• Skip to secondary menu
  • Skip to main content
  • Skip to primary sidebar

Statistics By Jim

Making statistics intuitive

Control Variables: Definition, Uses & Examples

By Jim Frost 4 Comments

What is a Control Variable?

Control variables, also known as controlled variables, are properties that researchers hold constant for all observations in an experiment. While these variables are not the primary focus of the research, keeping their values consistent helps the study establish the true relationships between the independent and dependent variables. The capacity to control variables directly is highest in experiments that researchers conduct under lab conditions. In observational studies, researchers can’t directly control the variables. Instead, they record the values of control variables and then use statistical procedures to account for them.

Control variables are important in science.

In science, researchers assess the effects that the independent variables have on the dependent variable. However, other variables can also affect the outcome. If the scientists do not control these other variables, they can distort the primary results of interest. In other words, left uncontrolled, those other factors become confounders that can bias the findings. The uncontrolled variables may be responsible for the changes in the outcomes rather than your treatment or experimental variables. Consequently, researchers control the values of these other variables.

Suppose you are performing an experiment involving different types of fertilizers and plant growth. Those are your primary variables of interest. However, you also know that soil moisture, sunlight, and temperature affect plant growth. If you don’t hold these variables constant for all observations, they might explain the plant growth differences you observe. Consequently, moisture, sunlight, and temperature are essential control variables for your study.

If you perform the study in a controlled lab setting, you can control these environmental conditions and keep their values constant for all observations in your experiment. That way, if you do see plant growth differences, you can be more confident that the fertilizers caused them.

When researchers use control variables, they should identify them, record their values, and include the details in their write-up. This process helps other researchers understand and replicate the results.

Related posts : Independent and Dependent Variables and Confounding Variables

Control Variables and Internal Validity

By controlling variables, you increase the internal validity of your research. Internal validity is the degree of confidence that a causal relationship exists between the treatment and the difference in outcomes. In other words, how likely is it that your treatment caused the differences you observe? Are the researcher’s conclusions correct? Or, can changes in the outcome be attributed to other causes?

If the relevant variables are not controlled, you might need to attribute the changes to confounders rather than the treatment. Control variables reduce the impact of confounding variables.

Controlled Variable Examples

Does a medicine reduce illness?
Are different weight loss programs effective?
Do kiln time and temperature affect clay pot quality?
Does a supplement improve memory recall?

How to Control Variables in Science

Scientists can control variables using several methods. In some cases, variables can be controlled directly. For example, researchers can control the growing conditions for the fertilizer experiment. Or use standardized procedures and processes for all subjects to reduce other sources of variation. These efforts attempt to eliminate all differences between the treatment and control groups other than the treatments themselves.

However, sometimes that’s not possible. Fortunately, there are other approaches.

Random assignment

In some experiments, there can be too many variables to control. Additionally, the researchers might not even know all the potential confounding variables. In these cases, they can randomly assign subjects to the experimental groups. This process controls variables by averaging out all traits across the experimental groups, making them roughly equivalent when the experiment begins. The randomness helps prevent any systematic differences between the experimental groups. Learn more in my post about Random Assignment in Experiments .

Statistical control

Directly controlled variables and random assignment are methods that equalize the experimental groups. However, they aren’t always feasible. In some cases, there are too many variables to control. In other situations, random assignment might not be possible. Try randomly assigning people to smoking and non-smoking groups!

Fortunately, statistical techniques, such as multiple regression analysis , don’t balance the groups but instead use a model that statistically controls the variables. The model accounts for confounding variables.

In multiple regression analysis, including a variable in the model holds it constant while the treatment variable fluctuates. This process allows you to isolate the role of the treatment while accounting for confounders. You can also use ANOVA and ANCOVA.

For more information, read my posts, When to Use Regression and ANOVA Overview .

Share this:

identify the variables and controls in carla's experiment

Reader Interactions

' src=

July 13, 2024 at 2:19 am

Sir you are doing a good job. much appreciated. Could you please tell us how to read the values of control variables like ranges and what do they mean. For instance how to read this (F=1.83; p= 0.07). Thank YOU

' src=

February 28, 2024 at 2:09 pm

In your explanation of control variables you use the example of a research study of plant fertilizers and their growth, wanting to control for moisture, sunshine and temperature. You state “Consequently, moisture, sunlight, and temperature are essential control variables for your study. These variables can be controlled by keeping their values constant for all observations in your experiment. You do not go further as to how you control for these values, particularly when such variables are continually changing. Al Wassler

' src=

February 28, 2024 at 2:13 pm

Presumably, this experiment would occur in a lab setting where you can control these variables. Plants would be raised with the same humidity, soil moisture, and light conditions.

I’ll add some text to the article to clarify that. Thanks!

