• Business Essentials
  • Leadership & Management
  • Credential of Leadership, Impact, and Management in Business (CLIMB)
  • Entrepreneurship & Innovation
  • Digital Transformation
  • Finance & Accounting
  • Business in Society
  • For Organizations
  • Support Portal
  • Media Coverage
  • Founding Donors
  • Leadership Team

hypothesis make decision

  • Harvard Business School →
  • HBS Online →
  • Business Insights →

Business Insights

Harvard Business School Online's Business Insights Blog provides the career insights you need to achieve your goals and gain confidence in your business skills.

  • Career Development
  • Communication
  • Decision-Making
  • Earning Your MBA
  • Negotiation
  • News & Events
  • Productivity
  • Staff Spotlight
  • Student Profiles
  • Work-Life Balance
  • AI Essentials for Business
  • Alternative Investments
  • Business Analytics
  • Business Strategy
  • Business and Climate Change
  • Creating Brand Value
  • Design Thinking and Innovation
  • Digital Marketing Strategy
  • Disruptive Strategy
  • Economics for Managers
  • Entrepreneurship Essentials
  • Financial Accounting
  • Global Business
  • Launching Tech Ventures
  • Leadership Principles
  • Leadership, Ethics, and Corporate Accountability
  • Leading Change and Organizational Renewal
  • Leading with Finance
  • Management Essentials
  • Negotiation Mastery
  • Organizational Leadership
  • Power and Influence for Positive Impact
  • Strategy Execution
  • Sustainable Business Strategy
  • Sustainable Investing
  • Winning with Digital Platforms

A Beginner’s Guide to Hypothesis Testing in Business

Business professionals performing hypothesis testing

  • 30 Mar 2021

Becoming a more data-driven decision-maker can bring several benefits to your organization, enabling you to identify new opportunities to pursue and threats to abate. Rather than allowing subjective thinking to guide your business strategy, backing your decisions with data can empower your company to become more innovative and, ultimately, profitable.

If you’re new to data-driven decision-making, you might be wondering how data translates into business strategy. The answer lies in generating a hypothesis and verifying or rejecting it based on what various forms of data tell you.

Below is a look at hypothesis testing and the role it plays in helping businesses become more data-driven.

Access your free e-book today.

What Is Hypothesis Testing?

To understand what hypothesis testing is, it’s important first to understand what a hypothesis is.

A hypothesis or hypothesis statement seeks to explain why something has happened, or what might happen, under certain conditions. It can also be used to understand how different variables relate to each other. Hypotheses are often written as if-then statements; for example, “If this happens, then this will happen.”

Hypothesis testing , then, is a statistical means of testing an assumption stated in a hypothesis. While the specific methodology leveraged depends on the nature of the hypothesis and data available, hypothesis testing typically uses sample data to extrapolate insights about a larger population.

Hypothesis Testing in Business

When it comes to data-driven decision-making, there’s a certain amount of risk that can mislead a professional. This could be due to flawed thinking or observations, incomplete or inaccurate data , or the presence of unknown variables. The danger in this is that, if major strategic decisions are made based on flawed insights, it can lead to wasted resources, missed opportunities, and catastrophic outcomes.

The real value of hypothesis testing in business is that it allows professionals to test their theories and assumptions before putting them into action. This essentially allows an organization to verify its analysis is correct before committing resources to implement a broader strategy.

As one example, consider a company that wishes to launch a new marketing campaign to revitalize sales during a slow period. Doing so could be an incredibly expensive endeavor, depending on the campaign’s size and complexity. The company, therefore, may wish to test the campaign on a smaller scale to understand how it will perform.

In this example, the hypothesis that’s being tested would fall along the lines of: “If the company launches a new marketing campaign, then it will translate into an increase in sales.” It may even be possible to quantify how much of a lift in sales the company expects to see from the effort. Pending the results of the pilot campaign, the business would then know whether it makes sense to roll it out more broadly.

Related: 9 Fundamental Data Science Skills for Business Professionals

Key Considerations for Hypothesis Testing

1. alternative hypothesis and null hypothesis.

In hypothesis testing, the hypothesis that’s being tested is known as the alternative hypothesis . Often, it’s expressed as a correlation or statistical relationship between variables. The null hypothesis , on the other hand, is a statement that’s meant to show there’s no statistical relationship between the variables being tested. It’s typically the exact opposite of whatever is stated in the alternative hypothesis.

For example, consider a company’s leadership team that historically and reliably sees $12 million in monthly revenue. They want to understand if reducing the price of their services will attract more customers and, in turn, increase revenue.

In this case, the alternative hypothesis may take the form of a statement such as: “If we reduce the price of our flagship service by five percent, then we’ll see an increase in sales and realize revenues greater than $12 million in the next month.”

The null hypothesis, on the other hand, would indicate that revenues wouldn’t increase from the base of $12 million, or might even decrease.

Check out the video below about the difference between an alternative and a null hypothesis, and subscribe to our YouTube channel for more explainer content.

2. Significance Level and P-Value

Statistically speaking, if you were to run the same scenario 100 times, you’d likely receive somewhat different results each time. If you were to plot these results in a distribution plot, you’d see the most likely outcome is at the tallest point in the graph, with less likely outcomes falling to the right and left of that point.

distribution plot graph

With this in mind, imagine you’ve completed your hypothesis test and have your results, which indicate there may be a correlation between the variables you were testing. To understand your results' significance, you’ll need to identify a p-value for the test, which helps note how confident you are in the test results.

In statistics, the p-value depicts the probability that, assuming the null hypothesis is correct, you might still observe results that are at least as extreme as the results of your hypothesis test. The smaller the p-value, the more likely the alternative hypothesis is correct, and the greater the significance of your results.

3. One-Sided vs. Two-Sided Testing

When it’s time to test your hypothesis, it’s important to leverage the correct testing method. The two most common hypothesis testing methods are one-sided and two-sided tests , or one-tailed and two-tailed tests, respectively.

Typically, you’d leverage a one-sided test when you have a strong conviction about the direction of change you expect to see due to your hypothesis test. You’d leverage a two-sided test when you’re less confident in the direction of change.

Business Analytics | Become a data-driven leader | Learn More

4. Sampling

To perform hypothesis testing in the first place, you need to collect a sample of data to be analyzed. Depending on the question you’re seeking to answer or investigate, you might collect samples through surveys, observational studies, or experiments.

A survey involves asking a series of questions to a random population sample and recording self-reported responses.

Observational studies involve a researcher observing a sample population and collecting data as it occurs naturally, without intervention.

Finally, an experiment involves dividing a sample into multiple groups, one of which acts as the control group. For each non-control group, the variable being studied is manipulated to determine how the data collected differs from that of the control group.

A Beginner's Guide to Data and Analytics | Access Your Free E-Book | Download Now

Learn How to Perform Hypothesis Testing

Hypothesis testing is a complex process involving different moving pieces that can allow an organization to effectively leverage its data and inform strategic decisions.

If you’re interested in better understanding hypothesis testing and the role it can play within your organization, one option is to complete a course that focuses on the process. Doing so can lay the statistical and analytical foundation you need to succeed.

Do you want to learn more about hypothesis testing? Explore Business Analytics —one of our online business essentials courses —and download our Beginner’s Guide to Data & Analytics .

hypothesis make decision

About the Author

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Hypothesis Testing | A Step-by-Step Guide with Easy Examples

Published on November 8, 2019 by Rebecca Bevans . Revised on June 22, 2023.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics . It is most often used by scientists to test specific predictions, called hypotheses, that arise from theories.

There are 5 main steps in hypothesis testing:

  • State your research hypothesis as a null hypothesis and alternate hypothesis (H o ) and (H a  or H 1 ).
  • Collect data in a way designed to test the hypothesis.
  • Perform an appropriate statistical test .
  • Decide whether to reject or fail to reject your null hypothesis.
  • Present the findings in your results and discussion section.

Though the specific details might vary, the procedure you will use when testing a hypothesis will always follow some version of these steps.

