 2017 among middle-aged females free of depression at baseline. Diet was assessed using validated food frequency questionnaires (FFQs) every 4 years. We estimated UPF intake using the NOVA classification, 2 which groups foods according to the degree of their processing. In secondary analyses, we classified UPF into their components, including ultraprocessed grain foods, sweet snacks, ready-to-eat meals, fats and sauces, ultraprocessed dairy products, savory snacks, processed meat, beverages, and artificial sweeteners. 4 We used 2 definitions for depression: (1) a strict definition requiring self-reported clinician–diagnosed depression and regular antidepressant use and (2) a broad definition requiring clinical diagnosis and/or antidepressant use.

We estimated hazard ratios (HRs) and 95% CIs for depression according to quintiles of UPF intake using Cox proportional hazards models, with adjustment for known and suspected risk factors for depression, including age, total caloric intake, body mass index (BMI; calculated as weight in kilograms divided by height in meters squared), physical activity, smoking status, menopausal hormone therapy, total energy intake, alcohol, comorbidities (eg, diabetes, hypertension, dyslipidemia), median family income, social network levels, marital status, sleep duration, and pain. In an exploratory analysis, we examined the association between changes in UPF consumption updated every 4 years with incident depression. All analyses were performed using 2-sided tests from SAS (version 9.4). Data were analyzed from September 2022 to January 2023.

Our cohort included 31 712 females, aged 42 to 62 years at baseline (mean [SD] age, 52 [4.7] years; 30 190 [95.2%] non-Hispanic White females). Participants with high UPF intake had greater BMI, higher smoking rates, and increased prevalence of comorbidities like diabetes, hypertension, and dyslipidemia and were less likely to exercise regularly. We identified 2122 incident cases of depression using the strict definition and 4840 incident cases using the broad definition. Compared with those in the lowest quintile of UPF consumption, those in the highest quintile had an increased risk of depression, noted for both strict definition (HR, 1.49; 95% CI, 1.26-1.76; P  < .001) and broad definition (HR, 1.34; 95% CI, 1.20-1.50; P  < .001) ( Table ). Models were not materially altered after inclusion of potential confounders. We did not observe differential associations in subgroups defined by age, BMI, physical activity, or smoking. In a 4-year lag analysis, associations were not materially altered (strict definition: HR, 1.32; 95% CI, 1.13-1.54; P  < .001), arguing against reverse causation.

Next, we examined the association of specific UPF components with risk of depression. Comparing extreme quintiles, only artificially sweetened beverages (HR, 1.37; 95% CI, 1.19-1.57; P  < .001) and artificial sweeteners (HR, 1.26; 95% CI, 1.10-1.43; P  < .001) were associated with greater risk of depression and after multivariable regression ( Figure ). In an exploratory analysis, those who reduced UPF intake by at least 3 servings per day were at lower risk of depression (strict definition: HR, 0.84; 95% CI, 0.71-0.99) compared with those with relatively stable intake in each 4-year period.

These findings suggest that greater UPF intake, particularly artificial sweeteners and artificially sweetened beverages, is associated with increased risk of depression. Although the mechanism associating UPF to depression is unknown, recent experimental data suggests that artificial sweeteners elicit purinergic transmission in the brain, 5 which may be involved in the etiopathogenesis of depression. 6 Strengths of our study include the large sample, prospective design, high follow-up rate, ability to adjust for multiple confounders, and extensively validated dietary assessment tools. This study had limitations. The cohort primarily included non-Hispanic White females. Additionally, without structured clinical interviews, misclassification of the outcome may be considered.

Accepted for Publication: August 15, 2023.

Published: September 20, 2023. doi:10.1001/jamanetworkopen.2023.34770

Correction: This article was corrected on October 18, 2023, to fix transcription errors in the Table.

Open Access: This is an open access article distributed under the terms of the CC-BY License . © 2023 Samuthpongtorn C et al. JAMA Network Open .

Corresponding Authors: Raaj S. Mehta, MD, MPH ( [email protected] ), and Andrew T. Chan, MD, MPH ( [email protected] ), Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, 100 Cambridge St, Ste 1580 Boston, MA 02114.

Author Contributions: Drs Samuthpongtorn and Mehta had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Samuthpongtorn, Chan, Mehta.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Samuthpongtorn, Chan, Mehta.

Critical review of the manuscript for important intellectual content: All authors.

Statistical analysis: Samuthpongtorn, Chan, Mehta.

Obtained funding: Chan.

Administrative, technical, or material support: Samuthpongtorn, Okereke, Song, Chan, Mehta.

Supervision: Chan, Mehta.

Conflict of Interest Disclosures: Dr Okereke reported receiving grants from the National Institutes of Health and royalties from Springer Publishing outside the submitted work. Dr Chan reported receiving grants from Bayer Pharma AG and Zoe and personal fees from Boehringer Ingelheim, Pfizer, and Freenome outside the submitted work. No other disclosures were reported.

Funding/Support: The Nurses’ Health Study II was funded by grant U01 CA176726 from the National Cancer Institute, National Institutes of Health.

Role of the Funder/Sponsor: The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Disclaimer: The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Data Sharing Statement: See the Supplement .

Additional Contributions: We thank the participants and staff of the Nurses’ Health Study II for their valuable contributions. They received no compensation for their contributions.

  • Register for email alerts with links to free full-text articles
  • Access PDFs of free articles
  • Manage your interests
  • Save searches and receive search alerts

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Environ Health Perspect
  • v.120(1); 2012 Jan

Logo of envhper

Synthetic Food Colors and Neurobehavioral Hazards: The View from Environmental Health Research

Background: The proposition that synthetic food colors can induce adverse behavioral effects in children was first enunciated in 1975 by Feingold [ Why Your Child Is Hyperactive . New York:Random House (1975)], who asserted that elevated sensitivity to food additives underlies the signs of hyperactivity observed in some children. Although the evidence suggested that some unknown proportion of children did respond to synthetic food colors, the U.S. Food and Drug Administration (FDA) interpreted the evidence as inconclusive. A study published in 2007 [McCann et al. Food additives and hyperactive behaviour in 3-year-old and 8/9-year-old children in the community: a randomised, double-blinded, placebo-controlled trial. Lancet 370:1560–1567 (2007)] drew renewed attention to the hypothesis because of the study’s size and scope. It led the FDA to review the evidence, hold a public hearing, and seek the advice of its Food Advisory Committee. In preparation for the hearing, the FDA reviewed the available evidence and concluded that it did not warrant further agency action.

Objectives: In this commentary I examine the basis of the FDA’s position, the elements of the review that led to its decision and that of the Food Advisory Committee, and the reasons that this is an environmental health issue.

Discussion: The FDA review confined itself, in essence, to the clinical diagnosis of hyperactivity, as did the charge to the committee, rather than asking the broader environmental question of behavioral effects in the general population; it failed to recognize the significance of vulnerable subpopulations; and it misinterpreted the meaning of effect size as a criterion of risk. The FDA’s response would have benefited from adopting the viewpoints and perspectives common to environmental health research. At the same time, the food color debate offers a lesson to environmental health researchers; namely, too narrow a focus on a single outcome or criterion can be misleading.

In 1973, at a meeting of the American Medical Association, a retired pediatric allergist proposed a hypothesis that seemed ludicrous at the time. He claimed that at least some of the children labeled as hyperactive, or hyperkinetic, or afflicted with minimal brain dysfunction actually possessed an elevated sensitivity to certain elements of the diet. He followed with a book directed at the general public ( Feingold 1975 ). He singled out food additives for special treatment. Feingold named artificial flavors and colors as primary culprits but also indicted some preservatives. Adopt a diet free of these offending ingredients, he advised, and many of the unsettling behavioral problems exhibited by these children will wane. Neither Feingold nor his critics defined hyperactivity in current terms of the American Psychiatric Association’s Diagnostic and Statistical Manual of Mental Disorders [DSM-IV ( American Psychiatric Association 2000 )]. The DSM-IV identifies three types of attention-deficit and/or hyperactivity disorder (AD/HD): predominantly inattentive (attention deficit disorder; ADD), predominantly hyperactive (attention-deficit/hyperactivity disorder; ADHD), and combined subtype (the most common). Boyle et al. (2011) give the proportion of U.S. children diagnosed with ADHD as 6.69%.

Feingold’s claims drew wide public attention and also provoked a series of studies directed at his hypotheses. Some tested elimination diets free of additives and other substances, such as salicylates, that Feingold linked to hyperactivity (e.g., Conners et al. 1976 ; Harley et al. 1978a , 1978b ). Others focused on artificial colors because they represented only a small fraction of the additives in the food supply and could be manipulated more easily (e.g., Swanson and Kinsbourne 1980 ; Weiss et al. 1980 ; Williams et al. 1978 ). Most of these adopted the tactic of challenging children with one or a blend of food colors and a placebo. By the early 1980s, enough evidence about the Feingold hypothesis had accrued that even some of its most severe critics viewed it as plausible in some respects. For example, Stare et al. (1980) observed that “challenge experiments indicate that the symptoms of a small subgroup of all hyperactive children appear to be sensitive to the artificial food colors in their diet.”

After the early 1980s, interest in assessing behavioral reactions to food colors abated. During the intervening years, occasional studies both supporting and contradicting Feingold’s assertions about food colors made their way into the literature. From the point of view of the U.S. Food and Drug Administration (FDA), the positive studies taken together failed to constitute enough evidence to require regulatory action (FDA 2010). The data available up to 1982 ( Weiss 1982 ) were considered not substantial enough to cause any shift in the FDA position. Debates about the behavioral toxicity of food colors continued but did not arouse singular interest.

The debate reignited with publication of a large study conducted by a group at the University of Southampton in the United Kingdom ( McCann et al. 2007 ). It enrolled about 300 preschool and elementary school children who were challenged by a blend of food colors and sodium benzoate in a double-blind design employing a variety of behavioral measures. The study used two different mixtures, and the amounts chosen were based on estimates of intake by the British Food Standards Agency and probably are close to U.S. levels. Mix A included 20 mg artificial food colorings for 3-year-old children and 24.98 mg for 8- to 9-year old children. Mix B included 30 mg for the younger children and 62.4 mg for the older children. The doses for the 3-year-old children corresponded roughly to the amounts found in 112 g of candy.

The behavioral measures used by McCann et al. (2007) , combined into a single score (as well as some components of the total score), demonstrated statistically significant adverse responses in both groups of children to the food color challenge. Although some of these measures are used in ADHD research and diagnosis, the Southampton study was aimed not at ADHD but at the more general question of behaviors evoked by food colors. Neither was the study aimed at the question of sensitivity to food colors in ADHD children; the subjects came from the general population of school children.

Because of the uniqueness and size of the study by McCann et al. (2007) , it drew renewed attention to the food color debate, which was introduced to the environmental health community by an article in Environmental Health Perspectives ( Barrett 2007 ), followed by a letter from Weiss (2008) . Barrett (2007) solicited a response from a spokesperson for the FDA (Mike Herndon), who replied as follows:

However, we have no reason at this time to change our conclusions that the ingredients that were tested in this study that currently are permitted for food use in the United States are safe for the general population.

The article by McCann et al. (2007) elicited a petition to the FDA from the Center for Science in the Public Interest (CSPI), a public interest group that earlier had called for a ban on food colors (CSPI 2008). This petition, together with congressional interest and media publicity, led to an FDA decision to review the food color literature and to hold a public hearing before its established Food Advisory Committee. The hearing was held on 30–31 March 2011. After listening to testimony from FDA reviewers and the public, the committee concluded that the evidence was too inconclusive to link food colors to hyperactivity and too insufficient to recommend warning labels for products containing artificial food colors. (I testified before the committee that the available evidence indicated a connection between adverse behavioral responses and food color consumption.)

As described by the FDA Food Advisory Committee (2011a), the FDA framed the question put to the advisory committee primarily in the form, “Are food colors a cause of hyperactivity?” Only as a secondary question did the FDA ask if food colors might be a source of other kinds of adverse behavioral responses. Although the food color question was framed quite narrowly by the FDA, it is representative of many of the questions that confront the environmental health sciences. What kind of data—and how much data—does it take to render an outcome conclusive enough for action? The committee decision and the FDA’s current view (as quoted by Barrett 2007 ) signify a group of persistent questions pertaining both to environmental health science and to regulatory practices. In this commentary, I try to place the FDA committee decision in this broader context.

Identifying the appropriate measures. The FDA described the committee’s mission in these terms (FDA Food Advisory Committee 2011a):

The task before this Food Advisory Committee is to consider available relevant data on the possible association between consumption of synthetic color additives in food and hyperactivity in children, and to advise FDA as to what action, if any, is warranted to ensure consumer safety.

The charge did not explicitly conform to the DSM-IV definition of ADHD, which is multifaceted, so the charge was somewhat ambiguous.

Two review documents were contracted for and submitted to the Food Advisory Committee before the meeting: a background document, describing the FDA’s history of food color regulation (FDA Food Advisory Committee 2011a), and a literature review of publications about the connections between food colors and hyperactivity (FDA Food Advisory Committee 2011b). These documents provided the basis for the review presented to the committee by the FDA Office of Food Additive Safety.

In their review the FDA apparently decided to focus on Feingold’s 35-year-old hypothesis ( Feingold 1975 ) rather than on the broader environmental issue of whether food colors may induce adverse behavioral responses. This is a broader issue because, as noted above, most U.S. children, not just those diagnosed with ADHD, consume synthetic food colors in their diet.

Moreover, few of the artificial food color challenge studies did so to test the hypothesis that food colors cause ADHD as defined by the DSM-IV. No one, of course, can specify any predominant cause of ADHD. It is clearly a multicausal disorder as well as one with notable variation in expression. The food color literature is aimed mostly at the short-term effects of challenges, not chronic disease. Although the questionnaires, rating scales, and performance assays prominent in ADHD research have proven useful in challenge studies, they do not encompass all the behaviors evoked by food colors. Swanson and Kinsbourne (1980) found that performance on a paired-associate learning task deteriorated after administration of a color mixture challenge. Goyette et al. (1978 ; see also Conners et al. 1976 ) identified 3 of the 16 children they assessed as responders by their performance on a visual tracking task. Even the FDA review observed that measures confined to ADHD symptoms may not reflect responses evoked by food colors. It noted the following in discussing a study by Rowe and Rowe (1994) :

The behavioral effects elicited by the tartrazine challenges, however, involved irritability, fidgetiness and sleep problems which are not typically representative of hyperactivity related behaviors. Several other investigators also reported behavioral responses to color challenge that were not particularly characteristic of ADHD. (FDA Food Advisory Committee 2011b)

By narrowing the scope of the committee’s task to a judgment of whether artificial food colors are associated with ADHD, the FDA Food Advisory Committee (2011b) effectively eliminated a much more relevant and important question: Is there evidence that food colors are behaviorally toxic to the general population of children?

The large investment by the National Institute of Environmental Health Sciences (NIEHS) in bisphenol A research is, in many ways, a design for answering questions of similar scope. Bisphenol A is often labeled as “estrogenic.” Had the NIEHS bisphenol A initiative been restricted to this question ( Spivey 2009 ), it might have limited its breadth only to questions bearing on the chemical’s alleged estrogenic properties. The NIEHS, however, recognized the scope of associations between bisphenol A exposure and health effects, including those such as obesity and externalizing behavior in young girls, that could not be linked firmly to estrogenicity, if at all. Analogously, if questions about the adverse health effects of airborne particulates had been restricted to lung function, the superficially obvious target organ, the association with cardiovascular function, its primary adverse effect, would have been overlooked.

One possible source of the FDA review’s misleading charge may be its limited view of brain–behavior relationships. In summarizing its findings, the FDA Food Advisory Committee (2011a) offered the following statement:

For certain susceptible children with attention deficit/hyperactivity disorder and other problem behaviors, however, the data suggest that their condition may be exacerbated by exposure to a number of substances in food, including, but not limited to, synthetic color additives. Findings from relevant clinical trials indicate that the effects on their behavior appear to be due to a unique intolerance to these substances and not to any inherent neurotoxic properties.

This statement surely does not mean to assert that the central nervous system is not the essential substrate for behavior or that behavior is a phenomenon independent of the brain. Its roots perhaps may be found in how toxicology was practiced in the past, when pathology—overt tissue damage—was far more important than function in assessing chemical safety.

Identifying special populations. The literature on behavioral toxicity of food additives is replete with observations by investigators—and by much of the applicable data—that not all children are sensitive to additives in general, or food colors in particular, at common dietary levels. Indeed, not even Feingold asserted that all hyperactive children were sensitive to food additives. In a convincing example of such findings, Rowe and Rowe (1994) , in a double-blind controlled challenge study with tartrazine, identified a subgroup of 24 children within their sample of 54 that responded consistently on each occasion that they consumed a color rather than a placebo capsule. Moreover, these children displayed a clear dose–response function, with the higher doses eliciting higher scores on their 30-item behavior inventory, including five clusters of related behaviors: a ) irritability/control, b ) sleep disturbances, c ) restlessness, d ) aggression, and e ) attention span.

The FDA review, however, seemed to insist that proving a connection between food color ingestion and adverse behavioral effects requires a uniformity of response in the sample under study that is virtually impossible to achieve in the diverse human population. For example:

Generally, the various reported findings across these 10 reviewed post-1982 portion of Group I trials, suggests that certain susceptible subgroups of problem behavior children with and without ADHD and, possibly, certain susceptible children from the general population without particular behavioral problems may exhibit a unique intolerance to artificial food colors resulting in typically small to moderate adverse behavioral changes which may not necessarily be characteristic of the ADHD syndromes. (FDA Food Advisory Committee 2011b).

Such a rejection of evidence stemming from data suggesting a subpopulation of children with enhanced sensitivity to food colors is perplexing. The FDA review implies that, because such a subpopulation may represent only a small proportion of children (hardly a proven proposition), it does not represent a significant health problem. Such a contention is inconsistent with the tenets of public health. Much of biomedical research, including environmental health research, is devoted to identifying and treating especially sensitive or vulnerable subpopulations. The underlying health goals of the Human Genome Project surely embraced that perspective. FDA drug warnings often are directed at special subpopulations. Finally, the FDA view on how this question pertains to food colors is an outlier among federal agencies. Note how the U.S. Environmental Protection Agency (2011) interpreted the Clean Air Act:

The National Ambient Air Quality Standards (NAAQS) are designed to protect the most vulnerable populations from outdoor air pollutants. Identifying these groups more precisely and understanding why they are more susceptible is of great importance to scientists and policy makers.

Effect size. In its critique of McCann et al. (2007) , the FDA is somewhat dismissive of the results, at least as conveyed by this statement:

Whatever behavioral changes [in the Southampton study] may have occurred were apparently of rather low magnitude (effect size of 0.18). This would suggest that the type of treatment effects reported in this study, even though the investigators referred to increases in levels of “hyperactivity,” were not the disruptive excessive hyperactivity behaviors of ADHD but more likely the type of overactivity exhibited occasionally by the general population of preschool and school age children. (FDA Food Advisory Committee 2011b).

This is a puzzling statement because an important facet of an ADHD diagnosis is excessive or inappropriate activity. Also, the DSM-IV lists six kinds of hyperactivity, not just the variation described above. The term “occasionally,” in this context, is at least equally puzzling. Respiratory infections are also occasional events for most children. If a survey were to find, say, a significant rise in the incidence of such infections among a group of schoolchildren, questions would be asked and actions possibly taken. This question, in fact, is the theme of many reports in environmental health.

The more significant paradox about the passage above by the FDA Food Advisory Committee (2011b) is its view that an effect size of 0.18 [in the range of many of the published studies (see Schab and Trinh 2004 ; Stevens et al. 2011 )] can be considered trivial. Effect size is often used to gauge the importance or strength of a finding; therefore, how it applies to McCann et al. (2007) —and its interpretation—is worth examining with a more familiar example.

Consider Figure 1 . For an IQ (intelligence quotient) distribution with a mean of 100 and and an SD of 15 (which describes a standardized IQ test such as the Stanford-Binet), 2.3% of the population will receive a score of < 70, a score that many school districts will view as warranting remedial attention. Now, define effect size, as used by McCann et al. (2007) and typically in the psychological literature, in terms of the standardized mean difference:

An external file that holds a picture, illustration, etc.
Object name is ehp.1103827.g001.jpg

For an IQ distribution with a mean of 100 and SD of 15 (e.g., the Stanford-Binet), 2.3% of the population will have an IQ score < 70, a score that many school districts consider warranting remedial attention. If an environmental exposure shifts the mean IQ score by –3% (from 100 to 97), the proportion of the population with an IQ score < 70 will increase. Based on the current U.S. figure of 76 million children 0–17 years of age (Childstats.gov 2011), this represents an increase of 990,000 children in that category.

(mean 1 – mean 2) ÷ (pooled SD).

If an environmental exposure shifts the mean by 3%, equivalent to an effect size of 0.2, to a mean of 97, 3.6% of the population represented by the distribution will have a score < 70. Based on Census 2000 counts, the U.S. government (Childstats.gov 2011) estimates that there are 76 million children 0–17 years of age in the nation. Of these, 1.75 million would be presumed to have an IQ score of < 70, given a mean of 100. A shift of the mean IQ to 97 would indicate that 2.74 million children would have an IQ < 70 (an increase of 990,000 children). Most observers would not consider this to be a value of “rather low magnitude.”

Figure 2 presents another set of implications based on an effect size of 0.2, or a 3% shift in IQ. It depicts the calculations by Herrnstein and Murray (1994) of the broader social consequences of a population IQ increase of 3%, which was converted into the effects of a corresponding decrease in IQ by Weiss and Bellinger (2006) . Although some of the presuppositions of these authors have aroused controversy, the relationships between IQ scores and lifetime earnings (e.g., Grosse et al. 2002 ), and how income influences the outcomes shown in Figure 2 , lends credibility to the calculations.

An external file that holds a picture, illustration, etc.
Object name is ehp.1103827.g002.jpg

Depiction of calculations by Herrnstein and Murray (1994) of societal benefits achieved by a 3% rise in the population IQ.

One other aspect of effect size calculations that the FDA review failed to consider is how such values are influenced by population heterogeneity. In their Figure 2 , Weiss and Bellinger (2006) showed how effect size calculations can be distorted if the sample population contains two subpopulations. Assume that the sample population consists of 70% nonresponders and 30% responders, and that the mean of the responders is shifted by 1 SD when presented with a challenge, such a food color. Under these conditions, it would require a total sample of 265 subjects to achieve an effect size of 1.0 as defined above. It is easy to see how true effects of a food color challenge to an unselected population can be missed if the sample size is small or if a minority of the sample consists of responders. Given such circumstances, it made sense for some investigators, such as Rowe and Rowe (1994) , to screen subjects for responsiveness to an elimination diet before undertaking the tartrazine challenge portion of their study. It is analogous to the cancer bioassay strategy of using high doses to identify carcinogenic potential in reasonably small samples of rodents.

Conclusions: The View from Environmental Health

The food color issue is emblematic of many questions in environmental health. What is the border between “inconclusive” and “conclusive” evidence? How is a susceptible population identified, and how large must it be for it to be seen as significant for public health? How broadly (or narrowly) should an outcome or criterion be defined and still remain relevant? From these standpoints, the FDA’s review, current position, charge to the Food Advisory Committee, and view of the issue’s future reflect a somewhat narrow vision. It is revealed in the conclusion by both the committee and the review (FDA FAC 2011c) that further research on the topic is necessary (committee members voted 93% yes and 7% no, when asked if more research was needed). This is hardly a statement to evoke disagreement, but consider the way such studies would have to be carried out. They would require institutional review board (IRB) approval. How would the investigator address the question of risk? How likely is it that an IRB would approve a study design in which the investigator states that, according to the published literature and the FDA, some children respond to a food color challenge with adverse behavioral effects? What, then, asks the IRB, is the purpose of the study? The difficulty in devising an argument for conducting a study that would satisfy most IRBs reveals the flaws in the FDA’s current position.

The next phase of the protocol would prove at least equally daunting. Parents would have to provide informed consent. As with the argument to the IRB, the parent would have to be made aware that food color challenges have been reported to induce adverse behavioral effects in some children. Would more than a small proportion of parents agree to have their child included?