' src=

January 26, 2023 at 7:00 pm

I have a question please about when a control variable is also itself part of the dependent variable. I see this referred to in the medical research literature as ‘mathematical coupling’, where – for example – the beats per minute (BPM) is the dependent variable and researchers want to put minutes also as a control variable. This seems to create a problem because ‘minutes’ appears on both sides of the equation, and the medical literature talks about spurious correlation, and the model needing to be redesigned. But do you have a simple text or reference – ideally just plain statistics/OLS rather than linked to medical research – where this could be explained in theory terms ? What goes wrong in the regression when a variable is both a control variable and part of the dependent variable (perhaps as part of a ratio or measurement of change)? I just haven’t found a textbook reference that says definitively ‘you can’t have the same variable in both sides of the regression simultaneously’, so I’m not sure whether this violates OLS and so is something to avoid entirely (with a new model design or different research question) or to live with.

Any help would be great, thank you for your work,

Comments and Questions Cancel reply

Independent, Dependent and Controlled Variables

This is part of the NSW HSC science curriculum part of the Working Scientifically skills.

What are Independent, Dependent, and Controlled Variables?

As a high school science student, you are likely to come across different types of variables in your experiments. Being able to recognise these variables is a skill which is included in the NSW Higher School Certificate (HSC) curriculum. These variables are essential to scientific inquiry as they help us understand how different factors affect the outcomes of experiments. There are three main types of variables in scientific investigations: independent, dependent, and controlled variables. We will explore each of these variables and their importance in scientific inquiry. 

Independent Variables

Independent variables are the variables that are manipulated or changed by the researcher in an experiment. They are also known as the input variables or the cause variables because they are the factors that cause changes in the dependent variable.

For example, if you were investigating the effect of temperature on the rate of photosynthesis in plants, temperature would be the independent variable. You would manipulate the temperature to see how it affects the rate of photosynthesis.

It is essential to note that an experiment should have only one independent variable. This is because if you change more than one variable, you will not know which variable caused the change in the dependent variable. Therefore, by controlling the independent variable, you can determine the effect of that variable on the dependent variable.

Dependent variables

Dependent variables are the variables that are affected by the independent variable in an experiment. They are also known as the outcome variables or the effect variables. The dependent variable is what you measure or observe to determine the effect of the independent variable.

For example, in the temperature and photosynthesis experiment, the dependent variable would be the rate of photosynthesis, which is affected by changes in temperature.

It is crucial to keep the dependent variable constant during an experiment to ensure that any changes observed are a result of changes in the independent variable. Additionally, the dependent variable should be measurable and quantitative, meaning that it can be expressed in numerical values.

Controlled variables

Controlled variables are the variables that are kept constant during an experiment to ensure that they do not affect the outcome. These variables are also known as constant variables or the controlled factors. The purpose of controlling these variables is to ensure that any changes observed in the dependent variable are due to changes in the independent variable and not due to other factors.

For example, in the temperature and photosynthesis experiment, the controlled variables would include factors such as the type of plant, the amount of light, and the amount of carbon dioxide. By keeping these variables constant, you can ensure that any changes in the rate of photosynthesis are due to changes in temperature and not due to other factors.

Identifying variables

Let's consider a scenario where we want to investigate the effect of different amounts of water on plant growth. In this case:

identify the variables and controls in carla's experiment

Independent variable: The independent variable in this experiment is the amount of water used to water the plants. We could use different amounts of water, such as 100 ml, 200 ml, or 300 ml.

Dependent variable: The dependent variable is still the growth of the plants, which we could measure by tracking the height, weight, or number of leaves of the plants.

Controlled variables: Some controlled variables in this experiment might include the type and species of plants used, the type and amount of soil used, the size and type of pots used, and the amount of sunlight and temperature that the plants are exposed to.

By identifying and controlling these variables, we can design a more controlled and rigorous experiment to investigate the effect of different amounts of water on plant growth.

RETURN TO WORKING SCIENTIFICALLY

  • choosing a selection results in a full page refresh
  • press the space key then arrow keys to make a selection

science education resource

  • Activities, Experiments, Online Games, Visual Aids
  • Activities, Experiments, and Investigations
  • Experimental Design and the Scientific Method

Experimental Design - Independent, Dependent, and Controlled Variables

To view these resources with no ads, please login or subscribe to help support our content development. school subscriptions can access more than 175 downloadable unit bundles in our store for free (a value of $1,500). district subscriptions provide huge group discounts for their schools. email for a quote: [email protected] ..

Scientific experiments are meant to show cause and effect of a phenomena (relationships in nature).  The “ variables ” are any factor, trait, or condition that can be changed in the experiment and that can have an effect on the outcome of the experiment.

An experiment can have three kinds of variables: i ndependent, dependent, and controlled .

  • The independent variable is one single factor that is changed by the scientist followed by observation to watch for changes. It is important that there is just one independent variable, so that results are not confusing.
  • The dependent variable is the factor that changes as a result of the change to the independent variable.
  • The controlled variables (or constant variables) are factors that the scientist wants to remain constant if the experiment is to show accurate results. To be able to measure results, each of the variables must be able to be measured.

