• Number Charts
  • Multiplication
  • Long division
  • Basic operations
  • Telling time
  • Place value
  • Roman numerals
  • Fractions & related
  • Add, subtract, multiply,   and divide fractions
  • Mixed numbers vs. fractions
  • Equivalent fractions
  • Prime factorization & factors
  • Fraction Calculator
  • Decimals & Percent
  • Add, subtract, multiply,   and divide decimals
  • Fractions to decimals
  • Percents to decimals
  • Percentage of a number
  • Percent word problems
  • Classify triangles
  • Classify quadrilaterals
  • Circle worksheets
  • Area & perimeter of rectangles
  • Area of triangles & polygons
  • Coordinate grid, including   moves & reflections
  • Volume & surface area
  • Pre-algebra
  • Square Roots
  • Order of operations
  • Scientific notation
  • Proportions
  • Ratio word problems
  • Write expressions
  • Evaluate expressions
  • Simplify expressions
  • Linear equations
  • Linear inequalities
  • Graphing & slope
  • Equation calculator
  • Equation editor
  • Elementary Math Games
  • Addition and subtraction
  • Math facts practice
  • The four operations
  • Factoring and number theory
  • Geometry topics
  • Middle/High School
  • Statistics & Graphs
  • Probability
  • Trigonometry
  • Logic and proof
  • For all levels
  • Favorite math puzzles
  • Favorite challenging puzzles
  • Math in real world
  • Problem solving & projects
  • For gifted children
  • Math history
  • Math games and fun websites
  • Interactive math tutorials
  • Math help & online tutoring
  • Assessment, review & test prep
  • Online math curricula
→ → Speed, time, and distance

Make customizable worksheets about constant (or average) speed, time, and distance for and courses (grades 6-9). Both PDF and html formats are available. You can choose the types of word problems in the worksheet, the number of problems, metric or customary units, the way time is expressed (hours/minutes, fractional hours, or decimal hours), and the amount of workspace for each problem.

All worksheets include an on the 2nd page of the file.

Please use the quick links below to generate some common types of worksheets.

: How far can it go or how long does the trip take - using whole or half hours

: How far can it go, how long does the trip take, or what is the average speed - using whole or half hours : How far can it go, how long does the trip take, or what is the average speed - using quarter hours : How far can it go, how long does the trip take, or what is the average speed - time to the 5-minute intervals : problems involve a conversion of minutes to hours.
time is given to the fourth of an hour.

time is given to the twelfth of an hour.

problems involve conversion of a time unit



 
(These determine the number of problems)

decimal digits.


and the speed in kilometers per . and the speed in per hour.
Number of empty lines below the problem (workspace)   Font Size: 
Additional title & instructions  (HTML allowed)


Key to Algebra workbook series

Real World Algebra by Edward Zaccaro

Algebra is often taught abstractly with little or no emphasis on what algebra is or how it can be used to solve real problems. Just as English can be translated into other languages, word problems can be "translated" into the math language of algebra and easily solved. Real World Algebra explains this process in an easy to understand format using cartoons and drawings. This makes self-learning easy for both the student and any teacher who never did quite understand algebra. Includes chapters on algebra and money, algebra and geometry, algebra and physics, algebra and levers and many more. Designed for children in grades 4-9 with higher math ability and interest but could be used by older students and adults as well. Contains 22 chapters with instruction and problems at three levels of difficulty.

ChiliMath logo 2024 updated

Distance Formula Exercises

Distance formula practice problems with answers.

Here are ten (10) practice exercises about the distance formula. As you engage with these problems, my hope is that you gain a deeper understanding of how to apply the distance formula. Good luck!

the distance between points A and B is the square root of the of the sum of the difference of the x coordinates and the difference of the y coordinates

Problem 1: How far is the point [latex]\left( { – 4,6} \right)[/latex] from the origin?

[latex]\color{black}2\sqrt {13} [/latex] units

Problem 2: Find the distance between the points [latex]\left( {4,7} \right)[/latex] and [latex]\left( {1, – 6} \right)[/latex]. Round your answer to the nearest hundredth.

[latex]\color{black}13.34[/latex] units

Problem 3: Find the distance between the points on the XY-plane. Round your answer to one decimal place.

two points on the xy-plane. these points are (-4,2) and (3,-3).

[latex]\color{black}8.6[/latex] units

Problem 4: Determine the distance between points on the coordinate plane. Round your answer to two decimal places.

two points on the coordinate plane. the points are (0,3) and (-4,-4).

[latex]\color{black}8.06[/latex] units

Problem 5: The chord of a circle has endpoints as shown below (in green dots). What is the length of the chord?

a chord of a circle with endpoints (-2,1) and (-10,5)

[latex]\color{black}4\sqrt 5[/latex] units

Problem 6: The diameter of a circle has endpoints as shown below (in red dots). What is the length of the diameter?

a circle with a diameter having endpoints (2,-1) and (4,2)

[latex]\color{black}\sqrt 13[/latex] units

Problem 7: Find the two points on the x-axis that are [latex]15[/latex] units away from the point [latex]\left( {-2, 9} \right)[/latex].

[latex]\left( {10,0} \right)[/latex] and [latex]\left( { – 14,0} \right)[/latex]

Problem 8: Find the two points found on the y-axis which are [latex]25[/latex] units from the point [latex]\left( {7, -5} \right)[/latex].

[latex]\left( {0,19} \right)[/latex] and [latex]\left( {0, – 29} \right)[/latex]

Problem 9: Find the values of [latex]\color{red}k[/latex] such that the points [latex]\left( {{\color{red}k}, – 1} \right)[/latex] and [latex]\left( {5, 4} \right)[/latex] have a distance of [latex]{13}[/latex] units.

[latex]{k_1} = – 7[/latex] and [latex]{k_2} = 17[/latex]

Problem 10: Find the values of [latex]\color{red}m[/latex] such that the points [latex]\left( {{\color{red}m},3} \right)[/latex] and [latex]\left( {1,{\color{red}m}} \right)[/latex] are [latex]10[/latex] units apart.

[latex]{m_1} = – 5[/latex] and [latex]{m_2} = 9[/latex]

You may also be interested in these related math lessons or tutorials:

Distance Formula

Distance between Point and Line Formula

GCFGlobal Logo

  • Get started with computers
  • Learn Microsoft Office
  • Apply for a job
  • Improve my work skills
  • Design nice-looking docs
  • Getting Started
  • Smartphones & Tablets
  • Typing Tutorial
  • Online Learning
  • Basic Internet Skills
  • Online Safety
  • Social Media
  • Zoom Basics
  • Google Docs
  • Google Sheets
  • Career Planning
  • Resume Writing
  • Cover Letters
  • Job Search and Networking
  • Business Communication
  • Entrepreneurship 101
  • Careers without College
  • Job Hunt for Today
  • 3D Printing
  • Freelancing 101
  • Personal Finance
  • Sharing Economy
  • Decision-Making
  • Graphic Design
  • Photography
  • Image Editing
  • Learning WordPress
  • Language Learning
  • Critical Thinking
  • For Educators
  • Translations
  • Staff Picks
  • English expand_more expand_less

Algebra Topics  - Distance Word Problems

Algebra topics  -, distance word problems, algebra topics distance word problems.

GCFLearnFree Logo

Algebra Topics: Distance Word Problems

Lesson 10: distance word problems.

/en/algebra-topics/introduction-to-word-problems/content/

What are distance word problems?

Distance word problems are a common type of algebra word problems. They involve a scenario in which you need to figure out how fast , how far , or how long one or more objects have traveled. These are often called train problems because one of the most famous types of distance problems involves finding out when two trains heading toward each other cross paths.

In this lesson, you'll learn how to solve train problems and a few other common types of distance problems. But first, let's look at some basic principles that apply to any distance problem.

The basics of distance problems

There are three basic aspects to movement and travel: distance , rate , and time . To understand the difference among these, think about the last time you drove somewhere.

distance problem solving worksheets

The distance is how far you traveled. The rate is how fast you traveled. The time is how long the trip took.

The relationship among these things can be described by this formula:

distance = rate x time d = rt

In other words, the distance you drove is equal to the rate at which you drove times the amount of time you drove. For an example of how this would work in real life, just imagine your last trip was like this:

  • You drove 25 miles—that's the distance .
  • You drove an average of 50 mph—that's the rate .
  • The drive took you 30 minutes, or 0 .5 hours—that's the time .

According to the formula, if we multiply the rate and time , the product should be our distance.

distance problem solving worksheets

And it is! We drove 50 mph for 0.5 hours—and 50 ⋅ 0.5 equals 25 , which is our distance.

What if we drove 60 mph instead of 50? How far could we drive in 30 minutes? We could use the same formula to figure this out.

60 ⋅ 0.5 is 30, so our distance would be 30 miles.

Solving distance problems

When you solve any distance problem, you'll have to do what we just did—use the formula to find distance , rate , or time . Let's try another simple problem.