Consider the cost of such a study. The Southampton study ( McCann et al. 2007 ) enrolled about 300 children, about 150 of nursery-school age and about 150 in elementary school, and it used a blend of food colors. According to the principal investigator, the study cost about $1 million to complete. If the FDA demands that each of the certified colors be studied individually, the total cost would reach $7 million. Additional studies are unlikely ever to be performed on the scale of that performed by the Southampton investigators.

If the FDA had approached the food color question from an environmental health perspective, it would have enlisted a broad sample of scientists from a variety of relevant disciplines to examine the question. Its model would have been that exemplified by the April 2011 issue of Environmental Health Perspectives , which highlighted the health effects of airborne particulate matter. That issue of the journal contained articles addressing topics such as differential susceptibility in populations, the effects of different particulate matter components on mortality, cardiovascular effects, coronary heart disease, and respiratory health.

Had the FDA approached the food color question with the breadth of inquiry adopted in 1977, when a select committee reviewed the toxicity of food additives permitted under the GRAS (Generally Regarded as Safe) criteria ( Siu et al. 1977 ), it would have arrived at a different conclusion. That committee, whose deliberations were supported by the FDA, looked beyond the simple question of “safety.” It enlisted public comment early in the process; made the penultimate draft of its report available to the public via the Federal Register and solicited comments; noted the importance of “psychotoxicology” in food safety evaluation; and emphasized the unique risks to neonates, a vulnerable group not considered in the FDA review but that is exposed to food colors.

If the FDA had given consideration to how the food color question might effectively be resolved, it might have adopted the vision described by NIEHS in the promise of Green Chemistry for Environmental Endocrine Disruptors, a meeting held in March 2011 in Sausalito, California ( Schug 2011 ). In a parallel fashion, the FDA might have called for a “green chemistry” approach to synthetic food colors.

In defense of the FDA position, one might argue that the narrow scope of the review and committee charge simply were products of the CSPI petition (CSPI 2008). But the agency has had 35 years since the Feingold book ( Feingold 1975 ) and 37 years since the GRAS report ( Siu et al. 1977 ) to address the neurobehavioral toxicity of food colors. Perhaps a regulatory agency is not capable of being proactive. However, the British Food Standards Agency has advised parents to consider eliminating artificial food colors from the diet, and the European Union has called for eliminating six colors or listing on the label the warning that “[the color] may have an adverse effect on activity and attention in children” ( Food Standards Agency 2011 ).

Preparation of this commentary was supported in part by research grant RC2 ES018736 and center grant ES01247 from the National Institute of Environmental Health Sciences.

The author declares he has no actual or potential competing financial interests.

  • American Psychiatric Association. Washington, DC: American Psychiatric Association; 2000. Diagnostic and Statistical Manual of Mental Disorders. 4th ed., text rev. [ Google Scholar ]
  • Barrett JR. Diet & nutrition: hyperactive ingredients? Environ Health Perspect. 2007; 115 :A578. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Boyle CA, Boulet S, Schieve LA, Cohen RA, Blumberg SJ, Yeargin-Allsopp M, et al. Trends in the prevalence of developmental disabilities in US children, 1997–2008. Pediatrics. 2011; 127 :1034–1042. [ PubMed ] [ Google Scholar ]
  • Childstats.gov. POP 1. Child Population: Number of Children (in Millions) Ages 0–17 in the United States by Age, 1950–2010 and Projected 2030–2050. 2011. Available: http://www.childstats.gov/americaschildren/tables/pop1.asp [accessed 29 July 2011]
  • Conners CK, Goyette CH, Southwick DA, Lees JM, Andrulonis PA. Food additives and hyperkinesis: a controlled double-blind experiment. Pediatrics. 1976; 58 (2):154–166. [ PubMed ] [ Google Scholar ]
  • CSPI (Center for Science in the Public Interest) Petition to Ban the Use of Yellow 5 and Other Food Dyes, in the Interim to Require a Warning on Foods Containing These Dyes, to Correct the Information the Food and Drug Administration Gives to Consumers on the Impact of These Dyes on the Behavior of Some Children, and to Require Neurotoxicity Testing of New Food Additives and Food Colors. 2008. Available: http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/FoodAdvisoryCommittee/UCM248005.pdf [accessed 17 November 2011]
  • FDA (Food and Drug Administration) Food Ingredients and Colors. 2010. Available: http://www.fda.gov/downloads/Food/FoodIngredientsPackaging/ucm094249.pdf [accessed 21 November 2011]
  • FDA FAC (Food and Drug Administration Food Advisory Committee) Background Document for the Food Advisory Committee: Certified Color Additives in Food and Possible Association with Attention Deficit Hyperactivity Disorder in Children March 30–31, 2011. 2011a. Available: http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/FoodAdvisoryCommittee/UCM248549.pdf [accessed 29 July 2011]
  • FDA FAC (Food and Drug Administration Food Advisory Committee) Overview and Evaluation of Proposed Association between Artificial Food Colors and Attention Deficit Hyperactivity Disorders (ADHD) and Problem Behaviors in Children. Interim Toxicology Review Memorandum, September 1, 2010, Attachment 4. 2011b. Available: http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/FoodAdvisoryCommittee/UCM248113.pdf [accessed 29 July 2011]
  • FDA FAC (Food and Drug Administration Food Advisory Committee) Quick Minutes: Food Advisory Committee Meeting March 30–31, 2011. 2011c. Available: http://www.fda.gov/advisorycommittees/committeesmeetingmaterials/foodadvisorycommittee/ucm250901.htm [accessed 21 November 2011]
  • Feingold BF. 1975. Why Your Child Is Hyperactive. New York:Random House. [ Google Scholar ]
  • Food Standards Agency. FSA Advice to Parents on Food Colours and Hyperactivity. 2011. Available: http://www.food.gov.uk/safereating/chemsafe/additivesbranch/colours/hyper/ [accessed 17 November 2011]
  • Goyette GH, Conners CK, Petti TA, Curtis LE. Effects of artificial colors on hyperkinetic children: a double-blind challenge study. Psychopharm Bull. 1978; 14 :39–40. [ PubMed ] [ Google Scholar ]
  • Grosse SD, Matte TD, Schwartz J, Jackson RJ. Economic gains resulting from the reduction in children’s exposure to lead in the United States. Environ Health Perspect. 2002; 110 :563–569. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Harley JP, Matthews CG, Eichman P. Synthetic food colors and hyperactivity in children: a double-blind challenge experiment. Pediatrics. 1978a; 62 (6):975–983. [ PubMed ] [ Google Scholar ]
  • Harley JP, Ray RS, Tomasi L, Eichman PL, Matthews CG, Chun R, et al. Hyperkinesis and food additives: testing the Feingold hypothesis. Pediatrics. 1978b; 61 (6):818–828. [ PubMed ] [ Google Scholar ]
  • Herrnstein RJ, Murray C. 1994. The Bell Curve: Intelligence and Class Structure in American Life. New York:Free Press. [ Google Scholar ]
  • McCann D, Barrett A, Cooper A, Crumpler D, Dalen L, Grimshaw K, et al. Food additives and hyperactive behaviour in 3-year-old and 8/9-year-old children in the community: a randomised, double-blinded, placebo-controlled trial. Lancet. 2007; 370 :1560–1567. [ PubMed ] [ Google Scholar ]
  • Rowe KS, Rowe KJ. Synthetic food coloring and behavior: a dose response effect in a double-blind, placebo-controlled, repeated-measures study. J Pediatr. 1994; 125 (5 pt 1):691–698. [ PubMed ] [ Google Scholar ]
  • Schab DW, Trinh NH. Do artificial food colors promote hyperactivity in children with hyperactive syndromes? A meta-analysis of double-blind placebo-controlled trials. J Dev Behav Pediatr. 2004; 25 (6):423–434. [ PubMed ] [ Google Scholar ]
  • Schug T. NIEHS scientists join forces with green chemists. Environ Factor, April:24–26. 2011. Available: http://www.niehs.nih.gov/news/newsletter/2011/april/docs/efactor.pdf [accessed 29 July 2011]
  • Siu RG, Borzelleca JF, Carr CJ, Day HG, Fomon SJ, Irving GW, Jr, et al. Evaluation of health aspects of GRAS food ingredients: lessons learned and questions unanswered. Fed Proc. 1977; 36 (11):2519–2562. [ PubMed ] [ Google Scholar ]
  • Spivey A. Research issues and initiatives: NIEHS funds human BPA research. Environ Health Perspect. 2009; 117 :A541. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Stare FJ, Whelan EM, Sheridan M. Diet and hyperactivity: is there a relationship. Pediatrics. 1980; 66 (4):521–525. [ PubMed ] [ Google Scholar ]
  • Stevens LJ, Kuczek T, Burgess JR, Hurt E, Arnold LE. Dietary sensitivities and ADHD symptoms: thirty-five years of research. Clin Pediatr (Phila) 2011; 50 (4):279–293. [ PubMed ] [ Google Scholar ]
  • Swanson JM, Kinsbourne M. Food dyes impair performance of hyperactive children on a laboratory learning test. Science. 1980; 207 (4438):1485–1487. [ PubMed ] [ Google Scholar ]
  • U.S. Environmental Protection Agency. PM Health Outcomes Science: Susceptible Populations. 2011. Available: http://www.epa.gov/ord/ca/quick-finder/pm-health-populations.htm [accessed 29 July 2011]
  • Weiss B. Food additives and environmental chemicals as sources of childhood behavior disorders. J Am Acad Child Psychiatry. 1982; 21 (2):144–152. [ PubMed ] [ Google Scholar ]
  • Weiss B. Food additives and hyperactivity. Environ Health Perspect. 2008; 116 :A240–A241. [Letter] [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Weiss B, Bellinger DC. Social ecology of children’s vulnerability to environmental pollutants. Environ Health Perspect. 2006; 114 :1479–1485. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Weiss B, Williams JH, Margen S, Abrams B, Caan B, Citron LJ, et al. Behavioral responses to artificial food colors. Science. 1980; 207 :1487–1489. [ PubMed ] [ Google Scholar ]
  • Williams JI, Cram DM, Tausig FT, Webster E. Relative effects of drugs and diet on hyperactive behaviors: an experimental study. Pediatrics. 1978; 61 (6):811–817. [ PubMed ] [ Google Scholar ]

Information

  • Author Services

Initiatives

You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.

All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess .

Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.

Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Original Submission Date Received: .

  • Active Journals
  • Find a Journal
  • Proceedings Series
  • For Authors
  • For Reviewers
  • For Editors
  • For Librarians
  • For Publishers
  • For Societies
  • For Conference Organizers
  • Open Access Policy
  • Institutional Open Access Program
  • Special Issues Guidelines
  • Editorial Process
  • Research and Publication Ethics
  • Article Processing Charges
  • Testimonials
  • Preprints.org
  • SciProfiles
  • Encyclopedia

sustainability-logo

Article Menu

research paper on food dyes

  • Subscribe SciFeed
  • Recommended Articles
  • Google Scholar
  • on Google Scholar
  • Table of Contents

Find support for a specific problem in the support section of our website.

Please let us know what you think of our products and services.

Visit our dedicated information section to learn more about MDPI.

JSmol Viewer

Two decades of advancements in cold supply chain logistics for reducing food waste: a review with focus on the meat industry.

research paper on food dyes

1. Introduction

Objective and scope of study.

  • What is the current state of the art on beef CSCL in terms of management, sustainability, network design, and the use of information technologies for red meat waste reduction?
  • To provide an overview of the current state of the art and to identify the gaps and contemporary challenges to red meat waste reduction;
  • To identify key research themes and their potential role and associated elements in mitigating red meat waste reduction, especially across the beef CSCL systems;
  • To pinpoint the directions in each theme that warrant further research advancement.

2. Materials and Methods

2.1. literature retrieval and selection, 2.2. extracting the research themes, 3.1. the literature review identified themes and subjects, 3.2. the literature’s evolution and descriptive results, 3.3. management, 3.3.1. logistics management and chronological evolution, 3.3.2. management and regulations, 3.3.3. management and collaboration, 3.3.4. management and costs, 3.3.5. management and inventory, 3.3.6. management and decision-making, 3.3.7. management and risks, 3.3.8. management and waste reduction, 3.3.9. management and information, 3.3.10. management and cold chain deficiencies, 3.4. sustainability, 3.4.1. sustainability and closed-loop scs (clscs), 3.4.2. sustainability and business models, 3.4.3. sustainability and wastage hotspots, 3.4.4. sustainability and packing, 3.4.5. sustainability and information flow, 3.5. network design optimisation, 3.5.1. network design and decision levels, 3.5.2. network design and the location–inventory problem, 3.5.3. network design and routing-inventory problem, 3.5.4. network design and the location routing problem, 3.5.5. network design and the integrated location–inventory routing problem, 3.5.6. network design and sustainability, 3.5.7. network design and information flow, 3.6. information technologies, 3.6.1. it and meat sc transformation, 3.6.2. emerging information technologies and meat scs, technical instruments, technological systems, 4. discussion, 4.1. management, 4.2. sustainability, 4.3. network design, 4.4. information technology, 5. conclusions.

  • Management: ◦ Effective management practices are crucial for addressing FLW in beef CSCL systems. ◦ There is a notable transition from LM to FLM and SFLM, with the potential for emerging technologies to create an “Intelligent Sustainable Food Logistics Management” phase. ◦ Suboptimal management practices continue to contribute significantly to FLW, underscoring the need for enhanced strategies and adherence to regulations and standards.
  • Sustainability: ◦ Sustainability in beef CSCL involves addressing social, economic, and environmental benefits. ◦ Reducing FLW can lead to increased profits, improved customer satisfaction, public health, equity, and environmental conservation by minimising resource use and emissions. ◦ Comprehensive research integrating all sustainability dimensions is needed to fully understand and mitigate FLW. Current efforts often address only parts of sustainability. A more holistic approach is required to balance environmental, economic, and social dimensions effectively.
  • Network Design: ◦ Effective network design and optimisation are pivotal in reducing FLW within beef CSCL systems. ◦ There is a necessity for integrating all three levels of management decisions in the logistics network design process. Decision levels in network design must be considered to understand trade-offs among sustainability components in this process. ◦ Future research should focus on integrating management decisions and network design, CSCL uncertainties, sustainability dimensions, and advanced technologies to enhance efficiency and reduce waste in beef CSCL systems.
  • Information Technologies: ◦ Information technologies such as Digital Twins (DTs) and Blockchain (BC) play a significant role in improving efficiency and reducing FLW in beef CSCL. ◦ The integration of these technologies can enhance understanding of fluid dynamics, thermal exchange, and meat quality variations, optimising the cooling process and reducing energy usage. ◦ Challenges like data security and management efficiency need to be addressed to maximise the benefits of these technologies.

Author Contributions

Data availability statement, acknowledgments, conflicts of interest.

