PhET Home Page

  • Sign in / Register
  • Administration
  • My Bookmarks
  • My Contributions
  • Activity Review
  • Edit profile

electromagnetic force experiment

The PhET website does not support your browser. We recommend using the latest version of Chrome, Firefox, Safari, or Edge.

  • Earth Science
  • Physics & Engineering
  • Science Kits
  • Microscopes
  • Science Curriculum and Kits
  • About Home Science Tools

Science Projects > Physics & Engineering Projects > Electromagnetism Experiments  

Electromagnetism Experiments

Electric current flowing through a wire creates a magnetic field that attracts ferromagnetic objects, such as iron or steel. This is the principle behind electromagnets and magnetic levitation trains. It allows cranes to pick up whole cars in the junkyard and makes your doorbell ring. You can read about it here , and then watch it work when you do these experiments. (Adult supervision recommended.)

Electromagnetic Experiments

-Electromagnetic Suction -Electromagnet -Magnetic Propulsion

Experiment 1: Electromagnetic Suction

A single strand of wire produces only a very weak magnetic field, but a tight coil of wire (called a solenoid ) gives off a stronger field. In this experiment, you will use an electric current running through a solenoid to suck a needle into a straw!

What You Need:

  • drinking straw
  • 5 feet insulated copper wire
  • 6-volt battery

What You Do:

1. Make your solenoid. Take five feet of insulated copper wire and wrap it tightly around the straw. Your solenoid should be about 3 inches long, so you’ll have enough wire to wrap a couple of layers.

2. Trim the ends of the straw so they just stick out of the solenoid.

3. Hold the solenoid horizontally and put the end of the needle in the straw and let go. What happens?

4. Now strip an inch of insulation off each end of the wire and connect the ends to the 6-volt battery. Insert the needle part-way in the straw again and let go. This time what happens? (Don’t leave the wire hooked up to the battery for more than a few seconds at a time – it will get hot and drain the battery very quickly)

When you hooked your solenoid up to a battery, an electric current flowed through the coils of the wire, which created a magnetic field. This field attracted the needle just like a magnet and sucked it into the straw. Try some more experiments with your solenoid – will more coils make it suck the needle in faster? Will it still work with just a few coils? Make a prediction and then try it out!

Experiment 2: Electromagnet

As you saw in the last experiment, electric current flowing through a wire produces a magnetic field. This principle comes in very handy in the form of an electromagnet. An electromagnet is wire that is tightly wrapped around a ferromagnetic core. When the wire is connected to a battery, it produces a magnetic field that magnetizes the core. The magnetic fields of the core and the solenoid work together to make a very strong magnet. The best part about it is that the magnetic force stops when the electricity is turned off! Try it yourself with this experiment:

  • large iron nail

1. Tightly wrap the wire around the nail to make a solenoid with a ferromagnetic core. If you have enough wire, wrap more than one layer. (If your nail fits inside the straw from the last experiment, you can use that solenoid instead of rewrapping the wire.)

2. Try to pick up some paperclips with the wire-wrapped nail. Can you do it?

electromagnetic force experiment

3. Strip an inch of insulation off each end of the wire.

4. Hook up the wire to the battery and try again to pick up the paperclips with the nail. This time the electricity will create a magnetic field and the nail will attract paperclips! (Don’t leave the wire hooked up to the battery for more than a few seconds at a time – it will get hot and drain the battery very quickly.)

Experiment some more with your electromagnet. Count how many paperclips it can pick up. If you coil more wire around it will it pick up more paperclips? How many paperclips can you pick up if you only use half as much wire? What would happen if you used a smaller battery, like a D-size? Predict what you think will happen and then try it out!

Experiment 3: Magnetic Propulsion

A maglev (magnetically levitated) train doesn’t use a regular engine like a normal train. Instead, electromagnets in the track produce a magnetic force that pushes the train from behind and pulls it from the front. You can get an idea of how it works using some permanent magnets and a toy car.