Table of contents

Step 1: state your null and alternate hypothesis, step 2: collect data, step 3: perform a statistical test, step 4: decide whether to reject or fail to reject your null hypothesis, step 5: present your findings, other interesting articles, frequently asked questions about hypothesis testing.

After developing your initial research hypothesis (the prediction that you want to investigate), it is important to restate it as a null (H o ) and alternate (H a ) hypothesis so that you can test it mathematically.

The alternate hypothesis is usually your initial hypothesis that predicts a relationship between variables. The null hypothesis is a prediction of no relationship between the variables you are interested in.

  • H 0 : Men are, on average, not taller than women. H a : Men are, on average, taller than women.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

hypothesis make decision

For a statistical test to be valid , it is important to perform sampling and collect data in a way that is designed to test your hypothesis. If your data are not representative, then you cannot make statistical inferences about the population you are interested in.

There are a variety of statistical tests available, but they are all based on the comparison of within-group variance (how spread out the data is within a category) versus between-group variance (how different the categories are from one another).

If the between-group variance is large enough that there is little or no overlap between groups, then your statistical test will reflect that by showing a low p -value . This means it is unlikely that the differences between these groups came about by chance.

Alternatively, if there is high within-group variance and low between-group variance, then your statistical test will reflect that with a high p -value. This means it is likely that any difference you measure between groups is due to chance.

Your choice of statistical test will be based on the type of variables and the level of measurement of your collected data .

  • an estimate of the difference in average height between the two groups.
  • a p -value showing how likely you are to see this difference if the null hypothesis of no difference is true.

Based on the outcome of your statistical test, you will have to decide whether to reject or fail to reject your null hypothesis.

In most cases you will use the p -value generated by your statistical test to guide your decision. And in most cases, your predetermined level of significance for rejecting the null hypothesis will be 0.05 – that is, when there is a less than 5% chance that you would see these results if the null hypothesis were true.

In some cases, researchers choose a more conservative level of significance, such as 0.01 (1%). This minimizes the risk of incorrectly rejecting the null hypothesis ( Type I error ).

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

The results of hypothesis testing will be presented in the results and discussion sections of your research paper , dissertation or thesis .

In the results section you should give a brief summary of the data and a summary of the results of your statistical test (for example, the estimated difference between group means and associated p -value). In the discussion , you can discuss whether your initial hypothesis was supported by your results or not.

In the formal language of hypothesis testing, we talk about rejecting or failing to reject the null hypothesis. You will probably be asked to do this in your statistics assignments.

However, when presenting research results in academic papers we rarely talk this way. Instead, we go back to our alternate hypothesis (in this case, the hypothesis that men are on average taller than women) and state whether the result of our test did or did not support the alternate hypothesis.

If your null hypothesis was rejected, this result is interpreted as “supported the alternate hypothesis.”

These are superficial differences; you can see that they mean the same thing.

You might notice that we don’t say that we reject or fail to reject the alternate hypothesis . This is because hypothesis testing is not designed to prove or disprove anything. It is only designed to test whether a pattern we measure could have arisen spuriously, or by chance.

If we reject the null hypothesis based on our research (i.e., we find that it is unlikely that the pattern arose by chance), then we can say our test lends support to our hypothesis . But if the pattern does not pass our decision rule, meaning that it could have arisen by chance, then we say the test is inconsistent with our hypothesis .

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Descriptive statistics
  • Measures of central tendency
  • Correlation coefficient

Methodology

  • Cluster sampling
  • Stratified sampling
  • Types of interviews
  • Cohort study
  • Thematic analysis

Research bias

  • Implicit bias
  • Cognitive bias
  • Survivorship bias
  • Availability heuristic
  • Nonresponse bias
  • Regression to the mean

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bevans, R. (2023, June 22). Hypothesis Testing | A Step-by-Step Guide with Easy Examples. Scribbr. Retrieved October 14, 2024, from https://www.scribbr.com/statistics/hypothesis-testing/

Is this article helpful?

Rebecca Bevans

Rebecca Bevans

Other students also liked, choosing the right statistical test | types & examples, understanding p values | definition and examples, what is your plagiarism score.

StatAnalytica

Step-by-step guide to hypothesis testing in statistics

hypothesis testing in statistics

Hypothesis testing in statistics helps us use data to make informed decisions. It starts with an assumption or guess about a group or population—something we believe might be true. We then collect sample data to check if there is enough evidence to support or reject that guess. This method is useful in many fields, like science, business, and healthcare, where decisions need to be based on facts.

Learning how to do hypothesis testing in statistics step-by-step can help you better understand data and make smarter choices, even when things are uncertain. This guide will take you through each step, from creating your hypothesis to making sense of the results, so you can see how it works in practical situations.

What is Hypothesis Testing?

Table of Contents

Hypothesis testing is a method for determining whether data supports a certain idea or assumption about a larger group. It starts by making a guess, like an average or a proportion, and then uses a small sample of data to see if that guess seems true or not.

For example, if a company wants to know if its new product is more popular than its old one, it can use hypothesis testing. They start with a statement like “The new product is not more popular than the old one” (this is the null hypothesis) and compare it with “The new product is more popular” (this is the alternative hypothesis). Then, they look at customer feedback to see if there’s enough evidence to reject the first statement and support the second one.

Simply put, hypothesis testing is a way to use data to help make decisions and understand what the data is really telling us, even when we don’t have all the answers.

Importance Of Hypothesis Testing In Decision-Making And Data Analysis

Hypothesis testing is important because it helps us make smart choices and understand data better. Here’s why it’s useful:

  • Reduces Guesswork : It helps us see if our guesses or ideas are likely correct, even when we don’t have all the details.
  • Uses Real Data : Instead of just guessing, it checks if our ideas match up with real data, which makes our decisions more reliable.
  • Avoids Errors : It helps us avoid mistakes by carefully checking if our ideas are right so we don’t make costly errors.
  • Shows What to Do Next : It tells us if our ideas work or not, helping us decide whether to keep, change, or drop something. For example, a company might test a new ad and decide what to do based on the results.
  • Confirms Research Findings : It makes sure that research results are accurate and not just random chance so that we can trust the findings.

Here’s a simple guide to understanding hypothesis testing, with an example:

1. Set Up Your Hypotheses

Explanation: Start by defining two statements:

  • Null Hypothesis (H0): This is the idea that there is no change or effect. It’s what you assume is true.
  • Alternative Hypothesis (H1): This is what you want to test. It suggests there is a change or effect.

Example: Suppose a company says their new batteries last an average of 500 hours. To check this:

  • Null Hypothesis (H0): The average battery life is 500 hours.
  • Alternative Hypothesis (H1): The average battery life is not 500 hours.

2. Choose the Test

Explanation: Pick a statistical test that fits your data and your hypotheses. Different tests are used for various kinds of data.

Example: Since you’re comparing the average battery life, you use a one-sample t-test .

3. Set the Significance Level

Explanation: Decide how much risk you’re willing to take if you make a wrong decision. This is called the significance level, often set at 0.05 or 5%.

Example: You choose a significance level of 0.05, meaning you’re okay with a 5% chance of being wrong.

4. Gather and Analyze Data

Explanation: Collect your data and perform the test. Calculate the test statistic to see how far your sample result is from what you assumed.

Example: You test 30 batteries and find they last an average of 485 hours. You then calculate how this average compares to the claimed 500 hours using the t-test.

5. Find the p-Value

Explanation: The p-value tells you the probability of getting a result as extreme as yours if the null hypothesis is true.

Example: You find a p-value of 0.0001. This means there’s a very small chance (0.01%) of getting an average battery life of 485 hours or less if the true average is 500 hours.

6. Make Your Decision

Explanation: Compare the p-value to your significance level. If the p-value is smaller, you reject the null hypothesis. If it’s larger, you do not reject it.

Example: Since 0.0001 is much less than 0.05, you reject the null hypothesis. This means the data suggests the average battery life is different from 500 hours.

7. Report Your Findings

Explanation: Summarize what the results mean. State whether you rejected the null hypothesis and what that implies.