Scholar, Ref.YearSubjectObjectives
I
IIMethodologyIndustry (Product)Measures to Reduce FLW
Gunasekaran et al. [ ]2008Logistics managementTo improve the responsiveness of SCsTo increase the competitiveness of SCsGroup Process and Analytical Hierarchy ProcessMulti-industry-
Dabbene et al. [ ]2008Food logistics management To minimise logistic costsTo maintain food product qualityStochastic optimisationFresh food -
Lipinski et al. [ ]2013Food logistics managementTo minimise the costs associated with food wasteTo reduce food wasteQualitative analysisFood productsProposing appropriate strategies
van der Vorst et al. [ ]2011Food logistics managementTo improve the competitiveness level, maintaining the quality of productsTo improve efficiency and reduce food waste levelsQualitative analysisAgrifood productsThe development of a diagnostic instrument for quality-controlled logistics
Soysal et al. [ ]2012Sustainable logistics management To enhance the level of sustainability and efficiency in food supply chainsTo reduce FLW levelsQualitative analysisFood supply chainsThe analysis of existing quantitative models, contributing to their development
Bettley and Burnley [ ]2008Sustainable logistics management (SLM) To improving environmental and social sustainabilityTo reduce costs and food wasteQualitative analysisMulti-industryapplication of a closed-loop supply chain concept to incorporate sustainability into operational strategies and practices
Zokaei and Simons, [ ]2006 SML, Collaboration, Regulation, Cost, Inventory, Waste reduction, Information sharing,To introduce the food value chain analysis (FVCA) methodology for improving consumer focus in the agri-food sectorTo present how the FVCA method enabled practitioners to identify the misalignments of both product attributes and supply chain activities with consumer needsStatistical analysis/FVCARed meatSuggesting the application of FVCA can improve the overall efficiency and reduce the waste level
Cox et al. [ ]2007SML, Cost, Decision-making, Risks, Waste reduction, Sustainability To demonstrate the proactive alignment of sourcing with marketing and branding strategies in the red meat industryTo showcase how this alignment can contribute to competitive advantage in the food industryQualitativeBeef and Red meatEmphasising the role of the lean approach, identifying waste hotspots, and collaboration in reducing food loss and waste
Jie and Gengatharen, [ ]2019SML, Regulation, Collaboration, Cost, Inventory, Waste reduction, Info. Sharing, IT, Sustainability, ScoTo empirically investigate the adoption of supply chain management practices on small and medium enterprises in the Australian food retail sectorTo analyse the structure of food and beverage distribution in the Australian retail marketStatistical analysisFood/Beef Meat IndustryAdopting lean thinking and improving information sharing in the supply chains
Knoll et al. [ ]2017SML, Collaboration, Regulation, Cost, Inventory, Decision-making, Risks, Information sharing, Deficiencies, Network designTo characterise the supply chain structureTo identify its major fragilitiesQualitativeBeef meat-
Schilling-Vacaflor, A., [ ] 2021Regulation, SustainabilityTo analyse the institutional design of supply chain regulationsTo integrate human rights and environmental concerns into these regulationsQualitativeBeef and Soy Industries-
Knoll et al. [ ]2018Regulation, Collaboration, Cost, Risks, Deficiencies, Decision-making, Sustainability, Information sharingTo analyse the information flow within the Sino-Brazilian beef trade, considering the opportunities presented by the Chinese beef market and the vulnerabilities in the supply chainTo investigate the challenges and opportunities in the information exchange process between China and Brazil within the beef trade sectorMixed methodBeef Industry-
E-Fatima et al. [ ]2022Regulation, Risks, Safety, Collaboration, Business model, Packing, information sharingTo critically examine the potential barriers to the implementation and adoption of Robotic Process Automation in beef supply chainsTo investigate the financial risks and barriers to the adoption of RPA in beef supply chainsMixed methodBeef supply chain-
Jedermann et al. [ ] 2014Regulations and Food SafetyTo reduce food loss and wasteTo improve traceabilityQualitative analysisMeat and Food productsProposing appropriate strategies to improve quality monitoring
Kayikci et al. [ ]2018Regulations, Sustainability, Waste reductionTo minimise food waste by investigating the role of regulations To improve sustainability, social and environmental benefitsGrey prediction methodRed meatProposing circular and central slaughterhouse model and emphasising efficiency of regulations based on circular economy comparing with the linear economy model
Storer et al. [ ]2014Regulation, Collaboration, Cost, Inventory, Decision-making, Risks, IT, Sustainability To examine how forming strategic supply chain relationships and developing strategic supply chain capability influences beneficial supply chain outcomesTo understand the factors influencing the utilisation of industry-led innovation in the form of electronic business solutionsMixed methodsBeef supply chain-
Liljestrand, K., [ ]2017Collaboration, FLW, Information sharingTo analyse sustainability practices adopted in collaboration, including vertical collaboration in the food supply chainTo explore the role of collaboration in tackling food loss and wasteQualitative analysisMeat and Food productsInvestigating how Food Policy can foster collaborations to reduce FLW
Mangla et al. [ ]2021Collaboration, food safety and traceabilityTo enhance food safety and traceability levels through collaboration lensTo examine traceability dimensions and decrease information hidingQualitative analysisMeat and Food productsOffering a framework for collaboration role in reducing info hiding and FLW in the circular economy
Liljestrand, K. [ ]2017Collaboration, FLW, Information sharingTo investigate the role of logistics management and relevant solutions in reducing FLWTo explore the role of collaboration in food supply chainsQualitative analysisMeat and Food productsExamining the role of collaborative forecasting in reducing food waste
Esmizadeh et al. [ ]2021Cost and Network designTo investigate the relations among cost, freshness, travel time, and Hub facilities vs Distribution centresTo investigate the product perishability effect in the distribution phase under hierarchical hub network designDeterministic optimisationMeat and food products-
Cristóbal et al. [ ]2018Cost, FLW and SustainabilityTo consider the cost factor in the planning to reduce FLWTo develop a method to reduce costs and FLW environmental effects and improve the sustainability levelMixed methodMeat and Food productsProposing novel methods and programmes for cost effective and sustainable FLW management
Esmizadeh et al. [ ]2021Cost and Network designTo investigate the relations among cost, freshness, travel time, and Hub facilities vs Distribution centresTo investigate the product perishability effect in the distribution phase under hierarchical hub network designDeterministic optimisationMeat and food products-
Faisal. M. N., [ ]2015Cost, Risks, Regulations, Deficiencies, Collaboration, Decision-making, IT, Information sharing To identify variables that act as inhibitors to transparency in a red meat supply chainTo contribute to making the supply chain more transparentMixed methodRed meat-
Shanoyan et al. [ ]2019Cost, Risks, Information sharingTo analyse the incentive structures at the producer–processor interface within the beef supply chain in BrazilTo assess the dynamics and effectiveness of incentive mechanisms between producers and processors in the Brazilian beef supply chainQualitativeBeef Industry-
Nakandala et al. [ ]2016Cost, SustainabilityTo minimise transportation costs and CO emissionsTo maximise product freshness and qualityStochastic optimisationMeat and food products-
Ge et al. [ ]2022Cost, Decision-making, To develop an optimal network model for the beef supply chain in the Northeastern USTo optimize the operations within this supply chainMathematical modellingBeef meat-
Hsiao et al. [ ]2017Cost, Inventory, Network designTo maximise distribution efficiency and customer satisfactionZTo minimise the quality drop of perishable food products/meatDeterministic optimisationMeat products-
Shanoyan et al. [ ]2019Cost, Risks, Information sharingTo analyse the incentive structures at the producer–processor interface within the beef supply chain in BrazilTo assess the dynamics and effectiveness of incentive mechanisms between producers and processors in the Brazilian beef supply chainQualitativeBeef Industry-
Magalhães et al. [ ]2020Inventory and FWTo identify FLW causes in the beef supply chain in Brazil and explore the role of inventory management strategies and demand forecasting in FLW issueTo investigate their interconnectionsMixed methodBeef meat industryProviding a theoretical basis to implement appropriate FLW mitigation strategies
Jedermann et al. [ ] 2014Inventory and Food SafetyTo reduce food loss and wasteTo improve traceabilityQualitative analysisMeat and Food productsProposing appropriate strategies to improve quality monitoring
Meksavang et al. [ ]2019Inventory, Cost, Decision-making, Information sharing, SustainabilityTo develop an extended picture fuzzy VIKOR approach for sustainable supplier managementTo apply the developed approach in the beef industry for sustainable supplier managementMixed methodsBeef meat-
Herron et al. [ ]2022Inventory and SustainabilityTo identify the minimum shelf life required to prevent food waste and develop FEFO modelsTo identify the risk of food products reaching the bacterial danger zone Deterministic optimisationMeat productsBuilding a decision-making model and incorporating quality and microbiological data
Rahbari et al. [ ]2021Decision-making and Network designTo minimise distribution cost, variable costTo reduce inventory costs, the total costDeterministic optimisationRed meat-
Taylor D.H., [ ]2006Decision-making, Cost Risks, Inventory, Waste Reduction, Deficiencies, Sustainability, Env.To examine the adoption and implementation of lean thinking in food supply chains, particularly in the UK pork sectorTo assess the environmental and economic impact of lean practices in the agri-food supply chainQualitativeRed meatSuggesting the combination of Value Chain Analysis and Lean principles
Erol and Saghaian, [ ]2022Risks, Cost, RegulationTo investigate the dynamics of price adjustment in the US beef sector during the COVID-19 pandemicTo analyse the impact of the pandemic on price adjustments within the US beef sectorMixed methodBeef Industry-
Galuchi et al. [ ]2019Risks, Regulations, Sustainability, Soc., Env.To identify the main sources of reputational risks in Brazilian Amazon beef supply chainsTo analyse the actions taken by slaughterhouses to manage these risksMixed methodBeef supply chainMitigating risks
Silvestre et al. [ ]2018Risks, Collaboration, Regulation, Management, Sustainability To examine the challenges associated with sustainable supply chain managementTo propose strategies for addressing identified challengesQualitativeBeef Industry-
Bogataj et al. [ ]2020Risks, Cost, Sustainability, InventoryTo maximise the profitTo improve sustainability performanceMixed methodBeef industryIncorporating the remaining shelf life in the decision-making process
Nguyen et al. [ ]2023Risks, Waste reduction, Sustainability, Cost, InventoryTo improve the operational efficiencyTo reduce carbon footprint and food wasteStatistical analysisBeef industryIdentifying the root causes of waste and proposing a framework composed of autonomous agents to minimise waste
Amani and Sarkodie, [ ]2022Risks, Information technologies, SustainabilityTo minimise overall cost and wasteTo improve the sustainability performanceStochastic optimisationMeat productsIncorporating artificial intelligence in the management context
Klein et al. [ ]2014Risks, Information TechnologiesTo analyse the use of mobile technology for management and risk controlTo identify drivers and barriers to mobile technology adoption in risk reduction-Beef meatIntroducing a framework that connects the challenges associated with the utilisation of mobile technology in SCM and risk control
Gholami-Zanjani et al. [ ]2021Risk, ND, Inventory, Wastage Hot Spots, SustainabilityTo reduce the risk effect and improve the resiliency against disruptionsTo minimise environmental implicationsStochastic optimisationMeat products-
Buisman et al. [ ]2019Waste reductionTo reduce food loss and waste at the retailer levelTo improve food safety level and maximise the profitStochastic optimisationMeat and Food productsEmploying a dynamically adjustable expiration date strategy and discounting policy
Verghese et al. [ ]2015Waste reduction, Information Technologies and SustainabilityTo reduce food waste in food supply chains and relevant costsTo improve the sustainability performanceQualitative analysisMeat and Food productsApplying of information technologies and improved packaging
Jedermann et al. [ ] 2014Waste reductionTo reduce food loss and wasteTo improve traceabilityQualitative analysisMeat and Food productsIntroducing some initiatives and waste reduction action plans
Mohebi and Marquez, [ ]2015Waste reduction and Information TechnologiesTo improve the customer satisfaction and the quality of food productsTo reduce food waste and lossQualitative analysisMeat productsProposing strategies and technologies for meat quality monitoring during the transport and storage phases
Kowalski et al. [ ]2021Waste reduction and Information TechnologiesTo reduce food wasteTo create a zero-waste solution for handling dangerous meat wasteMixed methodMeat productsRecovering meat waste and transforming it into raw, useful materials
Beheshti et al. [ ]2022Waste reduction, Network design, and Information TechnologiesTo reduce food waste by optimising the initial rental capacity and pre-equipped capacity required for the maximisation of profitTo optimise CLSCs and to improve cooperation level among supply chain stakeholdersStochastic optimisationMeat productsApplying optimisation across reverse logistics and closed-loop supply chains
Albrecht et al. [ ]2020Waste reduction, IT, Decision-making, InventoryTo examine the effectiveness of sourcing strategy in reducing food loss and waste and product quality To validate the applicability of the TTI monitoring system for meat productsMixed methodMeat productsApplying of new information technologies in order to monitor the quality of products
Eriksson et al. [ ]2014Waste reduction and SustainabilityTo compare the wastage of organic and conventional meatsTo compare the wastage of organic and conventional food productsMixed methodMeat and perishable food productsProviding hints to reduce the amount of food loss and waste based on research findings
Accorsi et al. [ ]2019Waste reduction, Decision support, Sustainability (Eco., Soc., Env.)To address sustainability and environmental concerns related to meat production and distributionTo maximise the profitDeterministic optimisationBeef and meat productsProviding a decision-support model for the optimal allocation flows across the supply chain and a system of valorisation for the network
Jo et al. [ ]2015Information technologies, SustainabilityTo reduce food loss and waste levels, improve food traceability and sustainabilityTo minimise CO emissionsMixed methodBeef meat productsIncorporating blockchain technology
Ersoy et al. [ ]2022Information technologies, Sustainability, Food loss and WasteTo improve collaboration among multi-tier suppliers through knowledge transfer and to provide green growth in the industry To improve traceability in the circular economy context through information technology innovationsStatistical analysisMeat productsSuggesting a validated conceptual framework expressing the role of information technologies in information sharing
Kler et al. [ ]2022Information technologies, SustainabilityTo minimise transport CO emission level and food waste levelTo improve traceability and demand monitoring levelsData AnalyticsMeat productsEmploying information technologies (IoT) and utilising data analytics for optimising the performance
Singh et al. [ ]2018IT, Information sharing, Waste reduction, Decision-making, and PackingTo explore the application of social media data analytics in enhancing supply chain management within the food industryTo investigate how social media data analytics can be utilised to improve decision-making processes and operational efficiencyMixed methodBeef and food supply chainHighlighting the role of content analysis of Twitter data obtained from beef supply chains and retailers
Martinez et al. [ ]2007Deficiencies, Regulation, Cost, InventoryTo improve food safetyTo lower regulatory costStatistical analysisMeat and food products-
Kayikci et al. [ ]2018Deficiencies, Regulations, Waste reduction, Sustainability To minimise food waste by investigating the role of regulationsTo improve sustainability, social and environmental benefitsGrey prediction methodRed meatProposing circular and central slaughterhouse model and emphasising efficiency of regulations based on circular economy comparing with the linear economy model
Nychas et al. [ ]2008Deficiencies, Waste reduction, Information TechnologiesTo characterise the microbial spoilage of meat samples during distributionTo assess the factors contributing to meat spoilageMixed methodMeat productsIdentifying and discussing factors contributing to meat spoilage
Sander et al. [ ]2018Deficiencies, Risks, Information TechnologiesTo investigate meat traceability by outlining the different aspects of transparency To understand the perspectives of various stakeholders regarding BCTQualitative analysisMeat products-
Scholar, Ref.YearSubjectObjectives
I
IIMethodologyIndustry (Product)Measures to Reduce FLW
Mahbubi and Uchiyama, [ ] 2020Eco, Soc., Evn., Management, Collaboration, IT, Information sharing To identify the Indonesian halal beef supply chain’s basic systemTo assess the sustainability level in the Indonesian halal beef supply chainLife cycle assessmentBeef IndustryIdentifying waste in different actors’ sections
Bragaglio et al. [ ]2018Env., Management, Inventory, Decision-makingTo assess and compare the environmental impacts of different beef production systems in ItalyTo provide a comprehensive analysis of the environmental implicationsLife cycle assessmentBeef Industry-
Zeidan et al. [ ]2020Env., Management, Collaboration, CostTo develop an existence inductive theoryTo study coordination failures in sustainable beef productionQualitativeBeef Industry-
Santos and Costa, [ ]2018Env., Packing, Management, Cost, RegulationsTo assess the role of large slaughterhouses in promoting sustainable intensification of cattle ranching in the Amazon and the CerradoTo evaluate the environmental and social impacts of large slaughterhouses Statistical AnalysisBeef Industry-
E-Fatima et al. [ ]2023Business model, Packing, Eco., Socio., Env., Management, Waste reductionTo investigate the financial risks and barriers in the adoption of robotic process automation (RPA) in the beef supply chainsTo examine the potential influence of RPA on sustainability in the beef industrySimulationBeef IndustryAdopting Robotic Process Automation
Huerta et al. [ ]2015Env., Packing, Waste Management, WasteTo assess the environmental impact of beef production in MexicoTo conduct a life cycle assessment of the beef production processLife cycle assessmentBeef IndustrySuggesting utilising generated organic waste to produce usable energy
Cox et al. [ ]2007Env., Business model, Packing, Management, Waste reduction, Information sharing, Cost, Risk To explore the creation of sustainable strategies within red meat supply chainsTo investigate the development of sustainable practices and strategies in the context of red meat supply chainsQualitativeRed meat IndustryProposing the adoption of lean strategies in the red meat supply chain industry
Teresa et al. [ ]2018Eco., Env., Business model, Management, Deficiencies, Regulation, Collaboration, CostTo provide current perspectives on cooperation among Irish beef farmersTo explore the future prospects of cooperation within the context of new producer organisation legislationQualitativeBeef IndustryHighlighting the role of legislation in the joint management of waste
Kyayesimira et al. [ ]2019Eco., Waste hotspots, Management, RegulationsTo identify and analyse the causes of losses at various post-harvest handling points along the beef value chain in UgandaTo estimate the economic losses incurred due to those factors Statistical analysisBeef IndustryProviding insights into potential improvements in the beef value chain management
Ranaei et al. [ ]2021Env., Eco., Wastage hotspots Management, deficiencies, Waste reduction, Regulation, Collaboration To identify the causes of meat waste and meat value chain losses in IranTo propose solutions to reduce meat value chain lossesQualitativeMeat/Red Meat IndustryIdentifying the causes and hotspots of wastage points and proposing solutions
Wiedemann et al. [ ]2015Env., Eco., Waste hotspots, Manag., InventoryTo assess the environmental impacts and resource use associated with meat exportTo determine the environmental footprintLife Cycle AssessmentRed meat IndustryProviding insights into potential improvements
Pinto et al. [ ]2022Sustainability (Eco., Evo., Soc.) Management To explore the sustainable management and utilisation of animal by-products and food waste in the meat industryTo analyse the food loss and waste valorisation of animal by-productsMixed methodMeat products and industryEmploying the CE concept in the context of the meat supply chain suggested the development of effective integrated logistics for wasted product collection
Chen et al. [ ]2021Sustainability (Env.) and ManagementTo identify existing similarities among animal-based supply chains To measure the reduction effect of interventions appliedMixed methodBeef meat and food productsApplying the food waste reduction scenario known to be effective in emission reduction
Martínez and Poveda, [ ] 2022Sustainability (Env.), ManagementTo minimise environmental impacts by exploring refrigeration system characteristicsTo develop refrigeration systems-based policies for improving food qualityMixed methodMeat and food products-
Peters et al. [ ]2010Sustainability (Env.), Wastage hotspotsTo assess the environmental impacts of red meat in a lifecycle scopeTo compare the findings with similar cases across the worldLife Cycle Impact AssessmentBeef meat and red meat-
Soysal et al. [ ]2014Sustainability (Env.), Wastage hotspots, Network DesignTo minimise inventory and transportation costs To minimise CO emissions Deterministic optimisationBeef meat-
Mohebalizadehgashti et al. [ ]2020Sustainability (Env.), Wastage hotspots, Network DesignTo maximise facility capacity, minimise total cost To minimise CO emissions Deterministic optimisationMeat products-
Fattahi et al. [ ]2013Sustainability (Env.), Packing, ManagementTo develop a model for measuring the performance of meat SCTo analyse the operational efficiency of meat SCMixed methodMeat products-
Florindo et al. [ ]2018Sustainability (Env.), Wastage hotspots, ManagementTo reduce carbon footprint To evaluate performance Mixed methodBeef meat-
Diaz et al. [ ]2021Sustainability (Env.), Wastage hotspotsTo conduct a lifecycle-based study to find the impact of energy efficiency measuresTo evaluate environmental impacts and to optimise the energy performanceLife Cycle Impact AssessmentBeef meatReconversing of Energy from Food Waste through Anaerobic Processes
Schmidt et al. [ ]2022Sustainability (Env.), Wastage hotspots, Management, Information TechnologiesTo optimise the supply chain by considering food traceability, economic, and environmental issuesTo reduce the impact and cost of recalls in case of food safety issuesDeterministic optimisationMeat products-
Mohammed and Wang, [ ]2017Sustainability (Eco.) Management, Decision-making, Network designTo minimise total cost, To maximise delivery rateTo minimise CO emissions and distribution time Stochastic optimisationMeat products-
Asem-Hiablie et al. [ ]2019Sustainability (Env.), energy consumption, greenhouse gasTo quantify the sustainability impacts associated with beef productsTo identify opportunities for reducing its environmental impactsLife cycle assessment Beef industry -
Bottani et al. [ ]2019Sustainability (Eco., and Env.), Packaging, Waste managementTo conduct an economic assessment of various reverse logistics scenarios for food waste recoveryTo perform an environmental assessment for themLife cycle assessmentMeat and food industryExamining and employing different reverse logistics scenarios