On his day off, Lee took a trip to the zoo. He drove an average speed of 65 mph, and it took him two-and-a-half hours to get from his house to the zoo. How far is the zoo from his house?

First, we should identify the information we know. Remember, we're looking for any information about distance, rate, or time. According to the problem:

  • The rate is 65 mph.
  • The time is two-and-a-half hours, or 2.5 hours.
  • The distance is unknown—it's what we're trying to find.

You could picture Lee's trip with a diagram like this:

distance problem solving worksheets

This diagram is a start to understanding this problem, but we still have to figure out what to do with the numbers for distance , rate , and time . To keep track of the information in the problem, we'll set up a table. (This might seem excessive now, but it's a good habit for even simple problems and can make solving complicated problems much easier.) Here's what our table looks like:

distanceratetime
d652.5

We can put this information into our formula: distance = rate ⋅ time .

We can use the distance = rate ⋅ time formula to find the distance Lee traveled.

The formula d = rt looks like this when we plug in the numbers from the problem. The unknown distance is represented with the variable d .

d = 65 ⋅ 2.5

To find d , all we have to do is multiply 65 and 2.5. 65 ⋅ 2.5 equals 162.5 .

We have an answer to our problem: d = 162.5. In other words, the distance Lee drove from his house to the zoo is 162.5 miles.

Be careful to use the same units of measurement for rate and time. It's possible to multiply 65 miles per hour by 2.5 hours because they use the same unit: an hour . However, what if the time had been written in a different unit, like in minutes ? In that case, you'd have to convert the time into hours so it would use the same unit as the rate.

Solving for rate and time

In the problem we just solved we calculated for distance , but you can use the d = rt formula to solve for rate and time too. For example, take a look at this problem:

After work, Janae walked in her neighborhood for a half hour. She walked a mile-and-a-half total. What was her average speed in miles per hour?

We can picture Janae's walk as something like this:

distance problem solving worksheets

And we can set up the information from the problem we know like this:

distanceratetime
1.5r0.5

The table is repeating the facts we already know from the problem. Janae walked one-and-a-half miles or 1.5 miles in a half hour, or 0.5 hours.

As always, we start with our formula. Next, we'll fill in the formula with the information from our table.

The rate is represented by r because we don't yet know how fast Janae was walking. Since we're solving for r , we'll have to get it alone on one side of the equation.

1.5 = r ⋅ 0.5

Our equation calls for r to be multiplied by 0.5, so we can get r alone on one side of the equation by dividing both sides by 0.5: 1.5 / 0.5 = 3 .

r = 3 , so 3 is the answer to our problem. Janae walked 3 miles per hour.

In the problems on this page, we solved for distance and rate of travel, but you can also use the travel equation to solve for time . You can even use it to solve certain problems where you're trying to figure out the distance, rate, or time of two or more moving objects. We'll look at problems like this on the next few pages.

Two-part and round-trip problems

Do you know how to solve this problem?

Bill took a trip to see a friend. His friend lives 225 miles away. He drove in town at an average of 30 mph, then he drove on the interstate at an average of 70 mph. The trip took three-and-a-half hours total. How far did Bill drive on the interstate?

This problem is a classic two-part trip problem because it's asking you to find information about one part of a two-part trip. This problem might seem complicated, but don't be intimidated!

distance problem solving worksheets

You can solve it using the same tools we used to solve the simpler problems on the first page:

  • The travel equation d = rt
  • A table to keep track of important information

Let's start with the table . Take another look at the problem. This time, the information relating to distance , rate , and time has been underlined.

Bill took a trip to see a friend. His friend lives 225 miles away. He drove in town at an average of 30 mph , then he drove on the interstate at an average of 70 mph . The trip took three-and-a-half hours total. How far did Bill drive on the interstate?

If you tried to fill in the table the way we did on the last page, you might have noticed a problem: There's too much information. For instance, the problem contains two rates— 30 mph and 70 mph . To include all of this information, let's create a table with an extra row. The top row of numbers and variables will be labeled in town , and the bottom row will be labeled interstate .

distanceratetime
in town30
interstate70

We filled in the rates, but what about the distance and time ? If you look back at the problem, you'll see that these are the total figures, meaning they include both the time in town and on the interstate. So the total distance is 225 . This means this is true:

Interstate distance + in-town distance = Total distance

Together, the interstate distance and in-town distance are equal to the total distance. See?

distance problem solving worksheets

In any case, we're trying to find out how far Bill drove on the interstate , so let's represent this number with d . If the interstate distance is d , it means the in-town distance is a number that equals the total, 225 , when added to d . In other words, it's equal to 225 - d .

distance problem solving worksheets

We can fill in our chart like this:

distanceratetime
in town225 - d30
interstated70

We can use the same technique to fill in the time column. The total time is 3.5 hours . If we say the time on the interstate is t , then the remaining time in town is equal to 3.5 - t . We can fill in the rest of our chart.

distanceratetime
in town225 - d303.5 - t
interstated70t

Now we can work on solving the problem. The main difference between the problems on the first page and this problem is that this problem involves two equations. Here's the one for in-town travel :

225 - d = 30 ⋅ (3.5 - t)

And here's the one for interstate travel :

If you tried to solve either of these on its own, you might have found it impossible: since each equation contains two unknown variables, they can't be solved on their own. Try for yourself. If you work either equation on its own, you won't be able to find a numerical value for d . In order to find the value of d , we'll also have to know the value of t .

We can find the value of t in both problems by combining them. Let's take another look at our travel equation for interstate travel.

While we don't know the numerical value of d , this equation does tell us that d is equal to 70 t .

Since 70 t and d are equal , we can replace d with 70 t . Substituting 70 t for d in our equation for interstate travel won't help us find the value of t —all it tells us is that 70 t is equal to itself, which we already knew.

But what about our other equation, the one for in-town travel?

When we replace the d in that equation with 70 t , the equation suddenly gets much easier to solve.

225 - 70t = 30 ⋅ (3.5 - t)

Our new equation might look more complicated, but it's actually something we can solve. This is because it only has one variable: t . Once we find t , we can use it to calculate the value of d —and find the answer to our problem.

To simplify this equation and find the value of t , we'll have to get the t alone on one side of the equals sign. We'll also have to simplify the right side as much as possible.

Let's start with the right side: 30 times (3.5 - t ) is 105 - 30 t .

225 - 70t = 105 - 30t

Next, let's cancel out the 225 next to 70 t . To do this, we'll subtract 225 from both sides. On the right side, it means subtracting 225 from 105 . 105 - 225 is -120 .

- 70t = -120 - 30t

Our next step is to group like terms—remember, our eventual goal is to have t on the left side of the equals sign and a number on the right . We'll cancel out the -30 t on the right side by adding 30 t to both sides. On the right side, we'll add it to -70 t . -70 t + 30 t is -40 t .

- 40t = -120

Finally, to get t on its own, we'll divide each side by its coefficient: -40. -120 / - 40 is 3 .

So t is equal to 3 . In other words, the time Bill traveled on the interstate is equal to 3 hours . Remember, we're ultimately trying to find the distanc e Bill traveled on the interstate. Let's look at the interstate row of our chart again and see if we have enough information to find out.

distanceratetime
interstated703

It looks like we do. Now that we're only missing one variable, we should be able to find its value pretty quickly.

To find the distance, we'll use the travel formula distance = rate ⋅ time .

We now know that Bill traveled on the interstate for 3 hours at 70 mph , so we can fill in this information.

d = 3 ⋅ 70

Finally, we finished simplifying the right side of the equation. 3 ⋅ 70 is 210 .

So d = 210 . We have the answer to our problem! The distance is 210 . In other words, Bill drove 210 miles on the interstate.

distance problem solving worksheets

Solving a round-trip problem

It might have seemed like it took a long time to solve the first problem. The more practice you get with these problems, the quicker they'll go. Let's try a similar problem. This one is called a round-trip problem because it describes a round trip—a trip that includes a return journey. Even though the trip described in this problem is slightly different from the one in our first problem, you should be able to solve it the same way. Let's take a look:

Eva drove to work at an average speed of 36 mph. On the way home, she hit traffic and only drove an average of 27 mph. Her total time in the car was 1 hour and 45 minutes, or 1.75 hours. How far does Eva live from work?

If you're having trouble understanding this problem, you might want to visualize Eva's commute like this:

distance problem solving worksheets

As always, let's start by filling in a table with the important information. We'll make a row with information about her trip to work and from work .

1.75 - t to describe the trip from work. (Remember, the total travel time is 1.75 hours , so the time to work and from work should equal 1.75 .)

From our table, we can write two equations:

  • The trip to work can be represented as d = 36 t .
  • The trip from work can be represented as d = 27 (1.75 - t ) .

In both equations, d represents the total distance. From the diagram, you can see that these two equations are equal to each other—after all, Eva drives the same distance to and from work .

distance problem solving worksheets

Just like with the last problem we solved, we can solve this one by combining the two equations.