Example: You conclude that the average battery life is likely different from 500 hours. This suggests the company’s claim might not be accurate.

Hypothesis testing is a way to use data to check if your guesses or assumptions are likely true. By following these steps—setting up your hypotheses, choosing the right test, deciding on a significance level, analyzing your data, finding the p-value, making a decision, and reporting results—you can determine if your data supports or challenges your initial idea.

Understanding Hypothesis Testing: A Simple Explanation

Hypothesis testing is a way to use data to make decisions. Here’s a straightforward guide:

1. What is the Null and Alternative Hypotheses?

  • Null Hypothesis (H0): This is your starting assumption. It says that nothing has changed or that there is no effect. It’s what you assume to be true until your data shows otherwise. Example: If a company says their batteries last 500 hours, the null hypothesis is: “The average battery life is 500 hours.” This means you think the claim is correct unless you find evidence to prove otherwise.
  • Alternative Hypothesis (H1): This is what you want to find out. It suggests that there is an effect or a difference. It’s what you are testing to see if it might be true. Example: To test the company’s claim, you might say: “The average battery life is not 500 hours.” This means you think the average battery life might be different from what the company says.

2. One-Tailed vs. Two-Tailed Tests

  • One-Tailed Test: This test checks for an effect in only one direction. You use it when you’re only interested in finding out if something is either more or less than a specific value. Example: If you think the battery lasts longer than 500 hours, you would use a one-tailed test to see if the battery life is significantly more than 500 hours.
  • Two-Tailed Test: This test checks for an effect in both directions. Use this when you want to see if something is different from a specific value, whether it’s more or less. Example: If you want to see if the battery life is different from 500 hours, whether it’s more or less, you would use a two-tailed test. This checks for any significant difference, regardless of the direction.

3. Common Misunderstandings

  • Clarification: Hypothesis testing doesn’t prove that the null hypothesis is true. It just helps you decide if you should reject it. If there isn’t enough evidence against it, you don’t reject it, but that doesn’t mean it’s definitely true.
  • Clarification: A small p-value shows that your data is unlikely if the null hypothesis is true. It suggests that the alternative hypothesis might be right, but it doesn’t prove the null hypothesis is false.
  • Clarification: The significance level (alpha) is a set threshold, like 0.05, that helps you decide how much risk you’re willing to take for making a wrong decision. It should be chosen carefully, not randomly.
  • Clarification: Hypothesis testing helps you make decisions based on data, but it doesn’t guarantee your results are correct. The quality of your data and the right choice of test affect how reliable your results are.

Benefits and Limitations of Hypothesis Testing

  • Clear Decisions: Hypothesis testing helps you make clear decisions based on data. It shows whether the evidence supports or goes against your initial idea.
  • Objective Analysis: It relies on data rather than personal opinions, so your decisions are based on facts rather than feelings.
  • Concrete Numbers: You get specific numbers, like p-values, to understand how strong the evidence is against your idea.
  • Control Risk: You can set a risk level (alpha level) to manage the chance of making an error, which helps avoid incorrect conclusions.
  • Widely Used: It can be used in many areas, from science and business to social studies and engineering, making it a versatile tool.

Limitations

  • Sample Size Matters: The results can be affected by the size of the sample. Small samples might give unreliable results, while large samples might find differences that aren’t meaningful in real life.
  • Risk of Misinterpretation: A small p-value means the results are unlikely if the null hypothesis is true, but it doesn’t show how important the effect is.
  • Needs Assumptions: Hypothesis testing requires certain conditions, like data being normally distributed . If these aren’t met, the results might not be accurate.
  • Simple Decisions: It often results in a basic yes or no decision without giving detailed information about the size or impact of the effect.
  • Can Be Misused: Sometimes, people misuse hypothesis testing, tweaking data to get a desired result or focusing only on whether the result is statistically significant.
  • No Absolute Proof: Hypothesis testing doesn’t prove that your hypothesis is true. It only helps you decide if there’s enough evidence to reject the null hypothesis, so the conclusions are based on likelihood, not certainty.

Final Thoughts 

Hypothesis testing helps you make decisions based on data. It involves setting up your initial idea, picking a significance level, doing the test, and looking at the results. By following these steps, you can make sure your conclusions are based on solid information, not just guesses.

This approach lets you see if the evidence supports or contradicts your initial idea, helping you make better decisions. But remember that hypothesis testing isn’t perfect. Things like sample size and assumptions can affect the results, so it’s important to be aware of these limitations.

In simple terms, using a step-by-step guide for hypothesis testing is a great way to better understand your data. Follow the steps carefully and keep in mind the method’s limits.

What is the difference between one-tailed and two-tailed tests?

 A one-tailed test assesses the probability of the observed data in one direction (either greater than or less than a certain value). In contrast, a two-tailed test looks at both directions (greater than and less than) to detect any significant deviation from the null hypothesis.

How do you choose the appropriate test for hypothesis testing?

The choice of test depends on the type of data you have and the hypotheses you are testing. Common tests include t-tests, chi-square tests, and ANOVA. You get more details about ANOVA, you may read Complete Details on What is ANOVA in Statistics ?  It’s important to match the test to the data characteristics and the research question.

What is the role of sample size in hypothesis testing?  

Sample size affects the reliability of hypothesis testing. Larger samples provide more reliable estimates and can detect smaller effects, while smaller samples may lead to less accurate results and reduced power.

Can hypothesis testing prove that a hypothesis is true?  

Hypothesis testing cannot prove that a hypothesis is true. It can only provide evidence to support or reject the null hypothesis. A result can indicate whether the data is consistent with the null hypothesis or not, but it does not prove the alternative hypothesis with certainty.

Related Posts

how-to-find-the=best-online-statistics-homework-help

How to Find the Best Online Statistics Homework Help

why spss homework-help-is-an-important-aspects-for-students

Why SPSS Homework Help Is An Important aspect for Students?

Leave a comment cancel reply.

Your email address will not be published. Required fields are marked *

MLP Logo

Hypothesis Testing – A Deep Dive into Hypothesis Testing, The Backbone of Statistical Inference

  • September 21, 2023

Explore the intricacies of hypothesis testing, a cornerstone of statistical analysis. Dive into methods, interpretations, and applications for making data-driven decisions.

hypothesis make decision

In this Blog post we will learn:

  • What is Hypothesis Testing?
  • Steps in Hypothesis Testing 2.1. Set up Hypotheses: Null and Alternative 2.2. Choose a Significance Level (α) 2.3. Calculate a test statistic and P-Value 2.4. Make a Decision
  • Example : Testing a new drug.
  • Example in python

1. What is Hypothesis Testing?

In simple terms, hypothesis testing is a method used to make decisions or inferences about population parameters based on sample data. Imagine being handed a dice and asked if it’s biased. By rolling it a few times and analyzing the outcomes, you’d be engaging in the essence of hypothesis testing.

Think of hypothesis testing as the scientific method of the statistics world. Suppose you hear claims like “This new drug works wonders!” or “Our new website design boosts sales.” How do you know if these statements hold water? Enter hypothesis testing.

2. Steps in Hypothesis Testing

  • Set up Hypotheses : Begin with a null hypothesis (H0) and an alternative hypothesis (Ha).
  • Choose a Significance Level (α) : Typically 0.05, this is the probability of rejecting the null hypothesis when it’s actually true. Think of it as the chance of accusing an innocent person.
  • Calculate Test statistic and P-Value : Gather evidence (data) and calculate a test statistic.
  • p-value : This is the probability of observing the data, given that the null hypothesis is true. A small p-value (typically ≤ 0.05) suggests the data is inconsistent with the null hypothesis.
  • Decision Rule : If the p-value is less than or equal to α, you reject the null hypothesis in favor of the alternative.

2.1. Set up Hypotheses: Null and Alternative

Before diving into testing, we must formulate hypotheses. The null hypothesis (H0) represents the default assumption, while the alternative hypothesis (H1) challenges it.

For instance, in drug testing, H0 : “The new drug is no better than the existing one,” H1 : “The new drug is superior .”