Kayikci et al. [ ]2018Sustainability (Eco., Soc., Env.) Management, Regulations, Waste reductionTo minimise food waste by investigating the role of regulations To improve sustainability, social and environmental benefitsGrey prediction methodRed meatProposing circular and central slaughterhouse model and emphasising efficiency of regulations based on circular economy comparing with the linear economy model
Tsakiridis et al. [ ]2020Sustainability (Env.), Information technologiesTo compare the economic and environmental impact of aquatic and livestock productsTo employ environmental impacts into the Bio-Economy modelLife cycle assessmentBeef and meat products-
Jo et al. [ ]2015Sustainability (Eco. and Env.), Management, Cost, Food Safety, Risks, Information TechnologiesTo reduce food loss and waste levels, improve food traceability and sustainabilityTo minimise CO emissionsMixed methodBeef meat productsIncorporating blockchain technology
Jeswani et al. [ ]2021Sustainability (Env.), Waste managementTo assess the extent of food waste generation in the UKTo evaluate its environmental impactsLife cycle assessmentMeat productsQuantifying the extent of FW and impact assessment
Accorsi et al. [ ]2020Sustainability (Eco. and Env.), Waste Management, Decision-making, Network design (LIP)To reduce waste and enhance sustainability performanceTo assess the economic and environmental implications of the proposed FSCDeterministic optimisationMeat and food industryDesigning a closed-loop packaging network
Chen et al. [ ]2021Sustainability (Env.) and Waste ManagementTo identify the environmental commonality among selected FSCsTo measure the reduction effect of novel interventions for market characteristicsLife cycle assessmentBeef meat and food productsConfirming the efficiency of food waste management and reduction scenario
Sgarbossa et al. [ ]2017Sustainability (Eco., Evo., Soc.) Network designTo develop a sustainable model for CLSCTo incorporate all three dimensions of sustainability Deterministic optimisationMeat productsConverting food waste into an output of a new supply chain
Zhang et al. [ ]2022Sustainability (Eco. and Env.), Packaging, Network designTo maximise total profitTo minimise environmental impact, carbon emissionsStochastic optimisationMeat and food productsUsing Returnable transport items instead of one-way packaging
Irani and Sharif., [ ]2016Sustainability (Soc.) Management, ITTo explore sustainable food security futuresTo provide perspectives on FW and IT across the food supply chainQualitative analysisMeat and food productsDiscussing potential strategies for waste reduction
Martindale et al. [ ]2020Sustainability (Eco. and Env.), Management, food safety, IT (BCT)To develop CE theory application in FSCs by employing a large geographical databaseTo test the data platforms for improving sustainabilityMixed methodMeat and food products-
Mundler, and Laughrea, [ ]2016Sustainability (Eco., Env., Soc.)To evaluate short food supply chains’ contributions to the territorial developmentTo characterise their economic, social, and environmental benefitsMixed methodMeat and food products-
Vittersø et al. [ ]2019Sustainability (Eco., Env., Soc.)To explore the contributions of short food supply chains to sustainabilityTo understand its impact on all sustainability dimensionsMixed methodMeat and food products-
Bernardi and Tirabeni, [ ]2018Sustainability (Eco., Env., Soc.)To explore alternative food networks as sustainable business modelsTo explore the potentiality of the sustainable business model proposedMixed methodMeat and food productsEmphasising the role of accurate demand forecast
Bonou et al. [ ]2020Sustainability (Env.)To evaluate the environmental impact of using six different cooling technologiesTo conduct a comparative study of pork supply chain efficiencyLife cycle assessmentPork products-
Apaiah et al. [ ] 2006Sustainability (Env.), Energy consumptionTo examine and measure the environmental sustainability of food supply chains using exergy analysisTo identify improvement areas to diminish their environmental implications Exergy analysisMeat products-
Peters et al. [ ]2010Sustainability (Env.), energy consumption, greenhouse gasTo assess greenhouse gas emissions and energy use levels of red meat products in AustraliaTo compare its environmental impacts with other countriesLife cycle assessmentRed meat products-
Farooque et al. [ ]2019Sustainability (Env., and Eco.) Management, Regulation, CollaborationTo identify barriers to employing the circular economy concept in food supply chainsTo analyse the relationship of identified barriersMixed methodFood productsEmploying the CE concept in the context of the food supply chain
Kaipia et al. [ ]2013Sustainability (Eco. and Env.) Management, Inventory, Information TechnologiesTo improve sustainability performance via information sharingTo reduce FLW levelQualitative analysisFood productsIncorporating demand and shelf-life data information sharing effect
Majewski et al. [ ]2020Sustainability (Env.) and Waste managementTo determine the environmental impact of short and longfood supply chainsTo compare the environmental sustainability of short and long-food supply chains Life cycle assessmentFood products-
Rijpkema et al. [ ]2014Sustainability (Eco. and Env.) Management, Waste reduction, Information Technologies To create effective sourcing strategies for supply chains dealing with perishable productsTo provide a method to reduce food waste and loss amountsSimulation modelFood productsProposing effective sourcing strategies
Scholar, Ref.YearModelling Stages:
Single or Multi
Solving ApproachObjectives
I
II/IIIModel TypeSupply Chain Industry (Product)Main Attributes
Domingues Zucchi et al. [ ]2011MMetaheuristic/GA and CPLEXTo minimise the cost of facility installationTo minimise costs for sea and road transportation MIPBeef meatLP
Soysal et al. [ ]2014Sε-constraint methodTo minimise inventory and transportation cost To minimise CO emissions LPBeef meatPIAP
Rahbari et al. [ ]2021MGAMSTo minimise total cost To minimise inventory, transport, storage costs MIPRed meatPLIRP
Rahbari et al. [ ]2020SGAMSTo minimise total cost MIPRed meatPLIRP
Neves-Moreira et al. [ ]2019SMetaheuristicTo minimise routing cost To minimise inventory holding cost MIPMeatPRP
Mohammadi et al. [ ]2023SPre-emptive fuzzy goal programmingTo maximise total profitTo minimise adverse environmental impactsMINLPMeat/Perishable food productsLIP
Mohebalizadehgashti
et al. [ ]
2020Sε-constraint methodTo maximise facility capacity, minimise total cost To minimise CO emissions MILPMeatLAP
Mohammed and Wang, [ ]2017aSLINGOTo minimise total cost To minimise number of vehicles/delivery timeMOPPMeatLRP
Mohammed and Wang, [ ]2017bSLINGOTo minimise otal cost, to maximise delivery rateTo minimise CO emissions and distribution time FMOPMeatLRP
Gholami Zanjani et al. [ ] 2021MMetaheuristicTo improve the resilience and sustainabilityTo minimise inventory holding cost MPMeatIP
Tarantilis and Kiranoudis, [ ]2002SMetaheuristicTo minimise total costTo maximise the efficiency of distributionOMDVRPMeatLRP
Dorcheh and Rahbari, [ ]2023MGAMSTo minimise total cost To minimise CO emissions MPMeat/PoultryIRP
Al Theeb et al. [ ]2020MHeuristic CPLEXTo minimise total cost, holding costs, and penalty costTo maximise the efficiency of transport and distribution phaseMILPMeat/Perishable food productsIRP
Moreno et al. [ ]2020SMetaheuristic/hybrid approachTo maximise the profitTo minimise the costs, delivery times MIPMeatLRP
Javanmard et al. [ ]2014SMetaheuristic/Imperialist competitive algorithmTo minimise inventory holding cost To minimise total cost NSFood and MeatIRP
Ge et al. [ ]2022SHeuristic algorithm To develop an optimal network model for the beef supply chain in the Northeastern USTo optimize the operations within this supply chainMILPBeef meatLRP
Hsiao et al. [ ]2017SMetaheuristic/GATo maximise distribution efficiency and customer satisfactionTo minimise the quality drop of perishable food products/meatMILP *Meat/Perishable food productsLRP
Govindan et al. [ ]2014MMetaheuristic/MHPVTo minimise carbon footprint To minimise of the cost of greenhouse gas emissions MOMIP *Perishable food productsLRP
Zhang et al. [ ]2003SMetaheuristicTo minimise cost, food safety risksTo maximise the distribution efficiencyMP *Perishable
food products
LRP
Wang and Ying, [ ]2012SHeuristic, Lagrange slack algorithmTo maximise the delivery efficiencyTo minimise the total costsMINLP *Perishable
food products
LRP
Liu et al. [ ]2021SYALMIP toolboxTo minimise cost and carbon emission To maximise product freshnessMP/MINLPPerishable
food products
LIRP
Dia et al. [ ]2018SMetaheuristic/GATo minimise total cost To reduce greenhouse gas emissions/maximise facility capacity MINLPPerishable
food products
LIP
Saragih et al. [ ]2019SSimulated annealingTo fix warehouse costTo minimise nventory cost, holding cost, and total cost MINLPFood productsLIRP
Biuki et al. [ ]2020MGA and PSOTo incorporate the three dimensions of sustainabilityTo minimise total cost, maximise facility capacity MIP *Perishable
products
LIRP
Hiassat et al. [ ]2017SGenetic algorithmTo implement facility and inventory storage costTo minimise routing cost MIPPerishable productsLIRP
Le et al. [ ]2013SHeuristic- Column generationTo minimise transport cost To minimise inventory cost MPPerishable productsIRP
Wang et al. [ ]2016STwo-phase Heuristic and Genetic algorithmTo minimise total cost To maximise the freshness of product quality MPPerishable
food products
RP
Rafie-Majd et al. [ ]2018SLagrangian relaxation/GAMSTo minimise total cost To minimise product wastage MINLP *Perishable productsLIRP
Scholar, Ref.YearSubject Objectives
I
IIMethodologyIndustry (Product)Measures to Reduce FLW
Singh et al. [ ]2018Information technologies, Sustainability, Regulations, ManagementTo measure greenhouse emission levels and select green suppliers with top-quality productsTo reduce carbon footprint and environmental implicationsMixed methodBeef supply chain-
Singh et al. [ ]2015Information technologies, Sus. (Env.), Inventory, Collaboration, ManagementTo reduce carbon footprint and carbon emissionsTo propose an integrated system for beef supply chain via the application of ITSimulationBeef supply chain-
Juan et al. [ ]2014Information technologies, Management, Inventory, Collaboration, ManagementTo explore the role of supply chain practices, strategic alliance, customer focus, and information sharing on food qualityTo explore the role of lean system and cooperation, trust, commitment, and information quality on food qualityStatistical analysisBeef supply chainBy application of IT and Lean system strategy
Zhang et al. [ ]2020Information technologies, Management, Inventory, Food quality and safetyTo develop a performance-driven conceptual framework regarding product quality information in supply chainsTo enhance the understanding of the impact of product quality information on performanceStatistical analysisRed meat supply chain-
Cao et al. [ ]2021IT, Blockchain, Management, Regulation, Collaboration, Risks, Cost, Waste reductionTo enhance consumer trust in the beef supply chain traceability through the implementation of a blockchain-based human–machine reconciliation mechanismTo investigate the role of blockchain technology in improving transparency and trust within the beef supply chain
Mixed methodBeef productsBy applying new information technologies
Kassahun et al. [ ]2016IT and ICTsTo provide a systematic approach for designing and implementing chain-wide transparency systemsTo design and implement a transparency system/software for beef supply chainsSimulationBeef meat IndustryBy improving the traceability
Ribeiro et al. [ ]2011IT and ICTsTo present and discuss the application of RFID technology in Brazilian harvest facilitiesTo analyse the benefits and challenges of implementing RFIDQualitativeBeef Industry-
Jo et al. [ ]2015IT (BCT) Sustainability (Eco. and Env.), Management, Cost, Food safety, RisksTo reduce food loss and waste levels, improve food traceability and sustainabilityTo minimise CO emissionsMixed methodBeef meat productsBy incorporating blockchain technology
Rejeb, A., [ ]2018IT (IoT, BCT), Management, risks, food safetyTo propose a traceability system for the Halal meat supply chainTo mitigate the centralised, opaque issues and the lack of transparency in traceability systemsMixed methodBeef meat and meat products-
Cao et al. [ ]2022IT and blockchain, Management, Collaboration, Risk, Cost, SustainabilityTo propose a blockchain-based multisignature approach for supply chain governanceTo present a specific use case from the Australian beef industryA novel blockchain-based multi-signature approachBeef Industry-
Kuffi et al. [ ]2016Digital 3D geometry scanningTo develop a CFD model to predict the changes in temperature and pH distribution of a beef carcass during chillingTo improve the performance of industrial cooling of large beef carcasses SimulationsBeef meat products-
Powell et al. [ ]2022Information technologies, (IoT and BCT)To examine the link between IoT and BCT in FSC for traceability improvementTo propose solutions for data integrity and trust in the BCT and IoT-enabled food SCsMixed methodBeef meat products-
Jedermann et al. [ ] 2014Management, Regulations and Food Safety, FW, Information sharing, RFIDTo reduce food loss and wasteTo improve traceabilityQualitative analysisMeat and Food productsBy proposing appropriate strategies to improve quality monitoring
Liljestrand, K., [ ]2017Collaboration, FLW, Information sharingTo analyse sustainability practices adopted in collaboration, including vertical collaboration in the food supply chainTo explore the role of collaboration in tackling food loss and wasteQualitative analysisMeat and Food productsBy investigating how Food Policy can foster collaborations to reduce FLW
Liljestrand, K., [ ]2017Collaboration, FLW, Information sharingTo analyse sustainability practices adopted in collaboration, including vertical collaboration in the food supply chainTo explore the role of collaboration in tackling food loss and wasteQualitative analysisMeat and Food productsBy investigating how Food Policy can foster collaborations to reduce FLW
Harvey, J. et al. [ ]2020IT and ICTs, Sustainability (Env. and Sco.), waste reduction, Management, decision-makingTo conduct social network analysis of food sharing, redistribution, and waste reductionTo reduce food waste via information sharing and IT applicationMixed methodFood productsBy examining the potential of social media applications in reducing food waste through sharing and redistribution
Rijpkema et al. [ ]2014IT (Sharing), Sustainability Management, Waste reduction To create effective sourcing strategies for SCs dealing with perishable productsTo provide a method to reduce food waste and loss amountsSimulation modelFood productsBy proposing effective sourcing strategies
Wu, and Hsiao., [ ]2021Information technologies, Management, Inventory, Food quality and safety, RisksTo identify and evaluate high-risk factorsTo mitigate risks and food safety accidentsMixed methodFood supply chainBy reducing food quality and safety risks and employing improvement plans
Kaipia et al. [ ]2013IT (Sharing), Sustainability (Eco. and Env.) Management, InventoryTo improve sustainability performance via information sharingTo reduce FLW levelQualitative analysisFood productsBy incorporating demand and shelf-life data information sharing effect
Mishra, N., and Singh, A., [ ]2018IT and ICTs, Sustainability (Env.), waste reduction, Management, decision-makingTo utilise Twitter data for waste minimisation in the beef supply chainTo contribute to the reduction in food wasteMixed methodFood productsBy offering insights into potential strategies for reducing food waste via social media and IT
Parashar et al. [ ]2020Information sharing (IT), Sustainability (Env.), FW Management (regulation, inventory, risks)To model the enablers of the food supply chain and improve its sustainability performanceTo address the reducing carbon footprints in the food supply chainsMixed methodFood productsBy facilitating the strategic decision-making regarding reducing food waste
Tseng et al. [ ]2022Regulations, Sustainability, Information technologies, (IoT and BCT)To conduct a data-driven comparison of halal and non-halal sustainable food supply chainsTo explore the role of regulations and standards in ensuring the compliance of food products with Halal requirements and FW reductionMixed methodFood productsBy highlighting the role of legislation in reducing food waste and promoting sustainable food management
Mejjaouli, and Babiceanu, [ ]2018Information technologies (RFID-WSN), Management, Decision-making To optimise logistics decisions based on actual transportation conditions and delivery locationsTo develop a logistics decision model via an IT applicationStochastic optimisationFood products-
Wu et al. [ ]2019IT (Information exchange), Sustainability (Eco., and Env.)To analyse the trade-offs between maintaining fruit quality and reducing environmental impactsTo combine virtual cold chains with life cycle assessment to provide a holistic approach for evaluating the environmental trade-offsMixed methodFood/fruit productsBy suggesting a more sustainability-driven cold chain scenario
  • Ren, Q.-S.; Fang, K.; Yang, X.-T.; Han, J.-W. Ensuring the quality of meat in cold chain logistics: A comprehensive review. Trends Food Sci. Technol. 2022 , 119 , 133–151. [ Google Scholar ] [ CrossRef ]
  • Nastasijević, I.; Lakićević, B.; Petrović, Z. (Eds.) Cold chain management in meat storage, distribution and retail: A review. In IOP Conference Series: Earth and Environmental Science ; IOP Publishing: Bristol, UK, 2017. [ Google Scholar ]
  • Brodribb, P. A Study of Waste in the Cold Food Chain and Opportunities for Improvement ; Expert Group: Hefei, China, 2020. [ Google Scholar ]
  • Castonguay, A.C.; Polasky, S.; Holden, M.H.; Herrero, M.; Mason-D’Croz, D.; Godde, C.; Chang, J.; Gerber, J.; Witt, G.B.; Game, E.T. Navigating sustainability trade-offs in global beef production. Nat. Sustain. 2023 , 6 , 284–294. [ Google Scholar ] [ CrossRef ]
  • FAO. FAOSTAT Online Database. 2021. Available online: http://faostat.fao.org/ (accessed on 20 September 2023).
  • Australia, M.L. Global Beef Industry and Trade Report ; Meat & Livestock Australia: Sydney, NSW, Australia, 2022. [ Google Scholar ]
  • Juan Ding, M.; Jie, F.; Parton, K.A.; Matanda, M.J. Relationships between quality of information sharing and supply chain food quality in the Australian beef processing industry. Int. J. Logist. Manag. 2014 , 25 , 85–108. [ Google Scholar ] [ CrossRef ]
  • Li, H.; Pan, P. (Eds.) Food waste in developed countries and cold chain logistics. In E3S Web of Conferences ; EDP Sciences: Les Ulis, France, 2021. [ Google Scholar ]
  • Ishangulyyev, R.; Kim, S.; Lee, S.H. Understanding food loss and waste—Why are we losing and wasting food? Foods 2019 , 8 , 297. [ Google Scholar ] [ CrossRef ]
  • National Food Waste Strategy: Halving Australia’s Food Waste by 2030. Department of Climate Change, Energy, the Environment and Water, Canberra, Australia. 2024. Available online: https://www.dcceew.gov.au/environment/protection/waste/food-waste#:~:text=Australia’s%20National%20Food%20Waste%20Strategy,the%20National%20Food%20Waste%20Strategy (accessed on 8 February 2024).
  • Keegan, E.; Breadsell, J.K. Food waste and social practices in Australian households. Sustainability 2021 , 13 , 3377. [ Google Scholar ] [ CrossRef ]
  • Aschemann-Witzel, J.; De Hooge, I.; Amani, P.; Bech-Larsen, T.; Oostindjer, M. Consumer-related food waste: Causes and potential for action. Sustainability 2015 , 7 , 6457–6477. [ Google Scholar ] [ CrossRef ]
  • Gokarn, S.; Kuthambalayan, T.S. Analysis of challenges inhibiting the reduction of waste in food supply chain. J. Clean. Prod. 2017 , 168 , 595–604. [ Google Scholar ] [ CrossRef ]
  • Yan, H.; Song, M.-J.; Lee, H.-Y. A Systematic Review of Factors Affecting Food Loss and Waste and Sustainable Mitigation Strategies: A Logistics Service Providers’ Perspective. Sustainability 2021 , 13 , 11374. [ Google Scholar ] [ CrossRef ]
  • Brennan, A.; Browne, S. Food waste and nutrition quality in the context of public health: A scoping review. Int. J. Environ. Res. Public Health 2021 , 18 , 5379. [ Google Scholar ] [ CrossRef ]
  • Neff, R.A.; Kanter, R.; Vandevijvere, S. Reducing food loss and waste while improving the public’s health. Health Aff. 2015 , 34 , 1821–1829. [ Google Scholar ] [ CrossRef ]
  • Luo, N.; Olsen, T.; Liu, Y. A Conceptual Framework to Analyze Food Loss and Waste within Food Supply Chains: An Operations Management Perspective. Sustainability 2021 , 13 , 927. [ Google Scholar ] [ CrossRef ]
  • Parashar, S.; Sood, G.; Agrawal, N. Modelling the enablers of food supply chain for reduction in carbon footprint. J. Clean. Prod. 2020 , 275 , 122932. [ Google Scholar ] [ CrossRef ]
  • Ma, L.; Qin, W.; Garnett, T.; Zhang, F. Review on drivers, trends and emerging issues of the food wastage in China. Front. Agric. Sci. Eng. 2015 , 2 , 159–167. [ Google Scholar ] [ CrossRef ]
  • Lan, S.; Tseng, M.-L.; Yang, C.; Huisingh, D. Trends in sustainable logistics in major cities in China. Sci. Total Environ. 2020 , 712 , 136381. [ Google Scholar ] [ CrossRef ]
  • Farooque, M.; Zhang, A.; Liu, Y. Barriers to circular food supply chains in China. Supply Chain Manag. Int. J. 2019 , 24 , 677–696. [ Google Scholar ] [ CrossRef ]
  • Han, J.-W.; Zuo, M.; Zhu, W.-Y.; Zuo, J.-H.; Lü, E.-L.; Yang, X.-T. A comprehensive review of cold chain logistics for fresh agricultural products: Current status, challenges, and future trends. Trends Food Sci. Technol. 2021 , 109 , 536–551. [ Google Scholar ] [ CrossRef ]
  • Martinez, M.G.; Fearne, A.; Caswell, J.A.; Henson, S. Co-regulation as a possible model for food safety governance: Opportunities for public–private partnerships. Food Policy 2007 , 32 , 299–314. [ Google Scholar ] [ CrossRef ]
  • Wang, K.Y.; Yip, T.L. Cold-chain systems in China and value-chain analysis. In Finance and Risk Management for International Logistics and the Supply Chain ; Elsevier: Amsterdam, The Netherlands, 2018; pp. 217–241. [ Google Scholar ]
  • Liu, M.; Dan, B.; Zhang, S.; Ma, S. Information sharing in an E-tailing supply chain for fresh produce with freshness-keeping effort and value-added service. Eur. J. Oper. Res. 2021 , 290 , 572–584. [ Google Scholar ] [ CrossRef ]
  • An, J.; Wang, L.; Lv, X. Research on agri-food cold chain logistics management system: Connotation, structure and operational mechanism. J. Serv. Sci. Manag. 2015 , 8 , 894–902. [ Google Scholar ] [ CrossRef ]
  • Zhang, J.; Cao, W.; Park, M. Reliability analysis and optimization of cold chain distribution system for fresh agricultural products. Sustainability 2019 , 11 , 3618. [ Google Scholar ] [ CrossRef ]
  • Zhang, H.; Qiu, B.; Zhang, K. A new risk assessment model for agricultural products cold chain logistics. Ind. Manag. Data Syst. 2017 , 117 , 1800–1816. [ Google Scholar ] [ CrossRef ]
  • Chauhan, C.; Dhir, A.; Akram, M.U.; Salo, J. Food loss and waste in food supply chains. A systematic literature review and framework development approach. J. Clean. Prod. 2021 , 295 , 126438. [ Google Scholar ] [ CrossRef ]
  • Luo, N.; Olsen, T.; Liu, Y.; Zhang, A. Reducing food loss and waste in supply chain operations. Transp. Res. Part E Logist. Transp. Rev. 2022 , 162 , 102730. [ Google Scholar ] [ CrossRef ]
  • Broeze, J.; Guo, X.; Axmann, H. Trade-Off Analyses of Food Loss and Waste Reduction and Greenhouse Gas Emissions in Food Supply Chains. Sustainability 2023 , 15 , 8531. [ Google Scholar ] [ CrossRef ]
  • Kumar, A.; Mangla, S.K.; Kumar, P. An integrated literature review on sustainable food supply chains: Exploring research themes and future directions. Sci. Total Environ. 2022 , 821 , 153411. [ Google Scholar ] [ CrossRef ]
  • Stindt, D. A generic planning approach for sustainable supply chain management-How to integrate concepts and methods to address the issues of sustainability? J. Clean. Prod. 2017 , 153 , 146–163. [ Google Scholar ] [ CrossRef ]
  • Tranfield, D.; Denyer, D.; Smart, P. Towards a methodology for developing evidence-informed management knowledge by means of systematic review. Br. J. Manag. 2003 , 14 , 207–222. [ Google Scholar ] [ CrossRef ]
  • Cerchione, R.; Esposito, E. A systematic review of supply chain knowledge management research: State of the art and research opportunities. Int. J. Prod. Econ. 2016 , 182 , 276–292. [ Google Scholar ] [ CrossRef ]
