logo

Python Numerical Methods

../_images/book_cover.jpg

This notebook contains an excerpt from the Python Programming and Numerical Methods - A Guide for Engineers and Scientists , the content is also available at Berkeley Python Numerical Methods .

The copyright of the book belongs to Elsevier. We also have this interactive book online for a better learning experience. The code is released under the MIT license . If you find this content useful, please consider supporting the work on Elsevier or Amazon !

< 2.0 Variables and Basic Data Structures | Contents | 2.2 Data Structure - Strings >

Variables and Assignment ¶

When programming, it is useful to be able to store information in variables. A variable is a string of characters and numbers associated with a piece of information. The assignment operator , denoted by the “=” symbol, is the operator that is used to assign values to variables in Python. The line x=1 takes the known value, 1, and assigns that value to the variable with name “x”. After executing this line, this number will be stored into this variable. Until the value is changed or the variable deleted, the character x behaves like the value 1.

TRY IT! Assign the value 2 to the variable y. Multiply y by 3 to show that it behaves like the value 2.

A variable is more like a container to store the data in the computer’s memory, the name of the variable tells the computer where to find this value in the memory. For now, it is sufficient to know that the notebook has its own memory space to store all the variables in the notebook. As a result of the previous example, you will see the variable “x” and “y” in the memory. You can view a list of all the variables in the notebook using the magic command %whos .

TRY IT! List all the variables in this notebook

Note that the equal sign in programming is not the same as a truth statement in mathematics. In math, the statement x = 2 declares the universal truth within the given framework, x is 2 . In programming, the statement x=2 means a known value is being associated with a variable name, store 2 in x. Although it is perfectly valid to say 1 = x in mathematics, assignments in Python always go left : meaning the value to the right of the equal sign is assigned to the variable on the left of the equal sign. Therefore, 1=x will generate an error in Python. The assignment operator is always last in the order of operations relative to mathematical, logical, and comparison operators.

TRY IT! The mathematical statement x=x+1 has no solution for any value of x . In programming, if we initialize the value of x to be 1, then the statement makes perfect sense. It means, “Add x and 1, which is 2, then assign that value to the variable x”. Note that this operation overwrites the previous value stored in x .

There are some restrictions on the names variables can take. Variables can only contain alphanumeric characters (letters and numbers) as well as underscores. However, the first character of a variable name must be a letter or underscores. Spaces within a variable name are not permitted, and the variable names are case-sensitive (e.g., x and X will be considered different variables).

TIP! Unlike in pure mathematics, variables in programming almost always represent something tangible. It may be the distance between two points in space or the number of rabbits in a population. Therefore, as your code becomes increasingly complicated, it is very important that your variables carry a name that can easily be associated with what they represent. For example, the distance between two points in space is better represented by the variable dist than x , and the number of rabbits in a population is better represented by nRabbits than y .

Note that when a variable is assigned, it has no memory of how it was assigned. That is, if the value of a variable, y , is constructed from other variables, like x , reassigning the value of x will not change the value of y .

EXAMPLE: What value will y have after the following lines of code are executed?

WARNING! You can overwrite variables or functions that have been stored in Python. For example, the command help = 2 will store the value 2 in the variable with name help . After this assignment help will behave like the value 2 instead of the function help . Therefore, you should always be careful not to give your variables the same name as built-in functions or values.

TIP! Now that you know how to assign variables, it is important that you learn to never leave unassigned commands. An unassigned command is an operation that has a result, but that result is not assigned to a variable. For example, you should never use 2+2 . You should instead assign it to some variable x=2+2 . This allows you to “hold on” to the results of previous commands and will make your interaction with Python must less confusing.

You can clear a variable from the notebook using the del function. Typing del x will clear the variable x from the workspace. If you want to remove all the variables in the notebook, you can use the magic command %reset .

In mathematics, variables are usually associated with unknown numbers; in programming, variables are associated with a value of a certain type. There are many data types that can be assigned to variables. A data type is a classification of the type of information that is being stored in a variable. The basic data types that you will utilize throughout this book are boolean, int, float, string, list, tuple, dictionary, set. A formal description of these data types is given in the following sections.

  • Python »
  • 3.12.5 Documentation »
  • The Python Language Reference »
  • 7. Simple statements
  • Theme Auto Light Dark |

7. Simple statements ¶

A simple statement is comprised within a single logical line. Several simple statements may occur on a single line separated by semicolons. The syntax for simple statements is:

7.1. Expression statements ¶

Expression statements are used (mostly interactively) to compute and write a value, or (usually) to call a procedure (a function that returns no meaningful result; in Python, procedures return the value None ). Other uses of expression statements are allowed and occasionally useful. The syntax for an expression statement is:

An expression statement evaluates the expression list (which may be a single expression).

In interactive mode, if the value is not None , it is converted to a string using the built-in repr() function and the resulting string is written to standard output on a line by itself (except if the result is None , so that procedure calls do not cause any output.)

7.2. Assignment statements ¶

Assignment statements are used to (re)bind names to values and to modify attributes or items of mutable objects:

(See section Primaries for the syntax definitions for attributeref , subscription , and slicing .)

An assignment statement evaluates the expression list (remember that this can be a single expression or a comma-separated list, the latter yielding a tuple) and assigns the single resulting object to each of the target lists, from left to right.

Assignment is defined recursively depending on the form of the target (list). When a target is part of a mutable object (an attribute reference, subscription or slicing), the mutable object must ultimately perform the assignment and decide about its validity, and may raise an exception if the assignment is unacceptable. The rules observed by various types and the exceptions raised are given with the definition of the object types (see section The standard type hierarchy ).

Assignment of an object to a target list, optionally enclosed in parentheses or square brackets, is recursively defined as follows.

If the target list is a single target with no trailing comma, optionally in parentheses, the object is assigned to that target.

If the target list contains one target prefixed with an asterisk, called a “starred” target: The object must be an iterable with at least as many items as there are targets in the target list, minus one. The first items of the iterable are assigned, from left to right, to the targets before the starred target. The final items of the iterable are assigned to the targets after the starred target. A list of the remaining items in the iterable is then assigned to the starred target (the list can be empty).

Else: The object must be an iterable with the same number of items as there are targets in the target list, and the items are assigned, from left to right, to the corresponding targets.

Assignment of an object to a single target is recursively defined as follows.

If the target is an identifier (name):

If the name does not occur in a global or nonlocal statement in the current code block: the name is bound to the object in the current local namespace.

Otherwise: the name is bound to the object in the global namespace or the outer namespace determined by nonlocal , respectively.

The name is rebound if it was already bound. This may cause the reference count for the object previously bound to the name to reach zero, causing the object to be deallocated and its destructor (if it has one) to be called.

If the target is an attribute reference: The primary expression in the reference is evaluated. It should yield an object with assignable attributes; if this is not the case, TypeError is raised. That object is then asked to assign the assigned object to the given attribute; if it cannot perform the assignment, it raises an exception (usually but not necessarily AttributeError ).

Note: If the object is a class instance and the attribute reference occurs on both sides of the assignment operator, the right-hand side expression, a.x can access either an instance attribute or (if no instance attribute exists) a class attribute. The left-hand side target a.x is always set as an instance attribute, creating it if necessary. Thus, the two occurrences of a.x do not necessarily refer to the same attribute: if the right-hand side expression refers to a class attribute, the left-hand side creates a new instance attribute as the target of the assignment:

This description does not necessarily apply to descriptor attributes, such as properties created with property() .

If the target is a subscription: The primary expression in the reference is evaluated. It should yield either a mutable sequence object (such as a list) or a mapping object (such as a dictionary). Next, the subscript expression is evaluated.

If the primary is a mutable sequence object (such as a list), the subscript must yield an integer. If it is negative, the sequence’s length is added to it. The resulting value must be a nonnegative integer less than the sequence’s length, and the sequence is asked to assign the assigned object to its item with that index. If the index is out of range, IndexError is raised (assignment to a subscripted sequence cannot add new items to a list).

If the primary is a mapping object (such as a dictionary), the subscript must have a type compatible with the mapping’s key type, and the mapping is then asked to create a key/value pair which maps the subscript to the assigned object. This can either replace an existing key/value pair with the same key value, or insert a new key/value pair (if no key with the same value existed).

For user-defined objects, the __setitem__() method is called with appropriate arguments.

If the target is a slicing: The primary expression in the reference is evaluated. It should yield a mutable sequence object (such as a list). The assigned object should be a sequence object of the same type. Next, the lower and upper bound expressions are evaluated, insofar they are present; defaults are zero and the sequence’s length. The bounds should evaluate to integers. If either bound is negative, the sequence’s length is added to it. The resulting bounds are clipped to lie between zero and the sequence’s length, inclusive. Finally, the sequence object is asked to replace the slice with the items of the assigned sequence. The length of the slice may be different from the length of the assigned sequence, thus changing the length of the target sequence, if the target sequence allows it.

CPython implementation detail: In the current implementation, the syntax for targets is taken to be the same as for expressions, and invalid syntax is rejected during the code generation phase, causing less detailed error messages.

Although the definition of assignment implies that overlaps between the left-hand side and the right-hand side are ‘simultaneous’ (for example a, b = b, a swaps two variables), overlaps within the collection of assigned-to variables occur left-to-right, sometimes resulting in confusion. For instance, the following program prints [0, 2] :

The specification for the *target feature.

7.2.1. Augmented assignment statements ¶

Augmented assignment is the combination, in a single statement, of a binary operation and an assignment statement:

(See section Primaries for the syntax definitions of the last three symbols.)

An augmented assignment evaluates the target (which, unlike normal assignment statements, cannot be an unpacking) and the expression list, performs the binary operation specific to the type of assignment on the two operands, and assigns the result to the original target. The target is only evaluated once.

An augmented assignment statement like x += 1 can be rewritten as x = x + 1 to achieve a similar, but not exactly equal effect. In the augmented version, x is only evaluated once. Also, when possible, the actual operation is performed in-place , meaning that rather than creating a new object and assigning that to the target, the old object is modified instead.

Unlike normal assignments, augmented assignments evaluate the left-hand side before evaluating the right-hand side. For example, a[i] += f(x) first looks-up a[i] , then it evaluates f(x) and performs the addition, and lastly, it writes the result back to a[i] .

With the exception of assigning to tuples and multiple targets in a single statement, the assignment done by augmented assignment statements is handled the same way as normal assignments. Similarly, with the exception of the possible in-place behavior, the binary operation performed by augmented assignment is the same as the normal binary operations.

For targets which are attribute references, the same caveat about class and instance attributes applies as for regular assignments.

7.2.2. Annotated assignment statements ¶

Annotation assignment is the combination, in a single statement, of a variable or attribute annotation and an optional assignment statement:

The difference from normal Assignment statements is that only a single target is allowed.

The assignment target is considered “simple” if it consists of a single name that is not enclosed in parentheses. For simple assignment targets, if in class or module scope, the annotations are evaluated and stored in a special class or module attribute __annotations__ that is a dictionary mapping from variable names (mangled if private) to evaluated annotations. This attribute is writable and is automatically created at the start of class or module body execution, if annotations are found statically.

If the assignment target is not simple (an attribute, subscript node, or parenthesized name), the annotation is evaluated if in class or module scope, but not stored.

If a name is annotated in a function scope, then this name is local for that scope. Annotations are never evaluated and stored in function scopes.

If the right hand side is present, an annotated assignment performs the actual assignment before evaluating annotations (where applicable). If the right hand side is not present for an expression target, then the interpreter evaluates the target except for the last __setitem__() or __setattr__() call.

The proposal that added syntax for annotating the types of variables (including class variables and instance variables), instead of expressing them through comments.

The proposal that added the typing module to provide a standard syntax for type annotations that can be used in static analysis tools and IDEs.

Changed in version 3.8: Now annotated assignments allow the same expressions in the right hand side as regular assignments. Previously, some expressions (like un-parenthesized tuple expressions) caused a syntax error.

7.3. The assert statement ¶

Assert statements are a convenient way to insert debugging assertions into a program:

The simple form, assert expression , is equivalent to

The extended form, assert expression1, expression2 , is equivalent to

These equivalences assume that __debug__ and AssertionError refer to the built-in variables with those names. In the current implementation, the built-in variable __debug__ is True under normal circumstances, False when optimization is requested (command line option -O ). The current code generator emits no code for an assert statement when optimization is requested at compile time. Note that it is unnecessary to include the source code for the expression that failed in the error message; it will be displayed as part of the stack trace.

Assignments to __debug__ are illegal. The value for the built-in variable is determined when the interpreter starts.

7.4. The pass statement ¶

pass is a null operation — when it is executed, nothing happens. It is useful as a placeholder when a statement is required syntactically, but no code needs to be executed, for example:

7.5. The del statement ¶

Deletion is recursively defined very similar to the way assignment is defined. Rather than spelling it out in full details, here are some hints.