2.2. Choose a Significance Level (α)

When You collect and analyze data to test H0 and H1 hypotheses. Based on your analysis, you decide whether to reject the null hypothesis in favor of the alternative, or fail to reject / Accept the null hypothesis.

The significance level, often denoted by $α$, represents the probability of rejecting the null hypothesis when it is actually true.

In other words, it’s the risk you’re willing to take of making a Type I error (false positive).

Type I Error (False Positive) :

  • Symbolized by the Greek letter alpha (α).
  • Occurs when you incorrectly reject a true null hypothesis . In other words, you conclude that there is an effect or difference when, in reality, there isn’t.
  • The probability of making a Type I error is denoted by the significance level of a test. Commonly, tests are conducted at the 0.05 significance level , which means there’s a 5% chance of making a Type I error .
  • Commonly used significance levels are 0.01, 0.05, and 0.10, but the choice depends on the context of the study and the level of risk one is willing to accept.

Example : If a drug is not effective (truth), but a clinical trial incorrectly concludes that it is effective (based on the sample data), then a Type I error has occurred.

Type II Error (False Negative) :

  • Symbolized by the Greek letter beta (β).
  • Occurs when you accept a false null hypothesis . This means you conclude there is no effect or difference when, in reality, there is.
  • The probability of making a Type II error is denoted by β. The power of a test (1 – β) represents the probability of correctly rejecting a false null hypothesis.

Example : If a drug is effective (truth), but a clinical trial incorrectly concludes that it is not effective (based on the sample data), then a Type II error has occurred.

Balancing the Errors :

hypothesis make decision

In practice, there’s a trade-off between Type I and Type II errors. Reducing the risk of one typically increases the risk of the other. For example, if you want to decrease the probability of a Type I error (by setting a lower significance level), you might increase the probability of a Type II error unless you compensate by collecting more data or making other adjustments.

It’s essential to understand the consequences of both types of errors in any given context. In some situations, a Type I error might be more severe, while in others, a Type II error might be of greater concern. This understanding guides researchers in designing their experiments and choosing appropriate significance levels.

2.3. Calculate a test statistic and P-Value

Test statistic : A test statistic is a single number that helps us understand how far our sample data is from what we’d expect under a null hypothesis (a basic assumption we’re trying to test against). Generally, the larger the test statistic, the more evidence we have against our null hypothesis. It helps us decide whether the differences we observe in our data are due to random chance or if there’s an actual effect.

P-value : The P-value tells us how likely we would get our observed results (or something more extreme) if the null hypothesis were true. It’s a value between 0 and 1. – A smaller P-value (typically below 0.05) means that the observation is rare under the null hypothesis, so we might reject the null hypothesis. – A larger P-value suggests that what we observed could easily happen by random chance, so we might not reject the null hypothesis.

2.4. Make a Decision

Relationship between $α$ and P-Value

When conducting a hypothesis test:

  • We first choose a significance level ($α$), which sets a threshold for making decisions.

We then calculate the p-value from our sample data and the test statistic.

Finally, we compare the p-value to our chosen $α$:

  • If $p−value≤α$: We reject the null hypothesis in favor of the alternative hypothesis. The result is said to be statistically significant.
  • If $p−value>α$: We fail to reject the null hypothesis. There isn’t enough statistical evidence to support the alternative hypothesis.

3. Example : Testing a new drug.

Imagine we are investigating whether a new drug is effective at treating headaches faster than drug B.

Setting Up the Experiment : You gather 100 people who suffer from headaches. Half of them (50 people) are given the new drug (let’s call this the ‘Drug Group’), and the other half are given a sugar pill, which doesn’t contain any medication.

  • Set up Hypotheses : Before starting, you make a prediction:
  • Null Hypothesis (H0): The new drug has no effect. Any difference in healing time between the two groups is just due to random chance.
  • Alternative Hypothesis (H1): The new drug does have an effect. The difference in healing time between the two groups is significant and not just by chance.
  • Choose a Significance Level (α) : Typically 0.05, this is the probability of rejecting the null hypothesis when it’s actually true

Calculate Test statistic and P-Value : After the experiment, you analyze the data. The “test statistic” is a number that helps you understand the difference between the two groups in terms of standard units.

For instance, let’s say:

  • The average healing time in the Drug Group is 2 hours.
  • The average healing time in the Placebo Group is 3 hours.

The test statistic helps you understand how significant this 1-hour difference is. If the groups are large and the spread of healing times in each group is small, then this difference might be significant. But if there’s a huge variation in healing times, the 1-hour difference might not be so special.

Imagine the P-value as answering this question: “If the new drug had NO real effect, what’s the probability that I’d see a difference as extreme (or more extreme) as the one I found, just by random chance?”

For instance:

  • P-value of 0.01 means there’s a 1% chance that the observed difference (or a more extreme difference) would occur if the drug had no effect. That’s pretty rare, so we might consider the drug effective.
  • P-value of 0.5 means there’s a 50% chance you’d see this difference just by chance. That’s pretty high, so we might not be convinced the drug is doing much.
  • If the P-value is less than ($α$) 0.05: the results are “statistically significant,” and they might reject the null hypothesis , believing the new drug has an effect.
  • If the P-value is greater than ($α$) 0.05: the results are not statistically significant, and they don’t reject the null hypothesis , remaining unsure if the drug has a genuine effect.

4. Example in python

For simplicity, let’s say we’re using a t-test (common for comparing means). Let’s dive into Python:

Making a Decision : “The results are statistically significant! p-value < 0.05 , The drug seems to have an effect!” If not, we’d say, “Looks like the drug isn’t as miraculous as we thought.”

5. Conclusion

Hypothesis testing is an indispensable tool in data science, allowing us to make data-driven decisions with confidence. By understanding its principles, conducting tests properly, and considering real-world applications, you can harness the power of hypothesis testing to unlock valuable insights from your data.

More Articles

F statistic formula – explained, correlation – connecting the dots, the role of correlation in data analysis, sampling and sampling distributions – a comprehensive guide on sampling and sampling distributions, law of large numbers – a deep dive into the world of statistics, central limit theorem – a deep dive into central limit theorem and its significance in statistics, similar articles, complete introduction to linear regression in r, how to implement common statistical significance tests and find the p value, logistic regression – a complete tutorial with examples in r.

Subscribe to Machine Learning Plus for high value data science content

© Machinelearningplus. All rights reserved.

hypothesis make decision

Machine Learning A-Z™: Hands-On Python & R In Data Science

Free sample videos:.

hypothesis make decision

User Preferences

Content preview.

Arcu felis bibendum ut tristique et egestas quis:

  • Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
  • Duis aute irure dolor in reprehenderit in voluptate
  • Excepteur sint occaecat cupidatat non proident

Keyboard Shortcuts

Hypothesis testing.

Key Topics:

  • Basic approach
  • Null and alternative hypothesis
  • Decision making and the p -value
  • Z-test & Nonparametric alternative

Basic approach to hypothesis testing

  • State a model describing the relationship between the explanatory variables and the outcome variable(s) in the population and the nature of the variability. State all of your assumptions .
  • Specify the null and alternative hypotheses in terms of the parameters of the model.
  • Invent a test statistic that will tend to be different under the null and alternative hypotheses.
  • Using the assumptions of step 1, find the theoretical sampling distribution of the statistic under the null hypothesis of step 2. Ideally the form of the sampling distribution should be one of the “standard distributions”(e.g. normal, t , binomial..)
  • Calculate a p -value , as the area under the sampling distribution more extreme than your statistic. Depends on the form of the alternative hypothesis.
  • Choose your acceptable type 1 error rate (alpha) and apply the decision rule : reject the null hypothesis if the p-value is less than alpha, otherwise do not reject.
sampled from a with unknown mean μ and known variance σ . : μ = μ
H : μ ≤ μ
H : μ ≥ μ
: μ ≠ μ
H : μ > μ
H : μ < μ
  • \(\frac{\bar{X}-\mu_0}{\sigma / \sqrt{n}}\)
  • general form is: (estimate - value we are testing)/(st.dev of the estimate)
  • z-statistic follows N(0,1) distribution
  • 2 × the area above |z|, area above z,or area below z, or
  • compare the statistic to a critical value, |z| ≥ z α/2 , z ≥ z α , or z ≤ - z α
  • Choose the acceptable level of Alpha = 0.05, we conclude …. ?