We'll start with our equation for the trip from work .

d = 27 (1.75 - t)

Next, we'll substitute in the value of d from our to work equation, d = 36 t . Since the value of d is 36 t , we can replace any occurrence of d with 36 t .

36t = 27 (1.75 - t)

Now, let's simplify the right side. 27 ⋅(1.75 - t ) is 47.25 .

36t = 47.25 - 27t

Next, we'll cancel out -27 t by adding 27 t to both sides of the equation. 36 t + 27 t is 63 t .

63t = 47.25

Finally, we can get t on its own by dividing both sides by its coefficient: 63 . 47.25 / 63 is .75 .

t is equal to .75 . In other words, the time it took Eva to drive to work is .75 hours . Now that we know the value of t , we'll be able to can find the distance to Eva's work.

If you guessed that we were going to use the travel equation again, you were right. We now know the value of two out of the three variables, which means we know enough to solve our problem.

First, let's fill in the values we know. We'll work with the numbers for the trip to work . We already knew the rate : 36 . And we just learned the time : .75 .

d = 36 ⋅ .75

Now all we have to do is simplify the equation: 36 ⋅ .75 = 27 .

d is equal to 27 . In other words, the distance to Eva's work is 27 miles . Our problem is solved.

distance problem solving worksheets

Intersecting distance problems

An intersecting distance problem is one where two things are moving toward each other. Here's a typical problem:

Pawnee and Springfield are 420 miles apart. A train leaves Pawnee heading to Springfield at the same time a train leaves Springfield heading to Pawnee. One train is moving at a speed of 45 mph, and the other is moving 60 mph. How long will they travel before they meet?

This problem is asking you to calculate how long it will take these two trains moving toward each other to cross paths. This might seem confusing at first. Even though it's a real-world situation, it can be difficult to imagine distance and motion abstractly. This diagram might help you get a sense of what this situation looks like:

distance problem solving worksheets

If you're still confused, don't worry! You can solve this problem the same way you solved the two-part problems on the last page. You'll just need a chart and the travel formula .

Pawnee and Springfield are 420 miles apart. A train leaves Pawnee heading toward Springfield at the same time a train leaves Springfield heading toward Pawnee. One train is moving at a speed of 45 mph , and the other is moving 60 mph . How long will they travel before they meet?

Let's start by filling in our chart. Here's the problem again, this time with the important information underlined. We can start by filling in the most obvious information: rate . The problem gives us the speed of each train. We'll label them fast train and slow train . The fast train goes 60 mph . The slow train goes only 45 mph .

distance problem solving worksheets

We can also put this information into a table:

distanceratetime
fast train60
slow train45

We don't know the distance each train travels to meet the other yet—we just know the total distance. In order to meet, the trains will cover a combined distance equal to the total distance. As you can see in this diagram, this is true no matter how far each train travels.

distance problem solving worksheets

This means that—just like last time—we'll represent the distance of one with d and the distance of the other with the total minus d. So the distance for the fast train will be d , and the distance for the slow train will be 420 - d .

distanceratetime
fast traind60
slow train420 - d45

Because we're looking for the time both trains travel before they meet, the time will be the same for both trains. We can represent it with t .

distanceratetime
fast traind60t
slow train420 - d45t

The table gives us two equations: d = 60 t and 420 - d = 45 t . Just like we did with the two-part problems, we can combine these two equations.

The equation for the fast train isn't solvable on its own, but it does tell us that d is equal to 60 t .

The other equation, which describes the slow train, can't be solved alone either. However, we can replace the d with its value from the first equation.

420 - d = 45t

Because we know that d is equal to 60 t , we can replace the d in this equation with 60 t . Now we have an equation we can solve.

420 - 60t = 45t

To solve this equation, we'll need to get t and its coefficients on one side of the equals sign and any other numbers on the other. We can start by canceling out the -60 t on the left by adding 60 t to both sides. 45 t + 60 t is 105 t .

Now we just need to get rid of the coefficient next to t . We can do this by dividing both sides by 105 . 420 / 105 is 4 .

t = 4 . In other words, the time it takes the trains to meet is 4 hours . Our problem is solved!

If you want to be sure of your answer, you can check it by using the distance equation with t equal to 4 . For our fast train, the equation would be d = 60 ⋅ 4 . 60 ⋅ 4 is 240 , so the distance our fast train traveled would be 240 miles. For our slow train, the equation would be d = 45 ⋅ 4 . 45 ⋅ 4 is 180 , so the distance traveled by the slow train is 180 miles . Remember how we said the distance the slow train and fast train travel should equal the total distance? 240 miles + 180 miles equals 420 miles , which is the total distance from our problem. Our answer is correct.

Practice problem 1

Here's another intersecting distance problem. It's similar to the one we just solved. See if you can solve it on your own. When you're finished, scroll down to see the answer and an explanation.

Jon and Dani live 270 miles apart. One day, they decided to drive toward each other and hang out wherever they met. Jon drove an average of 65 mph, and Dani drove an average of 70 mph. How long did they drive before they met up?

Problem 1 answer

Here's practice problem 1:

Jon and Dani live 270 miles apart. One day, they decided to drive toward each other and hang out wherever they met. Jon drove an average of 65 mph, and Dani drove 70 mph. How long did they drive before they met up?

Answer: 2 hours .

Let's solve this problem like we solved the others. First, try making the chart. It should look like this:

distanceratetime
Jond65t
Dani270 - d70t

Here's how we filled in the chart:

  • Distance: Together, Dani and Jon will have covered the total distance between them by the time they meet up. That's 270 . Jon's distance is represented by d , so Dani's distance is 270 - d .
  • Rate: The problem tells us Dani and Jon's speeds. Dani drives 65 mph , and Jon drives 70 mph .
  • Time: Because Jon and Dani drive the same amount of time before they meet up, both of their travel times are represented by t .

Now we have two equations. The equation for Jon's travel is d = 65 t . The equation for Dani's travel is 270 - d = 70 t . To solve this problem, we'll need to combine them.

The equation for Jon tells us that d is equal to 65 t . This means we can combine the two equations by replacing the d in Dani's equation with 65 t .

270 - 65t = 70t

Let's get t on one side of the equation and a number on the other. The first step to doing this is to get rid of -65 t on the left side. We'll cancel it out by adding 65 t to both sides: 70 t + 65 t is 135 t .

All that's left to do is to get rid of the 135 next to the t . We can do this by dividing both sides by 135 : 270 / 135 is 2 .

That's it. t is equal to 2 . We have the answer to our problem: Dani and Jon drove 2 hours before they met up.

Overtaking distance problems

The final type of distance problem we'll discuss in this lesson is a problem in which one moving object overtakes —or passes —another. Here's a typical overtaking problem:

The Hill family and the Platter family are going on a road trip. The Hills left 3 hours before the Platters, but the Platters drive an average of 15 mph faster. If it takes the Platter family 13 hours to catch up with the Hill family, how fast are the Hills driving?

You can picture the moment the Platter family left for the road trip a little like this:

distance problem solving worksheets

The problem tells us that the Platter family will catch up with the Hill family in 13 hours and asks us to use this information to find the Hill family's rate . Like some of the other problems we've solved in this lesson, it might not seem like we have enough information to solve this problem—but we do. Let's start making our chart. The distance can be d for both the Hills and the Platters—when the Platters catch up with the Hills, both families will have driven the exact same distance.

distanceratetime
the Hillsd
the Plattersd

Filling in the rate and time will require a little more thought. We don't know the rate for either family—remember, that's what we're trying to find out. However, we do know that the Platters drove 15 mph faster than the Hills. This means if the Hill family's rate is r , the Platter family's rate would be r + 15 .

distanceratetime
the Hillsdr
the Plattersdr + 15

Now all that's left is the time. We know it took the Platters 13 hours to catch up with the Hills. However, remember that the Hills left 3 hours earlier than the Platters—which means when the Platters caught up, they'd been driving 3 hours more than the Platters. 13 + 3 is 16 , so we know the Hills had been driving 16 hours by the time the Platters caught up with them.

distanceratetime
the Hillsdr16
the Plattersdr + 1513

Our chart gives us two equations. The Hill family's trip can be described by d = r ⋅ 16 . The equation for the Platter family's trip is d = ( r + 15) ⋅ 13 . Just like with our other problems, we can combine these equations by replacing a variable in one of them.

The Hill family equation already has the value of d equal to r ⋅ 16. So we'll replace the d in the Platter equation with r ⋅ 16 . This way, it will be an equation we can solve.

r ⋅ 16 = (r + 15) ⋅ 13

First, let's simplify the right side: r ⋅ 16 is 16 r .

16r = (r + 15) ⋅ 13

Next, we'll simplify the right side and multiply ( r + 15) by 13 .

16r = 13r + 195

We can get both r and their coefficients on the left side by subtracting 13 r from 16 r : 16 r - 13 r is 3 r .

Now all that's left to do is get rid of the 3 next to the r . To do this, we'll divide both sides by 3: 195 / 3 is 65 .