Deletion of a target list recursively deletes each target, from left to right.

Deletion of a name removes the binding of that name from the local or global namespace, depending on whether the name occurs in a global statement in the same code block. If the name is unbound, a NameError exception will be raised.

Deletion of attribute references, subscriptions and slicings is passed to the primary object involved; deletion of a slicing is in general equivalent to assignment of an empty slice of the right type (but even this is determined by the sliced object).

Changed in version 3.2: Previously it was illegal to delete a name from the local namespace if it occurs as a free variable in a nested block.

7.6. The return statement ¶

return may only occur syntactically nested in a function definition, not within a nested class definition.

If an expression list is present, it is evaluated, else None is substituted.

return leaves the current function call with the expression list (or None ) as return value.

When return passes control out of a try statement with a finally clause, that finally clause is executed before really leaving the function.

In a generator function, the return statement indicates that the generator is done and will cause StopIteration to be raised. The returned value (if any) is used as an argument to construct StopIteration and becomes the StopIteration.value attribute.

In an asynchronous generator function, an empty return statement indicates that the asynchronous generator is done and will cause StopAsyncIteration to be raised. A non-empty return statement is a syntax error in an asynchronous generator function.

7.7. The yield statement ¶

A yield statement is semantically equivalent to a yield expression . The yield statement can be used to omit the parentheses that would otherwise be required in the equivalent yield expression statement. For example, the yield statements

are equivalent to the yield expression statements

Yield expressions and statements are only used when defining a generator function, and are only used in the body of the generator function. Using yield in a function definition is sufficient to cause that definition to create a generator function instead of a normal function.

For full details of yield semantics, refer to the Yield expressions section.

7.8. The raise statement ¶

If no expressions are present, raise re-raises the exception that is currently being handled, which is also known as the active exception . If there isn’t currently an active exception, a RuntimeError exception is raised indicating that this is an error.

Otherwise, raise evaluates the first expression as the exception object. It must be either a subclass or an instance of BaseException . If it is a class, the exception instance will be obtained when needed by instantiating the class with no arguments.

The type of the exception is the exception instance’s class, the value is the instance itself.

A traceback object is normally created automatically when an exception is raised and attached to it as the __traceback__ attribute. You can create an exception and set your own traceback in one step using the with_traceback() exception method (which returns the same exception instance, with its traceback set to its argument), like so:

The from clause is used for exception chaining: if given, the second expression must be another exception class or instance. If the second expression is an exception instance, it will be attached to the raised exception as the __cause__ attribute (which is writable). If the expression is an exception class, the class will be instantiated and the resulting exception instance will be attached to the raised exception as the __cause__ attribute. If the raised exception is not handled, both exceptions will be printed:

A similar mechanism works implicitly if a new exception is raised when an exception is already being handled. An exception may be handled when an except or finally clause, or a with statement, is used. The previous exception is then attached as the new exception’s __context__ attribute:

Exception chaining can be explicitly suppressed by specifying None in the from clause:

Additional information on exceptions can be found in section Exceptions , and information about handling exceptions is in section The try statement .

Changed in version 3.3: None is now permitted as Y in raise X from Y .

Added the __suppress_context__ attribute to suppress automatic display of the exception context.

Changed in version 3.11: If the traceback of the active exception is modified in an except clause, a subsequent raise statement re-raises the exception with the modified traceback. Previously, the exception was re-raised with the traceback it had when it was caught.

7.9. The break statement ¶

break may only occur syntactically nested in a for or while loop, but not nested in a function or class definition within that loop.

It terminates the nearest enclosing loop, skipping the optional else clause if the loop has one.

If a for loop is terminated by break , the loop control target keeps its current value.

When break passes control out of a try statement with a finally clause, that finally clause is executed before really leaving the loop.

7.10. The continue statement ¶

continue may only occur syntactically nested in a for or while loop, but not nested in a function or class definition within that loop. It continues with the next cycle of the nearest enclosing loop.

When continue passes control out of a try statement with a finally clause, that finally clause is executed before really starting the next loop cycle.

7.11. The import statement ¶

The basic import statement (no from clause) is executed in two steps:

find a module, loading and initializing it if necessary

define a name or names in the local namespace for the scope where the import statement occurs.

When the statement contains multiple clauses (separated by commas) the two steps are carried out separately for each clause, just as though the clauses had been separated out into individual import statements.

The details of the first step, finding and loading modules, are described in greater detail in the section on the import system , which also describes the various types of packages and modules that can be imported, as well as all the hooks that can be used to customize the import system. Note that failures in this step may indicate either that the module could not be located, or that an error occurred while initializing the module, which includes execution of the module’s code.

If the requested module is retrieved successfully, it will be made available in the local namespace in one of three ways:

If the module name is followed by as , then the name following as is bound directly to the imported module.

If no other name is specified, and the module being imported is a top level module, the module’s name is bound in the local namespace as a reference to the imported module

If the module being imported is not a top level module, then the name of the top level package that contains the module is bound in the local namespace as a reference to the top level package. The imported module must be accessed using its full qualified name rather than directly

The from form uses a slightly more complex process:

find the module specified in the from clause, loading and initializing it if necessary;

for each of the identifiers specified in the import clauses:

check if the imported module has an attribute by that name

if not, attempt to import a submodule with that name and then check the imported module again for that attribute

if the attribute is not found, ImportError is raised.

otherwise, a reference to that value is stored in the local namespace, using the name in the as clause if it is present, otherwise using the attribute name

If the list of identifiers is replaced by a star ( '*' ), all public names defined in the module are bound in the local namespace for the scope where the import statement occurs.

The public names defined by a module are determined by checking the module’s namespace for a variable named __all__ ; if defined, it must be a sequence of strings which are names defined or imported by that module. The names given in __all__ are all considered public and are required to exist. If __all__ is not defined, the set of public names includes all names found in the module’s namespace which do not begin with an underscore character ( '_' ). __all__ should contain the entire public API. It is intended to avoid accidentally exporting items that are not part of the API (such as library modules which were imported and used within the module).

The wild card form of import — from module import * — is only allowed at the module level. Attempting to use it in class or function definitions will raise a SyntaxError .

When specifying what module to import you do not have to specify the absolute name of the module. When a module or package is contained within another package it is possible to make a relative import within the same top package without having to mention the package name. By using leading dots in the specified module or package after from you can specify how high to traverse up the current package hierarchy without specifying exact names. One leading dot means the current package where the module making the import exists. Two dots means up one package level. Three dots is up two levels, etc. So if you execute from . import mod from a module in the pkg package then you will end up importing pkg.mod . If you execute from ..subpkg2 import mod from within pkg.subpkg1 you will import pkg.subpkg2.mod . The specification for relative imports is contained in the Package Relative Imports section.

importlib.import_module() is provided to support applications that determine dynamically the modules to be loaded.

Raises an auditing event import with arguments module , filename , sys.path , sys.meta_path , sys.path_hooks .

7.11.1. Future statements ¶

A future statement is a directive to the compiler that a particular module should be compiled using syntax or semantics that will be available in a specified future release of Python where the feature becomes standard.

The future statement is intended to ease migration to future versions of Python that introduce incompatible changes to the language. It allows use of the new features on a per-module basis before the release in which the feature becomes standard.

A future statement must appear near the top of the module. The only lines that can appear before a future statement are:

the module docstring (if any),

blank lines, and

other future statements.

The only feature that requires using the future statement is annotations (see PEP 563 ).

All historical features enabled by the future statement are still recognized by Python 3. The list includes absolute_import , division , generators , generator_stop , unicode_literals , print_function , nested_scopes and with_statement . They are all redundant because they are always enabled, and only kept for backwards compatibility.

A future statement is recognized and treated specially at compile time: Changes to the semantics of core constructs are often implemented by generating different code. It may even be the case that a new feature introduces new incompatible syntax (such as a new reserved word), in which case the compiler may need to parse the module differently. Such decisions cannot be pushed off until runtime.

For any given release, the compiler knows which feature names have been defined, and raises a compile-time error if a future statement contains a feature not known to it.

The direct runtime semantics are the same as for any import statement: there is a standard module __future__ , described later, and it will be imported in the usual way at the time the future statement is executed.

The interesting runtime semantics depend on the specific feature enabled by the future statement.

Note that there is nothing special about the statement:

That is not a future statement; it’s an ordinary import statement with no special semantics or syntax restrictions.

Code compiled by calls to the built-in functions exec() and compile() that occur in a module M containing a future statement will, by default, use the new syntax or semantics associated with the future statement. This can be controlled by optional arguments to compile() — see the documentation of that function for details.

A future statement typed at an interactive interpreter prompt will take effect for the rest of the interpreter session. If an interpreter is started with the -i option, is passed a script name to execute, and the script includes a future statement, it will be in effect in the interactive session started after the script is executed.

The original proposal for the __future__ mechanism.

7.12. The global statement ¶

The global statement is a declaration which holds for the entire current code block. It means that the listed identifiers are to be interpreted as globals. It would be impossible to assign to a global variable without global , although free variables may refer to globals without being declared global.

Names listed in a global statement must not be used in the same code block textually preceding that global statement.

Names listed in a global statement must not be defined as formal parameters, or as targets in with statements or except clauses, or in a for target list, class definition, function definition, import statement, or variable annotation.

CPython implementation detail: The current implementation does not enforce some of these restrictions, but programs should not abuse this freedom, as future implementations may enforce them or silently change the meaning of the program.

Programmer’s note: global is a directive to the parser. It applies only to code parsed at the same time as the global statement. In particular, a global statement contained in a string or code object supplied to the built-in exec() function does not affect the code block containing the function call, and code contained in such a string is unaffected by global statements in the code containing the function call. The same applies to the eval() and compile() functions.

7.13. The nonlocal statement ¶

When the definition of a function or class is nested (enclosed) within the definitions of other functions, its nonlocal scopes are the local scopes of the enclosing functions. The nonlocal statement causes the listed identifiers to refer to names previously bound in nonlocal scopes. It allows encapsulated code to rebind such nonlocal identifiers. If a name is bound in more than one nonlocal scope, the nearest binding is used. If a name is not bound in any nonlocal scope, or if there is no nonlocal scope, a SyntaxError is raised.

The nonlocal statement applies to the entire scope of a function or class body. A SyntaxError is raised if a variable is used or assigned to prior to its nonlocal declaration in the scope.

The specification for the nonlocal statement.

Programmer’s note: nonlocal is a directive to the parser and applies only to code parsed along with it. See the note for the global statement.

7.14. The type statement ¶

The type statement declares a type alias, which is an instance of typing.TypeAliasType .

For example, the following statement creates a type alias:

This code is roughly equivalent to:

annotation-def indicates an annotation scope , which behaves mostly like a function, but with several small differences.

The value of the type alias is evaluated in the annotation scope. It is not evaluated when the type alias is created, but only when the value is accessed through the type alias’s __value__ attribute (see Lazy evaluation ). This allows the type alias to refer to names that are not yet defined.

Type aliases may be made generic by adding a type parameter list after the name. See Generic type aliases for more.

type is a soft keyword .

Added in version 3.12.

Introduced the type statement and syntax for generic classes and functions.

Table of Contents

  • 7.1. Expression statements
  • 7.2.1. Augmented assignment statements
  • 7.2.2. Annotated assignment statements
  • 7.3. The assert statement
  • 7.4. The pass statement
  • 7.5. The del statement
  • 7.6. The return statement
  • 7.7. The yield statement
  • 7.8. The raise statement
  • 7.9. The break statement
  • 7.10. The continue statement
  • 7.11.1. Future statements
  • 7.12. The global statement
  • 7.13. The nonlocal statement
  • 7.14. The type statement

Previous topic

6. Expressions

8. Compound statements

  • Report a Bug
  • Show Source

previous episode

Python for absolute beginners, next episode, variables and assignment.

Overview Teaching: 15 min Exercises: 15 min Questions How can I store data in programs? Objectives Write scripts that assign values to variables and perform calculations with those values. Correctly trace value changes in scripts that use assignment.

Use variables to store values

Variables are one of the fundamental building blocks of Python. A variable is like a tiny container where you store values and data, such as filenames, words, numbers, collections of words and numbers, and more.

The variable name will point to a value that you “assign” it. You might think about variable assignment like putting a value “into” the variable, as if the variable is a little box 🎁

(In fact, a variable is not a container as such but more like an adress label that points to a container with a given value. This difference will become relevant once we start talking about lists and mutable data types.)

You assign variables with an equals sign ( = ). In Python, a single equals sign = is the “assignment operator.” (A double equals sign == is the “real” equals sign.)

  • Variables are names for values.
  • In Python the = symbol assigns the value on the right to the name on the left.
  • The variable is created when a value is assigned to it.
  • Here, Python assigns an age to a variable age and a name in quotation marks to a variable first_name :

Variable names

Variable names can be as long or as short as you want, but there are certain rules you must follow.