Making the Decision

It is either likely or unlikely that we would collect the evidence we did given the initial assumption. (Note: “likely” or “unlikely” is measured by calculating a probability!)

If it is likely , then we “ do not reject ” our initial assumption. There is not enough evidence to do otherwise.

If it is unlikely , then:

  • either our initial assumption is correct and we experienced an unusual event or,
  • our initial assumption is incorrect

In statistics, if it is unlikely, we decide to “ reject ” our initial assumption.

Example: Criminal Trial Analogy

First, state 2 hypotheses, the null hypothesis (“H 0 ”) and the alternative hypothesis (“H A ”)

  • H 0 : Defendant is not guilty.
  • H A : Defendant is guilty.

Usually the H 0 is a statement of “no effect”, or “no change”, or “chance only” about a population parameter.

While the H A , depending on the situation, is that there is a difference, trend, effect, or a relationship with respect to a population parameter.

  • It can one-sided and two-sided.
  • In two-sided we only care there is a difference, but not the direction of it. In one-sided we care about a particular direction of the relationship. We want to know if the value is strictly larger or smaller.

Then, collect evidence, such as finger prints, blood spots, hair samples, carpet fibers, shoe prints, ransom notes, handwriting samples, etc. (In statistics, the data are the evidence.)

Next, you make your initial assumption.

  • Defendant is innocent until proven guilty.

In statistics, we always assume the null hypothesis is true .

Then, make a decision based on the available evidence.

  • If there is sufficient evidence (“beyond a reasonable doubt”), reject the null hypothesis . (Behave as if defendant is guilty.)
  • If there is not enough evidence, do not reject the null hypothesis . (Behave as if defendant is not guilty.)

If the observed outcome, e.g., a sample statistic, is surprising under the assumption that the null hypothesis is true, but more probable if the alternative is true, then this outcome is evidence against H 0 and in favor of H A .

An observed effect so large that it would rarely occur by chance is called statistically significant (i.e., not likely to happen by chance).

Using the p -value to make the decision

The p -value represents how likely we would be to observe such an extreme sample if the null hypothesis were true. The p -value is a probability computed assuming the null hypothesis is true, that the test statistic would take a value as extreme or more extreme than that actually observed. Since it's a probability, it is a number between 0 and 1. The closer the number is to 0 means the event is “unlikely.” So if p -value is “small,” (typically, less than 0.05), we can then reject the null hypothesis.

Significance level and p -value

Significance level, α, is a decisive value for p -value. In this context, significant does not mean “important”, but it means “not likely to happened just by chance”.

α is the maximum probability of rejecting the null hypothesis when the null hypothesis is true. If α = 1 we always reject the null, if α = 0 we never reject the null hypothesis. In articles, journals, etc… you may read: “The results were significant ( p <0.05).” So if p =0.03, it's significant at the level of α = 0.05 but not at the level of α = 0.01. If we reject the H 0 at the level of α = 0.05 (which corresponds to 95% CI), we are saying that if H 0 is true, the observed phenomenon would happen no more than 5% of the time (that is 1 in 20). If we choose to compare the p -value to α = 0.01, we are insisting on a stronger evidence!

Neither decision of rejecting or not rejecting the H entails proving the null hypothesis or the alternative hypothesis. We merely state there is enough evidence to behave one way or the other. This is also always true in statistics!

So, what kind of error could we make? No matter what decision we make, there is always a chance we made an error.

Errors in Criminal Trial:

Errors in Hypothesis Testing

Type I error (False positive): The null hypothesis is rejected when it is true.

  • α is the maximum probability of making a Type I error.

Type II error (False negative): The null hypothesis is not rejected when it is false.

  • β is the probability of making a Type II error

There is always a chance of making one of these errors. But, a good scientific study will minimize the chance of doing so!

The power of a statistical test is its probability of rejecting the null hypothesis if the null hypothesis is false. That is, power is the ability to correctly reject H 0 and detect a significant effect. In other words, power is one minus the type II error risk.

\(\text{Power }=1-\beta = P\left(\text{reject} H_0 | H_0 \text{is false } \right)\)

Which error is worse?

Type I = you are innocent, yet accused of cheating on the test. Type II = you cheated on the test, but you are found innocent.

This depends on the context of the problem too. But in most cases scientists are trying to be “conservative”; it's worse to make a spurious discovery than to fail to make a good one. Our goal it to increase the power of the test that is to minimize the length of the CI.

We need to keep in mind:

  • the effect of the sample size,
  • the correctness of the underlying assumptions about the population,
  • statistical vs. practical significance, etc…

(see the handout). To study the tradeoffs between the sample size, α, and Type II error we can use power and operating characteristic curves.

Assume data are independently sampled from a normal distribution with unknown mean μ and known variance σ = 9. Make an initial assumption that μ = 65.

Specify the hypothesis: H : μ = 65 H : μ ≠ 65

z-statistic: 3.58

z-statistic follow N(0,1) distribution

The -value, < 0.0001, indicates that, if the average height in the population is 65 inches, it is unlikely that a sample of 54 students would have an average height of 66.4630.

Alpha = 0.05. Decision: -value < alpha, thus

Conclude that the average height is not equal to 65.

What type of error might we have made?

Type I error is claiming that average student height is not 65 inches, when it really is. Type II error is failing to claim that the average student height is not 65in when it is.

We rejected the null hypothesis, i.e., claimed that the height is not 65, thus making potentially a Type I error. But sometimes the p -value is too low because of the large sample size, and we may have statistical significance but not really practical significance! That's why most statisticians are much more comfortable with using CI than tests.

Based on the CI only, how do you know that you should reject the null hypothesis?

The 95% CI is (65.6628,67.2631) ...

What about practical and statistical significance now? Is there another reason to suspect this test, and the -value calculations?

There is a need for a further generalization. What if we can't assume that σ is known? In this case we would use s (the sample standard deviation) to estimate σ.

If the sample is very large, we can treat σ as known by assuming that σ = s . According to the law of large numbers, this is not too bad a thing to do. But if the sample is small, the fact that we have to estimate both the standard deviation and the mean adds extra uncertainty to our inference. In practice this means that we need a larger multiplier for the standard error.

We need one-sample t -test.

One sample t -test

  • Assume data are independently sampled from a normal distribution with unknown mean μ and variance σ 2 . Make an initial assumption, μ 0 .
: μ = μ
H : μ ≤ μ
H : μ ≥ μ
: μ ≠ μ
H : μ > μ
H : μ < μ
  • t-statistic: \(\frac{\bar{X}-\mu_0}{s / \sqrt{n}}\) where s is a sample st.dev.
  • t-statistic follows t -distribution with df = n - 1
  • Alpha = 0.05, we conclude ….

Testing for the population proportion

Let's go back to our CNN poll. Assume we have a SRS of 1,017 adults.

We are interested in testing the following hypothesis: H 0 : p = 0.50 vs. p > 0.50

What is the test statistic?

If alpha = 0.05, what do we conclude?

We will see more details in the next lesson on proportions, then distributions, and possible tests.

Hypothesis Testing: A Comprehensive Guide to Scientific Decision-Making

Master hypothesis testing to bolster your scientific decision-making skills with our in-depth guide. Elevate your research now!

In scientific research and experimentation, one needs a structured framework for answering questions, confirming results, and making decisions.

This framework, known as hypothesis testing , plays a pivotal role both in research and in various industries like healthcare, finance, and technology.

This guide will delve into the principles and processes of hypothesis testing, offering readers a holistic understanding of this fundamental aspect of scientific decision-making.

Definition of Hypothesis Testing

Hypothesis testing is a method used in statistics to decide whether a statement about a population parameter is likely to be true based on sample data.