So there's our answer: r = 65. The Hill family drove an average of 65 mph .

You can solve any overtaking problem the same way we solved this one. Just remember to pay special attention when you're setting up your chart. Just like the Hill family did in this problem, the person or vehicle who started moving first will always have a greater travel time.

Practice problem 2

Try solving this problem. It's similar to the problem we just solved. When you're finished, scroll down to see the answer and an explanation.

A train moving 60 mph leaves the station at noon. An hour later, a train moving 80 mph leaves heading the same direction on a parallel track. What time does the second train catch up to the first?

Problem 2 answer

Here's practice problem 2:

Answer: 4 p.m.

To solve this problem, start by making a chart. Here's how it should look:

distanceratetime
fast traind80t
slow traind60t + 1

Here's an explanation of the chart:

  • Distance: Both trains will have traveled the same distance by the time the fast train catches up with the slow one, so the distance for both is d .
  • Rate: The problem tells us how fast each train was going. The fast train has a rate of 80 mph , and the slow train has a rate of 60 mph .
  • Time: We'll use t to represent the fast train's travel time before it catches up. Because the slow train started an hour before the fast one, it will have been traveling one hour more by the time the fast train catches up. It's t + 1 .

Now we have two equations. The equation for the fast train is d = 80 t . The equation for the slow train is d = 60 ( t + 1) . To solve this problem, we'll need to combine the equations.

The equation for the fast train says d is equal to 80 t . This means we can combine the two equations by replacing the d in the slow train's equation with 80 t .

80t = 60 (t + 1)

First, let's simplify the right side of the equation: 60 ⋅ ( t + 1) is 60 t + 60 .

80t = 60t + 60

To solve the equation, we'll have to get t on one side of the equals sign and a number on the other. We can get rid of 60 t on the right side by subtracting 60 t from both sides: 80 t - 60 t is 20 t .

Finally, we can get rid of the 20 next to t by dividing both sides by 20 . 60 divided by 20 is 3 .

So t is equal to 3 . The fast train traveled for 3 hours . However, it's not the answer to our problem. Let's look at the original problem again. Pay attention to the last sentence, which is the question we're trying to answer.

Our problem doesn't ask how long either of the trains traveled. It asks what time the second train catches up with the first.

The problem tells us that the slow train left at noon and the fast one left an hour later. This means the fast train left at 1 p.m . From our equations, we know the fast train traveled 3 hours . 1 + 3 is 4 , so the fast train caught up with the slow one at 4 p.m . The answer to the problem is 4 p.m .

previous

/en/algebra-topics/algebra-quiz/content/

distance problem solving worksheets

  • HW Guidelines
  • Study Skills Quiz
  • Find Local Tutors
  • Demo MathHelp.com
  • Join MathHelp.com

Select a Course Below

  • ACCUPLACER Math
  • Math Placement Test
  • PRAXIS Math
  • + more tests
  • 5th Grade Math
  • 6th Grade Math
  • Pre-Algebra
  • College Pre-Algebra
  • Introductory Algebra
  • Intermediate Algebra
  • College Algebra

"Distance" Word Problems

Explanation More Examples

What is a "distance" word problem?

"Distance" word problems, often also called "uniform rate" problems, involve something travelling at some fixed and steady ("uniform") pace ("rate", "velocity", or "speed"), or else you are told to regard to object as moving at some average speed.

Content Continues Below

MathHelp.com

Distance Word Problems on MathHelp.com

Distance Word Problems

Whenever you read a problem that involves "how fast", "how far", or "for how long", you should think of the distance equation, d = rt , where d stands for distance, r stands for the (constant or average) rate of speed, and t stands for time.

Make sure that the units for time and distance agree with the units for the rate. For instance, if they give you a rate of feet per second, then your time must be in seconds and your distance must be in feet. Sometimes they try to trick you by using mis-matched units, and you have to catch this and convert to the correct units.

In case you're wondering, this type of exercise requires that the rate be fixed and steady (that is, unchanging) for the d = rt formula to work. The only way you can deal with a speed that might be changing over time is to take the average speed over the time or distance in question. Working directly with changing speeds will be something you'll encounter in calculus, as it requires calculus-based (or more advanced) methods.

What is the difference between a fixed speed and an average speed?

A fixed-speed exercise is one in which the car, say, is always going exactly sixty miles an hour; in three hours, the car, on cruise-control, will have gone 180 miles. An average-speed exercise is one in which the car, say, averaged forty miles an hour, but this average includes the different speeds related to stop lights, highways, and back roads; in three hours the car went 120 miles, though the car's speed was not constant. Most of the exercises you'll see will be fixed-speed exercises, but obviously they're not very "real world". It's a simplification they do in order to make the situation feasible using only algebraic methods.

What is an example of a "distance" word problem?

  • A 555 -mile, 5 -hour plane trip was flown at two speeds. For the first part of the trip, the average speed was 105 mph. Then the tailwind picked up, and the remainder of the trip was flown at an average speed of 115 mph. For how long did the plane fly at each speed?

There is a method for setting up and solving these exercises that I first encountered well after I'd actually been doing them while taking a class as an undergraduate. But, as soon as I was introduced to the method, I switched over, because it is *so* way easier.

First I set up a grid, with the columns being labelled with the variables from the "distance" formula, and the rows being labelled with the "parts" involved:

 

first part

 

second part

 

 

 

total

 

 

 

In the first part, the plane covered some distance. I don't know how much, so I'll need a variable to stand for this unknown value. I'll use the variable they give me in the distance equation:

They gave me the speed, or rate, for this part, so I'll add this to my table:

 

first part

105

second part

 

 

 

total

 

 

 

The plane flew for some amount of time during this first part, but I don't know how long that was. So I need a variable to stand for this unknown value; I'll use the variable from the distance equation:

For the second part, the plane travelled the rest of the total distance. I don't know the exact distance that was flown during this second part, but I do know that it was "however much was left of the 555 miles, after the first d miles were flown in the first part. "How much was left after [some amount] was taken out" is expressed with subtraction: I take the amount that has been taken care of already, and subtract this from whatever was the total. Adding this to my table, I get:

 

first part

105

second part

555 −

 

 

total

 

 

 

They've given me the speed, or rate, for the second part, and I can use the same "How much is left?" construction for whatever was the time for this second part. So now my table looks like this:

 

first part

105

second part

555 −

115

5 −

total

 

 

 

For the "total" row, I add down (or take info from the exercise statement):

 

first part

105

second part

555 −

115

5 −

total

555

---

5

Advertisement

Why did I not add down in the "rate" column? Because I cannot add rates! In this exercise, adding the rates would have said that the average rate for the entire trip was 105 + 115 = 220 miles per hour. But obviously this makes no sense.

The genius of this table-based method of set-up is that I can now create equations from the rows and columns. In this exercise, there is more than one way to proceed. I'll work with the "distance" equation to create expressions for the distances covered in each part.

Multiplying across, the first row tells me that the distance covered in the first part of the flight was:

1st part distance: 105 t

Again multiplying across, the second row tells me that the distance covered in the second part of the flight was:

2nd part distance: 115(5 − t )

I can add these two partial-distance expressions, and set them equal to the known total distance:

105 t + 115(5 − t ) = 555

This is an equation in one variable, which I can solve:

105 t + 115(5 − t ) = 555 105 t + 575 − 115 t = 555 575 − 10 t = 555 20 = 10 t 2 = t

Looking back at my table, I see the I had defined t to be the time that the plane spent in the air on the first part of its journey. Looking back at the original exercise, I see that they want to know the times that the plane spent at each of the two speeds.

I now have the time for the first part of the flight; the time was two hours. The exercise said that the entire trip was five hours, so the second part must have taken three hours (found by subtracting the first-part time from the total time). They haven't asked for the partial distances, so I now have all the information I need; no further computations are necessary. My answer is:

first part: 2 hours second part: 3 hours

When I was setting up my equation, I mentioned that there was more than one way to proceed. What was the other way? I could have used the table to create an expression for each of the two partial times, added, set the result equal to the given total, and solved for the variable d . Since the distance equation is d  =  rt , then the expressions for the partial times would be created by solving the equation for t  = . My work would have looked like this:

first part: d /105

second part: (555 − d )/115

adding: d /105 + (555 − d )/115 = 5 23 d + 11,655 − 21 d = 12,075 2 d = 420 d = 210

Looking back at my table, I would have seen that this gives me the distance covered in the first half of the flight. Looking back at the exercise, I would have seeing that they are wanting times, not distances. So I would have back-solved for the time for the first part, and then done the subtraction to find the time for the second part. My work would have had more steps, but my answer would have been the same.

There are three things that I hope you take from the above example:

  • Using a table or grid to keep track of what you're doing can be incredibly helpful.
  • It is important to clearly define your variables, so you know (by the end) what you'd meant (back in the beginning), so you can apply your results correctly.
  • You should always check the original exercise, so you can be sure that you're answering the question that they'd actually asked.