  • Cannot start with a digit.
  • Cannot contain spaces, quotation marks, or other punctuation.
  • May contain an underscore (typically used to separate words in long variable names).
  • Having an underscore at the beginning of a variable name like _alistairs_real_age has a special meaning. So we won’t do that until we understand the convention.
  • The standard naming convention for variable names in Python is the so-called “snake case”, where each word is separated by an underscore. For example my_first_variable . You can read more about naming conventions in Python here .

Use meaningful variable names

Python doesn’t care what you call variables as long as they obey the rules (alphanumeric characters and the underscore). As you start to code, you will almost certainly be tempted to use extremely short variables names like f . Your fingers will get tired. Your coffee will wear off. You will see other people using variables like f . You’ll promise yourself that you’ll definitely remember what f means. But you probably won’t.

So, resist the temptation of bad variable names! Clear and precisely-named variables will:

  • Make your code more readable (both to yourself and others).
  • Reinforce your understanding of Python and what’s happening in the code.
  • Clarify and strengthen your thinking.

Use meaningful variable names to help other people understand what the program does. The most important “other person” is your future self!

Python is case-sensitive

Python thinks that upper- and lower-case letters are different, so Name and name are different variables. There are conventions for using upper-case letters at the start of variable names so we will use lower-case letters for now.

Off-Limits Names

The only variable names that are off-limits are names that are reserved by, or built into, the Python programming language itself — such as print , True , and list . Some of these you can overwrite into variable names (not ideal!), but Jupyter Lab (and many other environments and editors) will catch this by colour coding your variable. If your would-be variable is colour-coded green, rethink your name choice. This is not something to worry too much about. You can get the object back by resetting your kernel.

Use print() to display values

We can check to see what’s “inside” variables by running a cell with the variable’s name. This is one of the handiest features of a Jupyter notebook. Outside the Jupyter environment, you would need to use the print() function to display the variable.

You can run the print() function inside the Jupyter environment, too. This is sometimes useful because Jupyter will only display the last variable in a cell, while print() can display multiple variables. Additionally, Jupyter will display text with \n characters (which means “new line”), while print() will display the text appropriately formatted with new lines.

  • Python has a built-in function called print() that prints things as text.
  • Provide values to the function (i.e., the things to print) in parentheses.
  • To add a string to the printout, wrap the string in single or double quotations.
  • The values passed to the function are called ‘arguments’ and are separated by commas.
  • When using the print() function, we can also separate with a ‘+’ sign. However, when using ‘+’ we have to add spaces in between manually.
  • print() automatically puts a single space between items to separate them.
  • And wraps around to a new line at the end.

Variables must be created before they are used

If a variable doesn’t exist yet, or if the name has been misspelled, Python reports an error (unlike some languages, which “guess” a default value).

The last line of an error message is usually the most informative. This message lets us know that there is no variable called eye_color in the script.

Variables Persist Between Cells Variables defined in one cell exist in all other cells once executed, so the relative location of cells in the notebook do not matter (i.e., cells lower down can still affect those above). Notice the number in the square brackets [ ] to the left of the cell. These numbers indicate the order, in which the cells have been executed. Cells with lower numbers will affect cells with higher numbers as Python runs the cells chronologically. As a best practice, we recommend you keep your notebook in chronological order so that it is easier for the human eye to read and make sense of, as well as to avoid any errors if you close and reopen your project, and then rerun what you have done. Remember: Notebook cells are just a way to organize a program! As far as Python is concerned, all of the source code is one long set of instructions.

Variables can be used in calculations

  • We can use variables in calculations just as if they were values. Remember, we assigned 42 to age a few lines ago.

This code works in the following way. We are reassigning the value of the variable age by taking its previous value (42) and adding 3, thus getting our new value of 45.

Use an index to get a single character from a string

  • The characters (individual letters, numbers, and so on) in a string are ordered. For example, the string ‘AB’ is not the same as ‘BA’. Because of this ordering, we can treat the string as a list of characters.
  • Each position in the string (first, second, etc.) is given a number. This number is called an index or sometimes a subscript.
  • Indices are numbered from 0 rather than 1.
  • Use the position’s index in square brackets to get the character at that position.

Use a slice to get a substring

A part of a string is called a substring. A substring can be as short as a single character. A slice is a part of a string (or, more generally, any list-like thing). We take a slice by using [start:stop] , where start is replaced with the index of the first element we want and stop is replaced with the index of the element just after the last element we want. Mathematically, you might say that a slice selects [start:stop] . The difference between stop and start is the slice’s length. Taking a slice does not change the contents of the original string. Instead, the slice is a copy of part of the original string.

Use the built-in function len() to find the length of a string

The built-in function len() is used to find the length of a string (and later, of other data types, too).

Note that the result is 6 and not 7. This is because it is the length of the value of the variable (i.e. 'helium' ) that is being counted and not the name of the variable (i.e. element )

Also note that nested functions are evaluated from the inside out, just like in mathematics. Thus, Python first reads the len() function, then the print() function.

Choosing a Name Which is a better variable name, m , min , or minutes ? Why? Hint: think about which code you would rather inherit from someone who is leaving the library: ts = m * 60 + s tot_sec = min * 60 + sec total_seconds = minutes * 60 + seconds Solution minutes is better because min might mean something like “minimum” (and actually does in Python, but we haven’t seen that yet).
Swapping Values Draw a table showing the values of the variables in this program after each statement is executed. In simple terms, what do the last three lines of this program do? x = 1.0 y = 3.0 swap = x x = y y = swap Solution swap = x # x->1.0 y->3.0 swap->1.0 x = y # x->3.0 y->3.0 swap->1.0 y = swap # x->3.0 y->1.0 swap->1.0 These three lines exchange the values in x and y using the swap variable for temporary storage. This is a fairly common programming idiom.
Predicting Values What is the final value of position in the program below? (Try to predict the value without running the program, then check your prediction.) initial = "left" position = initial initial = "right" Solution initial = "left" # Initial is assigned the string "left" position = initial # Position is assigned the variable initial, currently "left" initial = "right" # Initial is assigned the string "right" print(position) left The last assignment to position was “left”
Can you slice integers? If you assign a = 123 , what happens if you try to get the second digit of a ? Solution Numbers are not stored in the written representation, so they can’t be treated like strings. a = 123 print(a[1]) TypeError: 'int' object is not subscriptable
Slicing What does the following program print? library_name = 'social sciences' print('library_name[1:3] is:', library_name[1:3]) If thing is a variable name, low is a low number, and high is a high number: What does thing[low:high] do? What does thing[low:] (without a value after the colon) do? What does thing[:high] (without a value before the colon) do? What does thing[:] (just a colon) do? What does thing[number:negative-number] do? Solution library_name[1:3] is: oc It will slice the string, starting at the low index and ending an element before the high index It will slice the string, starting at the low index and stopping at the end of the string It will slice the string, starting at the beginning on the string, and ending an element before the high index It will print the entire string It will slice the string, starting the number index, and ending a distance of the absolute value of negative-number elements from the end of the string
Key Points Use variables to store values. Use meaningful variable names. Python is case-sensitive. Use print() to display values. Variables must be created before they are used. Variables persist between cells. Variables can be used in calculations. Use an index to get a single character from a string. Use a slice to get a substring. Use the built-in function len to find the length of a string.

Python Tutorial

File handling, python modules, python numpy, python pandas, python matplotlib, python scipy, machine learning, python mysql, python mongodb, python reference, module reference, python how to, python examples, python variables, varia b l e s.

Variables are containers for storing data values.

Creating Variables

Python has no command for declaring a variable.

A variable is created the moment you first assign a value to it.

Variables do not need to be declared with any particular type , and can even change type after they have been set.

If you want to specify the data type of a variable, this can be done with casting.

Advertisement

Get the Type

You can get the data type of a variable with the type() function.

Single or Double Quotes?

String variables can be declared either by using single or double quotes:

Case-Sensitive

Variable names are case-sensitive.

This will create two variables:

Video: Python Variables

Python Tutorial on YouTube

COLOR PICKER

colorpicker

Contact Sales

If you want to use W3Schools services as an educational institution, team or enterprise, send us an e-mail: [email protected]

Report Error

If you want to report an error, or if you want to make a suggestion, send us an e-mail: [email protected]

Top Tutorials

Top references, top examples, get certified.

Multiple assignment in Python: Assign multiple values or the same value to multiple variables

In Python, the = operator is used to assign values to variables.

You can assign values to multiple variables in one line.

Assign multiple values to multiple variables

Assign the same value to multiple variables.

You can assign multiple values to multiple variables by separating them with commas , .

You can assign values to more than three variables, and it is also possible to assign values of different data types to those variables.

When only one variable is on the left side, values on the right side are assigned as a tuple to that variable.

If the number of variables on the left does not match the number of values on the right, a ValueError occurs. You can assign the remaining values as a list by prefixing the variable name with * .

For more information on using * and assigning elements of a tuple and list to multiple variables, see the following article.

  • Unpack a tuple and list in Python

You can also swap the values of multiple variables in the same way. See the following article for details:

  • Swap values ​​in a list or values of variables in Python

You can assign the same value to multiple variables by using = consecutively.

For example, this is useful when initializing multiple variables with the same value.

After assigning the same value, you can assign a different value to one of these variables. As described later, be cautious when assigning mutable objects such as list and dict .

You can apply the same method when assigning the same value to three or more variables.

Be careful when assigning mutable objects such as list and dict .

If you use = consecutively, the same object is assigned to all variables. Therefore, if you change the value of an element or add a new element in one variable, the changes will be reflected in the others as well.

If you want to handle mutable objects separately, you need to assign them individually.

after c = []; d = [] , c and d are guaranteed to refer to two different, unique, newly created empty lists. (Note that c = d = [] assigns the same object to both c and d .) 3. Data model — Python 3.11.3 documentation

You can also use copy() or deepcopy() from the copy module to make shallow and deep copies. See the following article.

  • Shallow and deep copy in Python: copy(), deepcopy()

Related Categories

Related articles.

  • NumPy: arange() and linspace() to generate evenly spaced values
  • Chained comparison (a < x < b) in Python
  • pandas: Get first/last n rows of DataFrame with head() and tail()
  • pandas: Filter rows/columns by labels with filter()
  • Get the filename, directory, extension from a path string in Python
  • Sign function in Python (sign/signum/sgn, copysign)
  • How to flatten a list of lists in Python
  • None in Python
  • Create calendar as text, HTML, list in Python
  • NumPy: Insert elements, rows, and columns into an array with np.insert()
  • Shuffle a list, string, tuple in Python (random.shuffle, sample)
  • Add and update an item in a dictionary in Python
  • Cartesian product of lists in Python (itertools.product)
  • Remove a substring from a string in Python
  • pandas: Extract rows that contain specific strings from a DataFrame

Variables in Python

Variables in Python

Table of Contents

Variable Assignment

Variable types in python, object references, object identity, variable names, reserved words (keywords).

Watch Now This tutorial has a related video course created by the Real Python team. Watch it together with the written tutorial to deepen your understanding: Variables in Python

In the previous tutorial on Basic Data Types in Python , you saw how values of various Python data types can be created. But so far, all the values shown have been literal or constant values:

If you’re writing more complex code, your program will need data that can change as program execution proceeds.

Here’s what you’ll learn in this tutorial: You will learn how every item of data in a Python program can be described by the abstract term object , and you’ll learn how to manipulate objects using symbolic names called variables .

Free PDF Download: Python 3 Cheat Sheet

Take the Quiz: Test your knowledge with our interactive “Python Variables” quiz. You’ll receive a score upon completion to help you track your learning progress:

Interactive Quiz

Test your understanding of Python variables and object references.

Think of a variable as a name attached to a particular object. In Python, variables need not be declared or defined in advance, as is the case in many other programming languages. To create a variable, you just assign it a value and then start using it. Assignment is done with a single equals sign ( = ):

This is read or interpreted as “ n is assigned the value 300 .” Once this is done, n can be used in a statement or expression, and its value will be substituted:

Just as a literal value can be displayed directly from the interpreter prompt in a REPL session without the need for print() , so can a variable:

Later, if you change the value of n and use it again, the new value will be substituted instead:

Python also allows chained assignment, which makes it possible to assign the same value to several variables simultaneously:

The chained assignment above assigns 300 to the variables a , b , and c simultaneously.

In many programming languages, variables are statically typed. That means a variable is initially declared to have a specific data type, and any value assigned to it during its lifetime must always have that type.

Variables in Python are not subject to this restriction. In Python, a variable may be assigned a value of one type and then later re-assigned a value of a different type:

What is actually happening when you make a variable assignment? This is an important question in Python, because the answer differs somewhat from what you’d find in many other programming languages.

Python is a highly object-oriented language . In fact, virtually every item of data in a Python program is an object of a specific type or class. (This point will be reiterated many times over the course of these tutorials.)