The process involves making an initial assumption, observing data, then determining how compatible the data is with the assumption. It's a core part of many o nline certificate programs and widely used in fields requiring data analysis.

Importance of Hypothesis Testing in Research and Industry

The value of hypothesis testing goes beyond science and research. Businesses use it for making crucial decisions, such as whether a new product will succeed in the market, or if a change in strategy will lead to increased profit margins.

Similarly, in the healthcare sector, hypothesis testing helps determine if a new medication is more effective than the current standard treatment. This broad applicability underlies the significance of a problem-solving course that includes hypothesis testing.

Understanding the Basics of Hypothesis Testing

Before embarking on the journey of hypothesis testing, it's crucial to understand its fundamental elements - the Null and Alternate Hypotheses.

Explanation of Null Hypothesis

Definition Null Hypothesis

The Null Hypothesis, symbolized as H0, is a statement we test for possible rejection under the assumption that it is true. In most cases, it anticipates no effect, no difference, or no relationship between variables.

How to Formulate a Null Hypothesis

Formulating a null hypothesis requires identifying your research question, specifying your outcome variable, and expressing a statement of no effect or difference. For instance, you may hypothesize, "There is no significant difference between the performance of students who have breakfast and those who don't."

Practical Examples of Null Hypotheses

Consider a beverage company aiming to reduce its plastic use by 20% within a year. The null hypothesis might state that "There has been no decrease in the company's plastic use."

Explanation of Alternate Hypothesis

Definition Alternate Hypothesis

The alternative hypothesis, symbolized as H1, is the statement we accept when there's sufficient evidence against the null hypothesis. It anticipates an effect, a difference, or a relationship between variables.

How to Construct an Alternate Hypothesis

In constructing an alternate hypothesis, we simply state the counter of the null hypothesis. Following the above example, the alternate hypothesis would be, "There's a significant difference between the performance of students who have breakfast and those who don't."

Case Examples of Alternate Hypotheses

Referring to the beverage company example, the alternate hypothesis would state, "There has been a decrease in the company's plastic use."

Differentiating between Null and Alternate Hypotheses

While both form the crux of hypothesis testing, their roles differ significantly. The null hypothesis is the claim we test for possible rejection, while the alternate hypothesis is accepted when there's evidence against the null. However, neither proof nor disproof of either hypothesis is definitive since all statistical tests are susceptible to errors.

Understanding Errors in Hypothesis Testing

A critical aspect of hypothesis testing is the recognition and management of two types of errors: Type I and Type II errors. Understanding these errors is paramount for interpreting the results accurately and making informed decisions.

Type I Error: False Positive

A Type I error occurs when the null hypothesis is wrongly rejected when it is actually true. This is akin to a false alarm, where, for instance, a test indicates a drug is effective against a disease when it actually isn't. The probability of committing a Type I error is denoted by alpha (α), often set at 0.05 or 5%, indicating a 5% risk of rejecting the null hypothesis incorrectly.

Type II Error: False Negative

Conversely, a Type II error happens when the null hypothesis is not rejected when it is false. This can be compared to a missed detection, such as failing to identify the effectiveness of a beneficial drug. The probability of a Type II error is denoted by beta (β), and researchers strive to minimize this risk to ensure that genuine effects are detected.

Balancing the Risks: Power of the Test

The power of a statistical test is the probability that it correctly rejects a false null hypothesis, essentially avoiding a Type II error. High-powered tests are more reliable for detecting true effects. The power is influenced by the sample size, effect size, significance level, and variability within the data. Optimizing these factors can reduce the chances of both Type I and Type II errors, leading to more trustworthy conclusions.

Steps in Hypothesis Testing

Hypothesis testing involves a series of structured steps to guide researchers and professionals through the decision-making process:

Formulate Hypotheses : Clearly define the null and alternative hypotheses based on the research question or problem statement.

Choose a Significance Level (α) : Decide on the alpha level, which determines the threshold for rejecting the null hypothesis.

Select the Appropriate Test : Based on the data type and study design, choose a statistical test that aligns with the research objectives.

Collect and Analyze Data : Gather the necessary data and perform the statistical test to calculate the test statistic and p-value.

Make a Decision : Compare the p-value to the significance level. If the p-value is less than α, reject the null hypothesis in favor of the alternative. Otherwise, do not reject the null hypothesis.

Hypothesis testing is a cornerstone of scientific inquiry, providing a rigorous framework for evaluating theories, exploring relationships, and making decisions based on empirical evidence.

Whether in academia, healthcare, finance, or technology, the principles of hypothesis testing enable practitioners to draw conclusions with a defined level of confidence, navigate uncertainties, and contribute to advancements in their fields. By understanding its fundamentals, errors, and steps, professionals can apply hypothesis testing to enhance decision-making processes and achieve more reliable outcomes.

Through this exploration of hypothesis testing, it becomes clear that the method is not just a statistical tool but a comprehensive approach to answering complex questions across various domains. As researchers and industry professionals continue to harness its power, the potential for innovation and discovery remains boundless.

What is the fundamental concept and importance of hypothesis testing in scientific decision-making?

Understanding hypothesis testing.

Hypothesis testing is a cornerstone of scientific inquiry. It involves making an assumption, the hypothesis, about a population parameter. Scientists test these assumptions through experimentation and observation.

The Essence of Hypotheses

At its core, a hypothesis is a predictive statement. It usually pertains to an outcome or a relationship between variables. The hypothesis asserts a specific effect, direction, or magnitude will emerge under certain conditions.

Types of Hypotheses

There are two primary hypotheses in testing: null and alternative. The null hypothesis ( H0 ) suggests no effect or relationship exists. It represents a default position, waiting for evidence to challenge it. The alternative hypothesis ( H1 ) posits there is an effect or relationship. It states the specific condition the researcher believes is true.

Role of Evidence

Evidence plays a critical role. Researchers collect data through controlled methods. They aim to either support or refute the hypothesis. This data must be empirical and measurable, ensuring objectivity.

Decision-Making with P-Values

The p-value is a crucial concept in hypothesis testing. It is the probability of observing a test statistic as extreme as the one observed, given the null hypothesis is true. A low p-value indicates the observed data is unlikely under the null hypothesis. This typically leads to rejection of the null in favor of the alternative.

The Importance of Hypothesis Testing

Provides structure to research

Ensures consistency in methods

Allows quantification of evidence

Facilitates replication of studies

Shields from personal biases

Hypothesis testing helps map the unknown territory of scientific phenomena. It allows researchers to make informed decisions grounded in statistical evidence. This rational approach to understanding ensures that conclusions drawn from scientific work are reliable and valid.

The process also shapes the scientific method itself. It demands rigorous standards for evidence and reproducibility. Hypothesis testing thus builds a foundation on which scientific knowledge advances. It underpins the integrity of scientific disciplines. It challenges scientists to prove, disprove, and refine their understanding of the world.

Hypothesis testing is fundamental to the scientific decision-making process. It turns subjective questions into objective inquiries. It drives the pursuit of knowledge through empirical evidence. With hypothesis testing, science moves from conjecture to proven or disproven theories. It is this disciplined approach that adds credibility to scientific findings. Without it, distinguishing between chance results and true discoveries becomes impossible.