For example, let’s design an experiment with two plants sitting in the sun side by side. The controlled variables (or constants) are that at the beginning of the experiment, the plants are the same size, get the same amount of sunlight, experience the same ambient temperature and are in the same amount and consistency of soil (the weight of the soil and container should be measured before the plants are added). The independent variable is that one plant is getting watered (1 cup of water) every day and one plant is getting watered (1 cup of water) once a week. The dependent variables are the changes in the two plants that the scientist observes over time.

Experimental Design - Independent, Dependent, and Controlled Variables

Can you describe the dependent variable that may result from this experiment? After four weeks, the dependent variable may be that one plant is taller, heavier and more developed than the other. These results can be recorded and graphed by measuring and comparing both plants’ height, weight (removing the weight of the soil and container recorded beforehand) and a comparison of observable foliage.

Using What You Learned: Design another experiment using the two plants, but change the independent variable. Can you describe the dependent variable that may result from this new experiment?

Think of another simple experiment and name the independent, dependent, and controlled variables. Use the graphic organizer included in the PDF below to organize your experiment's variables.

Please Login or Subscribe to access downloadable content.

Citing Research References

When you research information you must cite the reference. Citing for websites is different from citing from books, magazines and periodicals. The style of citing shown here is from the MLA Style Citations (Modern Language Association).

When citing a WEBSITE the general format is as follows. Author Last Name, First Name(s). "Title: Subtitle of Part of Web Page, if appropriate." Title: Subtitle: Section of Page if appropriate. Sponsoring/Publishing Agency, If Given. Additional significant descriptive information. Date of Electronic Publication or other Date, such as Last Updated. Day Month Year of access < URL >.

Here is an example of citing this page:

Amsel, Sheri. "Experimental Design - Independent, Dependent, and Controlled Variables" Exploring Nature Educational Resource ©2005-2024. March 25, 2024 < http://www.exploringnature.org/db/view/Experimental-Design-Independent-Dependent-and-Controlled-Variables >

Exploringnature.org has more than 2,000 illustrated animals. Read about them, color them, label them, learn to draw them.

Exploringnature.org has more than 2,000 illustrated animals. Read about them, color them, label them, learn to draw them.

Back Home

  • Science Notes Posts
  • Contact Science Notes
  • Todd Helmenstine Biography
  • Anne Helmenstine Biography
  • Free Printable Periodic Tables (PDF and PNG)
  • Periodic Table Wallpapers
  • Interactive Periodic Table
  • Periodic Table Posters
  • Science Experiments for Kids
  • How to Grow Crystals
  • Chemistry Projects
  • Fire and Flames Projects
  • Holiday Science
  • Chemistry Problems With Answers
  • Physics Problems
  • Unit Conversion Example Problems
  • Chemistry Worksheets
  • Biology Worksheets
  • Periodic Table Worksheets
  • Physical Science Worksheets
  • Science Lab Worksheets
  • My Amazon Books

Types of Variables in Science Experiments

Types of Variables in Science

In a science experiment , a variable is any factor, attribute, or value that describes an object or situation and is subject to change. An experiment uses the scientific method to test a hypothesis and establish whether or not there is a cause and effect relationship between two variables: the independent and dependent variables. But, there are other important types of variables, too, including controlled and confounding variables. Here’s what you need to know, with examples.

The Three Main Types of Variables – Independent, Dependent, and Controlled

An experiment examines whether or not there is a relationship between the independent and dependent variables. The independent variable is the one factor a researcher intentionally changes or manipulates. The dependent variable is the factor that is measured, to see how it responds to the independent variable.

For example , consider an experiment looking to see whether taking caffeine affects how many words you remember from a list. The independent variable is the amount of caffeine you take, while the dependent variable is how many words you remember.

But, there are lot more potential variables you control (and usually measure and record) so you get the truest results from the experiment. The controlled variables are factors you hold steady so they don’t affect the results. In this experiment, examples include the amount and source of the caffeine (coffee? tea? caffeine tablets?), the time between taking the caffeine and recalling the words, the number and order of words on the list, the temperature of the room, and anything else you think might matter. Observing and recording controlled variables might not seem very important, but if someone goes to repeat your experiment and gets different results, it might turn out that a controlled variable has a bigger effect than you suspected!

Confounding Variables

A confounding variable is a variable that has a hidden effect on the results. Sometimes, once you identify a confounding variable, you can turn it into a controlled variable in a later experiment. In the coffee experiment, examples of confounding variables include a subject’s sensitivity to caffeine and the time of day that you conduct the experiment. Age and initial hydration levels are additional factors that may confound the results.