Consider this code:

When presented with the statement print(300) , the interpreter does the following:

  • Creates an integer object
  • Gives it the value 300
  • Displays it to the console

You can see that an integer object is created using the built-in type() function:

A Python variable is a symbolic name that is a reference or pointer to an object. Once an object is assigned to a variable, you can refer to the object by that name. But the data itself is still contained within the object.

For example:

This assignment creates an integer object with the value 300 and assigns the variable n to point to that object.

Variable reference diagram

The following code verifies that n points to an integer object:

Now consider the following statement:

What happens when it is executed? Python does not create another object. It simply creates a new symbolic name or reference, m , which points to the same object that n points to.

Python variable references to the same object (illustration)

Next, suppose you do this:

Now Python creates a new integer object with the value 400 , and m becomes a reference to it.

References to separate objects in Python (diagram)

Lastly, suppose this statement is executed next:

Now Python creates a string object with the value "foo" and makes n reference that.

Python variable reference illustration

There is no longer any reference to the integer object 300 . It is orphaned, and there is no way to access it.

Tutorials in this series will occasionally refer to the lifetime of an object. An object’s life begins when it is created, at which time at least one reference to it is created. During an object’s lifetime, additional references to it may be created, as you saw above, and references to it may be deleted as well. An object stays alive, as it were, so long as there is at least one reference to it.

When the number of references to an object drops to zero, it is no longer accessible. At that point, its lifetime is over. Python will eventually notice that it is inaccessible and reclaim the allocated memory so it can be used for something else. In computer lingo, this process is referred to as garbage collection .

In Python, every object that is created is given a number that uniquely identifies it. It is guaranteed that no two objects will have the same identifier during any period in which their lifetimes overlap. Once an object’s reference count drops to zero and it is garbage collected, as happened to the 300 object above, then its identifying number becomes available and may be used again.

The built-in Python function id() returns an object’s integer identifier. Using the id() function, you can verify that two variables indeed point to the same object:

After the assignment m = n , m and n both point to the same object, confirmed by the fact that id(m) and id(n) return the same number. Once m is reassigned to 400 , m and n point to different objects with different identities.

Deep Dive: Caching Small Integer Values From what you now know about variable assignment and object references in Python, the following probably won’t surprise you: Python >>> m = 300 >>> n = 300 >>> id ( m ) 60062304 >>> id ( n ) 60062896 Copied! With the statement m = 300 , Python creates an integer object with the value 300 and sets m as a reference to it. n is then similarly assigned to an integer object with value 300 —but not the same object. Thus, they have different identities, which you can verify from the values returned by id() . But consider this: Python >>> m = 30 >>> n = 30 >>> id ( m ) 1405569120 >>> id ( n ) 1405569120 Copied! Here, m and n are separately assigned to integer objects having value 30 . But in this case, id(m) and id(n) are identical! For purposes of optimization, the interpreter creates objects for the integers in the range [-5, 256] at startup, and then reuses them during program execution. Thus, when you assign separate variables to an integer value in this range, they will actually reference the same object.

The examples you have seen so far have used short, terse variable names like m and n . But variable names can be more verbose. In fact, it is usually beneficial if they are because it makes the purpose of the variable more evident at first glance.

Officially, variable names in Python can be any length and can consist of uppercase and lowercase letters ( A-Z , a-z ), digits ( 0-9 ), and the underscore character ( _ ). An additional restriction is that, although a variable name can contain digits, the first character of a variable name cannot be a digit.

Note: One of the additions to Python 3 was full Unicode support , which allows for Unicode characters in a variable name as well. You will learn about Unicode in greater depth in a future tutorial.

For example, all of the following are valid variable names:

But this one is not, because a variable name can’t begin with a digit:

Note that case is significant. Lowercase and uppercase letters are not the same. Use of the underscore character is significant as well. Each of the following defines a different variable:

There is nothing stopping you from creating two different variables in the same program called age and Age , or for that matter agE . But it is probably ill-advised. It would certainly be likely to confuse anyone trying to read your code, and even you yourself, after you’d been away from it awhile.

It is worthwhile to give a variable a name that is descriptive enough to make clear what it is being used for. For example, suppose you are tallying the number of people who have graduated college. You could conceivably choose any of the following:

All of them are probably better choices than n , or ncg , or the like. At least you can tell from the name what the value of the variable is supposed to represent.

On the other hand, they aren’t all necessarily equally legible. As with many things, it is a matter of personal preference, but most people would find the first two examples, where the letters are all shoved together, to be harder to read, particularly the one in all capital letters. The most commonly used methods of constructing a multi-word variable name are the last three examples:

  • Example: numberOfCollegeGraduates
  • Example: NumberOfCollegeGraduates
  • Example: number_of_college_graduates

Programmers debate hotly, with surprising fervor, which of these is preferable. Decent arguments can be made for all of them. Use whichever of the three is most visually appealing to you. Pick one and use it consistently.

You will see later that variables aren’t the only things that can be given names. You can also name functions, classes, modules, and so on. The rules that apply to variable names also apply to identifiers, the more general term for names given to program objects.

The Style Guide for Python Code , also known as PEP 8 , contains Naming Conventions that list suggested standards for names of different object types. PEP 8 includes the following recommendations:

  • Snake Case should be used for functions and variable names.
  • Pascal Case should be used for class names. (PEP 8 refers to this as the “CapWords” convention.)

There is one more restriction on identifier names. The Python language reserves a small set of keywords that designate special language functionality. No object can have the same name as a reserved word.

In Python 3.6, there are 33 reserved keywords:

Python
Keywords
     

You can see this list any time by typing help("keywords") to the Python interpreter. Reserved words are case-sensitive and must be used exactly as shown. They are all entirely lowercase, except for False , None , and True .

Trying to create a variable with the same name as any reserved word results in an error:

This tutorial covered the basics of Python variables , including object references and identity, and naming of Python identifiers.

You now have a good understanding of some of Python’s data types and know how to create variables that reference objects of those types.

Next, you will see how to combine data objects into expressions involving various operations .

🐍 Python Tricks 💌

Get a short & sweet Python Trick delivered to your inbox every couple of days. No spam ever. Unsubscribe any time. Curated by the Real Python team.

Python Tricks Dictionary Merge

About John Sturtz

John Sturtz

John is an avid Pythonista and a member of the Real Python tutorial team.

Each tutorial at Real Python is created by a team of developers so that it meets our high quality standards. The team members who worked on this tutorial are:

Aldren Santos

Master Real-World Python Skills With Unlimited Access to Real Python

Join us and get access to thousands of tutorials, hands-on video courses, and a community of expert Pythonistas:

Join us and get access to thousands of tutorials, hands-on video courses, and a community of expert Pythonistas:

What Do You Think?

What’s your #1 takeaway or favorite thing you learned? How are you going to put your newfound skills to use? Leave a comment below and let us know.

Commenting Tips: The most useful comments are those written with the goal of learning from or helping out other students. Get tips for asking good questions and get answers to common questions in our support portal . Looking for a real-time conversation? Visit the Real Python Community Chat or join the next “Office Hours” Live Q&A Session . Happy Pythoning!

Keep Learning

Related Topics: basics python

Recommended Video Course: Variables in Python

Keep reading Real Python by creating a free account or signing in:

Already have an account? Sign-In

Almost there! Complete this form and click the button below to gain instant access:

Python Logo

Python 3 Cheat Sheet (PDF)

🔒 No spam. We take your privacy seriously.

assignment declaration in python

Python Enhancement Proposals

  • Python »
  • PEP Index »

PEP 572 – Assignment Expressions

The importance of real code, exceptional cases, scope of the target, relative precedence of :=, change to evaluation order, differences between assignment expressions and assignment statements, specification changes during implementation, _pydecimal.py, datetime.py, sysconfig.py, simplifying list comprehensions, capturing condition values, changing the scope rules for comprehensions, alternative spellings, special-casing conditional statements, special-casing comprehensions, lowering operator precedence, allowing commas to the right, always requiring parentheses, why not just turn existing assignment into an expression, with assignment expressions, why bother with assignment statements, why not use a sublocal scope and prevent namespace pollution, style guide recommendations, acknowledgements, a numeric example, appendix b: rough code translations for comprehensions, appendix c: no changes to scope semantics.

This is a proposal for creating a way to assign to variables within an expression using the notation NAME := expr .

As part of this change, there is also an update to dictionary comprehension evaluation order to ensure key expressions are executed before value expressions (allowing the key to be bound to a name and then re-used as part of calculating the corresponding value).

During discussion of this PEP, the operator became informally known as “the walrus operator”. The construct’s formal name is “Assignment Expressions” (as per the PEP title), but they may also be referred to as “Named Expressions” (e.g. the CPython reference implementation uses that name internally).

Naming the result of an expression is an important part of programming, allowing a descriptive name to be used in place of a longer expression, and permitting reuse. Currently, this feature is available only in statement form, making it unavailable in list comprehensions and other expression contexts.

Additionally, naming sub-parts of a large expression can assist an interactive debugger, providing useful display hooks and partial results. Without a way to capture sub-expressions inline, this would require refactoring of the original code; with assignment expressions, this merely requires the insertion of a few name := markers. Removing the need to refactor reduces the likelihood that the code be inadvertently changed as part of debugging (a common cause of Heisenbugs), and is easier to dictate to another programmer.

During the development of this PEP many people (supporters and critics both) have had a tendency to focus on toy examples on the one hand, and on overly complex examples on the other.

The danger of toy examples is twofold: they are often too abstract to make anyone go “ooh, that’s compelling”, and they are easily refuted with “I would never write it that way anyway”.

The danger of overly complex examples is that they provide a convenient strawman for critics of the proposal to shoot down (“that’s obfuscated”).

Yet there is some use for both extremely simple and extremely complex examples: they are helpful to clarify the intended semantics. Therefore, there will be some of each below.

However, in order to be compelling , examples should be rooted in real code, i.e. code that was written without any thought of this PEP, as part of a useful application, however large or small. Tim Peters has been extremely helpful by going over his own personal code repository and picking examples of code he had written that (in his view) would have been clearer if rewritten with (sparing) use of assignment expressions. His conclusion: the current proposal would have allowed a modest but clear improvement in quite a few bits of code.

Another use of real code is to observe indirectly how much value programmers place on compactness. Guido van Rossum searched through a Dropbox code base and discovered some evidence that programmers value writing fewer lines over shorter lines.

Case in point: Guido found several examples where a programmer repeated a subexpression, slowing down the program, in order to save one line of code, e.g. instead of writing:

they would write:

Another example illustrates that programmers sometimes do more work to save an extra level of indentation:

This code tries to match pattern2 even if pattern1 has a match (in which case the match on pattern2 is never used). The more efficient rewrite would have been:

Syntax and semantics

In most contexts where arbitrary Python expressions can be used, a named expression can appear. This is of the form NAME := expr where expr is any valid Python expression other than an unparenthesized tuple, and NAME is an identifier.

The value of such a named expression is the same as the incorporated expression, with the additional side-effect that the target is assigned that value:

There are a few places where assignment expressions are not allowed, in order to avoid ambiguities or user confusion:

This rule is included to simplify the choice for the user between an assignment statement and an assignment expression – there is no syntactic position where both are valid.

Again, this rule is included to avoid two visually similar ways of saying the same thing.

This rule is included to disallow excessively confusing code, and because parsing keyword arguments is complex enough already.

This rule is included to discourage side effects in a position whose exact semantics are already confusing to many users (cf. the common style recommendation against mutable default values), and also to echo the similar prohibition in calls (the previous bullet).

The reasoning here is similar to the two previous cases; this ungrouped assortment of symbols and operators composed of : and = is hard to read correctly.

This allows lambda to always bind less tightly than := ; having a name binding at the top level inside a lambda function is unlikely to be of value, as there is no way to make use of it. In cases where the name will be used more than once, the expression is likely to need parenthesizing anyway, so this prohibition will rarely affect code.

This shows that what looks like an assignment operator in an f-string is not always an assignment operator. The f-string parser uses : to indicate formatting options. To preserve backwards compatibility, assignment operator usage inside of f-strings must be parenthesized. As noted above, this usage of the assignment operator is not recommended.

An assignment expression does not introduce a new scope. In most cases the scope in which the target will be bound is self-explanatory: it is the current scope. If this scope contains a nonlocal or global declaration for the target, the assignment expression honors that. A lambda (being an explicit, if anonymous, function definition) counts as a scope for this purpose.

There is one special case: an assignment expression occurring in a list, set or dict comprehension or in a generator expression (below collectively referred to as “comprehensions”) binds the target in the containing scope, honoring a nonlocal or global declaration for the target in that scope, if one exists. For the purpose of this rule the containing scope of a nested comprehension is the scope that contains the outermost comprehension. A lambda counts as a containing scope.