  • 3 bar magnets

1. Tape a bar magnet to a small toy car with the north pole at the back of the car and the south pole at the front.

2. Put the car on a hard surface, like a linoleum floor or a table. Hold a bar magnet behind the car with the south pole facing the car. As you move it near the car, what happens? The south pole of your magnet repels the north pole of the magnet on the car, making the car move forward.

3. Have someone else hold another magnet in front of the car, with the north pole facing the car. Does the car move faster with one magnet ‘pushing’ from behind and the other magnet ‘pulling’ from ahead?

In our example, the permanent magnets have to move with the car to keep it going. In a maglev track, though, the electromagnets just change their poles by changing the direction of the electric current. They stay in the same spot, but their poles change as the train goes by so it will always be repelled from the electromagnets behind it and attracted by the electromagnets in front of it!

testing for starch kit

Need Supplies?

Buy an Electromagnetism Experiment Kit!

Physics & Engineering

Welcome! Read other Physics & Engineering related articles or explore our Resource Center, which consists of hundreds of free science articles!

Shop for Physics Supplies!

Home Science Tools offers a wide variety of Physics products and kits. Find physics & engineering tools, equipment, STEM kits & more for kids and adults.

Related Articles

Science Fair Projects for 8th Graders

Science Fair Projects for 8th Graders

Science Fair Projects for 8th Graders As kids reach the 8th grade, their exposure to science goes up a notch. Equipped with basic knowledge, they can begin to explore more complicated concepts and satisfy their curiosity for deeper answers to the 'whys' and 'hows' of...

Science Fair Projects for 7th Graders

Science Fair Projects for 7th Graders

Science Fair Projects for 7th Graders​​ Science fair projects for 7th graders are a step up in complexity. Because 7th graders have a better grasp of science concepts, they’re expected to practice the scientific method in the way they approach their experiments–which...

Home Science Experiments for Preschoolers

Home Science Experiments for Preschoolers

Home Science Experiments for Preschoolers Home science experiments for preschoolers are a great way to pique your child’s curiosity, teach them valuable knowledge, and allow them to have some fun in the comfort of their own home. There are plenty of activities your...

Easy Science Fair Projects for Kids

Easy Science Fair Projects for Kids

Easy Science Fair Projects for Kids Science fairs are a long-standing tradition that provide kids with the opportunity to better understand practical concepts in fun and innovative ways. The great thing about the experiments presented at these events is that they...

How to Make a Pollinator Hotel

How to Make a Pollinator Hotel

Have you ever wondered how you can help provide habitat for pollinators like honey bees and butterflies in your back yard? Learn how to make a pollinator hotel with this step-by-step guide and lesson. Pollinators are animals that help move pollen. Most pollinators are...

JOIN OUR COMMUNITY

Get project ideas and special offers delivered to your inbox.

should I learn computer coding

FREE K-12 standards-aligned STEM

curriculum for educators everywhere!

Find more at TeachEngineering.org .

  • TeachEngineering
  • Creating an Electromagnet

Hands-on Activity Creating an Electromagnet

Grade Level: 4 (3-5)

Time Required: 45 minutes

Expendable Cost/Group: US $2.00

Group Size: 2

Activity Dependency: None

Associated Informal Learning Activity: Creating an Electromagnet!

Subject Areas: Physical Science, Physics

NGSS Performance Expectations:

NGSS Three Dimensional Triangle

Activities Associated with this Lesson Units serve as guides to a particular content or subject area. Nested under units are lessons (in purple) and hands-on activities (in blue). Note that not all lessons and activities will exist under a unit, and instead may exist as "standalone" curriculum.

  • Get Your Motor Running

TE Newsletter

Engineering connection, learning objectives, materials list, worksheets and attachments, more curriculum like this, pre-req knowledge, introduction/motivation, vocabulary/definitions, troubleshooting tips, activity extensions, activity scaling, user comments & tips.