Other Types of Variables

Other types of variables get their names from special properties:

  • Binary variable : A binary variable has exactly two states. Examples include on/off and heads/tails.
  • Categorical or qualitative variable : A categorical or qualitative variable is one that does not have a numerical value. For example, if you compare the health benefits of walking, riding a bike, or driving a car, the modes of transport are descriptive and not numerical.
  • Composite variable : A composite variable is a combination of multiple variable. Researchers use these for improving ease of data reporting. For example, a “good” water quality score includes samples that are low in turbidity, bacteria, heavy metals, and pesticides.
  • Continuous variable : A continuous variable has an infinite number of values within a set range. For example, the height of a building ranges anywhere between zero and some maximum. When you measure the value, there is some level of error, often from rounding.
  • Discrete variable : In contrast to a continuous variable, a discrete variable has a finite number of exact values. For example, a light is either on or off. The number of people in a room has an exact value (4 and never 3.91).
  • Latent variable : A latent variable is one you can’t measure directly. For example, you can’t tell the salt tolerance of a plant, but can infer it by whether leaves appear healthy.
  • Nominal variable : A nominal variable is a type of qualitative variable, where the attribute has a name or category instead of a number. For example, colors and brand names are nominal variables.
  • Numeric or quantitative variable : This is a variable that has a numerical value. Length and mass are good examples.
  • Ordinal variable : An ordinal variable has a ranked value. For example, rating a factor as bad, good, better, or best illustrates an ordinal system.
  • Babbie, Earl R. (2009). The Practice of Social Research (12th ed.). Wadsworth Publishing. ISBN 0-495-59841-0.
  • Creswell, John W. (2018). Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research (6th ed.). Pearson. ISBN 978-0134519364.
  • Dodge, Y. (2008). The Concise Encyclopedia of Statistics. Springer Reference. ISBN 978-0397518371.
  • Given, Lisa M. (2008). The SAGE Encyclopedia of Qualitative Research Methods . Los Angeles: SAGE Publications. ISBN 978-1-4129-4163-1.
  • Kuhn, Thomas S. (1961). “The Function of Measurement in Modern Physical Science”. Isis . 52 (2): 161–193 (162). doi: 10.1086/349468

Related Posts

Sciencing_Icons_Science SCIENCE

Sciencing_icons_biology biology, sciencing_icons_cells cells, sciencing_icons_molecular molecular, sciencing_icons_microorganisms microorganisms, sciencing_icons_genetics genetics, sciencing_icons_human body human body, sciencing_icons_ecology ecology, sciencing_icons_chemistry chemistry, sciencing_icons_atomic &amp; molecular structure atomic & molecular structure, sciencing_icons_bonds bonds, sciencing_icons_reactions reactions, sciencing_icons_stoichiometry stoichiometry, sciencing_icons_solutions solutions, sciencing_icons_acids &amp; bases acids & bases, sciencing_icons_thermodynamics thermodynamics, sciencing_icons_organic chemistry organic chemistry, sciencing_icons_physics physics, sciencing_icons_fundamentals-physics fundamentals, sciencing_icons_electronics electronics, sciencing_icons_waves waves, sciencing_icons_energy energy, sciencing_icons_fluid fluid, sciencing_icons_astronomy astronomy, sciencing_icons_geology geology, sciencing_icons_fundamentals-geology fundamentals, sciencing_icons_minerals &amp; rocks minerals & rocks, sciencing_icons_earth scructure earth structure, sciencing_icons_fossils fossils, sciencing_icons_natural disasters natural disasters, sciencing_icons_nature nature, sciencing_icons_ecosystems ecosystems, sciencing_icons_environment environment, sciencing_icons_insects insects, sciencing_icons_plants &amp; mushrooms plants & mushrooms, sciencing_icons_animals animals, sciencing_icons_math math, sciencing_icons_arithmetic arithmetic, sciencing_icons_addition &amp; subtraction addition & subtraction, sciencing_icons_multiplication &amp; division multiplication & division, sciencing_icons_decimals decimals, sciencing_icons_fractions fractions, sciencing_icons_conversions conversions, sciencing_icons_algebra algebra, sciencing_icons_working with units working with units, sciencing_icons_equations &amp; expressions equations & expressions, sciencing_icons_ratios &amp; proportions ratios & proportions, sciencing_icons_inequalities inequalities, sciencing_icons_exponents &amp; logarithms exponents & logarithms, sciencing_icons_factorization factorization, sciencing_icons_functions functions, sciencing_icons_linear equations linear equations, sciencing_icons_graphs graphs, sciencing_icons_quadratics quadratics, sciencing_icons_polynomials polynomials, sciencing_icons_geometry geometry, sciencing_icons_fundamentals-geometry fundamentals, sciencing_icons_cartesian cartesian, sciencing_icons_circles circles, sciencing_icons_solids solids, sciencing_icons_trigonometry trigonometry, sciencing_icons_probability-statistics probability & statistics, sciencing_icons_mean-median-mode mean/median/mode, sciencing_icons_independent-dependent variables independent/dependent variables, sciencing_icons_deviation deviation, sciencing_icons_correlation correlation, sciencing_icons_sampling sampling, sciencing_icons_distributions distributions, sciencing_icons_probability probability, sciencing_icons_calculus calculus, sciencing_icons_differentiation-integration differentiation/integration, sciencing_icons_application application, sciencing_icons_projects projects, sciencing_icons_news news.