  • Ali, I.; Gölgeci, I. Where is supply chain resilience research heading? A systematic and co-occurrence analysis. Int. J. Phys. Distrib. Logist. Manag. 2019 , 49 , 793–815. [ Google Scholar ] [ CrossRef ]
  • VOSviewer. Available online: https://www.vosviewer.com/getting-started (accessed on 20 May 2023).
  • Chopra, S. Designing the distribution network in a supply chain. Transp. Res. Part E Logist. Transp. Rev. 2003 , 39 , 123–140. [ Google Scholar ] [ CrossRef ]
  • Gunasekaran, A.; Lai, K.-h.; Cheng, T.E. Responsive supply chain: A competitive strategy in a networked economy. Omega 2008 , 36 , 549–564. [ Google Scholar ] [ CrossRef ]
  • Dabbene, F.; Gay, P.; Sacco, N. Optimisation of fresh-food supply chains in uncertain environments, Part I: Background and methodology. Biosyst. Eng. 2008 , 99 , 348–359. [ Google Scholar ] [ CrossRef ]
  • Trienekens, J.; Zuurbier, P. Quality and safety standards in the food industry, developments and challenges. Int. J. Prod. Econ. 2008 , 113 , 107–122. [ Google Scholar ] [ CrossRef ]
  • Lipinski, B.; Hanson, C.; Lomax, J.; Kitinoja, L.; Waite, R.; Searchinger, T. Reducing Food Loss and Waste ; World Resources Institute: Washington, DC, USA, 2013. [ Google Scholar ]
  • van der Vorst, J.G.; van Kooten, O.; Luning, P.A. Towards a diagnostic instrument to identify improvement opportunities for quality controlled logistics in agrifood supply chain networks. Int. J. Food Syst. Dyn. 2011 , 2 , 94–105. [ Google Scholar ]
  • Wognum, P.N.; Bremmers, H.; Trienekens, J.H.; Van Der Vorst, J.G.; Bloemhof, J.M. Systems for sustainability and transparency of food supply chains–Current status and challenges. Adv. Eng. Inform. 2011 , 25 , 65–76. [ Google Scholar ] [ CrossRef ]
  • Soysal, M.; Bloemhof-Ruwaard, J.M.; Meuwissen, M.P.; van der Vorst, J.G. A review on quantitative models for sustainable food logistics management. Int. J. Food Syst. Dyn. 2012 , 3 , 136–155. [ Google Scholar ]
  • Koberg, E.; Longoni, A. A systematic review of sustainable supply chain management in global supply chains. J. Clean. Prod. 2019 , 207 , 1084–1098. [ Google Scholar ] [ CrossRef ]
  • Brandenburg, M.; Govindan, K.; Sarkis, J.; Seuring, S. Quantitative models for sustainable supply chain management: Developments and directions. Eur. J. Oper. Res. 2014 , 233 , 299–312. [ Google Scholar ] [ CrossRef ]
  • Bettley, A.; Burnley, S. Towards sustainable operations management integrating sustainability management into operations management strategies and practices. In Handbook of Performability Engineering ; Springer: Berlin/Heidelberg, Germany, 2008; pp. 875–904. [ Google Scholar ]
  • Zhong, R.; Xu, X.; Wang, L. Food supply chain management: Systems, implementations, and future research. Ind. Manag. Data Syst. 2017 , 117 , 2085–2114. [ Google Scholar ] [ CrossRef ]
  • Van der Meulen, B.M. The structure of European food law. Laws 2013 , 2 , 69–98. [ Google Scholar ] [ CrossRef ]
  • Kayikci, Y.; Ozbiltekin, M.; Kazancoglu, Y. Minimizing losses at red meat supply chain with circular and central slaughterhouse model. J. Enterp. Inf. Manag. 2020 , 33 , 791–816. [ Google Scholar ] [ CrossRef ]
  • Jedermann, R.; Nicometo, M.; Uysal, I.; Lang, W. Reducing food losses by intelligent food logistics. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2014 , 372 , 20130302. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Yu, Z.; Liu, Y.; Wang, Q.; Sun, L.; Sun, S. (Eds.) Research on food safety and security of cold chain logistics. In IOP Conference Series: Earth and Environmental Science ; IOP Publishing: Bristol, UK, 2021; p. 012176. [ Google Scholar ]
  • Centobelli, P.; Cerchione, R.; Ertz, M. Food cold chain management: What we know and what we deserve. Supply Chain Manag. Int. J. 2021 , 26 , 102–135. [ Google Scholar ]
  • Lee, J.C.; Daraba, A.; Voidarou, C.; Rozos, G.; Enshasy, H.A.E.; Varzakas, T. Implementation of food safety management systems along with other management tools (HAZOP, FMEA, Ishikawa, Pareto). The case study of Listeria monocytogenes and correlation with microbiological criteria. Foods 2021 , 10 , 2169. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Singh, R.K.; Luthra, S.; Mangla, S.K.; Uniyal, S. Applications of information and communication technology for sustainable growth of SMEs in India food industry. Resour. Conserv. Recycl. 2019 , 147 , 10–18. [ Google Scholar ] [ CrossRef ]
  • Nayak, R.; Waterson, P. Global food safety as a complex adaptive system: Key concepts and future prospects. Trends Food Sci. Technol. 2019 , 91 , 409–425. [ Google Scholar ] [ CrossRef ]
  • Tseng, M.-L.; Ha, H.M.; Tran, T.P.T.; Bui, T.-D.; Lim, M.K.; Lin, C.-W.; Helmi Ali, M. Data-driven on sustainable food supply chain: A comparison on Halal and non-Halal food system. J. Ind. Prod. Eng. 2022 , 39 , 430–457. [ Google Scholar ] [ CrossRef ]
  • Bortolini, M.; Faccio, M.; Ferrari, E.; Gamberi, M.; Pilati, F. Fresh food sustainable distribution: Cost, delivery time and carbon footprint three-objective optimization. J. Food Eng. 2016 , 174 , 56–67. [ Google Scholar ] [ CrossRef ]
  • Chan, F.T.; Wang, Z.; Goswami, A.; Singhania, A.; Tiwari, M.K. Multi-objective particle swarm optimisation based integrated production inventory routing planning for efficient perishable food logistics operations. Int. J. Prod. Res. 2020 , 58 , 5155–5174. [ Google Scholar ] [ CrossRef ]
  • Fikar, C. A decision support system to investigate food losses in e-grocery deliveries. Comput. Ind. Eng. 2018 , 117 , 282–290. [ Google Scholar ] [ CrossRef ]
  • Soysal, M.; Bloemhof-Ruwaard, J.M.; Haijema, R.; van der Vorst, J.G. Modeling a green inventory routing problem for perishable products with horizontal collaboration. Comput. Oper. Res. 2018 , 89 , 168–182. [ Google Scholar ] [ CrossRef ]
  • Liljestrand, K. Logistics solutions for reducing food waste. Int. J. Phys. Distrib. Logist. Manag. 2017 , 47 , 318–339. [ Google Scholar ] [ CrossRef ]
  • Halloran, A.; Clement, J.; Kornum, N.; Bucatariu, C.; Magid, J. Addressing food waste reduction in Denmark. Food Policy 2014 , 49 , 294–301. [ Google Scholar ] [ CrossRef ]
  • Cattaneo, A.; Sánchez, M.V.; Torero, M.; Vos, R. Reducing food loss and waste: Five challenges for policy and research. Food Policy 2021 , 98 , 101974. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Wang, X. Research on Food Cold Chain Logistics System Collaboration. Carpathian J. Food Sci. Technol. 2016 , 8 , 131. [ Google Scholar ]
  • Weng, X.; An, J.; Yang, H. The analysis of the development situation and trend of the city-oriented cold chain logistics system for fresh agricultural products. Open J. Soc. Sci. 2015 , 3 , 70–80. [ Google Scholar ] [ CrossRef ]
  • Dania, W.A.P.; Xing, K.; Amer, Y. Collaboration behavioural factors for sustainable agri-food supply chains: A systematic review. J. Clean. Prod. 2018 , 186 , 851–864. [ Google Scholar ] [ CrossRef ]
  • Seuring, S.; Brix-Asala, C.; Khalid, R.U. Analyzing base-of-the-pyramid projects through sustainable supply chain management. J. Clean. Prod. 2019 , 212 , 1086–1097. [ Google Scholar ] [ CrossRef ]
  • Yu, Y.; Jaenicke, E.C. Estimating food waste as household production inefficiency. Am. J. Agric. Econ. 2020 , 102 , 525–547. [ Google Scholar ] [ CrossRef ]
  • Huang, H.; He, Y.; Li, D. Pricing and inventory decisions in the food supply chain with production disruption and controllable deterioration. J. Clean. Prod. 2018 , 180 , 280–296. [ Google Scholar ] [ CrossRef ]
  • Li, X.; Zhou, K. Multi-objective cold chain logistic distribution center location based on carbon emission. Environ. Sci. Pollut. Res. 2021 , 28 , 32396–32404. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Dai, J.; Che, W.; Lim, J.J.; Shou, Y. Service innovation of cold chain logistics service providers: A multiple-case study in China. Ind. Mark. Manag. 2020 , 89 , 143–156. [ Google Scholar ] [ CrossRef ]
  • Al Theeb, N.; Smadi, H.J.; Al-Hawari, T.H.; Aljarrah, M.H. Optimization of vehicle routing with inventory allocation problems in Cold Supply Chain Logistics. Comput. Ind. Eng. 2020 , 142 , 106341. [ Google Scholar ] [ CrossRef ]
  • Zhao, H.; Liu, S.; Tian, C.; Yan, G.; Wang, D. An overview of current status of cold chain in China. Int. J. Refrig. 2018 , 88 , 483–495. [ Google Scholar ] [ CrossRef ]
  • Tang, J.; Zou, Y.; Xie, R.; Tu, B.; Liu, G. Compact supervisory system for cold chain logistics. Food Control 2021 , 126 , 108025. [ Google Scholar ] [ CrossRef ]
  • Badia-Melis, R.; Mc Carthy, U.; Ruiz-Garcia, L.; Garcia-Hierro, J.; Villalba, J.R. New trends in cold chain monitoring applications-A review. Food Control 2018 , 86 , 170–182. [ Google Scholar ] [ CrossRef ]
  • Liu, G.; Hu, J.; Yang, Y.; Xia, S.; Lim, M.K. Vehicle routing problem in cold Chain logistics: A joint distribution model with carbon trading mechanisms. Resour. Conserv. Recycl. 2020 , 156 , 104715. [ Google Scholar ] [ CrossRef ]
  • Esmizadeh, Y.; Bashiri, M.; Jahani, H.; Almada-Lobo, B. Cold chain management in hierarchical operational hub networks. Transp. Res. Part E Logist. Transp. Rev. 2021 , 147 , 102202. [ Google Scholar ] [ CrossRef ]
  • Chen, J.; Dan, B.; Shi, J. A variable neighborhood search approach for the multi-compartment vehicle routing problem with time windows considering carbon emission. J. Clean. Prod. 2020 , 277 , 123932. [ Google Scholar ] [ CrossRef ]
  • Wu, J.; Haasis, H.-D. The freight village as a pathway to sustainable agricultural products logistics in China. J. Clean. Prod. 2018 , 196 , 1227–1238. [ Google Scholar ] [ CrossRef ]
  • Tsamboulas, D.A.; Kapros, S. Freight village evaluation under uncertainty with public and private financing. Transp. Policy 2003 , 10 , 141–156. [ Google Scholar ] [ CrossRef ]
  • Pekkaya, M.; Keleş, N. Determining criteria interaction and criteria priorities in the freight village location selection process: The experts’ perspective in Turkey. Asia Pac. J. Mark. Logist. 2022 , 34 , 1348–1367. [ Google Scholar ] [ CrossRef ]
  • Shashi, S.; Cerchione, R.; Singh, R.; Centobelli, P.; Shabani, A. Food cold chain management: From a structured literature review to a conceptual framework and research agenda. Int. J. Logist. Manag. 2018 , 29 , 792–821. [ Google Scholar ] [ CrossRef ]
  • Magalhães, V.S.; Ferreira, L.M.D.; da Silva César, A.; Bonfim, R.M.; Silva, C. Food loss and waste in the Brazilian beef supply chain: An empirical analysis. Int. J. Logist. Manag. 2020 , 32 , 214–236. [ Google Scholar ] [ CrossRef ]
  • Hülsmann, M.; Brenner, V. Causes and Effects of Cold Chain Ruptures: Performance of Fragmented Versus Integrated Cold Chains ; Jacobs University, School of Engineering and Science, Internat. Logistics, Systems Management: Bremen, Germany, 2011. [ Google Scholar ]
  • Buisman, M.; Haijema, R.; Bloemhof-Ruwaard, J. Discounting and dynamic shelf life to reduce fresh food waste at retailers. Int. J. Prod. Econ. 2019 , 209 , 274–284. [ Google Scholar ] [ CrossRef ]
  • Kibler, K.M.; Reinhart, D.; Hawkins, C.; Motlagh, A.M.; Wright, J. Food waste and the food-energy-water nexus: A review of food waste management alternatives. Waste Manag. 2018 , 74 , 52–62. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Herron, C.B.; Garner, L.J.; Siddique, A.; Huang, T.-S.; Campbell, J.C.; Rao, S.; Morey, A. Building “First Expire, First Out” models to predict food losses at retail due to cold chain disruption in the last mile. Front. Sustain. Food Syst. 2022 , 6 , 1018807. [ Google Scholar ] [ CrossRef ]
  • Mendes, A.; Cruz, J.; Saraiva, T.; Lima, T.M.; Gaspar, P.D. (Eds.) Logistics strategy (FIFO, FEFO or LSFO) decision support system for perishable food products. In Proceedings of the 2020 International Conference on Decision Aid Sciences and Application (DASA), Sakheer, Bahrain, 8–9 November 2020; IEEE: New York, NY, USA, 2020; pp. 173–178. [ Google Scholar ]
  • Plan, W.R.A. Reducing Food Waste through Retail Supply Chain Collaboration ; WRAP: Banbury, UK, 2011. [ Google Scholar ]
  • Nikolicic, S.; Kilibarda, M.; Maslaric, M.; Mircetic, D.; Bojic, S. Reducing food waste in the retail supply chains by improving efficiency of logistics operations. Sustainability 2021 , 13 , 6511. [ Google Scholar ] [ CrossRef ]
  • Kaipia, R.; Dukovska-Popovska, I.; Loikkanen, L. Creating sustainable fresh food supply chains through waste reduction. Int. J. Phys. Distrib. Logist. Manag. 2013 , 43 , 262–276. [ Google Scholar ] [ CrossRef ]
  • Govindan, K.; Kadziński, M.; Sivakumar, R. Application of a novel PROMETHEE-based method for construction of a group compromise ranking to prioritization of green suppliers in food supply chain. Omega 2017 , 71 , 129–145. [ Google Scholar ] [ CrossRef ]
  • Rahbari, M.; Hajiagha, S.H.R.; Mahdiraji, H.A.; Dorcheh, F.R.; Garza-Reyes, J.A. A novel location-inventory-routing problem in a two-stage red meat supply chain with logistic decisions: Evidence from an emerging economy. Kybernetes 2021 , 51 , 1498–1531. [ Google Scholar ] [ CrossRef ]
  • Yazdani, M.; Chatterjee, P.; Zavadskas, E.K.; Zolfani, S.H. Integrated QFD-MCDM framework for green supplier selection. J. Clean. Prod. 2017 , 142 , 3728–3740. [ Google Scholar ] [ CrossRef ]
  • Kieu, P.T.; Nguyen, V.T.; Nguyen, V.T.; Ho, T.P. A spherical fuzzy analytic hierarchy process (SF-AHP) and combined compromise solution (CoCoSo) algorithm in distribution center location selection: A case study in agricultural supply chain. Axioms 2021 , 10 , 53. [ Google Scholar ] [ CrossRef ]
  • Mihajlović, J.; Rajković, P.; Petrović, G.; Ćirić, D. The selection of the logistics distribution center location based on MCDM methodology in southern and eastern region in Serbia. Oper. Res. Eng. Sci. Theory Appl. 2019 , 2 , 72–85. [ Google Scholar ] [ CrossRef ]
  • Zanoni, S.; Zavanella, L. Chilled or frozen? Decision strategies for sustainable food supply chains. Int. J. Prod. Econ. 2012 , 140 , 731–736. [ Google Scholar ] [ CrossRef ]
  • Aravendan, M.; Panneerselvam, R. Literature review on network design problems in closed loop and reverse supply chains. Intell. Inf. Manag. 2014 , 6 , 104–117. [ Google Scholar ] [ CrossRef ]
  • Mejjaouli, S.; Babiceanu, R.F. Cold supply chain logistics: System optimization for real-time rerouting transportation solutions. Comput. Ind. 2018 , 95 , 68–80. [ Google Scholar ] [ CrossRef ]
  • Titiyal, R.; Bhattacharya, S.; Thakkar, J.J. The distribution strategy selection for an e-tailer using a hybrid DANP VIKOR MCDM model. Benchmarking Int. J. 2019 , 26 , 395–433. [ Google Scholar ] [ CrossRef ]
  • Gallo, A.; Accorsi, R.; Baruffaldi, G.; Manzini, R. Designing sustainable cold chains for long-range food distribution: Energy-effective corridors on the Silk Road Belt. Sustainability 2017 , 9 , 2044. [ Google Scholar ] [ CrossRef ]
  • Yakavenka, V.; Mallidis, I.; Vlachos, D.; Iakovou, E.; Eleni, Z. Development of a multi-objective model for the design of sustainable supply chains: The case of perishable food products. Ann. Oper. Res. 2020 , 294 , 593–621. [ Google Scholar ] [ CrossRef ]
  • Sel, Ç.; Pınarbaşı, M.; Soysal, M.; Çimen, M. A green model for the catering industry under demand uncertainty. J. Clean. Prod. 2017 , 167 , 459–472. [ Google Scholar ] [ CrossRef ]
  • Van Der Vorst, J.G.; Tromp, S.-O.; Zee, D.-J.v.d. Simulation modelling for food supply chain redesign; integrated decision making on product quality, sustainability and logistics. Int. J. Prod. Res. 2009 , 47 , 6611–6631. [ Google Scholar ] [ CrossRef ]
  • Bortolini, M.; Galizia, F.G.; Mora, C.; Botti, L.; Rosano, M. Bi-objective design of fresh food supply chain networks with reusable and disposable packaging containers. J. Clean. Prod. 2018 , 184 , 375–388. [ Google Scholar ] [ CrossRef ]
  • Li, Q.; Yu, P.; Wu, X. Shelf life extending packaging, inventory control and grocery retailing. Prod. Oper. Manag. 2017 , 26 , 1369–1382. [ Google Scholar ] [ CrossRef ]
  • Verghese, K.; Lewis, H.; Lockrey, S.; Williams, H. Packaging’s role in minimizing food loss and waste across the supply chain. Packag. Technol. Sci. 2015 , 28 , 603–620. [ Google Scholar ] [ CrossRef ]
  • Ghadge, A.; Kaklamanou, M.; Choudhary, S.; Bourlakis, M. Implementing environmental practices within the Greek dairy supply chain: Drivers and barriers for SMEs. Ind. Manag. Data Syst. 2017 , 117 , 1995–2014. [ Google Scholar ] [ CrossRef ]
  • Sajjad, A.; Eweje, G.; Tappin, D. Managerial perspectives on drivers for and barriers to sustainable supply chain management implementation: Evidence from New Zealand. Bus. Strategy Environ. 2020 , 29 , 592–604. [ Google Scholar ] [ CrossRef ]
  • Hien, D.N.; Thanh, N.V. Optimization of cold chain logistics with Fuzzy MCDM Model. Processes 2022 , 10 , 947. [ Google Scholar ] [ CrossRef ]
  • Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008 , 1 , 83–98. [ Google Scholar ] [ CrossRef ]
  • Karanam, M.; Krishnanand, L.; Manupati, V.K.; Antosz, K.; Machado, J. Identification of the critical enablers for perishable food supply chain using deterministic assessment models. Appl. Sci. 2022 , 12 , 4503. [ Google Scholar ] [ CrossRef ]
  • Kutlu Gündoğdu, F.; Kahraman, C. A novel VIKOR method using spherical fuzzy sets and its application to warehouse site selection. J. Intell. Fuzzy Syst. 2019 , 37 , 1197–1211. [ Google Scholar ] [ CrossRef ]
  • Ali, S.M.; Rahman, M.H.; Tumpa, T.J.; Rifat, A.A.M.; Paul, S.K. Examining price and service competition among retailers in a supply chain under potential demand disruption. J. Retail. Consum. Serv. 2018 , 40 , 40–47. [ Google Scholar ] [ CrossRef ]
  • Ali, S.M.; Nakade, K. Optimal ordering policies in a multi-sourcing supply chain with supply and demand disruptions-a CVaR approach. Int. J. Logist. Syst. Manag. 2017 , 28 , 180–199. [ Google Scholar ] [ CrossRef ]
  • Singh, A.; Shukla, N.; Mishra, N. Social media data analytics to improve supply chain management in food industries. Transp. Res. Part E Logist. Transp. Rev. 2018 , 114 , 398–415. [ Google Scholar ] [ CrossRef ]
  • Tang, C.S. Perspectives in supply chain risk management. Int. J. Prod. Econ. 2006 , 103 , 451–488. [ Google Scholar ] [ CrossRef ]
  • Ali, S.M.; Moktadir, M.A.; Kabir, G.; Chakma, J.; Rumi, M.J.U.; Islam, M.T. Framework for evaluating risks in food supply chain: Implications in food wastage reduction. J. Clean. Prod. 2019 , 228 , 786–800. [ Google Scholar ]
  • Govindan, K. Sustainable consumption and production in the food supply chain: A conceptual framework. Int. J. Prod. Econ. 2018 , 195 , 419–431. [ Google Scholar ] [ CrossRef ]
  • de Oliveira, U.R.; Marins, F.A.S.; Rocha, H.M.; Salomon, V.A.P. The ISO 31000 standard in supply chain risk management. J. Clean. Prod. 2017 , 151 , 616–633. [ Google Scholar ] [ CrossRef ]
  • Khan, O.; Burnes, B. Risk and supply chain management: Creating a research agenda. Int. J. Logist. Manag. 2007 , 18 , 197–216. [ Google Scholar ] [ CrossRef ]
  • Mangla, S.K.; Kumar, P.; Barua, M.K. An integrated methodology of FTA and fuzzy AHP for risk assessment in green supply chain. Int. J. Oper. Res. 2016 , 25 , 77–99. [ Google Scholar ] [ CrossRef ]
  • Bogataj, D.; Hudoklin, D.; Bogataj, M.; Dimovski, V.; Colnar, S. Risk mitigation in a meat supply chain with options of redirection. Sustainability 2020 , 12 , 8690. [ Google Scholar ] [ CrossRef ]
  • Nguyen, A.H.T.; Singh, A.; Kumari, S.; Choudhary, S. Multi-agent architecture for waste minimisation in beef supply chain. Prod. Plan. Control 2023 , 34 , 1082–1096. [ Google Scholar ] [ CrossRef ]
  • Deng, X.; Yang, X.; Zhang, Y.; Li, Y.; Lu, Z. Risk propagation mechanisms and risk management strategies for a sustainable perishable products supply chain. Comput. Ind. Eng. 2019 , 135 , 1175–1187. [ Google Scholar ] [ CrossRef ]
  • Srivastava, S.K.; Chaudhuri, A.; Srivastava, R.K. Propagation of risks and their impact on performance in fresh food retail. Int. J. Logist. Manag. 2015 , 26 , 568–602. [ Google Scholar ] [ CrossRef ]
  • Amani, M.A.; Sarkodie, S.A. Mitigating spread of contamination in meat supply chain management using deep learning. Sci. Rep. 2022 , 12 , 5037. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Klein, A.Z.; Da Costa, E.G.; Vieira, L.M.; Teixeira, R. The use of mobile technology in management and risk control in the supply chain: The case of a Brazilian beef chain. J. Glob. Inf. Manag. (JGIM) 2014 , 22 , 14–33. [ Google Scholar ] [ CrossRef ]
  • Mohebi, E.; Marquez, L. Intelligent packaging in meat industry: An overview of existing solutions. J. Food Sci. Technol. 2015 , 52 , 3947–3964. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Martins, C.; Melo, M.; Pato, M. Redesigning a food bank supply chain network in a triple bottom line context. Int. J. Prod. Econ. 2019 , 214 , 234–247. [ Google Scholar ] [ CrossRef ]
  • Kowalski, Z.; Kulczycka, J.; Makara, A.; Harazin, P. Quantification of material recovery from meat waste incineration–An approach to an updated food waste hierarchy. J. Hazard. Mater. 2021 , 416 , 126021. [ Google Scholar ] [ CrossRef ]
  • Teigiserova, D.A.; Hamelin, L.; Thomsen, M. Towards transparent valorization of food surplus, waste and loss: Clarifying definitions, food waste hierarchy, and role in the circular economy. Sci. Total Environ. 2020 , 706 , 136033. [ Google Scholar ] [ CrossRef ]
  • Beheshti, S.; Heydari, J.; Sazvar, Z. Food waste recycling closed loop supply chain optimization through renting waste recycling facilities. Sustain. Cities Soc. 2022 , 78 , 103644. [ Google Scholar ] [ CrossRef ]
  • Aschemann-Witzel, J.; Jensen, J.H.; Jensen, M.H.; Kulikovskaja, V. Consumer behaviour towards price-reduced suboptimal foods in the supermarket and the relation to food waste in households. Appetite 2017 , 116 , 246–258. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Porpino, G. Household food waste behavior: Avenues for future research. J. Assoc. Consum. Res. 2016 , 1 , 41–51. [ Google Scholar ] [ CrossRef ]
  • Gholami-Zanjani, S.M.; Jabalameli, M.S.; Pishvaee, M.S. A resilient-green model for multi-echelon meat supply chain planning. Comput. Ind. Eng. 2021 , 152 , 107018. [ Google Scholar ] [ CrossRef ]
  • Rijpkema, W.A.; Rossi, R.; van der Vorst, J.G. Effective sourcing strategies for perishable product supply chains. Int. J. Phys. Distrib. Logist. Manag. 2014 , 44 , 494–510. [ Google Scholar ] [ CrossRef ]
  • Albrecht, A.; Ibald, R.; Raab, V.; Reichstein, W.; Haarer, D.; Kreyenschmidt, J. Implementation of time temperature indicators to improve temperature monitoring and support dynamic shelf life in meat supply chains. J. Packag. Technol. Res. 2020 , 4 , 23–32. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Ndraha, N.; Vlajic, J.; Chang, C.-C.; Hsiao, H.-I. Challenges with food waste management in the food cold chains. In Food Industry Wastes ; Elsevier: Amsterdam, The Netherlands, 2020; pp. 467–483. [ Google Scholar ]
  • Thyberg, K.L.; Tonjes, D.J. Drivers of food waste and their implications for sustainable policy development. Resour. Conserv. Recycl. 2016 , 106 , 110–123. [ Google Scholar ] [ CrossRef ]
  • Saeed, M.A.; Kersten, W. Drivers of sustainable supply chain management: Identification and classification. Sustainability 2019 , 11 , 1137. [ Google Scholar ] [ CrossRef ]
  • Kumar, A.; Choudhary, S.; Garza-Reyes, J.A.; Kumar, V.; Rehman Khan, S.A.; Mishra, N. Analysis of critical success factors for implementing industry 4.0 integrated circular supply chain–Moving towards sustainable operations. Prod. Plan. Control 2023 , 34 , 984–998. [ Google Scholar ] [ CrossRef ]
  • Chauhan, A.; Debnath, R.M.; Singh, S.P. Modelling the drivers for sustainable agri-food waste management. Benchmarking Int. J. 2018 , 25 , 981–993. [ Google Scholar ] [ CrossRef ]
  • Jo, J.; Yi, S.; Lee, E.-k. Including the reefer chain into genuine beef cold chain architecture based on blockchain technology. J. Clean. Prod. 2022 , 363 , 132646. [ Google Scholar ] [ CrossRef ]
  • Kler, R.; Gangurde, R.; Elmirzaev, S.; Hossain, M.S.; Vo, N.V.; Nguyen, T.V.; Kumar, P.N. Optimization of Meat and Poultry Farm Inventory Stock Using Data Analytics for Green Supply Chain Network. Discret. Dyn. Nat. Soc. 2022 , 2022 , 8970549. [ Google Scholar ] [ CrossRef ]
  • Handfield, R.B.; Cousins, P.D.; Lawson, B.; Petersen, K.J. How can supply management really improve performance? A knowledge-based model of alignment capabilities. J. Supply Chain Manag. 2015 , 51 , 3–17. [ Google Scholar ] [ CrossRef ]
  • Qi, L.; Xu, M.; Fu, Z.; Mira, T.; Zhang, X. C2SLDS: A WSN-based perishable food shelf-life prediction and LSFO strategy decision support system in cold chain logistics. Food Control 2014 , 38 , 19–29. [ Google Scholar ] [ CrossRef ]
  • Matta, V.; Moberg, C. Defining the Antecedents for Adoption of RFID in the Supply Chain. Issues Inf. Syst. 2007 , 8 , 449–454. [ Google Scholar ]