(My value for the distance, found above, is correct, but was not what they'd asked for.) But even more important to understand is this:

NEVER TRY TO ADD RATES! Think about it: If you drive 20 mph on one street, and 40 mph on another street, does that mean you averaged 60 mph? Of course not.

Can I even average the rates? If I drove at 20 mph for one hour, and then drove 60 mph for two hours, then I would have travelled 140 miles in three hours, or a little under 47 mph. But 47 is not the average of 20 and 60 .

As you can see, the actual math involved in solving this type of exercise is often quite simple. It's the set-up that's the hard part. So what follows are some more examples, but with just the set-up displayed. Try your hand at solving, and click on the links to get pop-ups from which to check your equations and solutions.

  • An executive drove from home at an average speed of 30 mph to an airport where a helicopter was waiting. The executive boarded the helicopter and flew to the corporate offices at an average speed of 60 mph. The entire distance was 150 miles; the entire trip took three hours. Find the distance from the airport to the corporate offices.

I will start in the usual way, by setting up my table:

 

driving

 

 

 

flying

 

 

 

total

 

 

 

I have labelled my rows so it's clear how they relate to the exercise. Now I need to fill in the rows. As before, I don't know the distance or the time for the part where the executive was driving, so I'll use variables for these unknowns, along with the given rate.

 

driving

30

flying

 

 

 

total

 

 

 

For the flying portion of the trip, I'll use the "how much is left" construction, along with the given rate, to fill in my second row. I'll also fill in the totals.

 

driving

30

flying

150 −

60

3 −

total

150

---

3

The first row gives me the equation d  = 30 t . The second row is messier, giving me the equation:

150 − d = 60(3 − t )

There are various ways I can go from here; I think I'll solve this second equation for the variable d , and then set the results equal to each other.

150 − d = 60(3 − t ) 150 − 60(3 − t ) = d

Setting equal these two expressions for d , I get:

30 t = 150 − 60(3 − t )

Solve for t ; interpret the value; state the final answer.

Algebra Tutors

  • A car and a bus set out at 2 p.m. from the same point, headed in the same direction. The average speed of the car is 30 mph slower than twice the speed of the bus. In two hours, the car is 20 miles ahead of the bus. Find the rate of the car.

Both vehicles travelled for the same amount of time.

 

car

 

 

2

bus

 

 

2

total

 

---

 

The car's values are expressed in terms of the bus' values, so I'll use variables for the bus' unknowns, and then define the car in terms of the bus' variables. This gives me:

 

car

+ 20

2 − 30

2

bus

2

total

---

---

---

(As it turns out, I won't need the "total" row this time.) The car's row gives me:

d + 20 = 2(2 r − 30)

This is not terribly helpful. The second row gives me:

I'll use the second equation to simplify the first equation by substituting " 2 r " from the second equation in for the " d " in the first equation. Then I'll solve the equation for the value of " r ". Finally, I'll need to interpret this value within the context of the exercise, and then I'll state the final answer.

(Remember that the expression for the car's speed, from the table, was 2 r  − 30 , so all you need to do is find the numerical value of this expression. Just evaluate; don't try to solve — again — for the value of r .)

URL: https://www.purplemath.com/modules/distance.htm

Page 1 Page 2

Standardized Test Prep

College math, homeschool math, share this page.

  • Terms of Use
  • Privacy / Cookies
  • About Purplemath
  • About the Author
  • Tutoring from PM
  • Advertising
  • Linking to PM
  • Site licencing

Visit Our Profiles

distance problem solving worksheets

Distance, Speed, and Time (B)

  • Username or Email: Password: signup now | forgot password? Remember Me Username or Email: Password: signup now | forgot password? Remember Me
  • Free Sheets
  • Support & FAQs
  • Go to UK Site

></center></p><h2>Distance, Speed, and Time (B) worksheet</h2><p>Total reviews: (0), distance, speed, and time (b) worksheet description.</p><p>This worksheet follows a similar structure to Distance, Speed, and Time (A). Section A asks learners to consider different distance conversions. Section B then provides some tables to complete the missing quantities. The times given or required in this worksheet are more complex than the ones involved in Distance, Speed, and Time (A). Section C has some problem solving questions which involve other topics such as percentages and standard form.</p><h2>Related to Distance, Speed, and Time (B) worksheet:</h2><p>We love to get your feedback:, get 30 free math worksheets.</p><p>Fill out the form below to get 30 FREE math worksheets.</p><p><center><img style=

Free Mathematics Tutorials

Distance problems with solutions.

The concept of the distance between two points is an important one in mathematics. A set of distance problems with detailed solutions (at the bottom of this page) are presented.


Find the distance between the points (2, 3) and (0, 6).


Find the distance between point (-1, -3) and the midpoint of the line segment joining (2, 4) and (4, 6).


Find x so that the distance between the points (-2, -3) and (-3, x) is equal to 5.


Find x and y if (2, 5) is the midpoint of points (x, y) and (-5, 6).


Find the point (0, y) that is equidistant from (4, -9) and (0, -2).


Show that the triangle that has (0, 1), (2, 3) and (2, -1) as vertices is right isosceles.


Find the length of the hypotenuse of the right triangle whose vertices are given by the points (-2, 1), (1, 1) and (1, 2).


Find a relationship between x and y so that the distance between the points (x, y) and (-2, 4) is equal to 5.


Find a relationship between x and y so that (x, y) is equidistant from the two points (-3, 4) and (0, -3).

Find a relationship between x and y so that the triangle whose vertices are given by (x, y), (1, 1) and (5, 1) is a right triangle with the hypotenuse defined by the points (1, 1) and (5, 1).



D = √ [ (c - a) + (d - b) ]

D = √ [ (0 - 2) + (6 - 3) ]
= √ (13)



M = [ (2 + 4) / 2 , (4 + 6) / 2 ]
= (3, 5)

D = √ [ (3 - (-1)) + (5 - (-3)) ]
= √ (80) = 4 √ (5)



5 = srqt [ (-3 - (-2)) + (x - (-3)) ]

5 = srqt [ 1 + (x + 3) ]

25 = 1 + (x + 3)

(x + 3) = 24
two Solutions: x = -3 + 2 √ (6) and x = -3 - 2 √ (6)



(2, 5) = [ (x + (-5)) / 2 , (y + 6) / 2 ]

2 = (x - 5) / 2 and 5 = (y + 6) / 2

x = 9 and y = 4



D1 = √ [ (4 - 0) + (-9 - y) ]
D2 = √ [ (0 - 0) + (-2 - y) ]

√ [ (4 - 0) + (-9 - y) ] = √ [ (0 - 0) + (-2 - y) ]

16 + (-9 - y) = (-2 - y)
16 + 81 + 18 y + y = 4 + y + 4 y

y = -93 / 14

(0 , -93 / 14)



D1 = distance from (0, 1) to (2, 3)
D2 = distance from (0, 1) to (2, -1)
D2 = distance from (2, 3) to (2, -1)

D1 = √ (8) , D2 = √ (8) and D3 = 4

(D1) + (D2) = √ (8) + √ (8) = 16
(D3) = 4 = 16

(D1) + (D2) = (D3)



D1 = √ [ (1 - -2) + (1 - 1) ] = 3
D2 = √ [ (1 - -2) + (2 - 1) ] = √ (10)
D3 = √ [ (1 - 1) + (2 - 1) ] = 1

(D1) + (D3) = 3 + 1 = 10
(D2) = √(10) = 10

(D1) + (D3) = (D2)



5 = √ [ (-2 - x) + (4 - y) ]

25 = (-2 - x) + (4 - y)



D1 = √ [ (-3 - x) + (4 - y) ]

D2 = √ [ (0 - x) + (-3 - y) ]

√ [ (-3 - x) + (4 - y) ] = √ [ (0 - x) + (-3 - y) ]

(-3 - x) + (4 - y) = (0 - x) + (-3 - y)
9 + x + 6 x + 16 - 8 y + y = x + 9 + y + 6y
6x - 14 y + 16 = 0



h = √ [ (5 - 1) + (1 - 1) ] = 4

a = √ [ (x - 1) + (y - 1) ]
b = √ [ (x - 5) + (y - 1) ]

4 = (x - 1) + (y - 1) + (x - 5) + (y - 1)

(x - 3) + (y - 1) = 2

.
in this site.

Search Here:

  • {link-v-xlrg-1}
  • {sidebar-middle} 

Popular Pages

  • Solutions to Distance Problems
  • Free Geometry Worksheets to Download
  • Rate, Time Distance Problems With Solutions
  • Math Problems, Questions and Online Self Tests
  • Privacy Policy

Distance Formula Worksheets

Distance formula worksheets allow students to have a better understanding of how to use the distance formula to calculate the distance between two points in coordinate geometry. In addition to finding the distance, it can also be used to find the coordinates of a point.