  • Share Tweet Email Print
  • Home ⋅
  • Science ⋅
  • Physics ⋅
  • Fundamentals

What Are Dependent, Independent & Controlled Variables?

What are the types of variables?

What Is a Responding Variable in Science Projects?

Say you're in lab, and your teacher asks you to design an experiment. The experiment must test how plants grow in response to different colored light. How would you begin? What are you changing? What are you keeping the same? What are you measuring?

These parameters of what you would change and what you would keep the same are called variables. Take a look at how all of these parameters in an experiment are defined, as independent, dependent and controlled variables.

What Is a Variable?

A variable is any quantity that you are able to measure in some way. This could be temperature, height, age, etc. Basically, a variable is anything that contributes to the outcome or result of your experiment in any way.

In an experiment there are multiple kinds of variables: independent, dependent and controlled variables.

What Is an Independent Variable?

An independent variable is the variable the experimenter controls. Basically, it is the component you choose to change in an experiment. This variable is not dependent on any other variables.

For example, in the plant growth experiment, the independent variable is the light color. The light color is not affected by anything. You will choose different light colors like green, red, yellow, etc. You are not measuring the light.

What Is a Dependent Variable?

A dependent variable is the measurement that changes in response to what you changed in the experiment. This variable is dependent on other variables; hence the name! For example, in the plant growth experiment, the dependent variable would be plant growth.

You could measure this by measuring how much the plant grows every two days. You could also measure it by measuring the rate of photosynthesis. Either of these measurements are dependent upon the kind of light you give the plant.

What Are Controlled Variables?

A control variable in science is any other parameter affecting your experiment that you try to keep the same across all conditions.

For example, one control variable in the plant growth experiment could be temperature. You would not want to have one plant growing in green light with a temperature of 20°C while another plant grows in red light with a temperature of 27°C.

You want to measure only the effect of light, not temperature. For this reason you would want to keep the temperature the same across all of your plants. In other words, you would want to control the temperature.

Another example is the amount of water you give the plant. If one plant receives twice the amount of water as another plant, there would be no way for you to know that the reason those plants grew the way they did is due only to the light color their received.

The observed effect could also be due in part to the amount of water they got. A control variable in science experiments is what allows you to compare other things that may be contributing to a result because you have kept other important things the same across all of your subjects.

Graphing Your Experiment

When graphing the results of your experiment, it is important to remember which variable goes on which axis.

The independent variable is graphed on the x-axis . The dependent variable , which changes in response to the independent variable, is graphed on the y-axis . Controlled variables are usually not graphed because they should not change. They could, however, be graphed as a verification that other conditions are not changing.

For example, after graphing the growth as compared to light, you could also look at how the temperature varied across different conditions. If you notice that it did vary quite a bit, you may need to go back and look at your experimental setup: How could you improve the experiment so that all plants are exposed to as similar an environment as possible (aside from the light color)?

How to Remember Which is Which

In order to try and remember which is the dependent variable and which is the independent variable, try putting them into a sentence which uses "causes a change in."

Here's an example. Saying, "light color causes a change in plant growth," is possible. This shows us that the independent variable affects the dependent variable. The inverse, however, is not true. "Plant growth causes a change in light color," is not possible. This way you know which is the independent variable and which is the dependent variable!

Related Articles

What are constants & controls of a science project..., what are independent & dependent variables in science..., difference between manipulative & responding variable, how to collect data from a science project, science fair projects on plants: do they grow faster..., how to write a testable hypothesis, how to grow a plant from a bean as a science project, what is the role of carotenoids in photosynthesis, proper way to label a graph, two week science projects, why should you only test for one variable at a time..., definitions of control, constant, independent and dependent..., what is a constant in a science fair project, science projects on which fertilizer makes a plant..., venus flytrap science projects, the effect of temperature on the rate of photosynthesis, phototropism experiments, cool science project ideas for k-4th grade, measuring wet bulb temperature.

  • NCES Kids: What are Independent and Dependent Variables?
  • Khan Academy: Dependent and independent variables review (article)

About the Author

Riti Gupta holds a Honors Bachelors degree in Biochemistry from the University of Oregon and a PhD in biology from Johns Hopkins University. She has an interest in astrobiology and manned spaceflight. She has over 10 years of biology research experience in academia. She currently teaches classes in biochemistry, biology, biophysics, astrobiology, as well as high school AP Biology and Chemistry test prep.

Find Your Next Great Science Fair Project! GO

The Role of a Controlled Variable in an Experiment

  • Scientific Method
  • Chemical Laws
  • Periodic Table
  • Projects & Experiments
  • Biochemistry
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

A controlled variable is one which the researcher holds constant (controls) during an experiment. It is also known as a constant variable or simply as a "control." The control variable is not part of an experiment itself—it is neither the independent nor dependent variable —but it is important because it can have an effect on the results. It is not the same as a control group.