The motivation for this special case is twofold. First, it allows us to conveniently capture a “witness” for an any() expression, or a counterexample for all() , for example:

Second, it allows a compact way of updating mutable state from a comprehension, for example:

However, an assignment expression target name cannot be the same as a for -target name appearing in any comprehension containing the assignment expression. The latter names are local to the comprehension in which they appear, so it would be contradictory for a contained use of the same name to refer to the scope containing the outermost comprehension instead.

For example, [i := i+1 for i in range(5)] is invalid: the for i part establishes that i is local to the comprehension, but the i := part insists that i is not local to the comprehension. The same reason makes these examples invalid too:

While it’s technically possible to assign consistent semantics to these cases, it’s difficult to determine whether those semantics actually make sense in the absence of real use cases. Accordingly, the reference implementation [1] will ensure that such cases raise SyntaxError , rather than executing with implementation defined behaviour.

This restriction applies even if the assignment expression is never executed:

For the comprehension body (the part before the first “for” keyword) and the filter expression (the part after “if” and before any nested “for”), this restriction applies solely to target names that are also used as iteration variables in the comprehension. Lambda expressions appearing in these positions introduce a new explicit function scope, and hence may use assignment expressions with no additional restrictions.

Due to design constraints in the reference implementation (the symbol table analyser cannot easily detect when names are re-used between the leftmost comprehension iterable expression and the rest of the comprehension), named expressions are disallowed entirely as part of comprehension iterable expressions (the part after each “in”, and before any subsequent “if” or “for” keyword):

A further exception applies when an assignment expression occurs in a comprehension whose containing scope is a class scope. If the rules above were to result in the target being assigned in that class’s scope, the assignment expression is expressly invalid. This case also raises SyntaxError :

(The reason for the latter exception is the implicit function scope created for comprehensions – there is currently no runtime mechanism for a function to refer to a variable in the containing class scope, and we do not want to add such a mechanism. If this issue ever gets resolved this special case may be removed from the specification of assignment expressions. Note that the problem already exists for using a variable defined in the class scope from a comprehension.)

See Appendix B for some examples of how the rules for targets in comprehensions translate to equivalent code.

The := operator groups more tightly than a comma in all syntactic positions where it is legal, but less tightly than all other operators, including or , and , not , and conditional expressions ( A if C else B ). As follows from section “Exceptional cases” above, it is never allowed at the same level as = . In case a different grouping is desired, parentheses should be used.

The := operator may be used directly in a positional function call argument; however it is invalid directly in a keyword argument.

Some examples to clarify what’s technically valid or invalid:

Most of the “valid” examples above are not recommended, since human readers of Python source code who are quickly glancing at some code may miss the distinction. But simple cases are not objectionable:

This PEP recommends always putting spaces around := , similar to PEP 8 ’s recommendation for = when used for assignment, whereas the latter disallows spaces around = used for keyword arguments.)

In order to have precisely defined semantics, the proposal requires evaluation order to be well-defined. This is technically not a new requirement, as function calls may already have side effects. Python already has a rule that subexpressions are generally evaluated from left to right. However, assignment expressions make these side effects more visible, and we propose a single change to the current evaluation order:

  • In a dict comprehension {X: Y for ...} , Y is currently evaluated before X . We propose to change this so that X is evaluated before Y . (In a dict display like {X: Y} this is already the case, and also in dict((X, Y) for ...) which should clearly be equivalent to the dict comprehension.)

Most importantly, since := is an expression, it can be used in contexts where statements are illegal, including lambda functions and comprehensions.

Conversely, assignment expressions don’t support the advanced features found in assignment statements:

  • Multiple targets are not directly supported: x = y = z = 0 # Equivalent: (z := (y := (x := 0)))
  • Single assignment targets other than a single NAME are not supported: # No equivalent a [ i ] = x self . rest = []
  • Priority around commas is different: x = 1 , 2 # Sets x to (1, 2) ( x := 1 , 2 ) # Sets x to 1
  • Iterable packing and unpacking (both regular or extended forms) are not supported: # Equivalent needs extra parentheses loc = x , y # Use (loc := (x, y)) info = name , phone , * rest # Use (info := (name, phone, *rest)) # No equivalent px , py , pz = position name , phone , email , * other_info = contact
  • Inline type annotations are not supported: # Closest equivalent is "p: Optional[int]" as a separate declaration p : Optional [ int ] = None
  • Augmented assignment is not supported: total += tax # Equivalent: (total := total + tax)

The following changes have been made based on implementation experience and additional review after the PEP was first accepted and before Python 3.8 was released:

  • for consistency with other similar exceptions, and to avoid locking in an exception name that is not necessarily going to improve clarity for end users, the originally proposed TargetScopeError subclass of SyntaxError was dropped in favour of just raising SyntaxError directly. [3]
  • due to a limitation in CPython’s symbol table analysis process, the reference implementation raises SyntaxError for all uses of named expressions inside comprehension iterable expressions, rather than only raising them when the named expression target conflicts with one of the iteration variables in the comprehension. This could be revisited given sufficiently compelling examples, but the extra complexity needed to implement the more selective restriction doesn’t seem worthwhile for purely hypothetical use cases.

Examples from the Python standard library

env_base is only used on these lines, putting its assignment on the if moves it as the “header” of the block.

  • Current: env_base = os . environ . get ( "PYTHONUSERBASE" , None ) if env_base : return env_base
  • Improved: if env_base := os . environ . get ( "PYTHONUSERBASE" , None ): return env_base

Avoid nested if and remove one indentation level.

  • Current: if self . _is_special : ans = self . _check_nans ( context = context ) if ans : return ans
  • Improved: if self . _is_special and ( ans := self . _check_nans ( context = context )): return ans

Code looks more regular and avoid multiple nested if. (See Appendix A for the origin of this example.)

  • Current: reductor = dispatch_table . get ( cls ) if reductor : rv = reductor ( x ) else : reductor = getattr ( x , "__reduce_ex__" , None ) if reductor : rv = reductor ( 4 ) else : reductor = getattr ( x , "__reduce__" , None ) if reductor : rv = reductor () else : raise Error ( "un(deep)copyable object of type %s " % cls )
  • Improved: if reductor := dispatch_table . get ( cls ): rv = reductor ( x ) elif reductor := getattr ( x , "__reduce_ex__" , None ): rv = reductor ( 4 ) elif reductor := getattr ( x , "__reduce__" , None ): rv = reductor () else : raise Error ( "un(deep)copyable object of type %s " % cls )

tz is only used for s += tz , moving its assignment inside the if helps to show its scope.

  • Current: s = _format_time ( self . _hour , self . _minute , self . _second , self . _microsecond , timespec ) tz = self . _tzstr () if tz : s += tz return s
  • Improved: s = _format_time ( self . _hour , self . _minute , self . _second , self . _microsecond , timespec ) if tz := self . _tzstr (): s += tz return s

Calling fp.readline() in the while condition and calling .match() on the if lines make the code more compact without making it harder to understand.

  • Current: while True : line = fp . readline () if not line : break m = define_rx . match ( line ) if m : n , v = m . group ( 1 , 2 ) try : v = int ( v ) except ValueError : pass vars [ n ] = v else : m = undef_rx . match ( line ) if m : vars [ m . group ( 1 )] = 0
  • Improved: while line := fp . readline (): if m := define_rx . match ( line ): n , v = m . group ( 1 , 2 ) try : v = int ( v ) except ValueError : pass vars [ n ] = v elif m := undef_rx . match ( line ): vars [ m . group ( 1 )] = 0

A list comprehension can map and filter efficiently by capturing the condition:

Similarly, a subexpression can be reused within the main expression, by giving it a name on first use:

Note that in both cases the variable y is bound in the containing scope (i.e. at the same level as results or stuff ).

Assignment expressions can be used to good effect in the header of an if or while statement:

Particularly with the while loop, this can remove the need to have an infinite loop, an assignment, and a condition. It also creates a smooth parallel between a loop which simply uses a function call as its condition, and one which uses that as its condition but also uses the actual value.

An example from the low-level UNIX world:

Rejected alternative proposals

Proposals broadly similar to this one have come up frequently on python-ideas. Below are a number of alternative syntaxes, some of them specific to comprehensions, which have been rejected in favour of the one given above.

A previous version of this PEP proposed subtle changes to the scope rules for comprehensions, to make them more usable in class scope and to unify the scope of the “outermost iterable” and the rest of the comprehension. However, this part of the proposal would have caused backwards incompatibilities, and has been withdrawn so the PEP can focus on assignment expressions.

Broadly the same semantics as the current proposal, but spelled differently.

Since EXPR as NAME already has meaning in import , except and with statements (with different semantics), this would create unnecessary confusion or require special-casing (e.g. to forbid assignment within the headers of these statements).

(Note that with EXPR as VAR does not simply assign the value of EXPR to VAR – it calls EXPR.__enter__() and assigns the result of that to VAR .)

Additional reasons to prefer := over this spelling include:

  • In if f(x) as y the assignment target doesn’t jump out at you – it just reads like if f x blah blah and it is too similar visually to if f(x) and y .
  • import foo as bar
  • except Exc as var
  • with ctxmgr() as var

To the contrary, the assignment expression does not belong to the if or while that starts the line, and we intentionally allow assignment expressions in other contexts as well.

  • NAME = EXPR
  • if NAME := EXPR

reinforces the visual recognition of assignment expressions.

This syntax is inspired by languages such as R and Haskell, and some programmable calculators. (Note that a left-facing arrow y <- f(x) is not possible in Python, as it would be interpreted as less-than and unary minus.) This syntax has a slight advantage over ‘as’ in that it does not conflict with with , except and import , but otherwise is equivalent. But it is entirely unrelated to Python’s other use of -> (function return type annotations), and compared to := (which dates back to Algol-58) it has a much weaker tradition.

This has the advantage that leaked usage can be readily detected, removing some forms of syntactic ambiguity. However, this would be the only place in Python where a variable’s scope is encoded into its name, making refactoring harder.

Execution order is inverted (the indented body is performed first, followed by the “header”). This requires a new keyword, unless an existing keyword is repurposed (most likely with: ). See PEP 3150 for prior discussion on this subject (with the proposed keyword being given: ).

This syntax has fewer conflicts than as does (conflicting only with the raise Exc from Exc notation), but is otherwise comparable to it. Instead of paralleling with expr as target: (which can be useful but can also be confusing), this has no parallels, but is evocative.

One of the most popular use-cases is if and while statements. Instead of a more general solution, this proposal enhances the syntax of these two statements to add a means of capturing the compared value:

This works beautifully if and ONLY if the desired condition is based on the truthiness of the captured value. It is thus effective for specific use-cases (regex matches, socket reads that return '' when done), and completely useless in more complicated cases (e.g. where the condition is f(x) < 0 and you want to capture the value of f(x) ). It also has no benefit to list comprehensions.

Advantages: No syntactic ambiguities. Disadvantages: Answers only a fraction of possible use-cases, even in if / while statements.

Another common use-case is comprehensions (list/set/dict, and genexps). As above, proposals have been made for comprehension-specific solutions.

This brings the subexpression to a location in between the ‘for’ loop and the expression. It introduces an additional language keyword, which creates conflicts. Of the three, where reads the most cleanly, but also has the greatest potential for conflict (e.g. SQLAlchemy and numpy have where methods, as does tkinter.dnd.Icon in the standard library).

As above, but reusing the with keyword. Doesn’t read too badly, and needs no additional language keyword. Is restricted to comprehensions, though, and cannot as easily be transformed into “longhand” for-loop syntax. Has the C problem that an equals sign in an expression can now create a name binding, rather than performing a comparison. Would raise the question of why “with NAME = EXPR:” cannot be used as a statement on its own.

As per option 2, but using as rather than an equals sign. Aligns syntactically with other uses of as for name binding, but a simple transformation to for-loop longhand would create drastically different semantics; the meaning of with inside a comprehension would be completely different from the meaning as a stand-alone statement, while retaining identical syntax.

Regardless of the spelling chosen, this introduces a stark difference between comprehensions and the equivalent unrolled long-hand form of the loop. It is no longer possible to unwrap the loop into statement form without reworking any name bindings. The only keyword that can be repurposed to this task is with , thus giving it sneakily different semantics in a comprehension than in a statement; alternatively, a new keyword is needed, with all the costs therein.

There are two logical precedences for the := operator. Either it should bind as loosely as possible, as does statement-assignment; or it should bind more tightly than comparison operators. Placing its precedence between the comparison and arithmetic operators (to be precise: just lower than bitwise OR) allows most uses inside while and if conditions to be spelled without parentheses, as it is most likely that you wish to capture the value of something, then perform a comparison on it:

Once find() returns -1, the loop terminates. If := binds as loosely as = does, this would capture the result of the comparison (generally either True or False ), which is less useful.