Benefits of Distance Formula Worksheets

If a student uses a well-structured distance formula worksheet, he will have a good foundation of the topic. The distance formula is vastly used in several real life problems related to architecture and design. Hence, understanding the concept is very important. Moreover, it not only ensures that a student can solve sums based on the formula but also develops his conceptual understanding of coordinate geometry.

As these math worksheets are interactive, students can use visual simulations to supplement their learning. This promotes a fun learning experience.

Download Distance Formula Worksheet PDFs

The worksheets are easy to use and offer students the flexibility to learn at their own pace, enabling them to develop their problem solving skills.

Distance Formula Worksheet - 1

Distance Formula Worksheet - 2

Distance Formula Worksheet - 3

Distance Formula Worksheet - 4

Distance Formula Worksheets

Related Topics: More Math Worksheets More Printable Math Worksheets 7th Grade Math

There are six sets of coordinate geometry worksheets:

  • Midpoint Formula

Distance Formula

  • Slope Formula
  • Standard Form & Slope-Intercept Form
  • Parallel Lines
  • Perpendicular Lines

Examples, solutions, videos, and worksheets to help grade 7 students learn how to use the distance formula to find the distance between two points on the coordinate plane.

How to use the Distance Formula to find the distance between two points?

There are two sets of Distance Formula worksheets:

  • Coordinates in integers
  • Coordinates include decimals

The distance formula is a mathematical formula used to find the distance between two points in a two-dimensional Cartesian coordinate system (x, y). It’s a direct application of the Pythagorean Theorem and is widely used in geometry and trigonometry.

The distance formula allows you to calculate the distance (d) between two points, usually denoted as (x 1 , y 1 ) and (x 2 , y 2 ), and is expressed as:

d = √((x 2 - x 1 )² + (y 2 - y 1 )²)

In this formula:

  • (x 1 , y 1 ) are the coordinates of the first point.
  • (x 2 , y 2 ) are the coordinates of the second point.
  • √ represents the square root operation.

To use the distance formula, follow these steps:

  • Identify the coordinates of the two points, which are typically given as (x 1 , y 1 ) and (x 2 , y 2 ).
  • Plug these coordinates into the formula: d = √((x 2 - x 1 )² + (y 2 - y 1 )²)
  • Calculate the differences between the x-coordinates (x 2 - x 1 ) and the y-coordinates (y 2 - y 1 ), square each difference, sum the squared differences, and then take the square root of the sum to find the distance (d).

For example, if you have two points A(3, 4) and B(6, 8), you can use the distance formula to find the distance between them: d = √((6 - 3)² + (8 - 4)²) d = √(3² + 4²) d = √(9 + 16) d = √25 d = 5

So, the distance between points A and B is 5 units.

Click on the following worksheet to get a printable pdf document. Scroll down the page for more Distance Formula Worksheets .

Distance Formula Worksheet

More Distance Formula Worksheets

Printable (Answers on the second page.) Distance Formula Worksheet #1 (coordinates in integers) Distance Formula Worksheet #2 (coordinates include decimals)

Online Quadrants of Coordinates Slope of a Line Slope and Intercept of a Line Midpoint Formula 1 Midpoint Formula 2 Distance Formula 1 Distance Formula 2

Related Lessons & Worksheets

More Printable Worksheets

Mathway Calculator Widget

We welcome your feedback, comments and questions about this site or page. Please submit your feedback or enquiries via our Feedback page.

Solving Problems Involving Distance, Rate, and Time

  • Pre Algebra & Algebra
  • Math Tutorials
  • Exponential Decay
  • Worksheets By Grade

In math, distance, rate, and time are three important concepts you can use to solve many problems if you know the formula. Distance is the length of space traveled by a moving object or the length measured between two points. It is usually denoted by d in math problems .

The rate is the speed at which an object or person travels. It is usually denoted by  r  in equations . Time is the measured or measurable period during which an action, process, or condition exists or continues. In distance, rate, and time problems, time is measured as the fraction in which a particular distance is traveled. Time is usually denoted by t in equations. 

Solving for Distance, Rate, or Time

When you are solving problems for distance, rate, and time, you will find it helpful to use diagrams or charts to organize the information and help you solve the problem. You will also apply the formula that solves distance, rate, and time, which is  distance = rate x tim e. It is abbreviated as:

There are many examples where you might use this formula in real life. For example, if you know the time and rate a person is traveling on a train, you can quickly calculate how far he traveled. And if you know the time and distance a passenger traveled on a plane, you could quickly figure the distance she traveled simply by reconfiguring the formula.

Distance, Rate, and Time Example

You'll usually encounter a distance, rate, and time question as a word problem in mathematics. Once you read the problem, simply plug the numbers into the formula.

For example, suppose a train leaves Deb's house and travels at 50 mph. Two hours later, another train leaves from Deb's house on the track beside or parallel to the first train but it travels at 100 mph. How far away from Deb's house will the faster train pass the other train?

To solve the problem, remember that d represents the distance in miles from Deb's house and t  represents the time that the slower train has been traveling. You may wish to draw a diagram to show what is happening. Organize the information you have in a chart format if you haven't solved these types of problems before. Remember the formula:

distance = rate x time

When identifying the parts of the word problem, distance is typically given in units of miles, meters, kilometers, or inches. Time is in units of seconds, minutes, hours, or years. Rate is distance per time, so its units could be mph, meters per second, or inches per year.

Now you can solve the system of equations:

50t = 100(t - 2) (Multiply both values inside the parentheses by 100.) 50t = 100t - 200 200 = 50t (Divide 200 by 50 to solve for t.) t = 4

Substitute t = 4 into train No. 1

d = 50t = 50(4) = 200

Now you can write your statement. "The faster train will pass the slower train 200 miles from Deb's house."

Sample Problems

Try solving similar problems. Remember to use the formula that supports what you're looking for—distance, rate, or time.

d = rt (multiply) r = d/t (divide) t = d/r (divide)

Practice Question 1

A train left Chicago and traveled toward Dallas. Five hours later another train left for Dallas traveling at 40 mph with a goal of catching up with the first train bound for Dallas. The second train finally caught up with the first train after traveling for three hours. How fast was the train that left first going?

Remember to use a diagram to arrange your information. Then write two equations to solve your problem. Start with the second train, since you know the time and rate it traveled:

Second train t x r = d 3 x 40 = 120 miles First train t x r = d 8 hours x r = 120 miles Divide each side by 8 hours to solve for r. 8 hours/8 hours x r = 120 miles/8 hours r = 15 mph

Practice Question 2

One train left the station and traveled toward its destination at 65 mph. Later, another train left the station traveling in the opposite direction of the first train at 75 mph. After the first train had traveled for 14 hours, it was 1,960 miles apart from the second train. How long did the second train travel? First, consider what you know:

First train r = 65 mph, t = 14 hours, d = 65 x 14 miles Second train r = 75 mph, t = x hours, d = 75x miles

Then use the d = rt formula as follows:

d (of train 1) + d (of train 2) = 1,960 miles 75x + 910 = 1,960 75x = 1,050 x = 14 hours (the time the second train traveled)
  • Distance, Rate, and Time Worksheets
  • The Distance Between Degrees of Latitude and Longitude
  • Popular Math Terms and Definitions
  • Converting Cubic Meters to Liters
  • What Is Velocity in Physics?
  • Realistic Math Problems Help 6th-graders Solve Real-Life Questions
  • 4th-Grade Math Word Problems
  • Circumference of a Circle
  • What Speed Actually Means in Physics
  • Understanding the Distance Formula
  • Help Kids Calculate the Area and Circumference of Circles
  • How to Calculate Commissions Using Percents
  • How to Derive the Formula for Combinations
  • Rate of Change Worksheet with Solutions
  • How to Determine the Geometry of a Circle
  • Dimensional Analysis: Know Your Units

Logo for BCcampus Open Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Chapter 8: Rational Expressions

8.8 Rate Word Problems: Speed, Distance and Time

Distance, rate and time problems are a standard application of linear equations. When solving these problems, use the relationship rate (speed or velocity) times time equals distance .

[latex]r\cdot t=d[/latex]

For example, suppose a person were to travel 30 km/h for 4 h. To find the total distance, multiply rate times time or (30km/h)(4h) = 120 km.

The problems to be solved here will have a few more steps than described above. So to keep the information in the problem organized, use a table. An example of the basic structure of the table is below:

Example of a Distance, Rate and Time Chart
Who or What Rate Time Distance

The third column, distance, will always be filled in by multiplying the rate and time columns together. If given a total distance of both persons or trips, put this information in the distance column. Now use this table to set up and solve the following examples.

Example 8.8.1

Joey and Natasha start from the same point and walk in opposite directions. Joey walks 2 km/h faster than Natasha. After 3 hours, they are 30 kilometres apart. How fast did each walk?