Any given experiment has numerous control variables, and it's important for a scientist to try to hold all variables constant except for the independent variable. If a control variable changes during an experiment, it may invalidate the correlation between the dependent and independent variables. When possible, control variables should be identified, measured, and recorded.

Examples of Controlled Variables

Temperature is a common type of  controlled variable . If a temperature is held constant during an experiment, it is controlled.

Other examples of controlled variables could be an amount of light, using the same type of glassware, constant humidity , or duration of an experiment.

Importance of Controlled Variables

Although control variables may not be measured (though they are often recorded), they can have a significant effect on the outcome of an experiment. Lack of awareness of control variables can lead to faulty results or what are called "confounding variables." Additionally, noting control variables makes it easier to reproduce an experiment and establish the relationship between the independent and dependent variables .

For example, say you are trying to determine whether a particular fertilizer has an effect on plant growth. The independent variable is the presence or absence of the fertilizer, while the dependent variable is the height of the plant or rate of growth. If you don't control the amount of light (e.g., you perform part of the experiment in the summer and part during the winter), you may skew your results.

  • Null Hypothesis Examples
  • What Is a Controlled Experiment?
  • Understanding Simple vs Controlled Experiments
  • Six Steps of the Scientific Method
  • What Is the Difference Between a Control Variable and Control Group?
  • Random Error vs. Systematic Error
  • Scientific Method Vocabulary Terms
  • Scientific Variable
  • What Is a Hypothesis? (Science)
  • What Are Examples of a Hypothesis?
  • DRY MIX Experiment Variables Acronym
  • What Is an Experimental Constant?
  • What Are the Elements of a Good Hypothesis?
  • Scientific Method Flow Chart
  • What Is a Testable Hypothesis?
  • Scientific Hypothesis Examples

Controlling Variables

by Anthony Carpi, Ph.D., Anne E. Egger, Ph.D.

This material is excerpted from a teaching module on the Visionlearning website, to view this material in context, please visit Research Methods: Experimentation.

Controlling variables is an important part of experimental design. Controlled variables refer to variables or contributing factors that are fixed or eliminated in order to clearly identify the relationship between an independent variable and a dependent variable . For example, in an experiment designed to quantify the effect of vitamin A dose on the metabolism of beta-carotene in humans, Shawna Lemke and colleagues had to precisely control the diet of their human volunteers (Lemke, Dueker et al. 2003). They asked their participants to limit their intake of foods rich in vitamin A and further asked that they maintain a precise log of all foods eaten for 1 week prior to their study. At the time of their study, they controlled their participants’ diet by feeding them all the same meals, described in the methods section of their research article in this way, “Meals were controlled for time and content on the dose administration day. Lunch was served at 5.5 h postdosing and consisted of a frozen dinner (Enchiladas, Amy's Kitchen, Petaluma, CA), a blueberry bagel with jelly, 1 apple and 1 banana, and a large chocolate chunk cookie (Pepperidge Farm). Dinner was served 10.5 h post dose and consisted of a frozen dinner (Chinese Stir Fry, Amy's Kitchen) plus the bagel and fruit taken for lunch.”

Controlling variables is important because slight variations in the experimental set-up could strongly affect the outcome being measured. For example, during the 1950s, a number of experiments were conducted to evaluate the toxicity in mammals of the metal molybdenum, using rats as experimental subjects . Unexpectedly, these experiments seemed to indicate that the type of cage the rats were housed in affected the toxicity of molybdenum. In response, G. Brinkman and Russell Miller set up an experiment to investigate this observation (Brinkman & Miller, 1961). Brinkman and Miller fed two groups of rats a normal diet that was supplemented with 200 parts per million (ppm) of molybdenum. One group of rats was housed in galvanized steel (steel coated with zinc to reduce corrosion) cages and the second group was housed in stainless steel cages. Rats housed in the galvanized steel cages suffered more from molybdenum toxicity than the other group: they had higher concentrations of molybdenum in their livers and lower blood hemoglobin levels. It was then shown that when the rats chewed on their cages, those housed in the galvanized metal cages absorbed zinc plated onto the metal bars and zinc is now known to affect the toxicity of molybdenum. In order to control for zinc exposure, then, stainless steel cages needed to be used for all rats.

While controlling variables is an important aspect of making an experiment manageable and informative, it is often not representative of the real world, in which many variables may change at once, including the foods you eat. Still, experimental research is an excellent way of determining relationships between variables that can be later validated in real world settings through descriptive or comparative studies.

Activate glossary term highlighting to easily identify key terms within the module. Once highlighted, you can click on these terms to view their definitions.

Activate NGSS annotations to easily identify NGSS standards within the module. Once highlighted, you can click on them to view these standards.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • Controlled Experiments | Methods & Examples of Control

Controlled Experiments | Methods & Examples of Control

Published on 19 April 2022 by Pritha Bhandari . Revised on 10 October 2022.

In experiments , researchers manipulate independent variables to test their effects on dependent variables. In a controlled experiment , all variables other than the independent variable are controlled or held constant so they don’t influence the dependent variable.