Engineering… Turning your ideas into reality

Engineers design electromagnets, which are a basic part of motors. Electromagnetic motors are a big part of everyday life, as well as industries and factories. We may not even realize that we interact with electromagnets on a daily basis as we use a wide variety of motors to make our lives easier. Common devices that use electromagnetic motors are: refrigerators, clothes dryers, washing machines, dishwashers, vacuum cleaners, sewing machines, garbage disposals, doorbells, computers, computer printers, clocks, fans, car starters, windshield wiper motors, electric toothbrushes, electric razors, can openers, speakers, music or tape players, etc.

After this activity, students should be able to:

  • Relate that electric current creates a magnetic field.
  • Describe how an electromagnet is made.
  • Investigate ways to change the strength of an electromagnet.
  • List several items that engineers have designed using electromagnets.

Educational Standards Each TeachEngineering lesson or activity is correlated to one or more K-12 science, technology, engineering or math (STEM) educational standards. All 100,000+ K-12 STEM standards covered in TeachEngineering are collected, maintained and packaged by the Achievement Standards Network (ASN) , a project of D2L (www.achievementstandards.org). In the ASN, standards are hierarchically structured: first by source; e.g. , by state; within source by type; e.g. , science or mathematics; within type by subtype, then by grade, etc .

Ngss: next generation science standards - science, common core state standards - math.

View aligned curriculum

Do you agree with this alignment? Thanks for your feedback!

International Technology and Engineering Educators Association - Technology

State standards, colorado - math, colorado - science.

Each group needs:

  • nail, 3-inch (7.6 cm) or longer (made of zinc, iron or steel, but not aluminum)
  • 2 feet (.6 m) insulated copper wire (at least AWG 22 or higher)
  • D-cell battery
  • several metal paperclips, tacks or pins
  • wide rubber band
  • Building an Electromagnet Worksheet

For each electromagnetic field station:

  • cardboard toilet paper tube
  • insulated copper wire (at least AWG 22 or higher), several feet (1 m)
  • cardboard (~ 5 x 5 inches or 13 x 13 cm)
  • clothespins or clamps (optional)
  • masking tape
  • rubber band
  • 2-3 D-cell batteries
  • 9-V (volt) battery
  • several metal paperclips, tacks and/or pins
  • extra batteries, if available: 6-V, 12-V, lantern batteries
  • (optional) electrical tape
  • 2 small orienteering compasses

For the entire class to share:

  • wire cutters
  • wire strippers

Some knowledge of magnetic forces (poles, attraction forces). Refer to the Magnetism unit, Lesson 2: Two Sides of One Force , for this information on electromagnets.

Today, we are going to talk about electromagnets and create our own electromagnets! First, can anyone tell me what an electromagnet is? (Listen to student ideas.) Well, an electromagnet's name helps tell us what it is. (Write the word electromagnet on the classroom board for students to see.) Let's break it down. The first part of the word,  electro , sounds like electricity. The second part of the word, magnet , is what it sounds like—a magnet! So, an electromagnet is a magnet that is created by electricity.

The really important thing to remember today is that electricity can create a magnetic field. This may sound strange, because we're used to magnetic fields just coming from magnets, but it is really true! A wire that has electrical  current running through it creates a magnetic field. In fact, the simplest electromagnet is a single wire that is coiled up and has an electric current running through it. The magnetic field generated by the coil of wire is like a regular bar magnet. If we put an iron (or nickel, cobalt, etc.) rod (perhaps a nail) through the center of the coil (see Figure 1), the rod becomes the magnet, creating a magnetic field. Where do we find the electricity for an electromagnet? Well, we can get this electricity a few ways, such as from a battery or a wall outlet.

We can make this magnetic field stronger by increasing the amount of electric current going through the wire or we can increase the number of wire wraps in the coil of the electromagnet. What do you think happens if we do both of these things? That's right! Our magnet will be even stronger!