Who or What Rate Time Distance
Natasha [latex]r[/latex] [latex]\text{3 h}[/latex] [latex]\text{3 h}(r)[/latex]
Joey [latex]r + 2[/latex] [latex]\text{3 h}[/latex] [latex]\text{3 h}(r + 2)[/latex]

The distance travelled by both is 30 km. Therefore, the equation to be solved is:

[latex]\begin{array}{rrrrrrl} 3r&+&3(r&+&2)&=&30 \\ 3r&+&3r&+&6&=&30 \\ &&&-&6&&-6 \\ \hline &&&&\dfrac{6r}{6}&=&\dfrac{24}{6} \\ \\ &&&&r&=&4 \text{ km/h} \end{array}[/latex]

This means that Natasha walks at 4 km/h and Joey walks at 6 km/h.

Example 8.8.2

Nick and Chloe left their campsite by canoe and paddled downstream at an average speed of 12 km/h. They turned around and paddled back upstream at an average rate of 4 km/h. The total trip took 1 hour. After how much time did the campers turn around downstream?

Who or What Rate Time Distance
Downstream [latex]\text{12 km/h}[/latex] [latex]t[/latex] [latex]\text{12 km/h } (t)[/latex]
Upstream [latex]\text{4 km/h}[/latex] [latex](1 - t)[/latex] [latex]\text{4 km/h } (1 - t)[/latex]

The distance travelled downstream is the same distance that they travelled upstream. Therefore, the equation to be solved is:

[latex]\begin{array}{rrlll} 12(t)&=&4(1&-&t) \\ 12t&=&4&-&4t \\ +4t&&&+&4t \\ \hline \dfrac{16t}{16}&=&\dfrac{4}{16}&& \\ \\ t&=&0.25&& \end{array}[/latex]

This means the campers paddled downstream for 0.25 h and spent 0.75 h paddling back.

Example 8.8.3

Terry leaves his house riding a bike at 20 km/h. Sally leaves 6 h later on a scooter to catch up with him travelling at 80 km/h. How long will it take her to catch up with him?

Who or What Rate Time Distance
Terry [latex]\text{20 km/h}[/latex] [latex]t[/latex] [latex]\text{20 km/h }(t)[/latex]
Sally [latex]\text{80 km/h}[/latex] [latex](t - \text{6 h})[/latex] [latex]\text{80 km/h }(t - \text {6 h})[/latex]

The distance travelled by both is the same. Therefore, the equation to be solved is:

[latex]\begin{array}{rrrrr} 20(t)&=&80(t&-&6) \\ 20t&=&80t&-&480 \\ -80t&&-80t&& \\ \hline \dfrac{-60t}{-60}&=&\dfrac{-480}{-60}&& \\ \\ t&=&8&& \end{array}[/latex]

This means that Terry travels for 8 h and Sally only needs 2 h to catch up to him.

Example 8.8.4

On a 130-kilometre trip, a car travelled at an average speed of 55 km/h and then reduced its speed to 40 km/h for the remainder of the trip. The trip took 2.5 h. For how long did the car travel 40 km/h?

Who or What Rate Time Distance
Fifty-five [latex]\text{55 km/h}[/latex] [latex]t[/latex] [latex]\text{55 km/h }(t)[/latex]
Forty [latex]\text{40 km/h}[/latex] [latex](\text{2.5 h}-t)[/latex] [latex]\text{40 km/h }(\text{2.5 h}-t)[/latex]

[latex]\begin{array}{rrrrrrr} 55(t)&+&40(2.5&-&t)&=&130 \\ 55t&+&100&-&40t&=&130 \\ &-&100&&&&-100 \\ \hline &&&&\dfrac{15t}{15}&=&\dfrac{30}{15} \\ \\ &&&&t&=&2 \end{array}[/latex]

This means that the time spent travelling at 40 km/h was 0.5 h.

Distance, time and rate problems have a few variations that mix the unknowns between distance, rate and time. They generally involve solving a problem that uses the combined distance travelled to equal some distance or a problem in which the distances travelled by both parties is the same. These distance, rate and time problems will be revisited later on in this textbook where quadratic solutions are required to solve them.

For Questions 1 to 8, find the equations needed to solve the problems. Do not solve.

  • A is 60 kilometres from B. An automobile at A starts for B at the rate of 20 km/h at the same time that an automobile at B starts for A at the rate of 25 km/h. How long will it be before the automobiles meet?
  • Two automobiles are 276 kilometres apart and start to travel toward each other at the same time. They travel at rates differing by 5 km/h. If they meet after 6 h, find the rate of each.
  • Two trains starting at the same station head in opposite directions. They travel at the rates of 25 and 40 km/h, respectively. If they start at the same time, how soon will they be 195 kilometres apart?
  • Two bike messengers, Jerry and Susan, ride in opposite directions. If Jerry rides at the rate of 20 km/h, at what rate must Susan ride if they are 150 kilometres apart in 5 hours?
  • A passenger and a freight train start toward each other at the same time from two points 300 kilometres apart. If the rate of the passenger train exceeds the rate of the freight train by 15 km/h, and they meet after 4 hours, what must the rate of each be?
  • Two automobiles started travelling in opposite directions at the same time from the same point. Their rates were 25 and 35 km/h, respectively. After how many hours were they 180 kilometres apart?
  • A man having ten hours at his disposal made an excursion by bike, riding out at the rate of 10 km/h and returning on foot at the rate of 3 km/h. Find the distance he rode.
  • A man walks at the rate of 4 km/h. How far can he walk into the country and ride back on a trolley that travels at the rate of 20 km/h, if he must be back home 3 hours from the time he started?

Solve Questions 9 to 22.

  • A boy rides away from home in an automobile at the rate of 28 km/h and walks back at the rate of 4 km/h. The round trip requires 2 hours. How far does he ride?
  • A motorboat leaves a harbour and travels at an average speed of 15 km/h toward an island. The average speed on the return trip was 10 km/h. How far was the island from the harbour if the trip took a total of 5 hours?
  • A family drove to a resort at an average speed of 30 km/h and later returned over the same road at an average speed of 50 km/h. Find the distance to the resort if the total driving time was 8 hours.
  • As part of his flight training, a student pilot was required to fly to an airport and then return. The average speed to the airport was 90 km/h, and the average speed returning was 120 km/h. Find the distance between the two airports if the total flying time was 7 hours.
  • Sam starts travelling at 4 km/h from a campsite 2 hours ahead of Sue, who travels 6 km/h in the same direction. How many hours will it take for Sue to catch up to Sam?
  • A man travels 5 km/h. After travelling for 6 hours, another man starts at the same place as the first man did, following at the rate of 8 km/h. When will the second man overtake the first?
  • A motorboat leaves a harbour and travels at an average speed of 8 km/h toward a small island. Two hours later, a cabin cruiser leaves the same harbour and travels at an average speed of 16 km/h toward the same island. How many hours after the cabin cruiser leaves will it be alongside the motorboat?
  • A long distance runner started on a course, running at an average speed of 6 km/h. One hour later, a second runner began the same course at an average speed of 8 km/h. How long after the second runner started will they overtake the first runner?
  • Two men are travelling in opposite directions at the rate of 20 and 30 km/h at the same time and from the same place. In how many hours will they be 300 kilometres apart?
  • Two trains start at the same time from the same place and travel in opposite directions. If the rate of one is 6 km/h more than the rate of the other and they are 168 kilometres apart at the end of 4 hours, what is the rate of each?
  • Two cyclists start from the same point and ride in opposite directions. One cyclist rides twice as fast as the other. In three hours, they are 72 kilometres apart. Find the rate of each cyclist.
  • Two small planes start from the same point and fly in opposite directions. The first plane is flying 25 km/h slower than the second plane. In two hours, the planes are 430 kilometres apart. Find the rate of each plane.
  • On a 130-kilometre trip, a car travelled at an average speed of 55 km/h and then reduced its speed to 40 km/h for the remainder of the trip. The trip took a total of 2.5 hours. For how long did the car travel at 40 km/h?
  • Running at an average rate of 8 m/s, a sprinter ran to the end of a track and then jogged back to the starting point at an average of 3 m/s. The sprinter took 55 s to run to the end of the track and jog back. Find the length of the track.

Answer Key 8.8

Intermediate Algebra Copyright © 2020 by Terrance Berg is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

distance problem solving worksheets

Free Printable distance formula worksheets

Discover a vast collection of free printable Math distance formula worksheets, perfect for educators teaching students of all levels. Enhance your lessons and help students master the distance formula with these valuable resources.

quizizz-hero

10th - 11th

Distance Formula - Printable Distance-formula Worksheets - Quizizz

10th - 12th

DISTANCE FORMULA Practice - Printable Distance-formula Worksheets - Quizizz

Explore Worksheets by Grade

Explore worksheets by subjects.

  • Social studies
  • Social emotional
  • Foreign language
  • Reading & Writing

Explore printable distance formula worksheets

Distance formula worksheets are an essential tool for teachers looking to help their students master the concepts of Math and Geometry. These worksheets provide a variety of problems that require students to apply the distance formula to find the distance between two points in a coordinate plane. By incorporating these worksheets into their lesson plans, teachers can ensure that their students gain a thorough understanding of this fundamental concept in Geometry. Furthermore, distance formula worksheets can be easily tailored to suit the needs of students at different grade levels, making them a versatile resource for educators. With a wide range of problems available, teachers can select the most appropriate worksheets to challenge their students and help them develop their problem-solving skills in Math and Geometry.