Controlling variables can involve:

  • Holding variables at a constant or restricted level (e.g., keeping room temperature fixed)
  • Measuring variables to statistically control for them in your analyses
  • Balancing variables across your experiment through randomisation (e.g., using a random order of tasks)

Table of contents

Why does control matter in experiments, methods of control, problems with controlled experiments, frequently asked questions about controlled experiments.

Control in experiments is critical for internal validity , which allows you to establish a cause-and-effect relationship between variables.

  • Your independent variable is the colour used in advertising.
  • Your dependent variable is the price that participants are willing to pay for a standard fast food meal.

Extraneous variables are factors that you’re not interested in studying, but that can still influence the dependent variable. For strong internal validity, you need to remove their effects from your experiment.

  • Design and description of the meal
  • Study environment (e.g., temperature or lighting)
  • Participant’s frequency of buying fast food
  • Participant’s familiarity with the specific fast food brand
  • Participant’s socioeconomic status

Prevent plagiarism, run a free check.

You can control some variables by standardising your data collection procedures. All participants should be tested in the same environment with identical materials. Only the independent variable (e.g., advert colour) should be systematically changed between groups.

Other extraneous variables can be controlled through your sampling procedures . Ideally, you’ll select a sample that’s representative of your target population by using relevant inclusion and exclusion criteria (e.g., including participants from a specific income bracket, and not including participants with colour blindness).

By measuring extraneous participant variables (e.g., age or gender) that may affect your experimental results, you can also include them in later analyses.

After gathering your participants, you’ll need to place them into groups to test different independent variable treatments. The types of groups and method of assigning participants to groups will help you implement control in your experiment.

Control groups

Controlled experiments require control groups . Control groups allow you to test a comparable treatment, no treatment, or a fake treatment, and compare the outcome with your experimental treatment.

You can assess whether it’s your treatment specifically that caused the outcomes, or whether time or any other treatment might have resulted in the same effects.

  • A control group that’s presented with red advertisements for a fast food meal
  • An experimental group that’s presented with green advertisements for the same fast food meal

Random assignment

To avoid systematic differences between the participants in your control and treatment groups, you should use random assignment .

This helps ensure that any extraneous participant variables are evenly distributed, allowing for a valid comparison between groups .

Random assignment is a hallmark of a ‘true experiment’ – it differentiates true experiments from quasi-experiments .

Masking (blinding)

Masking in experiments means hiding condition assignment from participants or researchers – or, in a double-blind study , from both. It’s often used in clinical studies that test new treatments or drugs.

Sometimes, researchers may unintentionally encourage participants to behave in ways that support their hypotheses. In other cases, cues in the study environment may signal the goal of the experiment to participants and influence their responses.

Using masking means that participants don’t know whether they’re in the control group or the experimental group. This helps you control biases from participants or researchers that could influence your study results.

Although controlled experiments are the strongest way to test causal relationships, they also involve some challenges.

Difficult to control all variables

Especially in research with human participants, it’s impossible to hold all extraneous variables constant, because every individual has different experiences that may influence their perception, attitudes, or behaviors.

But measuring or restricting extraneous variables allows you to limit their influence or statistically control for them in your study.

Risk of low external validity

Controlled experiments have disadvantages when it comes to external validity – the extent to which your results can be generalised to broad populations and settings.

The more controlled your experiment is, the less it resembles real world contexts. That makes it harder to apply your findings outside of a controlled setting.

There’s always a tradeoff between internal and external validity . It’s important to consider your research aims when deciding whether to prioritise control or generalisability in your experiment.

Experimental designs are a set of procedures that you plan in order to examine the relationship between variables that interest you.

To design a successful experiment, first identify:

  • A testable hypothesis
  • One or more independent variables that you will manipulate
  • One or more dependent variables that you will measure

When designing the experiment, first decide:

  • How your variable(s) will be manipulated
  • How you will control for any potential confounding or lurking variables
  • How many subjects you will include
  • How you will assign treatments to your subjects

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Bhandari, P. (2022, October 10). Controlled Experiments | Methods & Examples of Control. Scribbr. Retrieved 3 September 2024, from https://www.scribbr.co.uk/research-methods/controlled-experiments/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Control Variables | What Are They & Why Do They Matter?

Control Variables | What Are They & Why Do They Matter?

Published on March 1, 2021 by Pritha Bhandari . Revised on June 22, 2023.

A control variable is anything that is held constant or limited in a research study. It’s a variable that is not of interest to the study’s objectives , but is controlled because it could influence the outcomes.

Variables may be controlled directly by holding them constant throughout a study (e.g., by controlling the room temperature in an experiment), or they may be controlled indirectly through methods like randomization or statistical control (e.g., to account for participant characteristics like age in statistical tests). Control variables can help prevent research biases like omitted variable bias from affecting your results.