Engineers use electromagnets when they design and build motors . Motors are in use around us everyday, so we interact with electromagnets all the time without even realizing it! Can you think of some motors that you have used? (Possible answers: Washing machine, dishwasher, can opener, garbage disposal, sewing machine, computer printer, vacuum cleaner, electric toothbrush, compact disc [CD] player, digital video disc [DVD] player, VCR tape player, computer, electric razor, an electric toy [radio-controlled vehicles, moving dolls], etc.)

Before the Activity

  • Gather materials and make copies of the Building an Electromagnet Worksheet .
  • Set up enough Electromagnetic Field Stations to accommodate teams of two students each.
  • As an alternative, conduct both parts of the activity as teacher-led class demonstrations.

A photo shows a cardboard tube wrapped in wire and placed on a piece of flat cardboard. Two long tails of the coiled wire run through holes in the cardboard and are attached with a rubber band to opposite ends of a D-cell battery.

  • Prepare for Electromagnetic Field Stations: Wrap wire around a cardboard toilet paper tube 12-15 times to make a wire loop. Leave two long tails of wire hanging from the coil. Poke four holes in the cardboard. Weave the wire ends through the cardboard holes so that the card board tube and coil are attached to the cardboard (see Figure 2). Use clothespins, clamps or tape to secure the cardboard to a table or desk. Using masking tape or rubber band, connect one end of the coil wire to any battery, leaving the other end of the wire not connected to the battery. Place some pins, paperclips or tacks at the station. Also, place any other available extra batteries (6V, 12V, etc.) and two, small orienteering compasses at this station.
  • Prepare for Building an Electromagnet: For this portion of the activity, either set up the materials at a station, or give them to pairs of students to work on at their desks.
  • Set aside a few extra batteries for students to test their own electromagnets. These might include the 9-V batteries. You can make a 3-V battery setup by connecting 2 D-cells in series or a 4.5-V battery setup by connecting 3 D-cells in series.
  • Cut one 2-ft (.6 m) piece of wire for each team. Using wire strippers, remove about ½ inch (1.3 cm) of insulation from both ends of each piece of wire.

With the Students: Electromagnetic Field Stations

  • Divide the class into pairs of students. Hand out one worksheet per team.
  • Working from the pre-activity setup (see Figure 2), in which one end of the coiled wire is attached to one end of the battery, have students connect the other end of the wire to the other end of the battery using tape or rubber band.
  • To locate the magnetic field of the electromagnet, direct students to move the compass in a circle around the electromagnet, paying attention to the direction that the compass points (see Figure 3). Direct students to draw the battery, coil and magnetic field on their worksheets. Use arrows to show the magnetic field. Label the positive and negative ends of the battery and the poles of the magnetic field. What happens if you dangle a paperclip from another paperclip near the coil (see Figure 3)? (Answer: The dangling paperclip moves, changes direction and/or wobbles.)

Two photos show a hand holding a compass and a dangling paperclip near the cardboard tube wrapped in wire with two long tails of the wire run through holes in the cardboard and attached with a rubber band to opposite ends of a D-cell battery.

  • Next, reverse the connection of the electromagnet by changing both ends of the wire to the opposite ends of the battery. (When the direction of current is reversed in either a coil or electromagnet, the magnetic poles reverse—the north pole becomes the south pole, and the south pole becomes the north pole.) Use the compass to check the direction of the magnetic field. Make a second drawing. Dangle the paperclip near the coil again. What happens? (Answer: Again, the dangling paperclip moves, changes direction and/or wobbles.)
  • Remove at least one end of the wire from the battery to conserve battery power.
  • If time permits, use different batteries and observe any changes. A higher voltage translates to a greater current, and with more current, the electromagnet becomes stronger.