Quizizz is an excellent platform for teachers to find and create engaging distance formula worksheets, as well as other Math and Geometry resources. This platform offers a vast library of pre-made worksheets, quizzes, and interactive activities that can be easily integrated into lesson plans. Teachers can also create their own custom worksheets and quizzes, allowing them to tailor the content to their students' specific needs and grade levels. In addition to distance formula worksheets, Quizizz offers resources for a wide range of Math and Geometry topics, making it an invaluable tool for educators looking to enhance their students' learning experience. By utilizing Quizizz, teachers can ensure that their students receive a well-rounded education in Math and Geometry, while also making learning fun and engaging.

Corbettmaths

Distance Between Two Points Practice Questions

Click here for questions, click here for answers.

distance, 2 points, pythagoras

GCSE Revision Cards

distance problem solving worksheets

5-a-day Workbooks

distance problem solving worksheets

Primary Study Cards

distance problem solving worksheets

Privacy Policy

Terms and Conditions

Corbettmaths © 2012 – 2024

Search Functionality Update!

To optimize your search experience, please refresh the page.

Windows: Press Ctrl + F5

Mac: Use Command + Shift+ R or Command + Option + R

Mobile: Tap and hold the refresh icon, then select "Hard Refresh" or "Reload Without Cache" for an instant upgrade!

  • Child Login
  • Number Sense
  • Measurement
  • Pre Algebra
  • Figurative Language
  • Reading Comprehension
  • Reading and Writing
  • Science Worksheets
  • Social Studies Worksheets
  • Math Worksheets
  • ELA Worksheets
  • Online Worksheets

Browse By Grade

  • Become a Member

Grammar

  • Kindergarten

Worksheets by Grade

  • Skip Counting
  • Place Value
  • Number Lines
  • Subtraction
  • Multiplication
  • Word Problems
  • Comparing Numbers
  • Ordering Numbers
  • Odd and Even Numbers
  • Prime and Composite Numbers
  • Roman Numerals
  • Ordinal Numbers

Measurement

  • Big vs Small
  • Long vs Short
  • Tall vs Short
  • Heavy vs Light
  • Full, Half-Full, or Empty
  • Metric Unit Conversion
  • Customary Unit Conversion
  • Temperature

Statistics and Data

  • Tally Marks
  • Mean, Median, Mode, Range
  • Mean Absolute Deviation
  • Stem and Leaf Plot
  • Box and Whisker Plot
  • Permutations
  • Combinations

Geometry

  • Lines, Rays, and Line Segments
  • Points, Lines, and Planes
  • Transformation
  • Ordered Pairs
  • Midpoint Formula
  • Distance Formula
  • Parallel and Perpendicular Lines
  • Surface Area
  • Pythagorean Theorem

Pre-Algebra

  • Significant Figures
  • Proportions
  • Direct and Inverse Variation
  • Order of Operations
  • Scientific Notation
  • Absolute Value

Algebra

  • Translating Algebraic Phrases
  • Simplifying Algebraic Expressions
  • Evaluating Algebraic Expressions
  • Systems of Equations
  • Slope of a Line
  • Equation of a Line
  • Quadratic Equations
  • Polynomials
  • Inequalities
  • Determinants
  • Arithmetic Sequence
  • Arithmetic Series
  • Geometric Sequence
  • Complex Numbers
  • Trigonometry

Distance between Two Points Worksheets

  • Geometry >
  • Distance Formula >
  • Distance between Two Points

Ascend the skill-building ladder with our free printable distance between two points worksheets that provide practice in applying the formula to calculate how far any two places are from each other using their coordinates. To determine the distance between two points, plug the coordinates into the formula, d = √ ((x 2 - x 1 ) 2 + (y 2 - y 1 ) 2 ) and evaluate. Don't forget to cross-check your answers with our answer key.

These pdf worksheets make a great practice resource for grade 8 and high school students.

Distance between Two Points

Related Printable Worksheets

▶ Length of a Line Segment

Tutoringhour

What we offer, information.

  • Membership Benefits
  • How to Use Online Worksheets
  • How to Use Printable Worksheets
  • Printing Help
  • Testimonial
  • Privacy Policy
  • Refund Policy

Copyright © 2024 - Tutoringhour

Facebook

You must be a member to unlock this feature!

Sign up now for only $29.95/year — that's just 8 cents a day!

Printable Worksheets

  • 20,000+ Worksheets Across All Subjects
  • Access to Answer Key
  • Add Worksheets to "My Collections"
  • Create Custom Workbooks

Digitally Fillable Worksheets

  • 1100+ Math and ELA Worksheets
  • Preview and Assign Worksheets
  • Create Groups and Add Children
  • Track Progress

Real-life problems: distance, length, and more

Common Core Standards: Grade 4 Measurement & Data , Grade 4 Number & Operations in Base Ten , Grade 5 Number & Operations in Base Ten

CCSS.Math.Content.4.MD.A.2, CCSS.Math.Content.4.NBT.B.5, CCSS.Math.Content.5.NBT.B.7

This worksheet originally published in Math Made Easy for 4th Grade by © Dorling Kindersley Limited .

GreatSchools Logo

Yes! Sign me up for updates relevant to my child's grade.

Please enter a valid email address

Thank you for signing up!

Server Issue: Please try again later. Sorry for the inconvenience

MATH Worksheets 4 Kids

Child Login

  • Number charts
  • Skip Counting
  • Place Value
  • Subtraction
  • Multiplication
  • Word Problems
  • Number Lines
  • Greater / Less Than
  • Ordering Numbers
  • Odd and Even
  • Prime and Composite
  • Roman Numerals
  • Ordinal Numbers
  • In and Out Boxes
  • More Number Sense Worksheets
  • Size Comparison
  • Measuring Length
  • Metric Unit Conversion
  • Customary Unit Conversion
  • Temperature
  • More Measurement Worksheets
  • Tally Marks
  • Mean, Median, Mode, Range
  • Mean Absolute Deviation
  • Stem-and-leaf Plot
  • Box-and-whisker Plot
  • Permutation and Combination
  • Probability
  • Venn Diagram
  • More Statistics Worksheets
  • Shapes - 2D
  • Shapes - 3D
  • Lines, Rays and Line Segments
  • Points, Lines and Planes
  • Transformation
  • Quadrilateral
  • Ordered Pairs
  • Midpoint Formula
  • Distance Formula
  • Parallel, Perpendicular and Intersecting Lines
  • Scale Factor
  • Surface Area
  • Pythagorean Theorem
  • More Geometry Worksheets
  • Significant Figures
  • Proportions
  • Direct and Inverse Variation
  • Order of Operations
  • Squaring Numbers
  • Square Roots
  • Scientific Notations
  • Absolute Value
  • More Pre-Algebra Worksheets
  • Translating Algebraic Phrases
  • Evaluating Algebraic Expressions
  • Simplifying Algebraic Expressions
  • Algebraic Identities
  • Polynomials
  • Inequalities
  • Sequence and Series
  • Complex Numbers
  • More Algebra Worksheets
  • Trigonometry
  • Math Workbooks
  • English Language Arts
  • Social Studies
  • Holidays and Events
  • Worksheets >

How To Solve Speed Problems

List of links provided below may help to solve different types of speed problems.

Convert km/hr into m/sec

This lesson helps to convert km/hr into m/sec in an easiest way.

Convert m/sec into km/hr

It is just an reciprocal process of km/hr into m/sec. These are most common speed units.

Convert km/hr into miles/hr

Converting km/hr into miles/hr can be done by simply multiplying the number by 0.62137.

Convert miles/hr into km/hr

Conversion of miles/hr into km/hr can be done by multiplying 1.609344.

Convert m/sec into miles/hr

To convert m/sec into miles/hr, multiply the number by 2.236936.

Convert miles/hr into m/sec

To convert miles/hr into m/sec, multiply the number by 0.44704.

Speed - Distance - Time

Speed can calculated using a formula Speed = Distance/Time.

Speed Worksheets

Speed Worksheets for all the topics listed here. Open how to solve to help yourself in worksheets.

Become a Member

Membership Information

Privacy Policy

What's New?

Printing Help

Testimonial

Facebook

Copyright © 2024 - Math Worksheets 4 Kids

Physics Problems with Solutions

Physics Problems with Solutions

Displacement and distance: problems with solutions.

Problems with detailed solutions on displacement and distance of moving objects.

displacement and distance - Problem 1

Problem 3: An object moves from point A to B to C to D and finally to A along the circle shown in the figure below. a) Find the distance covered by the moving object. b) Find the magnitude and direction of the displacement of the object.

displacement and distance - Problem 3

More References and links

Popular pages.