Understanding Hypothesis Testing Hypothesis testing is a cornerstone of scientific inquiry. It involves making an assumption, the hypothesis, about a population parameter. Scientists test these assumptions through experimentation and observation. The Essence of Hypotheses At its core, a hypothesis is a predictive statement. It usually pertains to an outcome or a relationship between variables. The hypothesis asserts a specific effect, direction, or magnitude will emerge under certain conditions. Types of Hypotheses There are two primary hypotheses in testing: null and alternative.  The null hypothesis  ( H0 ) suggests no effect or relationship exists. It represents a default position, waiting for evidence to challenge it.  The alternative hypothesis  ( H1 ) posits there is an effect or relationship. It states the specific condition the researcher believes is true. Role of Evidence Evidence plays a critical role. Researchers collect data through controlled methods. They aim to either support or refute the hypothesis. This data must be empirical and measurable, ensuring objectivity. Decision-Making with P-Values The p-value is a crucial concept in hypothesis testing. It is the probability of observing a test statistic as extreme as the one observed, given the null hypothesis is true. A low p-value indicates the observed data is unlikely under the null hypothesis. This typically leads to rejection of the null in favor of the alternative. The Importance of Hypothesis Testing      Hypothesis testing helps map the unknown territory  of scientific phenomena. It allows researchers to make informed decisions grounded in statistical evidence. This rational approach to understanding ensures that conclusions drawn from scientific work are reliable and valid. The process also shapes the scientific method itself. It demands rigorous standards for evidence and reproducibility.  Hypothesis testing thus builds a foundation on which scientific knowledge advances.  It underpins the integrity of scientific disciplines. It challenges scientists to prove, disprove, and refine their understanding of the world. Hypothesis testing is fundamental  to the scientific decision-making process. It turns subjective questions into objective inquiries. It drives the pursuit of knowledge through empirical evidence. With hypothesis testing, science moves from conjecture to proven or disproven theories. It is this disciplined approach that adds credibility to scientific findings. Without it, distinguishing between chance results and true discoveries becomes impossible.

How do Type I and Type II errors relate to hypothesis testing and what are their implications on the results?

Understanding type i and type ii errors.

When delving into hypothesis testing, the concepts of Type I and Type II errors often emerge as critical elements. These errors play a paramount role in the interpretation of results. They convey the instances where our conclusions could be incorrect.

What Are Type I and Type II Errors?

Type I error occurs when we wrongly reject a true null hypothesis. We call this a false positive. It implies that the evidence suggests an effect or difference exists when it does not. In statistical terms, this is the 'alpha' (α), which defines the likelihood of a Type I error.

Type II error , in contrast, happens when we fail to reject a false null hypothesis. This error, termed a false negative, means that one overlooks an actual effect or difference. It's quantified by 'beta' (β), which gives the probability of a Type II error occurring.

Implications of Type I and Type II Errors

The implications of these errors reach far into hypothesis testing and the trustworthiness of results.

Confidence Levels : High risks of Type I errors lower confidence in findings. To mitigate this, researchers set a low alpha level, commonly 0.05. It shows a willingness to accept a 5% chance of a false positive.

Power of the Test : The risk of Type II errors correlates with the power of the test—the probability of correctly detecting an effect when it exists. A high beta value means a higher chance of missing an actual effect due to low test power.

Sample Size : Larger samples reduce both Type I and Type II error risks. They offer more accurate estimates and a clearer distinction between the null and alternative hypotheses.

Consequences : Type I errors might lead to unwarranted actions based on false positives. Type II errors could result in missed opportunities due to unrecognized truths.

Balancing Errors in Hypothesis Testing

Researchers must balance Type I and Type II errors in hypothesis testing. The balance depends on the context and potential consequences of each error.

Safety in Medicine : In drug testing, Type I errors can lead to harmful side effects if a drug isn't actually safe. Minimizing Type I errors is crucial here.

Effectiveness in Treatment : Conversely, Type II errors in medicine may miss a treatment effect. Ensuring sufficient power to detect treatment efficacy is essential.

Type I and Type II errors remind us of the limitations in hypothesis testing. No test is infallible. Decisions on alpha and beta levels depend on the stakes of potential errors.

Understanding and addressing these errors are vital. They enhance credibility in conclusions drawn from statistical testing. Proper balance ensures valuable and trustworthy research outcomes.

Understanding Type I and Type II Errors When delving into hypothesis testing, the concepts of Type I and Type II errors often emerge as critical elements. These errors play a paramount role in the interpretation of results. They convey the instances where our conclusions could be incorrect. What Are Type I and Type II Errors? Type I error  occurs when we wrongly reject a true null hypothesis. We call this a false positive. It implies that the evidence suggests an effect or difference exists when it does not. In statistical terms, this is the alpha (α), which defines the likelihood of a Type I error. Type II error , in contrast, happens when we fail to reject a false null hypothesis. This error, termed a false negative, means that one overlooks an actual effect or difference. Its quantified by beta (β), which gives the probability of a Type II error occurring. Implications of Type I and Type II Errors The implications of these errors reach far into hypothesis testing and the trustworthiness of results.     Balancing Errors in Hypothesis Testing Researchers must balance Type I and Type II errors in hypothesis testing. The balance depends on the context and potential consequences of each error.   Type I and Type II errors remind us of the limitations in hypothesis testing. No test is infallible. Decisions on alpha and beta levels depend on the stakes of potential errors. Understanding and addressing these errors are vital. They enhance credibility in conclusions drawn from statistical testing. Proper balance ensures valuable and trustworthy research outcomes.

Can you explain the critical role of the p-value in hypothesis testing and its influence on accepting or rejecting the null hypothesis?

Understanding the p-value.

Researchers often turn to hypothesis testing to understand data. They make an initial assumption called the null hypothesis . This hypothesis suggests no effect or no difference exists. To challenge this, they use an alternative hypothesis.

The Null Hypothesis and P-value

In hypothesis testing, the p-value helps measure the strength of the results against the null hypothesis. It calculates the probability of observing data as extreme as the test results, assuming the null hypothesis is true. A low p-value indicates that the observed data would be very unlikely if the null hypothesis were true.

Significance Threshold

Scientists usually set a significance level before testing. Often, this level is 0.05 . It marks the cut-off for determining statistical significance.

If the p-value is below 0.05, the result is statistically significant.

This means the test provides enough evidence to reject the null hypothesis.

What Does Rejecting the Null Hypothesis Mean?

Rejecting the null does not prove the alternative hypothesis. It merely suggests that the data are not consistent with the null. Researchers can be more confident that an effect or difference might exist.

Misinterpretations of the P-value

A common mistake is seeing the p-value as the odds that the null hypothesis is true or false. It is not. It only assesses how compatible the data are with the null hypothesis.

Influencing Factors

Several factors influence the p-value. This includes the size of the effect and the sample size. Larger samples may detect smaller differences and result in smaller p-values.

The p-value is critical in deciding whether to accept or reject the null hypothesis. It quantifies how surprising the data are, assuming the null is true. A small p-value can lead to rejecting the null, paving the way for new scientific insights. However, it is crucial to use this tool wisely, with an understanding of its limitations and context.

Understanding the P-value Researchers often turn to hypothesis testing to understand data. They make an initial assumption called the  null hypothesis . This hypothesis suggests no effect or no difference exists. To challenge this, they use an alternative hypothesis. The Null Hypothesis and P-value In hypothesis testing, the p-value helps measure the strength of the results against the null hypothesis. It calculates the probability of observing data as extreme as the test results, assuming the null hypothesis is true. A low p-value indicates that the observed data would be very unlikely if the null hypothesis were true. Significance Threshold Scientists usually set a significance level before testing. Often, this level is  0.05 . It marks the cut-off for determining statistical significance.   What Does Rejecting the Null Hypothesis Mean? Rejecting the null does not prove the alternative hypothesis. It merely suggests that the data are not consistent with the null. Researchers can be more confident that an effect or difference might exist. Misinterpretations of the P-value A common mistake is seeing the p-value as the odds that the null hypothesis is true or false. It is not. It only assesses how compatible the data are with the null hypothesis. Influencing Factors Several factors influence the p-value. This includes the size of the effect and the sample size. Larger samples may detect smaller differences and result in smaller p-values. The p-value is critical in deciding whether to accept or reject the null hypothesis. It quantifies how surprising the data are, assuming the null is true. A small p-value can lead to rejecting the null, paving the way for new scientific insights. However, it is crucial to use this tool wisely, with an understanding of its limitations and context.

He is a content producer who specializes in blog content. He has a master's degree in business administration and he lives in the Netherlands.