With the Students: Building an Electromagnet

  • Make sure each student pair has the following materials: 1 nail, 2 feet (.6 m) of insulated wire, 1 D-cell battery, several paperclips (or tacks or pins) and a rubber band.
  • Wrap the wire around a nail at least 20 times (see Figure 4). Ensure students wrap their nails tightly, leaving no gaps between the wires and not overlapping the wraps.
  • Give the students several minutes to see if they can create an electromagnet on their own before giving them the rest of the instructions.
  • To continue making the electromagnet, connect the ends of the coiled wire to each end of the battery using the rubber band to hold the wires in place (see Figure 4).

A photograph shows a nail wrapped in red wire with the wire ends connected with a rubber band to opposite ends of a D-cell battery.

  • Test the strength of the electromagnet by seeing how many paperclips it can pick up.
  • Record the number of paperclips on the worksheet.
  • Disconnect the wire from the battery after testing the electromagnet. Can the electromagnet pick up paperclips when the current is disconnected? (Answer: No)
  • Test how varying the design of the electromagnet affects its strength. The two variables to modify are the number of coils around the nail and the current in the coiled wire by using a different size or number of batteries. To conserve the battery's power, remember to disconnect the wire from the battery after each test.
  • Complete the worksheet; making a list of ways engineers might be able to use electromagnets.
  • Conclude by holding a class discussion. Compare results among teams. Ask students the post-assessment engineering discussion questions provided in the Assessment section.

battery: A cell that carries a charge that can power an electric current.

current: A flow of electrons.

electromagnet: A magnet made of an insulated wire coiled around an iron core (or any magnetic material such as iron, steel, nickel, cobalt) with electric current flowing through it to produce magnetism. The electric current magnetizes the core material.

electromagnetism: Magnetism created by an electric current.

engineer: A person who applies her/his understanding of science and mathematics to create things for the benefit of humanity and our planet. This includes the design, manufacture and operation of efficient and economical structures, machines, products, processes and systems.

magnet: An object that generates a magnetic field.

magnetic field: The space around a magnet in which the magnet's magnetic force is present.

motor: An electrical device that converts electrical energy into mechanical energy.

permanent magnet: An object that generates a magnetic field on its own (without the help of a current).

solenoid: A coil of wire.

Pre-Activity Assessment

Prediction : Ask students to predict what will happen when a wire is wrapped around a nail and electricity is added. Record their predictions on the classroom board.

Brainstorming : In small groups, have students engage in open discussion. Remind them that no idea or suggestion is "silly." All ideas should be respectfully heard. Ask the students: What is an electromagnet?

Activity-Embedded Assessment

Worksheet : At the beginning of the activity, hand out the Building an Electromagnet Worksheet . Have students make drawings, record measurements and follow along with the activity on their worksheets. After students finish the worksheet, have them compare answers with a peer or another pair, giving all students time to finish. Review their answers to gauge their mastery of the subject.

Hypothesize : As students make their electromagnet, ask each group what would happen if they changed the size of their battery. How about more coils of wire around the nail? (Answer: An electromagnet can be made stronger in two ways: increasing the amount of electric current going through the wire or increasing the number of wire wraps in the coil of the electromagnet.)

Post-Activity Assessment

Engineering Discussion Questions : Solicit, integrate and summarize student responses.

  • What are ways an engineer might modify an electromagnet to change the strength of its magnetic field? Which modifications might be the easiest or cheapest? (Possible answers: Increasing the number of coils used in the solenoid [electromagnet] is probably the least expensive and easiest way to increase the strength of an electromagnet. Or, an engineer might increase the current in the electromagnet. Or, an engineer might use a metal core that is more easily magnetized.)
  • How might engineers use electromagnets in separating recyclable materials? (Answer: Some of the metals in a salvage or recycling pile are attracted to a magnet and can be easily separated. Non-ferrous metals must go through a two-step process in which a voltage is applied to the metal to temporarily induce a current in it, which temporarily magnetizes the metal so it is attracted to the electromagnet for separation from non-metals.)
  • What are some ways that engineers might be able to use electromagnets? (Possible answers: Engineers use electromagnets in the design of motors. For examples, see the possible answers to the next question.)
  • How are electromagnets used in everyday applications? (Possible answers: Motors are in use around us everyday, for example, refrigerator, washing machine, dishwasher, can opener, garbage disposal, sewing machine, computer printer, vacuum cleaner, electric toothbrush, compact disc [CD] player, digital video disc [DVD] player, VCR tape player, computer, electric razor, an electric toy [radio-controlled vehicles, moving dolls], etc.)