  • Nychas, G.-J.E.; Skandamis, P.N.; Tassou, C.C.; Koutsoumanis, K.P. Meat spoilage during distribution. Meat Sci. 2008 , 78 , 77–89. [ Google Scholar ] [ CrossRef ]
  • Papargyropoulou, E.; Lozano, R.; Steinberger, J.K.; Wright, N.; bin Ujang, Z. The food waste hierarchy as a framework for the management of food surplus and food waste. J. Clean. Prod. 2014 , 76 , 106–115. [ Google Scholar ] [ CrossRef ]
  • Joshi, R.; Banwet, D.; Shankar, R.; Gandhi, J. Performance improvement of cold chain in an emerging economy. Prod. Plan. Control 2012 , 23 , 817–836. [ Google Scholar ] [ CrossRef ]
  • Sharma, S.; Pai, S.S. Analysis of operating effectiveness of a cold chain model using Bayesian networks. Bus. Process Manag. J. 2015 , 21 , 722–742. [ Google Scholar ] [ CrossRef ]
  • Cousins, P.D.; Menguc, B. The implications of socialization and integration in supply chain management. J. Oper. Manag. 2006 , 24 , 604–620. [ Google Scholar ] [ CrossRef ]
  • Beulens, A.J.; Broens, D.-F.; Folstar, P.; Hofstede, G.J. Food safety and transparency in food chains and networks Relationships and challenges. Food Control 2005 , 16 , 481–486. [ Google Scholar ] [ CrossRef ]
  • Mangla, S.K.; Sharma, Y.K.; Patil, P.P.; Yadav, G.; Xu, J. Logistics and distribution challenges to managing operations for corporate sustainability: Study on leading Indian diary organizations. J. Clean. Prod. 2019 , 238 , 117620. [ Google Scholar ] [ CrossRef ]
  • Balaji, M.; Arshinder, K. Modeling the causes of food wastage in Indian perishable food supply chain. Resour. Conserv. Recycl. 2016 , 114 , 153–167. [ Google Scholar ]
  • Kuo, J.-C.; Chen, M.-C. Developing an advanced multi-temperature joint distribution system for the food cold chain. Food Control 2010 , 21 , 559–566. [ Google Scholar ] [ CrossRef ]
  • Smigic, N.; Antic, D.; Blagojevic, B.; Tomasevic, I.; Djekic, I. The level of food safety knowledge among meat handlers. Br. Food J. 2016 , 118 , 9–25. [ Google Scholar ] [ CrossRef ]
  • Sander, F.; Semeijn, J.; Mahr, D. The acceptance of blockchain technology in meat traceability and transparency. Br. Food J. 2018 , 120 , 2066–2079. [ Google Scholar ] [ CrossRef ]
  • Patel, S.; Dora, M.; Hahladakis, J.N.; Iacovidou, E. Opportunities, challenges and trade-offs with decreasing avoidable food waste in the UK. Waste Manag. Res. 2021 , 39 , 473–488. [ Google Scholar ] [ CrossRef ]
  • Raak, N.; Symmank, C.; Zahn, S.; Aschemann-Witzel, J.; Rohm, H. Processing-and product-related causes for food waste and implications for the food supply chain. Waste Manag. 2017 , 61 , 461–472. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Wittstruck, D.; Teuteberg, F. Understanding the success factors of sustainable supply chain management: Empirical evidence from the electrics and electronics industry. Corp. Soc. Responsib. Environ. Manag. 2012 , 19 , 141–158. [ Google Scholar ] [ CrossRef ]
  • Paul, A.; Shukla, N.; Paul, S.K.; Trianni, A. Sustainable supply chain management and multi-criteria decision-making methods: A systematic review. Sustainability 2021 , 13 , 7104. [ Google Scholar ] [ CrossRef ]
  • Parfitt, J.; Barthel, M.; Macnaughton, S. Food waste within food supply chains: Quantification and potential for change to 2050. Philos. Trans. R. Soc. B Biol. Sci. 2010 , 365 , 3065–3081. [ Google Scholar ] [ CrossRef ]
  • Pinto, J.; Boavida-Dias, R.; Matos, H.A.; Azevedo, J. Analysis of the food loss and waste valorisation of animal by-products from the retail sector. Sustainability 2022 , 14 , 2830. [ Google Scholar ] [ CrossRef ]
  • Mota, B.; Gomes, M.I.; Carvalho, A.; Barbosa-Povoa, A.P. Towards supply chain sustainability: Economic, environmental and social design and planning. J. Clean. Prod. 2015 , 105 , 14–27. [ Google Scholar ] [ CrossRef ]
  • Mohammed, A.; Wang, Q. The fuzzy multi-objective distribution planner for a green meat supply chain. Int. J. Prod. Econ. 2017 , 184 , 47–58. [ Google Scholar ] [ CrossRef ]
  • Zhang, X.; Zhao, G.; Qi, Y.; Li, B. A robust fuzzy optimization model for closed-loop supply chain networks considering sustainability. Sustainability 2019 , 11 , 5726. [ Google Scholar ] [ CrossRef ]
  • Ko, H.J.; Evans, G.W. A genetic algorithm-based heuristic for the dynamic integrated forward/reverse logistics network for 3PLs. Comput. Oper. Res. 2007 , 34 , 346–366. [ Google Scholar ] [ CrossRef ]
  • Mosallanezhad, B.; Arjomandi, M.A.; Hashemi-Amiri, O.; Gholian-Jouybari, F.; Dibaj, M.; Akrami, M.; Hajiaghaei-Keshteli, M. Metaheuristic optimizers to solve multi-echelon sustainable fresh seafood supply chain network design problem: A case of shrimp products. Alex. Eng. J. 2023 , 68 , 491–515. [ Google Scholar ] [ CrossRef ]
  • Accorsi, R.; Ferrari, E.; Gamberi, M.; Manzini, R.; Regattieri, A. A closed-loop traceability system to improve logistics decisions in food supply chains: A case study on dairy products. In Advances in Food Traceability Techniques and Technologies ; Elsevier: Amsterdam, The Netherlands, 2016; pp. 337–351. [ Google Scholar ]
  • Alinezhad, M.; Mahdavi, I.; Hematian, M.; Tirkolaee, E.B. A fuzzy multi-objective optimization model for sustainable closed-loop supply chain network design in food industries. Environ. Dev. Sustain. 2022 , 24 , 8779–8806. [ Google Scholar ] [ CrossRef ]
  • Sgarbossa, F.; Russo, I. A proactive model in sustainable food supply chain: Insight from a case study. Int. J. Prod. Econ. 2017 , 183 , 596–606. [ Google Scholar ] [ CrossRef ]
  • Zhang, Y.; Che, A.; Chu, F. Improved model and efficient method for bi-objective closed-loop food supply chain problem with returnable transport items. Int. J. Prod. Res. 2022 , 60 , 1051–1068. [ Google Scholar ] [ CrossRef ]
  • Amin, S.H.; Zhang, G.; Eldali, M.N. A review of closed-loop supply chain models. J. Data Inf. Manag. 2020 , 2 , 279–307. [ Google Scholar ] [ CrossRef ]
  • MahmoumGonbadi, A.; Genovese, A.; Sgalambro, A. Closed-loop supply chain design for the transition towards a circular economy: A systematic literature review of methods, applications and current gaps. J. Clean. Prod. 2021 , 323 , 129101. [ Google Scholar ] [ CrossRef ]
  • Tavana, M.; Kian, H.; Nasr, A.K.; Govindan, K.; Mina, H. A comprehensive framework for sustainable closed-loop supply chain network design. J. Clean. Prod. 2022 , 332 , 129777. [ Google Scholar ] [ CrossRef ]
  • Martindale, W.; Duong, L.; Swainson, M. Testing the data platforms required for the 21st century food system using an industry ecosystem approach. Sci. Total Environ. 2020 , 724 , 137871. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Vlajic, J.V.; Mijailovic, R.; Bogdanova, M. Creating loops with value recovery: Empirical study of fresh food supply chains. Prod. Plan. Control 2018 , 29 , 522–538. [ Google Scholar ] [ CrossRef ]
  • Liu, Z.; de Souza, T.S.; Holland, B.; Dunshea, F.; Barrow, C.; Suleria, H.A. Valorization of food waste to produce value-added products based on its bioactive compounds. Processes 2023 , 11 , 840. [ Google Scholar ] [ CrossRef ]
  • Mangla, S.K.; Luthra, S.; Mishra, N.; Singh, A.; Rana, N.P.; Dora, M.; Dwivedi, Y. Barriers to effective circular supply chain management in a developing country context. Prod. Plan. Control 2018 , 29 , 551–569. [ Google Scholar ] [ CrossRef ]
  • Sehnem, S.; Jabbour, C.J.C.; Pereira, S.C.F.; de Sousa Jabbour, A.B.L. Improving sustainable supply chains performance through operational excellence: Circular economy approach. Resour. Conserv. Recycl. 2019 , 149 , 236–248. [ Google Scholar ] [ CrossRef ]
  • Wiskerke, J.S.; Roep, D. Constructing a sustainable pork supply chain: A case of techno-institutional innovation. J. Environ. Policy Plan. 2007 , 9 , 53–74. [ Google Scholar ] [ CrossRef ]
  • Ilbery, B.; Maye, D. Alternative (shorter) food supply chains and specialist livestock products in the Scottish–English borders. Environ. Plan. A 2005 , 37 , 823–844. [ Google Scholar ] [ CrossRef ]
  • Mundler, P.; Laughrea, S. The contributions of short food supply chains to territorial development: A study of three Quebec territories. J. Rural Stud. 2016 , 45 , 218–229. [ Google Scholar ] [ CrossRef ]
  • Rucabado-Palomar, T.; Cuéllar-Padilla, M. Short food supply chains for local food: A difficult path. Renew. Agric. Food Syst. 2020 , 35 , 182–191. [ Google Scholar ] [ CrossRef ]
  • Vittersø, G.; Torjusen, H.; Laitala, K.; Tocco, B.; Biasini, B.; Csillag, P.; de Labarre, M.D.; Lecoeur, J.-L.; Maj, A.; Majewski, E. Short food supply chains and their contributions to sustainability: Participants’ views and perceptions from 12 European cases. Sustainability 2019 , 11 , 4800. [ Google Scholar ] [ CrossRef ]
  • Blanquart, C.; Gonçalves, A.; Vandenbossche, L.; Kebir, L.; Petit, C.; Traversac, J.-B. (Eds.) The logistic leverages of short food supply chains performance in terms of sustainability. In Proceedings of the 12th World Conference on Transport Research, Lisbonne, Portugal, 11–15 July 2010. 10p. [ Google Scholar ]
  • Majewski, E.; Komerska, A.; Kwiatkowski, J.; Malak-Rawlikowska, A.; Wąs, A.; Sulewski, P.; Gołaś, M.; Pogodzińska, K.; Lecoeur, J.-L.; Tocco, B. Are short food supply chains more environmentally sustainable than long chains? A life cycle assessment (LCA) of the eco-efficiency of food chains in selected EU countries. Energies 2020 , 13 , 4853. [ Google Scholar ] [ CrossRef ]
  • Collison, M.; Collison, T.; Myroniuk, I.; Boyko, N.; Pellegrini, G. Transformation trends in food logistics for short food supply chains-what is new? Stud. Agric. Econ. 2019 , 121 , 102–110. [ Google Scholar ] [ CrossRef ]
  • De Bernardi, P.; Tirabeni, L. Alternative food networks: Sustainable business models for anti-consumption food cultures. Br. Food J. 2018 , 120 , 1776–1791. [ Google Scholar ] [ CrossRef ]
  • Loiseau, E.; Colin, M.; Alaphilippe, A.; Coste, G.; Roux, P. To what extent are short food supply chains (SFSCs) environmentally friendly? Application to French apple distribution using Life Cycle Assessment. J. Clean. Prod. 2020 , 276 , 124166. [ Google Scholar ] [ CrossRef ]
  • Chen, W.; Jafarzadeh, S.; Thakur, M.; Ólafsdóttir, G.; Mehta, S.; Bogason, S.; Holden, N.M. Environmental impacts of animal-based food supply chains with market characteristics. Sci. Total Environ. 2021 , 783 , 147077. [ Google Scholar ] [ CrossRef ]
  • Hill, A. Whole of Meat Supply Chain Food Loss and Waste Mapping and Interventions-Phase 1–Final Report ; Meat and Livestock Australia (MLA): Sydney, NSW, Australia, 2023. [ Google Scholar ]
  • Bonou, A.; Colley, T.A.; Hauschild, M.Z.; Olsen, S.I.; Birkved, M. Life cycle assessment of Danish pork exports using different cooling technologies and comparison of upstream supply chain efficiencies between Denmark, China and Australia. J. Clean. Prod. 2020 , 244 , 118816. [ Google Scholar ] [ CrossRef ]
  • Chen, Q.; Qian, J.; Yang, H.; Wu, W. Sustainable food cold chain logistics: From microenvironmental monitoring to global impact. Compr. Rev. Food Sci. Food Saf. 2022 , 21 , 4189–4209. [ Google Scholar ] [ CrossRef ]
  • Caldeira, C.; De Laurentiis, V.; Corrado, S.; van Holsteijn, F.; Sala, S. Quantification of food waste per product group along the food supply chain in the European Union: A mass flow analysis. Resour. Conserv. Recycl. 2019 , 149 , 479–488. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Betz, A.; Buchli, J.; Göbel, C.; Müller, C. Food waste in the Swiss food service industry–Magnitude and potential for reduction. Waste Manag. 2015 , 35 , 218–226. [ Google Scholar ] [ CrossRef ]
  • Apaiah, R.K.; Linnemann, A.R.; Van Der Kooi, H.J. Exergy analysis: A tool to study the sustainability of food supply chains. Food Res. Int. 2006 , 39 , 1–11. [ Google Scholar ] [ CrossRef ]
  • Peters, G.M.; Rowley, H.V.; Wiedemann, S.; Tucker, R.; Short, M.D.; Schulz, M. Red meat production in Australia: Life cycle assessment and comparison with overseas studies. Environ. Sci. Technol. 2010 , 44 , 1327–1332. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Asem-Hiablie, S.; Battagliese, T.; Stackhouse-Lawson, K.R.; Alan Rotz, C. A life cycle assessment of the environmental impacts of a beef system in the USA. Int. J. Life Cycle Assess. 2019 , 24 , 441–455. [ Google Scholar ] [ CrossRef ]
  • Tsakiridis, A.; O’Donoghue, C.; Hynes, S.; Kilcline, K. A comparison of environmental and economic sustainability across seafood and livestock product value chains. Mar. Policy 2020 , 117 , 103968. [ Google Scholar ] [ CrossRef ]
  • Gerbens-Leenes, P.W.; Mekonnen, M.M.; Hoekstra, A.Y. The water footprint of poultry, pork and beef: A comparative study in different countries and production systems. Water Resour. Ind. 2013 , 1 , 25–36. [ Google Scholar ] [ CrossRef ]
  • Bottani, E.; Vignali, G.; Mosna, D.; Montanari, R. Economic and environmental assessment of different reverse logistics scenarios for food waste recovery. Sustain. Prod. Consum. 2019 , 20 , 289–303. [ Google Scholar ] [ CrossRef ]
  • Omolayo, Y.; Feingold, B.J.; Neff, R.A.; Romeiko, X.X. Life cycle assessment of food loss and waste in the food supply chain. Resour. Conserv. Recycl. 2021 , 164 , 105119. [ Google Scholar ] [ CrossRef ]
  • Lipińska, M.; Tomaszewska, M.; Kołożyn-Krajewska, D. Identifying factors associated with food losses during transportation: Potentials for social purposes. Sustainability 2019 , 11 , 2046. [ Google Scholar ] [ CrossRef ]
  • León-Bravo, V.; Caniato, F.; Caridi, M.; Johnsen, T. Collaboration for sustainability in the food supply chain: A multi-stage study in Italy. Sustainability 2017 , 9 , 1253. [ Google Scholar ] [ CrossRef ]
  • Accorsi, R.; Baruffaldi, G.; Manzini, R. A closed-loop packaging network design model to foster infinitely reusable and recyclable containers in food industry. Sustain. Prod. Consum. 2020 , 24 , 48–61. [ Google Scholar ] [ CrossRef ]
  • Tonn, B.; Frymier, P.D.; Stiefel, D.; Skinner, L.S.; Suraweera, N.; Tuck, R. Toward an infinitely reusable, recyclable, and renewable industrial ecosystem. J. Clean. Prod. 2014 , 66 , 392–406. [ Google Scholar ] [ CrossRef ]
  • Pålsson, H.; Hellström, D. Packaging logistics in supply chain practice–current state, trade-offs and improvement potential. Int. J. Logist. Res. Appl. 2016 , 19 , 351–368. [ Google Scholar ] [ CrossRef ]
  • Mahmoudi, M.; Parviziomran, I. Reusable packaging in supply chains: A review of environmental and economic impacts, logistics system designs, and operations management. Int. J. Prod. Econ. 2020 , 228 , 107730. [ Google Scholar ] [ CrossRef ]
  • Wikström, F.; Verghese, K.; Auras, R.; Olsson, A.; Williams, H.; Wever, R.; Grönman, K.; Kvalvåg Pettersen, M.; Møller, H.; Soukka, R. Packaging strategies that save food: A research agenda for 2030. J. Ind. Ecol. 2019 , 23 , 532–540. [ Google Scholar ] [ CrossRef ]
  • Goossens, Y.; Berrens, P.; Custers, K.; Van Hemelryck, S.; Kellens, K.; Geeraerd, A. How origin, packaging and seasonality determine the environmental impact of apples, magnified by food waste and losses. Int. J. Life Cycle Assess. 2019 , 24 , 667–687. [ Google Scholar ] [ CrossRef ]
  • McMillin, K.W. Advancements in meat packaging. Meat Sci. 2017 , 132 , 153–162. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Domínguez, R.; Barba, F.J.; Gómez, B.; Putnik, P.; Kovačević, D.B.; Pateiro, M.; Santos, E.M.; Lorenzo, J.M. Active packaging films with natural antioxidants to be used in meat industry: A review. Food Res. Int. 2018 , 113 , 93–101. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Fang, Z.; Zhao, Y.; Warner, R.D.; Johnson, S.K. Active and intelligent packaging in meat industry. Trends Food Sci. Technol. 2017 , 61 , 60–71. [ Google Scholar ] [ CrossRef ]
  • Chowdhury, E.; Morey, A. Intelligent packaging for poultry industry. J. Appl. Poult. Res. 2019 , 28 , 791–800. [ Google Scholar ] [ CrossRef ]
  • Realini, C.E.; Marcos, B. Active and intelligent packaging systems for a modern society. Meat Sci. 2014 , 98 , 404–419. [ Google Scholar ] [ CrossRef ]
  • Moustafa, H.; Youssef, A.M.; Darwish, N.A.; Abou-Kandil, A.I. Eco-friendly polymer composites for green packaging: Future vision and challenges. Compos. Part B Eng. 2019 , 172 , 16–25. [ Google Scholar ] [ CrossRef ]
  • Ocampo, L.A.; Villegas, Z.V.A.; Carvajal, J.-a.T.; Apas, C.-A.A. Identifying significant drivers for sustainable practices in achieving sustainable food supply chain using modified fuzzy decision-making trial and evaluation laboratory approach. Int. J. Adv. Oper. Manag. 2018 , 10 , 51–89. [ Google Scholar ]
  • Irani, Z.; Sharif, A.M. Sustainable food security futures: Perspectives on food waste and information across the food supply chain. J. Enterp. Inf. Manag. 2016 , 29 , 171–178. [ Google Scholar ] [ CrossRef ]
  • Jeswani, H.K.; Figueroa-Torres, G.; Azapagic, A. The extent of food waste generation in the UK and its environmental impacts. Sustain. Prod. Consum. 2021 , 26 , 532–547. [ Google Scholar ] [ CrossRef ]
  • Shafiee-Jood, M.; Cai, X. Reducing food loss and waste to enhance food security and environmental sustainability. Environ. Sci. Technol. 2016 , 50 , 8432–8443. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Kamble, S.S.; Gunasekaran, A.; Parekh, H.; Joshi, S. Modeling the internet of things adoption barriers in food retail supply chains. J. Retail. Consum. Serv. 2019 , 48 , 154–168. [ Google Scholar ] [ CrossRef ]
  • Rejeb, A. Halal meat supply chain traceability based on HACCP, blockchain and internet of things. Acta Tech. Jaurinensis 2018 , 11 , 218–247. [ Google Scholar ] [ CrossRef ]
  • Harvey, J.; Smith, A.; Goulding, J.; Illodo, I.B. Food sharing, redistribution, and waste reduction via mobile applications: A social network analysis. Ind. Mark. Manag. 2020 , 88 , 437–448. [ Google Scholar ] [ CrossRef ]
  • Mishra, N.; Singh, A. Use of twitter data for waste minimisation in beef supply chain. Ann. Oper. Res. 2018 , 270 , 337–359. [ Google Scholar ] [ CrossRef ]
  • Biuki, M.; Kazemi, A.; Alinezhad, A. An integrated location-routing-inventory model for sustainable design of a perishable products supply chain network. J. Clean. Prod. 2020 , 260 , 120842. [ Google Scholar ] [ CrossRef ]
  • Alkaabneh, F.; Diabat, A.; Gao, H.O. Benders decomposition for the inventory vehicle routing problem with perishable products and environmental costs. Comput. Oper. Res. 2020 , 113 , 104751. [ Google Scholar ] [ CrossRef ]
  • Elhedhli, S.; Merrick, R. Green supply chain network design to reduce carbon emissions. Transp. Res. Part D Transp. Environ. 2012 , 17 , 370–379. [ Google Scholar ] [ CrossRef ]
  • Daskin, M.S.; Coullard, C.R.; Shen, Z.-J.M. An inventory-location model: Formulation, solution algorithm and computational results. Ann. Oper. Res. 2002 , 110 , 83–106. [ Google Scholar ] [ CrossRef ]
  • Liu, A.; Zhu, Q.; Xu, L.; Lu, Q.; Fan, Y. Sustainable supply chain management for perishable products in emerging markets: An integrated location-inventory-routing model. Transp. Res. Part E Logist. Transp. Rev. 2021 , 150 , 102319. [ Google Scholar ] [ CrossRef ]
  • Diabat, A.; Dehghani, E.; Jabbarzadeh, A. Incorporating location and inventory decisions into a supply chain design problem with uncertain demands and lead times. J. Manuf. Syst. 2017 , 43 , 139–149. [ Google Scholar ] [ CrossRef ]
  • Bravo, J.J.; Vidal, C.J. Freight transportation function in supply chain optimization models: A critical review of recent trends. Expert Syst. Appl. 2013 , 40 , 6742–6757. [ Google Scholar ] [ CrossRef ]
  • Javid, A.A.; Azad, N. Incorporating location, routing and inventory decisions in supply chain network design. Transp. Res. Part E Logist. Transp. Rev. 2010 , 46 , 582–597. [ Google Scholar ] [ CrossRef ]
  • Benders, J.F. Partitioning procedures for solving mixed-variables programming problems. Comput. Manag. Sci. 2005 , 2 , 3–19. [ Google Scholar ] [ CrossRef ]
  • Savelsbergh, M. A branch-and-price algorithm for the generalized assignment problem. Oper. Res. 1997 , 45 , 831–841. [ Google Scholar ] [ CrossRef ]
  • Talkhestani, H.R.A.; Jahromi, M.H.M.A.; Keshavarzfard, R. A Location-Inventory Model for Multi-Product Supply Chain with Perishable Products and Price-Dependent Demand. Adv. Ind. Eng. 2023 , 56 , 1–12. [ Google Scholar ]
  • Mohammadi, Z.; Barzinpour, F.; Teimoury, E. A location-inventory model for the sustainable supply chain of perishable products based on pricing and replenishment decisions: A case study. PLoS ONE 2023 , 18 , e0288915. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Tarantilis, C.; Kiranoudis, C. Distribution of fresh meat. J. Food Eng. 2002 , 51 , 85–91. [ Google Scholar ] [ CrossRef ]
  • Zhang, G.; Habenicht, W.; Spieß, W.E.L. Improving the structure of deep frozen and chilled food chain with tabu search procedure. J. Food Eng. 2003 , 60 , 67–79. [ Google Scholar ] [ CrossRef ]
  • Wang, Y.; Yu, L.y. (Eds.) Optimization model of refrigerated food transportation. In Proceedings of the ICSSSM12, Shanghai, China, 2–4 July 2012; IEEE: New York, NY, USA, 2012; pp. 220–224. [ Google Scholar ]
  • Neves-Moreira, F.; Almada-Lobo, B.; Cordeau, J.-F.; Guimarães, L.; Jans, R. Solving a large multi-product production-routing problem with delivery time windows. Omega 2019 , 86 , 154–172. [ Google Scholar ] [ CrossRef ]
  • Govindan, K.; Jafarian, A.; Khodaverdi, R.; Devika, K. Two-echelon multiple-vehicle location–routing problem with time windows for optimization of sustainable supply chain network of perishable food. Int. J. Prod. Econ. 2014 , 152 , 9–28. [ Google Scholar ] [ CrossRef ]
  • Mohammed, A.; Wang, Q. Developing a meat supply chain network design using a multi-objective possibilistic programming approach. Br. Food J. 2017 , 119 , 690–706. [ Google Scholar ] [ CrossRef ]
  • Moreno, S.; Pereira, J.; Yushimito, W. A hybrid K-means and integer programming method for commercial territory design: A case study in meat distribution. Ann. Oper. Res. 2020 , 286 , 87–117. [ Google Scholar ] [ CrossRef ]
  • Rahbari, M.; Hajiagha, S.H.R.; Dehaghi, M.R.; Moallem, M.; Dorcheh, F.R. Modeling and solving a five-echelon location–inventory–routing problem for red meat supply chain: Case study in Iran. Kybernetes 2020 , 50 , 66–99. [ Google Scholar ] [ CrossRef ]
  • Qu, S.; Zhou, Y.; Ji, Y.; Dai, Z.; Wang, Z. Robust maximum expert consensus modeling with dynamic feedback mechanism under uncertain environments. J. Ind. Manag. Optim. 2024 . [ Google Scholar ] [ CrossRef ]
  • Soysal, M.; Bloemhof-Ruwaard, J.M.; Van Der Vorst, J.G. Modelling food logistics networks with emission considerations: The case of an international beef supply chain. Int. J. Prod. Econ. 2014 , 152 , 57–70. [ Google Scholar ] [ CrossRef ]
  • Mohebalizadehgashti, F.; Zolfagharinia, H.; Amin, S.H. Designing a green meat supply chain network: A multi-objective approach. Int. J. Prod. Econ. 2020 , 219 , 312–327. [ Google Scholar ] [ CrossRef ]
  • Aung, M.M.; Chang, Y.S. Traceability in a food supply chain: Safety and quality perspectives. Food Control 2014 , 39 , 172–184. [ Google Scholar ] [ CrossRef ]
  • Ketzenberg, M.; Bloemhof, J.; Gaukler, G. Managing perishables with time and temperature history. Prod. Oper. Manag. 2015 , 24 , 54–70. [ Google Scholar ] [ CrossRef ]
  • Bottani, E.; Casella, G.; Nobili, M.; Tebaldi, L. An analytic model for estimating the economic and environmental impact of food cold supply chain. Sustainability 2022 , 14 , 4771. [ Google Scholar ] [ CrossRef ]
  • Vrat, P.; Gupta, R.; Bhatnagar, A.; Pathak, D.K.; Fulzele, V. Literature review analytics (LRA) on sustainable cold-chain for perishable food products: Research trends and future directions. Opsearch 2018 , 55 , 601–627. [ Google Scholar ] [ CrossRef ]
  • De Keizer, M.; Haijema, R.; Bloemhof, J.M.; Van Der Vorst, J.G. Hybrid optimization and simulation to design a logistics network for distributing perishable products. Comput. Ind. Eng. 2015 , 88 , 26–38. [ Google Scholar ] [ CrossRef ]
  • Coelho, L.C.; Laporte, G. Optimal joint replenishment, delivery and inventory management policies for perishable products. Comput. Oper. Res. 2014 , 47 , 42–52. [ Google Scholar ] [ CrossRef ]
  • Hasani, A.; Zegordi, S.H.; Nikbakhsh, E. Robust closed-loop supply chain network design for perishable goods in agile manufacturing under uncertainty. Int. J. Prod. Res. 2012 , 50 , 4649–4669. [ Google Scholar ] [ CrossRef ]
  • Song, B.D.; Ko, Y.D. A vehicle routing problem of both refrigerated-and general-type vehicles for perishable food products delivery. J. Food Eng. 2016 , 169 , 61–71. [ Google Scholar ] [ CrossRef ]
  • de Keizer, M.; Akkerman, R.; Grunow, M.; Bloemhof, J.M.; Haijema, R.; van der Vorst, J.G. Logistics network design for perishable products with heterogeneous quality decay. Eur. J. Oper. Res. 2017 , 262 , 535–549. [ Google Scholar ] [ CrossRef ]