While this behaviour would be convenient in many situations, it is also harder to explain than “the := operator behaves just like the assignment statement”, and as such, the precedence for := has been made as close as possible to that of = (with the exception that it binds tighter than comma).

Some critics have claimed that the assignment expressions should allow unparenthesized tuples on the right, so that these two would be equivalent:

(With the current version of the proposal, the latter would be equivalent to ((point := x), y) .)

However, adopting this stance would logically lead to the conclusion that when used in a function call, assignment expressions also bind less tight than comma, so we’d have the following confusing equivalence:

The less confusing option is to make := bind more tightly than comma.

It’s been proposed to just always require parentheses around an assignment expression. This would resolve many ambiguities, and indeed parentheses will frequently be needed to extract the desired subexpression. But in the following cases the extra parentheses feel redundant:

Frequently Raised Objections

C and its derivatives define the = operator as an expression, rather than a statement as is Python’s way. This allows assignments in more contexts, including contexts where comparisons are more common. The syntactic similarity between if (x == y) and if (x = y) belies their drastically different semantics. Thus this proposal uses := to clarify the distinction.

The two forms have different flexibilities. The := operator can be used inside a larger expression; the = statement can be augmented to += and its friends, can be chained, and can assign to attributes and subscripts.

Previous revisions of this proposal involved sublocal scope (restricted to a single statement), preventing name leakage and namespace pollution. While a definite advantage in a number of situations, this increases complexity in many others, and the costs are not justified by the benefits. In the interests of language simplicity, the name bindings created here are exactly equivalent to any other name bindings, including that usage at class or module scope will create externally-visible names. This is no different from for loops or other constructs, and can be solved the same way: del the name once it is no longer needed, or prefix it with an underscore.

(The author wishes to thank Guido van Rossum and Christoph Groth for their suggestions to move the proposal in this direction. [2] )

As expression assignments can sometimes be used equivalently to statement assignments, the question of which should be preferred will arise. For the benefit of style guides such as PEP 8 , two recommendations are suggested.

  • If either assignment statements or assignment expressions can be used, prefer statements; they are a clear declaration of intent.
  • If using assignment expressions would lead to ambiguity about execution order, restructure it to use statements instead.

The authors wish to thank Alyssa Coghlan and Steven D’Aprano for their considerable contributions to this proposal, and members of the core-mentorship mailing list for assistance with implementation.

Appendix A: Tim Peters’s findings

Here’s a brief essay Tim Peters wrote on the topic.

I dislike “busy” lines of code, and also dislike putting conceptually unrelated logic on a single line. So, for example, instead of:

instead. So I suspected I’d find few places I’d want to use assignment expressions. I didn’t even consider them for lines already stretching halfway across the screen. In other cases, “unrelated” ruled:

is a vast improvement over the briefer:

The original two statements are doing entirely different conceptual things, and slamming them together is conceptually insane.

In other cases, combining related logic made it harder to understand, such as rewriting:

as the briefer:

The while test there is too subtle, crucially relying on strict left-to-right evaluation in a non-short-circuiting or method-chaining context. My brain isn’t wired that way.

But cases like that were rare. Name binding is very frequent, and “sparse is better than dense” does not mean “almost empty is better than sparse”. For example, I have many functions that return None or 0 to communicate “I have nothing useful to return in this case, but since that’s expected often I’m not going to annoy you with an exception”. This is essentially the same as regular expression search functions returning None when there is no match. So there was lots of code of the form:

I find that clearer, and certainly a bit less typing and pattern-matching reading, as:

It’s also nice to trade away a small amount of horizontal whitespace to get another _line_ of surrounding code on screen. I didn’t give much weight to this at first, but it was so very frequent it added up, and I soon enough became annoyed that I couldn’t actually run the briefer code. That surprised me!

There are other cases where assignment expressions really shine. Rather than pick another from my code, Kirill Balunov gave a lovely example from the standard library’s copy() function in copy.py :

The ever-increasing indentation is semantically misleading: the logic is conceptually flat, “the first test that succeeds wins”:

Using easy assignment expressions allows the visual structure of the code to emphasize the conceptual flatness of the logic; ever-increasing indentation obscured it.

A smaller example from my code delighted me, both allowing to put inherently related logic in a single line, and allowing to remove an annoying “artificial” indentation level:

That if is about as long as I want my lines to get, but remains easy to follow.

So, in all, in most lines binding a name, I wouldn’t use assignment expressions, but because that construct is so very frequent, that leaves many places I would. In most of the latter, I found a small win that adds up due to how often it occurs, and in the rest I found a moderate to major win. I’d certainly use it more often than ternary if , but significantly less often than augmented assignment.

I have another example that quite impressed me at the time.

Where all variables are positive integers, and a is at least as large as the n’th root of x, this algorithm returns the floor of the n’th root of x (and roughly doubling the number of accurate bits per iteration):

It’s not obvious why that works, but is no more obvious in the “loop and a half” form. It’s hard to prove correctness without building on the right insight (the “arithmetic mean - geometric mean inequality”), and knowing some non-trivial things about how nested floor functions behave. That is, the challenges are in the math, not really in the coding.

If you do know all that, then the assignment-expression form is easily read as “while the current guess is too large, get a smaller guess”, where the “too large?” test and the new guess share an expensive sub-expression.

To my eyes, the original form is harder to understand:

This appendix attempts to clarify (though not specify) the rules when a target occurs in a comprehension or in a generator expression. For a number of illustrative examples we show the original code, containing a comprehension, and the translation, where the comprehension has been replaced by an equivalent generator function plus some scaffolding.

Since [x for ...] is equivalent to list(x for ...) these examples all use list comprehensions without loss of generality. And since these examples are meant to clarify edge cases of the rules, they aren’t trying to look like real code.

Note: comprehensions are already implemented via synthesizing nested generator functions like those in this appendix. The new part is adding appropriate declarations to establish the intended scope of assignment expression targets (the same scope they resolve to as if the assignment were performed in the block containing the outermost comprehension). For type inference purposes, these illustrative expansions do not imply that assignment expression targets are always Optional (but they do indicate the target binding scope).

Let’s start with a reminder of what code is generated for a generator expression without assignment expression.

  • Original code (EXPR usually references VAR): def f (): a = [ EXPR for VAR in ITERABLE ]
  • Translation (let’s not worry about name conflicts): def f (): def genexpr ( iterator ): for VAR in iterator : yield EXPR a = list ( genexpr ( iter ( ITERABLE )))

Let’s add a simple assignment expression.

  • Original code: def f (): a = [ TARGET := EXPR for VAR in ITERABLE ]
  • Translation: def f (): if False : TARGET = None # Dead code to ensure TARGET is a local variable def genexpr ( iterator ): nonlocal TARGET for VAR in iterator : TARGET = EXPR yield TARGET a = list ( genexpr ( iter ( ITERABLE )))

Let’s add a global TARGET declaration in f() .

  • Original code: def f (): global TARGET a = [ TARGET := EXPR for VAR in ITERABLE ]
  • Translation: def f (): global TARGET def genexpr ( iterator ): global TARGET for VAR in iterator : TARGET = EXPR yield TARGET a = list ( genexpr ( iter ( ITERABLE )))

Or instead let’s add a nonlocal TARGET declaration in f() .

  • Original code: def g (): TARGET = ... def f (): nonlocal TARGET a = [ TARGET := EXPR for VAR in ITERABLE ]
  • Translation: def g (): TARGET = ... def f (): nonlocal TARGET def genexpr ( iterator ): nonlocal TARGET for VAR in iterator : TARGET = EXPR yield TARGET a = list ( genexpr ( iter ( ITERABLE )))

Finally, let’s nest two comprehensions.

  • Original code: def f (): a = [[ TARGET := i for i in range ( 3 )] for j in range ( 2 )] # I.e., a = [[0, 1, 2], [0, 1, 2]] print ( TARGET ) # prints 2
  • Translation: def f (): if False : TARGET = None def outer_genexpr ( outer_iterator ): nonlocal TARGET def inner_generator ( inner_iterator ): nonlocal TARGET for i in inner_iterator : TARGET = i yield i for j in outer_iterator : yield list ( inner_generator ( range ( 3 ))) a = list ( outer_genexpr ( range ( 2 ))) print ( TARGET )

Because it has been a point of confusion, note that nothing about Python’s scoping semantics is changed. Function-local scopes continue to be resolved at compile time, and to have indefinite temporal extent at run time (“full closures”). Example:

This document has been placed in the public domain.

Source: https://github.com/python/peps/blob/main/peps/pep-0572.rst

Last modified: 2023-10-11 12:05:51 GMT

TutorialsTonight Logo

Python Conditional Assignment

When you want to assign a value to a variable based on some condition, like if the condition is true then assign a value to the variable, else assign some other value to the variable, then you can use the conditional assignment operator.

In this tutorial, we will look at different ways to assign values to a variable based on some condition.

1. Using Ternary Operator

The ternary operator is very special operator in Python, it is used to assign a value to a variable based on some condition.

It goes like this:

Here, the value of variable will be value_if_true if the condition is true, else it will be value_if_false .

Let's see a code snippet to understand it better.

You can see we have conditionally assigned a value to variable c based on the condition a > b .

2. Using if-else statement

if-else statements are the core part of any programming language, they are used to execute a block of code based on some condition.

Using an if-else statement, we can assign a value to a variable based on the condition we provide.

Here is an example of replacing the above code snippet with the if-else statement.

3. Using Logical Short Circuit Evaluation

Logical short circuit evaluation is another way using which you can assign a value to a variable conditionally.

The format of logical short circuit evaluation is:

It looks similar to ternary operator, but it is not. Here the condition and value_if_true performs logical AND operation, if both are true then the value of variable will be value_if_true , or else it will be value_if_false .

Let's see an example:

But if we make condition True but value_if_true False (or 0 or None), then the value of variable will be value_if_false .

So, you can see that the value of c is 20 even though the condition a < b is True .

So, you should be careful while using logical short circuit evaluation.

While working with lists , we often need to check if a list is empty or not, and if it is empty then we need to assign some default value to it.

Let's see how we can do it using conditional assignment.

Here, we have assigned a default value to my_list if it is empty.

Assign a value to a variable conditionally based on the presence of an element in a list.

Now you know 3 different ways to assign a value to a variable conditionally. Any of these methods can be used to assign a value when there is a condition.

The cleanest and fastest way to conditional value assignment is the ternary operator .

if-else statement is recommended to use when you have to execute a block of code based on some condition.

Happy coding! 😊

Stack Exchange Network

Stack Exchange network consists of 183 Q&A communities including Stack Overflow , the largest, most trusted online community for developers to learn, share their knowledge, and build their careers.

Q&A for work

Connect and share knowledge within a single location that is structured and easy to search.

Variable declaration versus assignment syntax

Working on a statically typed language with type inference and streamlined syntax, and need to make final decision about syntax for variable declaration versus assignment. Specifically I'm trying to choose between:

Creating functions will use = regardless:

And assignment to compound objects will do likewise:

Which of options 1 or 2 would people find most convenient/least surprising/otherwise best?

  • language-design
  • language-features

rwallace's user avatar

  • 1 Why do you need differentiate between the two? Edit: To clarify, why can't you make foo = ... always introduce or assign to a local, with syntax to exempt one name from the "introducing" part, instead making = alter a global/closed over variable (i.e. , like Python's global and nonlocal , possibly unified into one concept)? –  user7043 Commented Oct 27, 2013 at 20:09
  • If by type inference you mean implicit declaration of variables, may I refer you to the ALGOL committee's remarks? They roundly boxed Tony Hoare's ears when he suggested adding FORTRAN-style implicit declaration to ALGOL. This was before the (possibly apocryphal) story of a lost interplanetary probe from a typographical error combined with implicit declaration, that converted a FORTRAN DO-statement into a legal assignment statement. –  John R. Strohm Commented Oct 28, 2013 at 3:31

3 Answers 3

There are many more aspects one should consider when settling for assignment/declaration syntax, than simple = vs. := bikeshedding.

Type inference or not, you will want a syntax for explicit type annotations. In some type systems, inference may not be possible without occasional explicit annotations. There two possible classes of syntax for this:

  • A type-variable statement without further operators implies a declaration, e.g. int i in C . Some languages use postfix types like i int , ( Golang to a certain degree).
  • There is a typing operator, often : or :: . Sometimes, this declares the type of a name: let i : int = 42 (e.g. Ocaml ). In an interesting spin of this, Julia allows a programmer to use type assertions for arbitrary expressions, along the lines of sum = (a + b):int .

You may also want to consider an explicit declaration keyword, like var , val or let . The advantage is not primarily that they make parsing and understanding of the code much easier, but that they unambiguously introduce a variable. Why is this important?