Graphing Practice : Present the class with the following problems and ask students to graph their results (or the entire class' results). Discuss which variables made a bigger change in the strength of the electromagnet.

  • Make a graph that shows how the electromagnet strength changed as you changed the number of wire coils in your electromagnet.
  • Make a graph that shows how the strength of your electromagnet changed as the current changed (as you changed the battery size).

Safety Issues

The electromagnet can get quite warm, particularly at the terminals, so have students disconnect their batteries at frequent intervals.

A high density of nail wraps is important to produce a magnetic field. If the wrapped nails are not acting as magnets, check students’ coil wraps to ensure they are not crisscrossed, and that the wraps are tight. Also, use thin gauge wire to enable more wraps along the length of the nail.

Iron nails work better than bolts since the bolt threads do not permit smooth wrapping of the copper wire, which may disrupt the magnetic field.

Avoid using batteries that are not fully charged. Partially discharged batteries will not generate a strong and observable magnetic reaction.

If the electromagnets get too warm, have students use rubber kitchen gloves to handle them.

Another way to vary the current in the electromagnet is to use wires of different gauges (thickness) or of different materials (for example: copper vs. aluminum). Ask students to test different wire types to see how this affects the electromagnet's strength. As a control, keep constant the number of coils and amount of current (battery) for all wire tests. Then, based on their rest results, ask students to make guesses about the resistances of the various wires.

  • For lower grades, have students follow along with the teacher-led demonstration to create a simple electromagnet. Discuss the basic definition of an electromagnet and how electromagnets are used in everyday applications.
  • For upper grades, have students investigate ways to change the strength of their electromagnets without giving them any hints or clues. Have students graph their worksheet data from varying the number of coils and/or battery size in their electromagnet.

electromagnetic force experiment

Students learn more about magnetism, and how magnetism and electricity are related in electromagnets. They learn the fundamentals about how simple electric motors and electromagnets work. Students also learn about hybrid gasoline-electric cars and their advantages over conventional gasoline-only-pow...

preview of 'Two Sides of One Force ' Lesson

Students are briefly introduced to Maxwell's equations and their significance to phenomena associated with electricity and magnetism. Basic concepts such as current, electricity and field lines are covered and reinforced. Through multiple topics and activities, students see how electricity and magne...

preview of 'The Electric and Magnetic Personalities of Mr. Maxwell ' Lesson

Students induce EMF in a coil of wire using magnetic fields. Students review the cross product with respect to magnetic force and introduce magnetic flux, Faraday's law of Induction, Lenz's law, eddy currents, motional EMF and Induced EMF.

preview of 'Changing Fields' Lesson

Students investigate the properties of magnets and how engineers use magnets in technology. Specifically, students learn about magnetic memory storage, which is the reading and writing of data information using magnets, such as in computer hard drives, zip disks and flash drives.

preview of 'A Magnetic Personality' Lesson

Contributors

Supporting program, acknowledgements.

The contents of this digital library curriculum were developed under grants from the Fund for the Improvement of Postsecondary Education (FIPSE), U.S. Department of Education, and National Science Foundation (GK-12 grant no 0338326). However, these contents do not necessarily represent the policies of the Department of Education or National Science Foundation, and you should not assume endorsement by the federal government.

Last modified: July 30, 2020