  • Mohammed, A.; Govindan, K.; Zubairu, N.; Pratabaraj, J.; Abideen, A.Z. Multi-tier supply chain network design: A key towards sustainability and resilience. Comput. Ind. Eng. 2023 , 182 , 109396. [ Google Scholar ] [ CrossRef ]
  • Tavakkoli Moghaddam, S.; Javadi, M.; Hadji Molana, S.M. A reverse logistics chain mathematical model for a sustainable production system of perishable goods based on demand optimization. J. Ind. Eng. Int. 2019 , 15 , 709–721. [ Google Scholar ] [ CrossRef ]
  • Mohammed, A.; Wang, Q.; Li, X. A cost-effective decision-making algorithm for an RFID-enabled HMSC network design: A multi-objective approach. Ind. Manag. Data Syst. 2017 , 117 , 1782–1799. [ Google Scholar ] [ CrossRef ]
  • Alfian, G.; Syafrudin, M.; Farooq, U.; Ma’arif, M.R.; Syaekhoni, M.A.; Fitriyani, N.L.; Lee, J.; Rhee, J. Improving efficiency of RFID-based traceability system for perishable food by utilizing IoT sensors and machine learning model. Food Control 2020 , 110 , 107016. [ Google Scholar ] [ CrossRef ]
  • Verghese, K.; Lewis, H.; Lockrey, S.; Williams, H. The Role of Packaging in Minimising Food Waste in the Supply Chain of the Future: Prepared for: CHEP Australia ; RMIT University Report: Melbourne, VIC, Australia, 2013. [ Google Scholar ]
  • Singh, A.; Kumari, S.; Malekpoor, H.; Mishra, N. Big data cloud computing framework for low carbon supplier selection in the beef supply chain. J. Clean. Prod. 2018 , 202 , 139–149. [ Google Scholar ] [ CrossRef ]
  • Thakur, M.; Forås, E. EPCIS based online temperature monitoring and traceability in a cold meat chain. Comput. Electron. Agric. 2015 , 117 , 22–30. [ Google Scholar ] [ CrossRef ]
  • Kittipanya-Ngam, P.; Tan, K.H. A framework for food supply chain digitalization: Lessons from Thailand. Prod. Plan. Control 2020 , 31 , 158–172. [ Google Scholar ] [ CrossRef ]
  • Luo, H.; Zhu, M.; Ye, S.; Hou, H.; Chen, Y.; Bulysheva, L. An intelligent tracking system based on internet of things for the cold chain. Internet Res. 2016 , 26 , 435–445. [ Google Scholar ] [ CrossRef ]
  • Rodrigues, V.S.; Demir, E.; Wang, X.; Sarkis, J. Measurement, mitigation and prevention of food waste in supply chains: An online shopping perspective. Ind. Mark. Manag. 2021 , 93 , 545–562. [ Google Scholar ] [ CrossRef ]
  • Fung, F.; Wang, H.-S.; Menon, S. Food safety in the 21st century. Biomed. J. 2018 , 41 , 88–95. [ Google Scholar ] [ CrossRef ]
  • Siems, E.; Land, A.; Seuring, S. Dynamic capabilities in sustainable supply chain management: An inter-temporal comparison of the food and automotive industries. Int. J. Prod. Econ. 2021 , 236 , 108128. [ Google Scholar ] [ CrossRef ]
  • Gholami-Zanjani, S.M.; Klibi, W.; Jabalameli, M.S.; Pishvaee, M.S. The design of resilient food supply chain networks prone to epidemic disruptions. Int. J. Prod. Econ. 2021 , 233 , 108001. [ Google Scholar ] [ CrossRef ]
  • Wang, J.; Yue, H. Food safety pre-warning system based on data mining for a sustainable food supply chain. Food Control 2017 , 73 , 223–229. [ Google Scholar ] [ CrossRef ]
  • Esmaeilian, B.; Sarkis, J.; Lewis, K.; Behdad, S. Blockchain for the future of sustainable supply chain management in Industry 4.0. Resour. Conserv. Recycl. 2020 , 163 , 105064. [ Google Scholar ] [ CrossRef ]
  • McKinna, D.; Wall, C. Commercial Application of Supply Chain Integrity and Shelf Life Systems ; Technical Report; Meat and Livestock Australia Limited: Sydney, NSW, Australia, 2020. [ Google Scholar ]
  • Jia, L.; Evans, S. Improving food allergen management in food manufacturing: An incentive-based approach. Food Control 2021 , 129 , 108246. [ Google Scholar ] [ CrossRef ]
  • Nyarugwe, S.P.; Linnemann, A.R.; Luning, P.A. Prevailing food safety culture in companies operating in a transition economy-Does product riskiness matter? Food Control 2020 , 107 , 106803. [ Google Scholar ] [ CrossRef ]
  • Sestino, A.; Prete, M.I.; Piper, L.; Guido, G. Internet of Things and Big Data as enablers for business digitalization strategies. Technovation 2020 , 98 , 102173. [ Google Scholar ] [ CrossRef ]
  • Astill, J.; Dara, R.A.; Campbell, M.; Farber, J.M.; Fraser, E.D.; Sharif, S.; Yada, R.Y. Transparency in food supply chains: A review of enabling technology solutions. Trends Food Sci. Technol. 2019 , 91 , 240–247. [ Google Scholar ] [ CrossRef ]
  • Singh, M.; Corradini, M.G. Big data and its role in mitigating food spoilage and quality deterioration along the supply chain. In Harnessing Big Data in Food Safety ; Springer: Berlin/Heidelberg, Germany, 2022; pp. 93–112. [ Google Scholar ]
  • Tiwari, S.; Wee, H.-M.; Daryanto, Y. Big data analytics in supply chain management between 2010 and 2016: Insights to industries. Comput. Ind. Eng. 2018 , 115 , 319–330. [ Google Scholar ] [ CrossRef ]
  • Wang, G.; Gunasekaran, A.; Ngai, E.W.; Papadopoulos, T. Big data analytics in logistics and supply chain management: Certain investigations for research and applications. Int. J. Prod. Econ. 2016 , 176 , 98–110. [ Google Scholar ] [ CrossRef ]
  • Addo-Tenkorang, R.; Helo, P.T. Big data applications in operations/supply-chain management: A literature review. Comput. Ind. Eng. 2016 , 101 , 528–543. [ Google Scholar ] [ CrossRef ]
  • Feng, H.; Wang, X.; Duan, Y.; Zhang, J.; Zhang, X. Applying blockchain technology to improve agri-food traceability: A review of development methods, benefits and challenges. J. Clean. Prod. 2020 , 260 , 121031. [ Google Scholar ] [ CrossRef ]
  • Sanka, A.I.; Irfan, M.; Huang, I.; Cheung, R.C. A survey of breakthrough in blockchain technology: Adoptions, applications, challenges and future research. Comput. Commun. 2021 , 169 , 179–201. [ Google Scholar ] [ CrossRef ]
  • Azzi, R.; Chamoun, R.K.; Sokhn, M. The power of a blockchain-based supply chain. Comput. Ind. Eng. 2019 , 135 , 582–592. [ Google Scholar ] [ CrossRef ]
  • Powell, W.; Foth, M.; Cao, S.; Natanelov, V. Garbage in garbage out: The precarious link between IoT and blockchain in food supply chains. J. Ind. Inf. Integr. 2022 , 25 , 100261. [ Google Scholar ] [ CrossRef ]
  • Verboven, P.; Defraeye, T.; Datta, A.K.; Nicolai, B. Digital twins of food process operations: The next step for food process models? Curr. Opin. Food Sci. 2020 , 35 , 79–87. [ Google Scholar ] [ CrossRef ]
  • Kuffi, K.D.; Defraeye, T.; Nicolai, B.M.; De Smet, S.; Geeraerd, A.; Verboven, P. CFD modeling of industrial cooling of large beef carcasses. Int. J. Refrig. 2016 , 69 , 324–339. [ Google Scholar ] [ CrossRef ]
  • Wu, W.; Beretta, C.; Cronje, P.; Hellweg, S.; Defraeye, T. Environmental trade-offs in fresh-fruit cold chains by combining virtual cold chains with life cycle assessment. Appl. Energy 2019 , 254 , 113586. [ Google Scholar ] [ CrossRef ]
  • Agalianos, K.; Ponis, S.; Aretoulaki, E.; Plakas, G.; Efthymiou, O. Discrete event simulation and digital twins: Review and challenges for logistics. Procedia Manuf. 2020 , 51 , 1636–1641. [ Google Scholar ] [ CrossRef ]
  • Wang, Y.; Ma, X.; Liu, M.; Gong, K.; Liu, Y.; Xu, M.; Wang, Y. Cooperation and profit allocation in two-echelon logistics joint distribution network optimization. Appl. Soft Comput. 2017 , 56 , 143–157. [ Google Scholar ] [ CrossRef ]
  • Zhu, Z.; Bai, Y.; Dai, W.; Liu, D.; Hu, Y. Quality of e-commerce agricultural products and the safety of the ecological environment of the origin based on 5G Internet of Things technology. Environ. Technol. Innov. 2021 , 22 , 101462. [ Google Scholar ] [ CrossRef ]
  • Osman, S.A.; Xu, C.; Akuful, M.; Paul, E.R. Perishable Food Supply Chain Management: Challenges and the Way Forward. Open J. Soc. Sci. 2023 , 11 , 349–364. [ Google Scholar ] [ CrossRef ]
  • Verhoef, P.C.; Lemon, K.N. Successful customer value management: Key lessons and emerging trends. Eur. Manag. J. 2013 , 31 , 1–15. [ Google Scholar ] [ CrossRef ]
  • Tseng, M.-L. Modeling sustainable production indicators with linguistic preferences. J. Clean. Prod. 2013 , 40 , 46–56. [ Google Scholar ] [ CrossRef ]
  • Derqui, B.; Fayos, T.; Fernandez, V. Towards a more sustainable food supply chain: Opening up invisible waste in food service. Sustainability 2016 , 8 , 693. [ Google Scholar ] [ CrossRef ]
  • Heising, J.K.; Claassen, G.; Dekker, M. Options for reducing food waste by quality-controlled logistics using intelligent packaging along the supply chain. Food Addit. Contam. Part A 2017 , 34 , 1672–1680. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Ravindran, R.; Jaiswal, A.K. Exploitation of food industry waste for high-value products. Trends Biotechnol. 2016 , 34 , 58–69. [ Google Scholar ] [ CrossRef ]
  • Lin, C.S.K.; Pfaltzgraff, L.A.; Herrero-Davila, L.; Mubofu, E.B.; Abderrahim, S.; Clark, J.H.; Koutinas, A.A.; Kopsahelis, N.; Stamatelatou, K.; Dickson, F. Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy Environ. Sci. 2013 , 6 , 426–464. [ Google Scholar ] [ CrossRef ]
  • Krishnan, R.; Arshinder, K.; Agarwal, R. Robust optimization of sustainable food supply chain network considering food waste valorization and supply uncertainty. Comput. Ind. Eng. 2022 , 171 , 108499. [ Google Scholar ] [ CrossRef ]
  • Cristóbal, J.; Castellani, V.; Manfredi, S.; Sala, S. Prioritizing and optimizing sustainable measures for food waste prevention and management. Waste Manag. 2018 , 72 , 3–16. [ Google Scholar ] [ CrossRef ]
  • Karwowska, M.; Łaba, S.; Szczepański, K. Food loss and waste in meat sector—Why the consumption stage generates the most losses? Sustainability 2021 , 13 , 6227. [ Google Scholar ] [ CrossRef ]
  • Dani, S.; Deep, A. Fragile food supply chains: Reacting to risks. Int. J. Logist. Res. Appl. 2010 , 13 , 395–410. [ Google Scholar ] [ CrossRef ]
  • Corrêa, H.L.; Xavier, L.H. Concepts, design and implementation of Reverse Logistics Systems for sustainable supply chains in Brazil. J. Oper. Supply Chain Manag. 2013 , 6 , 1. [ Google Scholar ] [ CrossRef ]
  • Pagell, M.; Shevchenko, A. Why research in sustainable supply chain management should have no future. J. Supply Chain Manag. 2014 , 50 , 44–55. [ Google Scholar ] [ CrossRef ]
  • Difrancesco, R.M.; Huchzermeier, A. Closed-loop supply chains: A guide to theory and practice. Int. J. Logist. Res. Appl. 2016 , 19 , 443–464. [ Google Scholar ] [ CrossRef ]
  • Battini, D.; Bogataj, M.; Choudhary, A. Closed Loop Supply Chain (CLSC): Economics, Modelling, Management and Control ; Elsevier: Amsterdam, The Netherlands, 2017; Volume 183, pp. 319–321. [ Google Scholar ]
  • Meneghetti, A.; Monti, L. Greening the food supply chain: An optimisation model for sustainable design of refrigerated automated warehouses. Int. J. Prod. Res. 2015 , 53 , 6567–6587. [ Google Scholar ] [ CrossRef ]
  • Adekomaya, O.; Jamiru, T.; Sadiku, R.; Huan, Z. Sustaining the shelf life of fresh food in cold chain–A burden on the environment. Alex. Eng. J. 2016 , 55 , 1359–1365. [ Google Scholar ] [ CrossRef ]
  • Benn, S.; Edwards, M.; Williams, T. Organizational Change for Corporate Sustainability ; Routledge: London, UK, 2014. [ Google Scholar ]
  • Chopra, S.; Meindl, P. Supply Chain Management. Strategy, Planning & Operation ; Springer: Berlin/Heidelberg, Germany, 2007. [ Google Scholar ]
  • Li, Q.; Liu, A. Big data driven supply chain management. Procedia CIRP 2019 , 81 , 1089–1094. [ Google Scholar ] [ CrossRef ]
  • Nagy, G.; Salhi, S. Location-routing: Issues, models and methods. Eur. J. Oper. Res. 2007 , 177 , 649–672. [ Google Scholar ] [ CrossRef ]
  • Kamariotou, M.; Kitsios, F.; Charatsari, C.; Lioutas, E.D.; Talias, M.A. Digital strategy decision support systems: Agrifood supply chain management in smes. Sensors 2021 , 22 , 274. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Trstenjak, M.; Opetuk, T.; Đukić, G.; Cajner, H. Logistics 5.0 Implementation Model Based on Decision Support Systems. Sustainability 2022 , 14 , 6514. [ Google Scholar ] [ CrossRef ]
  • Cai, L.; Li, W.; Luo, Y.; He, L. Real-time scheduling simulation optimisation of job shop in a production-logistics collaborative environment. Int. J. Prod. Res. 2022 , 61 , 1373–1393. [ Google Scholar ] [ CrossRef ]
  • Stijn, E.v.; Phuaphanthong, T.; Keretho, S.; Pikart, M.; Hofman, W.; Tan, Y.-H. Implementation Framework for e-solutions for Trade Facilitation. In Accelerating Global Supply Chains with IT-Innovation ; Springer: Berlin/Heidelberg, Germany, 2011; pp. 285–317. [ Google Scholar ]
  • Yavas, V.; Ozkan-Ozen, Y.D. Logistics centers in the new industrial era: A proposed framework for logistics center 4.0. Transp. Res. Part E Logist. Transp. Rev. 2020 , 135 , 101864. [ Google Scholar ] [ CrossRef ]
  • Zokaei, A.K.; Simons, D.W. Value chain analysis in consumer focus improvement: A case study of the UK red meat industry. Int. J. Logist. Manag. 2006 , 17 , 141–162. [ Google Scholar ] [ CrossRef ]
  • Cox, A.; Chicksand, D.; Yang, T. The proactive alignment of sourcing with marketing and branding strategies: A food service case. Supply Chain Manag. Int. J. 2007 , 12 , 321–333. [ Google Scholar ] [ CrossRef ]
  • Jie, F.; Gengatharen, D. Australian food retail supply chain analysis. Bus. Process Manag. J. 2019 , 25 , 271–287. [ Google Scholar ] [ CrossRef ]
  • Knoll, S.; Marques, C.S.S.; Liu, J.; Zhong, F.; Padula, A.D.; Barcellos, J.O.J. The Sino-Brazilian beef supply chain: Mapping and risk detection. Br. Food J. 2017 , 119 , 164–180. [ Google Scholar ] [ CrossRef ]
  • Schilling-Vacaflor, A. Integrating human rights and the environment in supply chain regulations. Sustainability 2021 , 13 , 9666. [ Google Scholar ] [ CrossRef ]
  • Knoll, S.; Padula, A.D.; dos Santos, M.C.; Pumi, G.; Zhou, S.; Zhong, F.; Barcellos, J.O.J. Information flow in the Sino-Brazilian beef trade. Int. Food Agribus. Manag. Rev. 2018 , 21 , 17–38. [ Google Scholar ] [ CrossRef ]
  • E-Fatima, K.; Khandan, R.; Hosseinian-Far, A.; Sarwar, D.; Ahmed, H.F. Adoption and Influence of Robotic Process Automation in Beef Supply Chains. Logistics 2022 , 6 , 48. [ Google Scholar ] [ CrossRef ]
  • Storer, M.; Hyland, P.; Ferrer, M.; Santa, R.; Griffiths, A. Strategic supply chain management factors influencing agribusiness innovation utilization. Int. J. Logist. Manag. 2014 , 25 , 487–521. [ Google Scholar ] [ CrossRef ]
  • Mangla, S.K.; Börühan, G.; Ersoy, P.; Kazancoglu, Y.; Song, M. Impact of information hiding on circular food supply chains in business-to-business context. J. Bus. Res. 2021 , 135 , 1–18. [ Google Scholar ] [ CrossRef ]
  • Faisal, M.N. A study of inhibitors to transparency in red meat supply chains in Gulf cooperation council (GCC) countries. Bus. Process Manag. J. 2015 , 21 , 1299–1318. [ Google Scholar ] [ CrossRef ]
  • Shanoyan, A.; Schiavi Bankuti, S.M.; Colares-Santos, L. Analysis of incentive structures at producer–processor interface of beef supply chain in Brazil. J. Agribus. Dev. Emerg. Econ. 2019 , 9 , 159–174. [ Google Scholar ] [ CrossRef ]
  • Nakandala, D.; Lau, H.; Zhang, J. Cost-optimization modelling for fresh food quality and transportation. Ind. Manag. Data Syst. 2016 , 116 , 564–583. [ Google Scholar ] [ CrossRef ]
  • Ge, H.; Gómez, M.; Peters, C. Modeling and optimizing the beef supply chain in the Northeastern US. Agric. Econ. 2022 , 53 , 702–718. [ Google Scholar ] [ CrossRef ]
  • Hsiao, Y.-H.; Chen, M.-C.; Chin, C.-L. Distribution planning for perishable foods in cold chains with quality concerns: Formulation and solution procedure. Trends Food Sci. Technol. 2017 , 61 , 80–93. [ Google Scholar ] [ CrossRef ]
  • Meksavang, P.; Shi, H.; Lin, S.-M.; Liu, H.-C. An extended picture fuzzy VIKOR approach for sustainable supplier management and its application in the beef industry. Symmetry 2019 , 11 , 468. [ Google Scholar ] [ CrossRef ]
  • Taylor, D.H. Strategic considerations in the development of lean agri-food supply chains: A case study of the UK pork sector. Supply Chain Manag. Int. J. 2006 , 11 , 271–280. [ Google Scholar ] [ CrossRef ]
  • Erol, E.; Saghaian, S.H. The COVID-19 pandemic and dynamics of price adjustment in the US beef sector. Sustainability 2022 , 14 , 4391. [ Google Scholar ] [ CrossRef ]
  • Galuchi, T.P.D.; Rosales, F.P.; Batalha, M.O. Management of socioenvironmental factors of reputational risk in the beef supply chain in the Brazilian Amazon region. Int. Food Agribus. Manag. Rev. 2019 , 22 , 155–171. [ Google Scholar ] [ CrossRef ]
  • Silvestre, B.S.; Monteiro, M.S.; Viana, F.L.E.; de Sousa-Filho, J.M. Challenges for sustainable supply chain management: When stakeholder collaboration becomes conducive to corruption. J. Clean. Prod. 2018 , 194 , 766–776. [ Google Scholar ] [ CrossRef ]
  • Eriksson, M.; Strid, I.; Hansson, P.-A. Waste of organic and conventional meat and dairy products—A case study from Swedish retail. Resour. Conserv. Recycl. 2014 , 83 , 44–52. [ Google Scholar ] [ CrossRef ]
  • Accorsi, R.; Bortolini, M.; Gallo, A. Modeling by-products and waste management in the meat industry. In Sustainable Food Supply Chains ; Elsevier: Amsterdam, The Netherlands, 2019; pp. 339–349. [ Google Scholar ]
  • Ersoy, P.; Börühan, G.; Kumar Mangla, S.; Hormazabal, J.H.; Kazancoglu, Y.; Lafcı, Ç. Impact of information technology and knowledge sharing on circular food supply chains for green business growth. Bus. Strategy Environ. 2022 , 31 , 1875–1904. [ Google Scholar ] [ CrossRef ]
  • Mahbubi, A.; Uchiyama, T. Assessing the sustainability of the Indonesian halal beef supply chain. Int. J. Food Syst. Dyn. 2020 , 11 , 468–481. [ Google Scholar ]
  • Bragaglio, A.; Napolitano, F.; Pacelli, C.; Pirlo, G.; Sabia, E.; Serrapica, F.; Serrapica, M.; Braghieri, A. Environmental impacts of Italian beef production: A comparison between different systems. J. Clean. Prod. 2018 , 172 , 4033–4043. [ Google Scholar ] [ CrossRef ]
  • Zeidan, R.; Van Holt, T.; Whelan, T. Existence inductive theory building to study coordination failures in sustainable beef production. J. Clean. Prod. 2020 , 267 , 122137. [ Google Scholar ] [ CrossRef ]
  • Santos, A.B.; Costa, M.H. Do large slaughterhouses promote sustainable intensification of cattle ranching in Amazonia and the Cerrado? Sustainability 2018 , 10 , 3266. [ Google Scholar ] [ CrossRef ]
  • E-Fatima, K.; Khandan, R.; Hosseinian-Far, A.; Sarwar, D. The Adoption of Robotic Process Automation Considering Financial Aspects in Beef Supply Chains: An Approach towards Sustainability. Sustainability 2023 , 15 , 7236. [ Google Scholar ] [ CrossRef ]
  • Huerta, A.R.; Güereca, L.P.; Lozano, M.d.l.S.R. Environmental impact of beef production in Mexico through life cycle assessment. Resour. Conserv. Recycl. 2016 , 109 , 44–53. [ Google Scholar ] [ CrossRef ]
  • Cox, A.; Chicksand, D.; Palmer, M. Stairways to heaven or treadmills to oblivion? Creating sustainable strategies in red meat supply chains. Br. Food J. 2007 , 109 , 689–720. [ Google Scholar ] [ CrossRef ]
  • Teresa, H.; Áine, M.-W.; Olive, M.; Carol, P.; Maeve, H. Co-operation among Irish beef farmers: Current perspectives and future prospects in the context of new producer organisation (PO) legislation. Sustainability 2018 , 10 , 4085. [ Google Scholar ] [ CrossRef ]
  • Kyayesimira, J.; Wangalwa, R.; Kagoro Rugunda, G.; Lejju, J.B.; Matofari, J.W.; Andama, M. Causes of losses and the economic loss estimates at post-harvest handling points along the beef value chain in Uganda. J. Agric. Ext. Rural. Dev. 2019 , 11 , 176–183. [ Google Scholar ]
  • Ranaei, V.; Pilevar, Z.; Esfandiari, C.; Khaneghah, A.M.; Dhakal, R.; Vargas-Bello-Pérez, E.; Hosseini, H. Meat value chain losses in Iran. Food Sci. Anim. Resour. 2021 , 41 , 16–33. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Wiedemann, S.; McGahan, E.; Murphy, C.; Yan, M.-J.; Henry, B.; Thoma, G.; Ledgard, S. Environmental impacts and resource use of Australian beef and lamb exported to the USA determined using life cycle assessment. J. Clean. Prod. 2015 , 94 , 67–75. [ Google Scholar ] [ CrossRef ]
  • Martínez, C.I.P.; Poveda, A.C. Characterization of cooling equipment in the food industry: Case study of the Colombian meat, dairy, and fruit and vegetable sectors. Environ. Dev. 2022 , 41 , 100693. [ Google Scholar ] [ CrossRef ]
  • Fattahi, F.; Nookabadi, A.S.; Kadivar, M. A model for measuring the performance of the meat supply chain. Br. Food J. 2013 , 115 , 1090–1111. [ Google Scholar ] [ CrossRef ]
  • Florindo, T.; Florindo, G.d.M.; Talamini, E.; da Costa, J.; de Léis, C.; Tang, W.; Schultz, G.; Kulay, L.; Pinto, A.; Ruviaro, C.F. Application of the multiple criteria decision-making (MCDM) approach in the identification of Carbon Footprint reduction actions in the Brazilian beef production chain. J. Clean. Prod. 2018 , 196 , 1379–1389. [ Google Scholar ] [ CrossRef ]
  • Diaz, F.; Vignati, J.A.; Marchi, B.; Paoli, R.; Zanoni, S.; Romagnoli, F. Effects of energy efficiency measures in the beef cold chain: A life cycle-based study. Environ. Clim. Technol. 2021 , 25 , 343–355. [ Google Scholar ] [ CrossRef ]
  • Schmidt, B.V.; Moreno, M.S. Traceability optimization in the meat supply chain with economic and environmental considerations. Comput. Ind. Eng. 2022 , 169 , 108271. [ Google Scholar ] [ CrossRef ]
  • Domingues Zucchi, J.; Zeng, A.Z.; Caixeta-Filho, J.V. Optimum location for export-oriented slaughterhouses in Mato Grosso, Brazil: A dynamic mathematical model. Int. J. Logist. Res. Appl. 2011 , 14 , 135–148. [ Google Scholar ] [ CrossRef ]
  • Dorcheh, F.R.; Rahbari, M. Greenhouse gas emissions optimization for distribution and vehicle routing problem in a poultry meat supply chain in two phases: A case study in Iran. Process Integr. Optim. Sustain. 2023 , 7 , 1289–1317. [ Google Scholar ] [ CrossRef ]
  • Javanmard, S.; Vahdani, B.; Tavakkoli-Moghaddam, R. Solving a multi-product distribution planning problem in cross docking networks: An imperialist competitive algorithm. Int. J. Adv. Manuf. Technol. 2014 , 70 , 1709–1720. [ Google Scholar ] [ CrossRef ]
  • Dai, Z.; Aqlan, F.; Zheng, X.; Gao, K. A location-inventory supply chain network model using two heuristic algorithms for perishable products with fuzzy constraints. Comput. Ind. Eng. 2018 , 119 , 338–352. [ Google Scholar ] [ CrossRef ]
  • Saragih, N.I.; Bahagia, N.; Syabri, I. A heuristic method for location-inventory-routing problem in a three-echelon supply chain system. Comput. Ind. Eng. 2019 , 127 , 875–886. [ Google Scholar ] [ CrossRef ]
  • Hiassat, A.; Diabat, A.; Rahwan, I. A genetic algorithm approach for location-inventory-routing problem with perishable products. J. Manuf. Syst. 2017 , 42 , 93–103. [ Google Scholar ] [ CrossRef ]
  • Le, T.; Diabat, A.; Richard, J.-P.; Yih, Y. A column generation-based heuristic algorithm for an inventory routing problem with perishable goods. Optim. Lett. 2013 , 7 , 1481–1502. [ Google Scholar ] [ CrossRef ]
  • Wang, X.; Wang, M.; Ruan, J.; Zhan, H. The multi-objective optimization for perishable food distribution route considering temporal-spatial distance. Procedia Comput. Sci. 2016 , 96 , 1211–1220. [ Google Scholar ] [ CrossRef ]
  • Rafie-Majd, Z.; Pasandideh, S.H.R.; Naderi, B. Modelling and solving the integrated inventory-location-routing problem in a multi-period and multi-perishable product supply chain with uncertainty: Lagrangian relaxation algorithm. Comput. Chem. Eng. 2018 , 109 , 9–22. [ Google Scholar ] [ CrossRef ]
  • Singh, A.; Mishra, N.; Ali, S.I.; Shukla, N.; Shankar, R. Cloud computing technology: Reducing carbon footprint in beef supply chain. Int. J. Prod. Econ. 2015 , 164 , 462–471. [ Google Scholar ] [ CrossRef ]
  • Zhang, Y.; Baker, D.; Griffith, G. Product quality information in supply chains: A performance-linked conceptual framework applied to the Australian red meat industry. Int. J. Logist. Manag. 2020 , 31 , 697–723. [ Google Scholar ] [ CrossRef ]
  • Cao, S.; Powell, W.; Foth, M.; Natanelov, V.; Miller, T.; Dulleck, U. Strengthening consumer trust in beef supply chain traceability with a blockchain-based human-machine reconcile mechanism. Comput. Electron. Agric. 2021 , 180 , 105886. [ Google Scholar ] [ CrossRef ]
  • Kassahun, A.; Hartog, R.J.; Tekinerdogan, B. Realizing chain-wide transparency in meat supply chains based on global standards and a reference architecture. Comput. Electron. Agric. 2016 , 123 , 275–291. [ Google Scholar ] [ CrossRef ]
  • Ribeiro, P.C.C.; Scavarda, A.J.; Batalha, M.O. The application of RFID in brazilian harvest facilities: Two case studies. Int. J. Eng. Bus. Manag. 2011 , 3 , 1–63. [ Google Scholar ] [ CrossRef ]
  • Cao, S.; Foth, M.; Powell, W.; Miller, T.; Li, M. A blockchain-based multisignature approach for supply chain governance: A use case from the Australian beef industry. Blockchain Res. Appl. 2022 , 3 , 100091. [ Google Scholar ] [ CrossRef ]
  • Wu, J.-Y.; Hsiao, H.-I. Food quality and safety risk diagnosis in the food cold chain through failure mode and effect analysis. Food Control 2021 , 120 , 107501. [ Google Scholar ] [ CrossRef ]