If you have closures, you need to precisely declare which scope a variable belongs to. Imagine a language without a declaration keyword, and implicit declaration through assignment (e.g. PHP or Python ). Both of these are syntactically challenged with respect to closures, because they either ascribe a variable to the outermost or innermost possible scope. Consider this Python:

Compare with a language that allows explicit declaration:

Explicit declarations allow variable shadowing. While generally a bad practice, it sometimes makes code much easier to follow – no reason to disallow it.

Explicit declarations offer a form of typo detection, because unbound variables are not implicitly declared. Consider:

You should also consider whether you would like to (optionally) enforce single-assignment form, e.g through keywords like val ( Scala ), let , or const or by default. In my experience, such code is easier to reason about.

How would a short declaration e.g. via := fare in these points?

  • Assuming you have typing via a : operator and assigment via = , then i : int = 42 could declare a variable, the syntax i : = 42 would invoke inference of the variable, and i := 42 would be a nice contraction, but not an operator in itself. This avoids problems later on.
  • Another rationale is the mathematical syntax for the declaration of new names x := expression or expression =: x . However, this has no significant difference to the = relation, except that the colon draws attention to one name. Simply using the := for similarity to maths is silly (considering the = abuse), as is using it for similarity to Pascal .

We can declare some more or less sane characteristics for := , like:

  • It declares a new variable in the current scope
  • which is re-assignable,
  • and performs type inference.
  • Re-declaring a variable in the same scope is a compilation error.
  • Shadowing is permitted.

But in practice, things get murky. What happens when you have multiple assignments (which you should seriously consider), like

Should this throw an error because x is already declared in this scope? Or should it just assign x and declare y ? Go takes the second route, with the result that typo detection is weakened:

Note that the “RHS of typing-operator is optional” idea from above would disambiguate this, as every new variable would have to be followed by a colon:

Should = be declaration but := be assignment? Hell no. First, no language I know of does this. Second, when you don't use single-assignment form, then assignment is more common than declaration. Huffman-coding of operator requires that the shorter operator is used for the more common operation. But if you don't generally allow reassignment, the = is somewhat free to use (depending on whether you use = or == as comparison operator, and whether you could disambiguate a = from context).

  • If assignment and declaration use the same operator, bad things happen: Closures, variable shadowing, and typo detection all get ugly with implicit declarations.
  • But if you don't have re-assignments, things clear up again.
  • Don't forget that explicit types and variable declarations are somewhat related. Combining their syntax has served many languages well.
  • Are you sure you want such little visual distinction between assignment and declaration?

Personal opinion

I am fond of declaration keywords like val or my . They stand out, making code easier to grok. Explicit declarations are always a good idea for a serious language.

amon's user avatar

  • Yeah, I'm using : for optional explicit type, so as you say, i := 42 is shorthand for i: int = 42 . I am allowing reassignment by default (so there needs to be some distinction), but it can be disabled with a final modifier as in Java. And I'm not a huge fan of declaring multiple variables on one line so I'm okay with losing that. –  rwallace Commented Oct 28, 2013 at 21:07

Both alternatives are bad. The first because it is far from obvious that a := operator creates a local variable, and the second because it means you have two different meanings for the = operator. Learn Dennis Ritchie's lesson, and don't have two operators that appear to be assignments, one of which is not.

Ross Patterson's user avatar

  • 2 Further, if I see := , I assume pascal assignment. That also means I expect = to test equality, not declare a variable. –  Telastyn Commented Oct 27, 2013 at 21:23
  • 1 Trying to read a source code without understanding its notation is bad habit. And your "obvious" point won't work when you know the notation. Otherwise := and = are visually distinguishable very well. –  lorus Commented Oct 28, 2013 at 6:48
  • 1 @lorus Tell that to every seasoned C programmer who's typed if (a = b) ... . It's not just a rookie mistake, everyone does it once in a while. In other words, it's a language design flaw. –  Ross Patterson Commented Oct 28, 2013 at 9:49
  • 4 This problem with C syntax is that assignment is an expression. If it would be a statement, the problem won't occur. –  lorus Commented Oct 29, 2013 at 4:35

New variables should be declared with x := 5 and should be updated/reassigned with x = 5 . Kind of the norm now, eight years later. Mostly thanks to golang I think.

Luke Miles's user avatar

Your Answer

Reminder: Answers generated by artificial intelligence tools are not allowed on Software Engineering Stack Exchange. Learn more

Sign up or log in

Post as a guest.

Required, but never shown

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy .

Not the answer you're looking for? Browse other questions tagged language-design syntax language-features or ask your own question .

  • The Overflow Blog
  • From PHP to JavaScript to Kubernetes: how one backend engineer evolved over time
  • Featured on Meta
  • We've made changes to our Terms of Service & Privacy Policy - July 2024
  • Bringing clarity to status tag usage on meta sites

Hot Network Questions

  • Do mini-humans need a "real" Saturn V to reach the moon?
  • What's the counterpart to "spheroid" for a circle? There's no "circoid"
  • Video game where the hero gets transported to another world with his sister to aid a king in a war
  • What Christian ideas are found in the New Testament that are not found in the Old Testament?
  • Calculate the sum of numbers in a rectangle
  • Jacobi two square's theorem last step to conclusion
  • Why does my Bluetooth speaker keep on connecting and disconnecting?
  • The work-energy theorem in a resistor
  • How to get Swedish coins in Sweden?
  • Can pedestrians and cyclists board shuttle trains in the Channel Tunnel?
  • Is there racial discrimination at Tbilisi airport?
  • Are there any virtues in virtue ethics that cannot be plausibly grounded in more fundamental utilitarian principles?
  • How should I respond to a former student from my old institution asking for a reference?
  • How to extract code into library allowing changes without workflow overhead
  • Is the error in translation of Genesis 19:5 deliberate?
  • Efficiently tagging first and last of each object matching condition
  • Why do combinatorists care about Kazhdan–Lusztig polynomials?
  • Book about a colony ship making an unscheduled stop in a star system with no habitable planets
  • Numbering system of equations and specific lines therein
  • What does 北渐 mean?
  • When testing for normally distributed data, should I consider all variables before running shapiro.test?
  • Print tree of uninstalled dependencies and their filesizes for apt packages
  • Has the government of Afghanistan clarified what they mean/intend by the ban on 'images of living beings'?
  • Does my AC vent air from the room to outside?

assignment declaration in python

  • Python Course
  • Python Basics
  • Interview Questions
  • Python Quiz
  • Popular Packages
  • Python Projects
  • Practice Python
  • AI With Python
  • Learn Python3
  • Python Automation
  • Python Web Dev
  • DSA with Python
  • Python OOPs
  • Dictionaries

Python Variables

Python Variable is containers that store values. Python is not “statically typed”. We do not need to declare variables before using them or declare their type. A variable is created the moment we first assign a value to it. A Python variable is a name given to a memory location. It is the basic unit of storage in a program. In this article, we will see how to define a variable in Python .

Example of Variable in Python

An Example of a Variable in Python is a representational name that serves as a pointer to an object. Once an object is assigned to a variable, it can be referred to by that name. In layman’s terms, we can say that Variable in Python is containers that store values.

Here we have stored “ Geeksforgeeks ”  in a variable var , and when we call its name the stored information will get printed.

Notes: The value stored in a variable can be changed during program execution. A Variables in Python is only a name given to a memory location, all the operations done on the variable effects that memory location.

Rules for Python variables

  • A Python variable name must start with a letter or the underscore character.
  • A Python variable name cannot start with a number.
  • A Python variable name can only contain alpha-numeric characters and underscores (A-z, 0-9, and _ ).
  • Variable in Python names are case-sensitive (name, Name, and NAME are three different variables).
  • The reserved words(keywords) in Python cannot be used to name the variable in Python.

Variables Assignment in Python

Here, we will define a variable in python. Here, clearly we have assigned a number, a floating point number, and a string to a variable such as age, salary, and name.

Declaration and Initialization of Variables

Let’s see how to declare a variable and how to define a variable and print the variable.

Redeclaring variables in Python

We can re-declare the Python variable once we have declared the variable and define variable in python already.

Python Assign Values to Multiple Variables 

Also, Python allows assigning a single value to several variables simultaneously with “=” operators.  For example: 

Assigning different values to multiple variables

Python allows adding different values in a single line with “,” operators.

Can We Use the S ame Name for Different Types?

If we use the same name, the variable starts referring to a new value and type.

How does + operator work with variables?  

The Python plus operator + provides a convenient way to add a value if it is a number and concatenate if it is a string. If a variable is already created it assigns the new value back to the same variable.

Can we use + for different Datatypes also?  

No use for different types would produce an error.

Global and Local Python Variables

Local variables in Python are the ones that are defined and declared inside a function. We can not call this variable outside the function.

Global variables in Python are the ones that are defined and declared outside a function, and we need to use them inside a function.

Global keyword in Python

Python global is a keyword that allows a user to modify a variable outside of the current scope. It is used to create global variables from a non-global scope i.e inside a function. Global keyword is used inside a function only when we want to do assignments or when we want to change a variable. Global is not needed for printing and accessing.

Rules of global keyword

  • If a variable is assigned a value anywhere within the function’s body, it’s assumed to be local unless explicitly declared as global.
  • Variables that are only referenced inside a function are implicitly global.
  • We use a global in Python to use a global variable inside a function.
  • There is no need to use a global keyword in Python outside a function.

Python program to modify a global value inside a function.

Variable Types in Python

Data types are the classification or categorization of data items. It represents the kind of value that tells what operations can be performed on a particular data. Since everything is an object in Python programming, data types are actually classes and variables are instances (object) of these classes.

Built-in Python Data types are:

  • Sequence Type ( Python list , Python tuple , Python range )

In this example, we have shown different examples of Built-in data types in Python.

Object Reference in Python

Let us assign a variable x to value 5.

Object References

Another variable is y to the variable x.

Object References in Python

When Python looks at the first statement, what it does is that, first, it creates an object to represent the value 5. Then, it creates the variable x if it doesn’t exist and made it a reference to this new object 5. The second line causes Python to create the variable y, and it is not assigned with x, rather it is made to reference that object that x does. The net effect is that the variables x and y wind up referencing the same object. This situation, with multiple names referencing the same object, is called a Shared Reference in Python. Now, if we write:

This statement makes a new object to represent ‘Geeks’ and makes x reference this new object.

Python Variable

Now if we assign the new value in Y, then the previous object refers to the garbage values.

Object References in Python

Creating objects (or variables of a class type)

Please refer to Class, Object, and Members for more details. 

Python Variables – FAQs

What are variables in python.

Variables in Python are used to store data values. They act as containers for storing data, which can be used and manipulated throughout a program. In Python, variables do not need explicit declaration to reserve memory space; the declaration happens automatically when you assign a value to a variable.

How to Declare Variables in Python?

In Python, variables are declared by assigning a value to them using the assignment operator = . You do not need to specify the type of variable as Python is dynamically typed. Example: # Declaring variables name = "Alice" age = 25 is_student = True In this example, name is a string, age is an integer, and is_student is a boolean.

What Are Global and Local Variables in Python?

Global Variables: Global variables are variables that are declared outside of any function. They can be accessed and modified by any function within the same module. Example: global_var = "I am global" def print_global(): print(global_var) print_global() # Output: I am global Local Variables: Local variables are variables that are declared within a function. They can only be accessed within that function and are not available outside of it. Example: def print_local(): local_var = "I am local" print(local_var) print_local() # Output: I am local # print(local_var) # This would raise an error because local_var is not accessible outside the function.

Can Variable Types Change in Python?

Yes, variable types can change in Python because it is a dynamically typed language. This means that the type of a variable is interpreted at runtime and you can assign different types of values to the same variable. Example: var = 10 # var is an integer var = "Hello" # Now var is a string var = [1, 2, 3] # Now var is a list

How to Use Type Annotations for Variables in Python?

Type annotations in Python provide a way to specify the expected type of a variable. They do not enforce type checking at runtime but can be used by static type checkers, IDEs, and linters to help catch type-related errors. Example: # Using type annotations name: str = "Alice" age: int = 25 is_student: bool = True def greeting(name: str) -> str: return f"Hello, {name}" # Static type checkers can use these annotations to detect type errors

In this example, the variables name , age , and is_student are annotated with their expected types. The function greeting also has type annotations for its parameter and return type.

Please Login to comment...

Similar reads.

  • School Programming
  • python-basics
  • How to Get a Free SSL Certificate
  • Best SSL Certificates Provider in India
  • Elon Musk's xAI releases Grok-2 AI assistant
  • What is OpenAI SearchGPT? How it works and How to Get it?
  • Full Stack Developer Roadmap [2024 Updated]

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

Unit testing type alias declarations

When I declare a non-trivial type alias, I want to add “tests” to confirm that the type alias does what I think it does. For example, suppose I have the following declaration:

Then I can effectively use my static type checker (in my case, mypy) to test that this does include cases I intend to include by adding something like:

If the type alias declaration isn’t compatible with one of my intended valid values, the type checker will complain.