A man stands in the center of the image, arms outstretched. He is wearing a white turtleneck and black jacket, and is surrounded by a black background. On either side of him are white letters O on the black backdrop. In the upper right corner is a detailed drawing of the man in the same pose, with his arms extended. The bottom of the image contains white text on the black background. The man appears to be facing forward, his face full of determination. He is standing in an open area, and his arms are raised in a gesture of triumph.

Unlocking Da Vinci's Problem Solving Skills

A close-up of a pile of papers on a table, with various sheets of paper of various sizes and colors scattered around. A white letter 'O' is seen on a black background in the upper left corner of the image. In the lower right corner, a woman is seen wearing a white turtleneck and a black jacket. In the middle of the image, a close-up of a book with a bookmark is visible. Lastly, a screenshot of a black and white photo of a woman is seen in the upper right corner. The papers, letter, woman, book, and photo all appear to be on the same table, creating an interesting image that is suitable for use in an image caption dataset.

Developing Problem Solving Skills Since 1960s WSEIAC Report

A man in a white coat is standing in front of a computer screen, pointing at it with one finger. He is wearing glasses and has a beard. The focus of the image is on a white letter 'O' on a black background, which is located to the right of the man. The letter is slightly blurred, indicating that it is being looked at by the man. The man is standing in an upright posture, looking intently at the computer screen. His expression is serious, and he is taking in the information on the screen with a focused, attentive gaze.

The First Step in Critical Thinking & Problem Solving

A rectangular puzzle piece with a light green background and a blue geometric pattern sits in the center of the image. The puzzle piece has a curved edge along the top, and straight edges along the bottom and sides. The pattern on the piece consists of a thin green line that wraps around the outside edge and a thick blue line that follows the contours of the shape. The inside of the piece is filled with various shapes of the same color, including circles, triangles, and squares. The overall effect of the piece is calming and serene. It could be part of a larger puzzle that has yet to be solved.

What are Problem Solving Skills?

hypothesis make decision

Member-only story

Mastering Hypothesis Testing: A Comprehensive Guide for Researchers, Data Analysts and Data Scientists

Nilimesh Halder, PhD

Nilimesh Halder, PhD

Analyst’s corner

Article Outline

1. Introduction to Hypothesis Testing - Definition and significance in research and data analysis. - Brief historical background.

2. Fundamentals of Hypothesis Testing - Null and Alternative Hypothesis: Definitions and examples. - Types of Errors: Type I and Type II errors with examples.

3. The Process of Hypothesis Testing - Step-by-step guide: From defining hypotheses to decision making. - Examples to illustrate each step.

4. Statistical Tests in Hypothesis Testing - Overview of different statistical tests (t-test, chi-square test, ANOVA, etc.). - Criteria for selecting the appropriate test.

5. P-Values and Significance Levels - Understanding P-values: Definition and interpretation. - Significance Levels: Explaining alpha values and their implications.

6. Common Misconceptions and Mistakes in Hypothesis Testing - Addressing misconceptions about p-values and…

Nilimesh Halder, PhD

Written by Nilimesh Halder, PhD

Principal Analytics Specialist - AI, Analytics & Data Science ( https://nilimesh.substack.com/ ). Find my PDF articles at https://nilimesh.gumroad.com/l/bkmdgt

Text to speech

hypothesis make decision

Member-only story

The Hypothesis Tester’s Guide

Michał Oleszak

Michał Oleszak

Towards Data Science

A short primer on why we can reject hypotheses, but cannot accept them, with examples and visuals.

Hypothesis testing is the basis of classical statistical inference. It’s a framework for making decisions under uncertainty with the goal to prevent you from making stupid decisions — provided there is data to verify their stupidity. If there is no such data… ¯\_(ツ)_/¯

The goal of hypothesis testing is to prevent you from making stupid decisions — provided there is data to verify their stupidity.

The catch here is that you can only use hypothesis testing to dismiss a choice as a stupid one, but you cannot use it to embrace a choice as a good one. Why? Read on to find out!

Setting up the hypotheses

It all starts with a decision to make. Consider this one: you have a large data processing pipeline that you think is too slow. Hence, you rewrite the code to use more efficient data structures and end up with a new and hopefully faster version of the pipeline. The decision to make is: should you replace the old pipeline with the new…

Michał Oleszak

Written by Michał Oleszak

ML Engineer & Manager | Top Writer in AI & Statistics | michaloleszak.com | Book 1:1 @ topmate.io/michaloleszak

Text to speech

IMAGES

  1. Research Hypothesis: Definition, Types, Examples and Quick Tips (2022)

    hypothesis make decision

  2. 13 Different Types of Hypothesis (2024)

    hypothesis make decision

  3. PPT

    hypothesis make decision

  4. How to Write a Hypothesis: The Ultimate Guide with Examples

    hypothesis make decision

  5. What is a Hypothesis

    hypothesis make decision

  6. How to Write a Strong Hypothesis in 6 Simple Steps

    hypothesis make decision

VIDEO

  1. Lecture 14 Decision Makers ( Hypothesis Testing )

  2. How To Make Decision Rule In Hypothesis Testing For Z-Statistic In Statistics In Urdu Hindi

  3. Concept of Hypothesis

  4. Step 5: Make a Decision

  5. Strategies for Using Hypothesis to Make Your In-class Discussions More Engaging

  6. What Is A Hypothesis?

COMMENTS

  1. How to Write a Strong Hypothesis | Steps & Examples - Scribbr

    A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection.

  2. A Beginner’s Guide to Hypothesis Testing in Business

    If you’re new to data-driven decision-making, you might be wondering how data translates into business strategy. The answer lies in generating a hypothesis and verifying or rejecting it based on what various forms of data tell you.

  3. Hypothesis Testing | A Step-by-Step Guide with Easy Examples

    State your research hypothesis as a null hypothesis and alternate hypothesis (H o) and (H a or H 1). Collect data in a way designed to test the hypothesis. Perform an appropriate statistical test. Decide whether to reject or fail to reject your null hypothesis. Present the findings in your results and discussion section.

  4. Step-by-step guide to hypothesis testing in statistics

    1. Set Up Your Hypotheses. 2. Choose the Test. 3. Set the Significance Level. 4. Gather and Analyze Data. 5. Find the p-Value. 6. Make Your Decision. 7. Report Your Findings. Understanding Hypothesis Testing: A Simple Explanation. 1. What is the Null and Alternative Hypotheses? 2. One-Tailed vs. Two-Tailed Tests. 3. Common Misunderstandings.

  5. Hypothesis Testing - A Deep Dive into Hypothesis Testing, The ...

    In simple terms, hypothesis testing is a method used to make decisions or inferences about population parameters based on sample data. Imagine being handed a dice and asked if it’s biased. By rolling it a few times and analyzing the outcomes, you’d be engaging in the essence of hypothesis testing.

  6. 6a.2 - Steps for Hypothesis Tests | STAT 500 - Statistics Online

    Make a decision about the null hypothesis: In this step, we decide to either reject the null hypothesis or decide to fail to reject the null hypothesis. Notice we do not make a decision where we will accept the null hypothesis.

  7. Hypothesis Testing | STAT 504 - Statistics Online

    Key Topics: Basic approach. Null and alternative hypothesis. Decision making and the p -value. Z-test & Nonparametric alternative. Basic approach to hypothesis testing. State a model describing the relationship between the explanatory variables and the outcome variable (s) in the population and the nature of the variability.

  8. Hypothesis Testing: A Comprehensive Guide to Scientific ...

    Hypothesis testing is a method used in statistics to decide whether a statement about a population parameter is likely to be true based on sample data. The process involves making an initial assumption, observing data, then determining how compatible the data is with the assumption.

  9. Mastering Hypothesis Testing: A Comprehensive Guide for ...

    Make a Decision: - Based on the test statistic and the predetermined α level, a decision is made. If the test statistic falls beyond the critical value determined by α, the null hypothesis is...

  10. Hypothesis Testing: a Practical Intro | Towards Data Science

    Feb 8, 2021. -- 1. A short primer on why we can reject hypotheses, but cannot accept them, with examples and visuals. Image by the author. Hypothesis testing is the basis of classical statistical inference.