Click here to enlarge figure

The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

Davoudi, S.; Stasinopoulos, P.; Shiwakoti, N. Two Decades of Advancements in Cold Supply Chain Logistics for Reducing Food Waste: A Review with Focus on the Meat Industry. Sustainability 2024 , 16 , 6986. https://doi.org/10.3390/su16166986

Davoudi S, Stasinopoulos P, Shiwakoti N. Two Decades of Advancements in Cold Supply Chain Logistics for Reducing Food Waste: A Review with Focus on the Meat Industry. Sustainability . 2024; 16(16):6986. https://doi.org/10.3390/su16166986

Davoudi, Sina, Peter Stasinopoulos, and Nirajan Shiwakoti. 2024. "Two Decades of Advancements in Cold Supply Chain Logistics for Reducing Food Waste: A Review with Focus on the Meat Industry" Sustainability 16, no. 16: 6986. https://doi.org/10.3390/su16166986

Article Metrics

Article access statistics, further information, mdpi initiatives, follow mdpi.

MDPI

Subscribe to receive issue release notifications and newsletters from MDPI journals

40 Best Toys for 7-Year-Olds Who Are Coming Into Their Own

Unique, educational and just plain cool gifts that will shoot to the top of their lists!

lego minions party bus schleich buckbeak

We've been independently researching and testing products for over 120 years. If you buy through our links, we may earn a commission. Learn more about our review process.

The Good Housekeeping Institute helps narrow down the search, testing and evaluating toys throughout the year, soliciting feedback from real 7-year-olds while on the hunt for our annual Good Housekeeping Best Toy Award winners. We mixed their picks with some trendy toys, best-sellers and editor favorites to put together this list of the best toys and gifts for 7-year-olds in 2024.

Our Top Picks

  • Search for a Giant Squid: Pick Your Path Book , $14 at amazon.com
  • Crayola Wixels Animals Art Activity Kit , $15 at amazon.com
  • Klutz Make Your Own Soap , $19 at amazon.com
  • Pixicade Pets , $20 at amazon.com
  • VTech Kidizoon Creator Cam , $55 at amazon.com

Whether you're looking for gifts for 7-year-old boys , gifts for 7-year-old girls or any other gifts for kids, there's something on this list to please every type of kid.

Skillmatics Guess in 10 Disney

Guess in 10 Disney

Who's the biggest Disney fan in the family? This game includes different Disney characters on the cards, and players have to try and guess who it is while asking just 10 questions about who it is — a good use of logic and deduction skills. The cards also give suggestions for hints, along with fun facts. Good Housekeeping Institute testers say they liked having a game that anyone in the family could play. There's also a Marvel edition. Ages 6+

LEGO Minions’ Music Party Bus

Minions’ Music Party Bus

LEGO fans and Despicable Me 4 watchers can come together to build this 379-piece set. The bus opens to reveal a DJ station, dance floor and hot tub, and it comes with accessories like an electric guitar, a piano, a microphone, lights and speakers. Good Housekeeping testers loved putting it together and using it as a play set. Ages 7+

Make Your Own Soap Kit

Make Your Own Soap Kit

Kids will complain less about washing up when they've made their own soap in fun, cool shapes. They'll learn that a lot goes into making soap, from mixing the ingredients to molding the shape to adding fragrance. There are even ideas for soap-based, at-home experiments kids can do while their soap hardens. It comes with enough to make 10 soaps in shapes like stars and cats, plus color tablets, glitter, coconut papaya fragrance and even gift boxes and tags. Ages 6+

'Search for a Giant Squid' Book

'Search for a Giant Squid' Book

Kids get to choose their own paths through these books, and they'll pick up plenty of science facts along the way. First they choose their pilot and sub, and then they go on a hunt for a giant squid. "I sat with my 6- and 4-year-olds for 30 minutes, reading various scenarios,” said one reviewer. “Every time I tried to stop, they wanted to start over on a different adventure!” Ages 6 – 9

RELATED: The Good Housekeeping Best Kids' Book Awards

Exploding Kittens Card Game

Exploding Kittens Card Game

This game is worth it just for the irreverent art on the cards. The goal is not to get an exploding kitten card — and to try and push them onto the other players until you're the last one standing. It's silly, easy to learn and easy to break out whenever there's a lull in the action. Ages 7+

KiwiCo Marble Roller Coaster

Marble Roller Coaster

Kids will be amazed that they can actually build their own, never-ending marble run that includes a ferris wheel that brings the marble up to the top of the track. They can experiment with different layouts of the track, and learn some physics and engineering in the process. Ages 7+

Crayola Wixels Animals Activity Kit

Wixels Animals Activity Kit

There's a little STEM lesson in this art project: Kids moisten a board filled with squares, touch the marker to each space, and watch as capillary action fills the square with color to make a picture in a pixelated style. It comes with two animal patterns for them to follow, or they can make their own designs. Ages 6+

Schleich Buckbeak Figurine

Buckbeak Figurine

Schleich is known for its incredibly intricate, pass-down-quality figures, and they've brought this attention to detail to the Wizarding World of Harry Potter. And while you can get the human characters, like Harry , Ron and Hermione , it's the creatures that really shine, like this glorious Hippogriff with wings spread open. ( Fluffy the Cerberus is pretty good, too.) Ages 6+

Aphmau MeeMeows Classic Mystery Plush

MeeMeows Classic Mystery Plush

You don't have to be a fan of Aphmau's gaming YouTube channel to want one of these adorable kitties. At 11 inches, they're bigger and more huggable than some mystery plush, and there are eight cats collect. Good Housekeeping testers gushed over how cute each of the designs were. Ages 3+

Pixicade Virtual Pet Maker

Virtual Pet Maker

Kids can draw out their dream pet, then scan it into an app and actually make their drawings play-able. There are step-by-step guides that take kids through the process of caring for their pets by giving them food and water. Ages 6+

Pokémon Twilight Masquerade Elite Trainer Box

Pokémon Twilight Masquerade Elite Trainer Box

There are lots of ways to be a Pokémon fan, and if the cards are the main focus, this is the ultimate gift. It'll easily improve their collection with nine booster packs, plus 45 extra energy cards. In addition, there are fun accessories, with damage-counter dice, card sleeves, status markers and coins to toss, all with an Ogerpon theme from the Pokémon Scarlet & Violet DLC. And there are more Elite Trainer Boxes on the way, including Shrouded Fable (releases August 23) and Stellar Crown (releases September 13) Ages 6+

One Question a Day for Kids

One Question a Day for Kids

If the creative 7-year-old in your life likes the idea of journaling but doesn't know what to write, this journal will prompt them with a thought-starter a day. It asks questions both fun (favorite superpowers) and serious (about who they trust the most). When they're done, they'll have a time capsule that covers three years. Ages 5+

VTech KidiZoom Creator Cam

KidiZoom Creator Cam

Kids love creating and editing their own videos, using special effects like green screens and animated backgrounds. Parents love that it doesn't connect to Wi-Fi, so they don't have to worry about safety and privacy. Ages 5+

Teenage Mutant Ninja Turtles Mutations Station Play Set

Teenage Mutant Ninja Turtles Mutations Station Play Set

This Ninja Turtles set comes with four small figures, plus a big vehicle that looks like the Pizza Van. But when you open the back of the car, there's a "mutation station," where you can mix up the heads, torsos and legs of the figures and create a new creature that gets launched out of the van! "My son loves building and drawing his own characters and to have a mechanism in place to create his own tangible designs was perfect for him," one parent tester wrote. Ages 4+

Kanoodle 3D

Kanoodle 3D

It looks simple, but its deceptively difficult. Each puzzle challenges players to copy a design from the instruction book, then complete it using the remaining pieces. They'll have their brains thinking overtime as they try to work out the 3D and 2D shapes. Ages 7+

BrainBolt Genius

BrainBolt Genius

This brainteaser will keep your little ones engaged while challenging their smarts. Players use their memory skills to re-create patterns that the game flashes on the buttons. Our testers love that this game can be brought along while traveling and even has a silent mode. Ages 7+

Air Hogs Flippin’ Frenzy

Flippin’ Frenzy

Air Hogs RC cars have long been a hit with Good Housekeeping Institute testers, who appreciate that the wheels are soft enough to drive indoors (but still big enough to drive over obstacles). This one is also designed to do spins and tricks, and there's a red car on one side and a blue one on the reverse, so it'll keep going no matter which way it lands. Ages 4+

RELATED: The Best Remote-Controlled Cars for Kids

Make Your Own Paper Kit

Make Your Own Paper Kit

Their creative mind will take a homemade piece of paper and turn it into something even more special. Help them set up the paper pulp and then watch them have fun using the included dried flowers to create a beautiful design you (and they!) will want to use as décor once it's done. Ages 4+

Hide & Seek Rock Painting Kit

Hide & Seek Rock Painting Kit

The perfect rainy-day project for 7-year-olds, this kit lets kids decorate rocks either with their own painted-on designs or with cool water-based transfers (like a temporary tattoo for rocks). Then, when it's nice out again, they can use the rocks to decorate a garden or be a hidden moment of surprise along a path or trail. It comes with 10 rocks, but you can also send them out into nature to scout out more. Ages 6+

Reversible Axolotl Plushie

Reversible Axolotl Plushie

Reversible plushes are still the rage. Axolotls are the animal of the moment. Put them together, and you've got an unmistakable hit. Flip this axol inside-out to change its mood from happy to angry while keeping its cool blue-and-teal color scheme. (Though it does come in several other colors.) Ages 3+

Headshot of Marisa LaScala

Marisa (she/her) has covered all things parenting, from the postpartum period through the empty nest, for Good Housekeeping since 2018; she previously wrote about parents and families at Parents and Working Mother . She lives with her husband and daughter in Brooklyn, where she can be found dominating the audio round at her local bar trivia night or tweeting about movies.

preview for Featured Videos From Good Housekeeping US

@media(max-width: 64rem){.css-o9j0dn:before{margin-bottom:0.5rem;margin-right:0.625rem;color:#ffffff;width:1.25rem;bottom:-0.2rem;height:1.25rem;content:'_';display:inline-block;position:relative;line-height:1;background-repeat:no-repeat;}.loaded .css-o9j0dn:before{background-image:url(/_assets/design-tokens/goodhousekeeping/static/images/Clover.5c7a1a0.svg);}}@media(min-width: 48rem){.loaded .css-o9j0dn:before{background-image:url(/_assets/design-tokens/goodhousekeeping/static/images/Clover.5c7a1a0.svg);}} Product Reviews

cider jumpsuit review

The Best Dishwasher Detergents

best skin tightening creams

The Best Skin Tightening Creams

best innerspring mattresses

The Best Innerspring Mattresses

an adjustable bed base on a blue background

The Best Adjustable Beds

saatva classic mattress

Why Saatva's Classic Mattress Is Our Top Bed Pick

a pregnant woman sleeps on her left side with the support of a gray pregnancy pillow

The Best Pregnancy Pillows

child bouncing on a bed

What Size Mattress Is Best for You?

Cool Mist vs. Warm Mist Humidifiers

three away suitcases in a hallway, good housekeeping's away luggage review

Is Away Luggage Worth Buying?

best dishwashers of 2024

The Best Dishwashers

stack of mattresses

The Best Mattresses

IMAGES

  1. Separating and Identifying Food Dyes by Paper Chromatography

    research paper on food dyes

  2. Thin Layer Chromatography of Food Dyes

    research paper on food dyes

  3. Food Dyes: A Rainbow of Risks

    research paper on food dyes

  4. Analysis of Food Dyes in Beverages AP Chemistry

    research paper on food dyes

  5. Food Dye Lab Report

    research paper on food dyes

  6. Fundamentals of nutrition

    research paper on food dyes

COMMENTS

  1. Food dyes and health: Literature quantitative research analysis

    To confirm the interest and importance of research on food dyes (food colorants), a literature quantitative research analysis was carried out by means of Scopus database as a source to retrieve publications on food dyes and related health relationship.

  2. Potential impacts of synthetic food dyes on activity and attention in

    Concern that synthetic food dyes may impact behavior in children prompted a review by the California Office of Environmental Health Hazard Assessment (OEHHA). OEHHA conducted a systematic review of the epidemiologic research on synthetic food dyes and ...

  3. Toxicology of food dyes

    Abstract Background: Food dyes, synthesized originally from coal tar and now petroleum, have long been controversial because of safety concerns. Many dyes have been banned because of their adverse effects on laboratory animals or inadequate testing.

  4. Potential impacts of synthetic food dyes on activity and attention in

    Concern that synthetic food dyes may impact behavior in children prompted a review by the California Office of Environmental Health Hazard Assessment (OEHHA). OEHHA conducted a systematic review of the epidemiologic research on synthetic food dyes and neurobehavioral outcomes in children with or without identified behavioral disorders (particularly attention and activity). We also conducted a ...

  5. DIET AND NUTRITION: The Artificial Food Dye Blues

    DIET AND NUTRITION: The Artificial Food Dye Blues. In 2008 the Center for Science in the Public Interest (CSPI) in Washington, DC, petitioned the Food and Drug Administration (FDA) to ban artificial food dyes because of their connection to behavioral problems in children. 1 Two years later a new CSPI report, Food Dyes: A Rainbow of Risks ...

  6. Synthetic Colors in Food: A Warning for Children's Health

    In this context, research conducted by Chappell et al. [ 23] investigated the potential impact of seven synthetic dyes approved by the United States Food and Drug Administration (FDA), which are used in food coloring, on the symptoms of ADHD.

  7. Applications of food color and bio-preservatives in the food and its

    The study concluded that there is a high tendency to use synthetic food colors in confectioneries and beverages and some confectioneries contain unidentified colors including a textile dye. Therefore, the implementation of regulations and awareness programs of food colors for consumers and food manufacturers are highly recommended. Previous

  8. Degradation of food dyes via biological methods: A state-of-the-art

    The objective of this paper is to conduct a comprehensive assessment of the existing literature about the degradation of food colors through biological methods. 2. Food dyes in industry. Dyes are complex, un-saturated aromatic molecules that have good color, intensity, and solubility ( Muhd Julkapli et al., 2014 ).

  9. Insight into the Progress on Natural Dyes: Sources, Structural Features

    This review classifies natural dyes by structural features and summarizes the research progress on natural dyes in the last ten years, including some of the newest dyes, pharmacological activities, and promising strategies for developing natural dyes.

  10. PDF Toxicology of food dyes

    Background: Food dyes, synthesized originally from coal tar and now petroleum, have long been controversial because of safety concerns. Many dyes have been banned because of their adverse effects on laboratory animals or inadequate testing.

  11. Toxicology of food dyes

    Background: Food dyes, synthesized originally from coal tar and now petroleum, have long been controversial because of safety concerns. Many dyes have been banned because of their adverse effects o...

  12. Potential impacts of synthetic food dyes on activity and attention in

    Concern that synthetic food dyes may impact behavior in children prompted a review by the California Office of Environmental Health Hazard Assessment (OEHHA). OEHHA conducted a systematic review of the epidemiologic research on synthetic food dyes and neurobehavioral outcomes in children with or wit …

  13. Natural colorants from vegetable food waste: Recovery, regulatory

    Indeed, food waste is a global problem that does not seem to be decreasing, leading to economic, environmental, and social issues. Moreover, synthetic dyes have been associated with adverse effects on human health, encouraging research to explore much safer, natural, and eco-friendly pigments.

  14. Natural Food Colorants and Preservatives: A Review, a Demand, and a

    The looming urgency of feeding the growing world population along with the increasing consumers' awareness and expectations have driven the evolution of food production systems and the processes and products applied in the food industry. Although substantial progress has been made on food additives, the controversy in which some of them are still shrouded has encouraged research on safer and ...

  15. Food dyes and health: Literature quantitative research analysis

    To confirm the interest and importance of research on food dyes (food colorants), a literature quantitative research analysis was carried out by means of Scopus database as a source to retrieve ...

  16. New report shows artificial food coloring causes hyperactivity in some

    New report shows artificial food coloring causes hyperactivity in some kids. A report released in April 2021 by the state of California—with contributors from UC Berkeley and UC Davis—confirmed the long-suspected belief that the consumption of synthetic food dyes can cause hyperactivity and other neurobehavioral issues for some children.

  17. Natural bio-colorant and pigments: Sources and applications in food

    Learn about the sources, properties and applications of natural bio-colorants and pigments in food processing from this research article.

  18. Artificial Food Colors and Attention-Deficit/Hyperactivity Symptoms

    Keywords: ADHD, Food dyes, Artificial food colors, Hyperactivity, Child behavior, FDA In March 2011, the United States (U.S.) Food and Drug Administration (FDA) Food Advisory Committee held a hearing on the behavioral effects of synthetic food dyes, technically known as artificial food colors (AFCs).

  19. Artificial food dyes and attention deficit hyperactivity disorder

    As a result, research on the role of food additives in contributing to ADHD waned. In recent years, however, interest in this area has revived. In response to more recent research and public petitions, in December 2009 the British government requested that food manufacturers remove most artificial food dyes from their products.

  20. Identification of synthetic food dyes in beverages by thin layer

    The present study aims to inquire the type of food colors present in different varieties of drinking food stuff. The research was conducted on different types of beverages, soft drinks and juices for sake of making comparison between branded and non branded items which contain different types of synthetic dyes. Synthetic food colors were determined by using TLC (thin layer chromatography ...

  21. Consumption of Ultraprocessed Food and Risk of Depression

    This cohort study examines the consumption of ultraprocessed food and risk of depression among 31 172 US females aged 42 to 62 years.

  22. Synthetic Food Colors and Neurobehavioral Hazards: The View from

    Although some of these measures are used in ADHD research and diagnosis, the Southampton study was aimed not at ADHD but at the more general question of behaviors evoked by food colors. Neither was the study aimed at the question of sensitivity to food colors in ADHD children; the subjects came from the general population of school children.

  23. Sustainability

    A review of papers published in the last two decades reveals management as the predominant theme, followed by sustainability, ND, and IT. The study underscores the interconnectedness of these themes and highlights gaps in current research, particularly the need for multi-objective optimisation models.

  24. A brief review on natural dyes, pigments: Recent advances and future

    Abstract. Dyes and pigments can make the world beautiful. They are being used since long time and find vide applications in various fields such as food, textile, artifacts and paper industries. This has resulted in an extensive research on development of natural colorants from natural sources The advantages of using natural colorants are ...

  25. 40 Best Toys for 7-Year-Olds in 2024, Including Unique Gifts

    Whether they want DIY sets, remote-controlled cars, consruction kids or something with their favorite characters, these 40 gifts are kids-tested and approved.

  26. A review on classifications, recent synthesis and applications of

    However, the objective of this review is to describe the different chemical classification of textile dyes including the chemical structure, the color index and the application in the dyeing of textile substrates. Finally, I reported the undesirable effect of these dyes on the ecosystem. 2.