However, I don’t see a way to check that the declaration is excluding things that I don’t want/expect. Ideally, I’m looking for something like:

Is there a way to achieve this that I’m missing?

The best way to do negative tests is to enable warn-unused-ignores and then add a type:ignore for the assignments that are supposed to fail, optionally with the specific error you’re expecting to occur. That’s how the tests in typeshed are written.

See also Testing and Ensuring Type Annotation Quality — typing documentation

Thank you! This makes sense.

  • Stack Overflow for Teams Where developers & technologists share private knowledge with coworkers
  • Advertising & Talent Reach devs & technologists worldwide about your product, service or employer brand
  • OverflowAI GenAI features for Teams
  • OverflowAPI Train & fine-tune LLMs
  • Labs The future of collective knowledge sharing
  • About the company Visit the blog

Collectives™ on Stack Overflow

Find centralized, trusted content and collaborate around the technologies you use most.

Q&A for work

Connect and share knowledge within a single location that is structured and easy to search.

Get early access and see previews of new features.

What happens to re-assignment of previous variables [duplicate]

I always thought if you assigned a new variable to a variable holding a mutable type that it stores the address of the mutable type rather than copying it. But why has a re-assignment of a variable holding a mutable type caused a copying of the mutable? Does dict1 allocate new memory to store None and dict2 stores the dictionary or how does it work?

Googled but nothing came up

toyota Supra's user avatar

  • 3 nedbatchelder.com/text/names.html –  John Gordon Commented 10 hours ago
  • How did you find that so quick? Are you ned? –  Wander verse Commented 10 hours ago
  • Python does the allocation of memory itself. The variables only hold a single reference to memory, but can be reseated at any time. –  quamrana Commented 10 hours ago
  • 1 Many programmers ask the same question. I too have a link to that article. –  quamrana Commented 10 hours ago
  • 1 If it helps, you can think of a variable in python as a "box of stuff" (the value), with a post-it note stuck to the side with a name written on it (the name). On the first line of code in your question, you created a box of stuff (the dictionary) and stuck the name "dict1" to it. Then on the second line you stuck the name "dict2" onto the same box (so now the box has two names). Then on the third line you removed the name "dict1" from that box, leaving it with only the name "dict2", and stuck the name "dict1" onto a different box. –  John Gordon Commented 10 hours ago

2 Answers 2

  • The {"1": "Hello", "2": "Joe", "3": "Bloggs"} creates a dictionary.
  • The dict1 = assigns the name dict1 to refer to that dictionary.
  • After dict2 = dict1 both names dict1 and dict2 refer to the same dictionary
  • None references a None object.
  • The dict1 = now assigns the name dict1 to refer to that None obejct.
  • After all that, dict2 still refers to the dictionary created in step 1.

KamilCuk's user avatar

  • Ooooo look at you –  Wander verse Commented 8 hours ago
  • @Wanderverse What does that mean? –  no comment Commented 8 hours ago
  • @nocomment no comment –  Wander verse Commented 7 hours ago

What is happening is that:

  • You are creating a dictionary called dict1.
  • You are saying that dict2 = dict1, making dict2 have all the same things as dict1.
  • dict1 is changed to None, dict2 is not affected, as it was assigned to dict1 when dict1 wasn't None. Therefore, when you print dict2, it will print what was in dict1 in the beginning ({"1": "Hello", "2": "Joe", "3": "Bloggs"})

user26973489's user avatar

  • Nice, thanks for repeating what i said. Now, whats the reason. –  Wander verse Commented 10 hours ago
  • 4 This answer makes it sound like there are two dicts (" making dict2 have all the same things as dict1 ") which is very much not the case, and the crux of the issue (i.e. how Python names are not variables in the traditional sense). –  Andras Deak -- Слава Україні Commented 9 hours ago

Not the answer you're looking for? Browse other questions tagged python dictionary or ask your own question .

  • The Overflow Blog
  • From PHP to JavaScript to Kubernetes: how one backend engineer evolved over time
  • Featured on Meta
  • We've made changes to our Terms of Service & Privacy Policy - July 2024
  • Bringing clarity to status tag usage on meta sites
  • Feedback requested: How do you use tag hover descriptions for curating and do...
  • What does a new user need in a homepage experience on Stack Overflow?

Hot Network Questions

  • An integral using Mathematica or otherwise
  • Meaning of capacitor "× 2" symbol on data sheet schematic
  • Fast circular buffer
  • Can you successfully substitute pickled onions for baby onions in Coq Au Vin?
  • Print tree of uninstalled dependencies and their filesizes for apt packages
  • Can figere come with a dative?
  • Melee Opportunist--making opportunity attacks have some bite for melee characters
  • How do I do calculations with a sliding window while being memory-efficient?
  • How to determine if a set is countable or uncountable?
  • If physics can be reduced to mathematics (and thus to logic), does this mean that (physical) causation is ultimately reducible to implication?
  • Why do combinatorists care about Kazhdan–Lusztig polynomials?
  • Idiomatic alternative to “going to Canossa”
  • How can I push back on my co-worker's changes that I disagree with?
  • Calculate the sum of numbers in a rectangle
  • What Christian ideas are found in the New Testament that are not found in the Old Testament?
  • How to extract code into library allowing changes without workflow overhead
  • How to calculate APR and amount owed
  • How to raise a vector to powers contained in a vector, change the list into a product, and do this for all the lines of a matrix, efficiently?
  • If you get pulled for secondary inspection at immigration, missing flight, will the airline rebook you?
  • How do I type the characters ├ ─ and └?
  • Chord definition misunderstanding
  • What's the Matter?
  • Miracle Miracle Octad Generator Generator
  • grep command fails with out-of-memory error

assignment declaration in python

IMAGES

  1. Assignment Statement in Python

    assignment declaration in python

  2. The right way to declare multiple variables in Python

    assignment declaration in python

  3. Declaration and initialisation variables in python : Py4ML Part 1

    assignment declaration in python

  4. Python Assignment Statements

    assignment declaration in python

  5. Assignment Operator in Python

    assignment declaration in python

  6. Python Assignment Statements

    assignment declaration in python

COMMENTS

  1. Python's Assignment Operator: Write Robust Assignments

    Here, variable represents a generic Python variable, while expression represents any Python object that you can provide as a concrete value—also known as a literal—or an expression that evaluates to a value. To execute an assignment statement like the above, Python runs the following steps: Evaluate the right-hand expression to produce a concrete value or object.

  2. Different Forms of Assignment Statements in Python

    Multiple- target assignment: x = y = 75. print(x, y) In this form, Python assigns a reference to the same object (the object which is rightmost) to all the target on the left. OUTPUT. 75 75. 7. Augmented assignment : The augmented assignment is a shorthand assignment that combines an expression and an assignment.

  3. Is it possible only to declare a variable without assigning any value

    var = None. Python is dynamic, so you don't need to declare things; they exist automatically in the first scope where they're assigned. So, all you need is a regular old assignment statement as above. This is nice, because you'll never end up with an uninitialized variable.

  4. Variables and Assignment

    Variables and Assignment¶. When programming, it is useful to be able to store information in variables. A variable is a string of characters and numbers associated with a piece of information. The assignment operator, denoted by the "=" symbol, is the operator that is used to assign values to variables in Python.The line x=1 takes the known value, 1, and assigns that value to the variable ...

  5. 7. Simple statements

    An assignment statement evaluates the expression list (remember that this can be a single expression or a comma-separated list, the latter yielding a tuple) and assigns the single resulting object to each of the target lists, from left to right. Assignment is defined recursively depending on the form of the target (list).

  6. The Walrus Operator: Python's Assignment Expressions

    Each new version of Python adds new features to the language. Back when Python 3.8 was released, the biggest change was the addition of assignment expressions.Specifically, the := operator gave you a new syntax for assigning variables in the middle of expressions. This operator is colloquially known as the walrus operator.. This tutorial is an in-depth introduction to the walrus operator.

  7. How To Use Assignment Expressions in Python

    The author selected the COVID-19 Relief Fund to receive a donation as part of the Write for DOnations program.. Introduction. Python 3.8, released in October 2019, adds assignment expressions to Python via the := syntax. The assignment expression syntax is also sometimes called "the walrus operator" because := vaguely resembles a walrus with tusks. ...

  8. Variables and Assignment

    In Python, a single equals sign = is the "assignment operator." (A double equals sign == is the "real" equals sign.) Variables are names for values. In Python the = symbol assigns the value on the right to the name on the left. The variable is created when a value is assigned to it. Here, Python assigns an age to a variable age and a ...

  9. Assigning multiple variables in one line in Python

    Given is the basic syntax of variable declaration: Syntax: var_name = value. Example: a = 4 Assign Values to Multiple Variables in One Line. Given above is the mechanism for assigning just variables in Python but it is possible to assign multiple variables at the same time. Python assigns values from right to left.

  10. Variable Assignment (Video)

    00:58 So, first stop: a standard variable assignment in Python. Unlike other languages, in Python this is very simple. We don't need to declare a variable, all we need to do is give it a name, put the equal sign (=) and then the value that we want to assign. That's it. 01:15 That's a variable assignment in Python.

  11. Python Variables

    Example Get your own Python Server. x = 5. y = "John". print(x) print(y) Try it Yourself ». Variables do not need to be declared with any particular type, and can even change type after they have been set.

  12. Assignment Operators in Python

    Assignment Operator. Assignment Operators are used to assign values to variables. This operator is used to assign the value of the right side of the expression to the left side operand. Python. # Assigning values using # Assignment Operator a = 3 b = 5 c = a + b # Output print(c) Output. 8.

  13. Multiple assignment in Python: Assign multiple values or the same value

    None in Python; Create calendar as text, HTML, list in Python; NumPy: Insert elements, rows, and columns into an array with np.insert() Shuffle a list, string, tuple in Python (random.shuffle, sample) Add and update an item in a dictionary in Python; Cartesian product of lists in Python (itertools.product) Remove a substring from a string in Python

  14. Variables in Python

    In Python, variables need not be declared or defined in advance, as is the case in many other programming languages. To create a variable, you just assign it a value and then start using it. Assignment is done with a single equals sign ( = ): Python. >>> n = 300. This is read or interpreted as " n is assigned the value 300 .".

  15. PEP 572

    An assignment expression does not introduce a new scope. In most cases the scope in which the target will be bound is self-explanatory: it is the current scope. If this scope contains a nonlocal or global declaration for the target, the assignment expression honors that. A lambda (being an explicit, if anonymous, function definition) counts as ...

  16. python

    Since Python 3.8, code can use the so-called "walrus" operator (:=), documented in PEP 572, for assignment expressions.This seems like a really substantial new feature, since it allows this form of assignment within comprehensions and lambdas.. What exactly are the syntax, semantics, and grammar specifications of assignment expressions?

  17. Python Conditional Assignment (in 3 Ways)

    Let's see a code snippet to understand it better. a = 10. b = 20 # assigning value to variable c based on condition. c = a if a > b else b. print(c) # output: 20. You can see we have conditionally assigned a value to variable c based on the condition a > b. 2. Using if-else statement.

  18. How does Python's comma operator work during assignment?

    32. Python does not have a "comma operator" as in C. Instead, the comma indicates that a tuple should be constructed. The right-hand side of. a, b = a + b, a. is a tuple with th two items a + b and a. On the left-hand side of an assignment, the comma indicates that sequence unpacking should be performed according to the rules you quoted: a will ...

  19. language design

    If you have closures, you need to precisely declare which scope a variable belongs to. Imagine a language without a declaration keyword, and implicit declaration through assignment (e.g. PHP or Python). Both of these are syntactically challenged with respect to closures, because they either ascribe a variable to the outermost or innermost ...

  20. Python Variables

    Python Variable is containers that store values. Python is not "statically typed". We do not need to declare variables before using them or declare their type. A variable is created the moment we first assign a value to it. A Python variable is a name given to a memory location. It is the basic unit of storage in a program.

  21. Unit testing type alias declarations

    When I declare a non-trivial type alias, I want to add "tests" to confirm that the type alias does what I think it does. For example, suppose I have the following declaration: type AllowedVariable = ( str | int | Decimal | bool | dict[str, AllowedVariable] | list[AllowedVariable] ) Then I can effectively use my static type checker (in my case, mypy) to test that this does include cases I ...

  22. Assign variable in while loop condition in Python?

    Starting Python 3.8, and the introduction of assignment expressions (PEP 572) ( := operator), it's now possible to capture the condition value ( data.readline()) of the while loop as a variable ( line) in order to re-use it within the body of the loop: while line := data.readline(): do_smthg(line)

  23. python

    If it helps, you can think of a variable in python as a "box of stuff" (the value), with a post-it note stuck to the side with a name written on it (the name). On the first line of code in your question, you created a box of stuff (the dictionary) and stuck the name "dict1" to it.