Control variables

Examples of control variables
Research question Control variables
Does soil quality affect plant growth?
Does caffeine improve memory recall?
Do people with a fear of spiders perceive spider images faster than other people?

Table of contents

Why do control variables matter, how do you control a variable, control variable vs. control group, other interesting articles, frequently asked questions about control variables.

Control variables enhance the internal validity of a study by limiting the influence of confounding and other extraneous variables . This helps you establish a correlational or causal relationship between your variables of interest and helps avoid research bias .

Aside from the independent and dependent variables , all variables that can impact the results should be controlled. If you don’t control relevant variables, you may not be able to demonstrate that they didn’t influence your results. Uncontrolled variables are alternative explanations for your results and affect the reliability of your arguments.

Control variables in experiments

In an experiment , a researcher is interested in understanding the effect of an independent variable on a dependent variable. Control variables help you ensure that your results are solely caused by your experimental manipulation.

The independent variable is whether the vitamin D supplement is added to a diet, and the dependent variable is the level of alertness.

To make sure any change in alertness is caused by the vitamin D supplement and not by other factors, you control these variables that might affect alertness:

  • Timing of meals
  • Caffeine intake
  • Screen time

Control variables in non-experimental research

In an observational study or other types of non-experimental research, a researcher can’t manipulate the independent variable (often due to practical or ethical considerations ). Instead, control variables are measured and taken into account to infer relationships between the main variables of interest.

To account for other factors that are likely to influence the results, you also measure these control variables:

  • Marital status

Prevent plagiarism. Run a free check.

There are several ways to control extraneous variables in experimental designs, and some of these can also be used in observational studies or quasi-experimental designs.

Random assignment

In experimental studies with multiple groups, participants should be randomly assigned to the different conditions. Random assignment helps you balance the characteristics of groups so that there are no systematic differences between them.

This method of assignment controls participant variables that might otherwise differ between groups and skew your results.

It’s possible that the participants who found the study through Facebook use more screen time during the day, and this might influence how alert they are in your study.

Standardized procedures

It’s important to use the same procedures across all groups in an experiment. The groups should only differ in the independent variable manipulation so that you can isolate its effect on the dependent variable (the results).

To control variables , you can hold them constant at a fixed level using a protocol that you design and use for all participant sessions. For example, the instructions and time spent on an experimental task should be the same for all participants in a laboratory setting.

  • To control for diet, fresh and frozen meals are delivered to participants three times a day.
  • To control meal timings, participants are instructed to eat breakfast at 9:30, lunch at 13:00, and dinner at 18:30.
  • To control caffeine intake, participants are asked to consume a maximum of one cup of coffee a day.

Statistical controls

You can measure and control for extraneous variables statistically to remove their effects on other types of variables .

“Controlling for a variable” means modelling control variable data along with independent and dependent variable data in regression analyses and ANCOVAs . That way, you can isolate the control variable’s effects from the relationship between the variables of interest.

A control variable isn’t the same as a control group . Control variables are held constant or measured throughout a study for both control and experimental groups, while an independent variable varies between control and experimental groups.

A control group doesn’t undergo the experimental treatment of interest, and its outcomes are compared with those of the experimental group. A control group usually has either no treatment, a standard treatment that’s already widely used, or a placebo (a fake treatment).

Aside from the experimental treatment, everything else in an experimental procedure should be the same between an experimental and control group.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Degrees of freedom
  • Null hypothesis
  • Discourse analysis
  • Control groups
  • Mixed methods research
  • Non-probability sampling
  • Quantitative research
  • Ecological validity

Research bias

  • Rosenthal effect
  • Implicit bias
  • Cognitive bias
  • Selection bias
  • Negativity bias
  • Status quo bias

A control variable is any variable that’s held constant in a research study. It’s not a variable of interest in the study, but it’s controlled because it could influence the outcomes.

Control variables help you establish a correlational or causal relationship between variables by enhancing internal validity .

If you don’t control relevant extraneous variables , they may influence the outcomes of your study, and you may not be able to demonstrate that your results are really an effect of your independent variable .

Internal validity is the extent to which you can be confident that a cause-and-effect relationship established in a study cannot be explained by other factors.

“Controlling for a variable” means measuring extraneous variables and accounting for them statistically to remove their effects on other variables.

Researchers often model control variable data along with independent and dependent variable data in regression analyses and ANCOVAs . That way, you can isolate the control variable’s effects from the relationship between the variables of interest.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bhandari, P. (2023, June 22). Control Variables | What Are They & Why Do They Matter?. Scribbr. Retrieved September 3, 2024, from https://www.scribbr.com/methodology/control-variable/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, what is a controlled experiment | definitions & examples, independent vs. dependent variables | definition & examples, extraneous variables | examples, types & controls, get unlimited documents corrected.

✔ Free APA citation check included ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

COMMENTS

  1. Carla Flashcards

    The results of your experiment, how to improve it, and real-world applications ... that your experiment will answer. Control. The part of the experiment that must stay the same and will be compared to the variables. Materials. The things and resources used in your experiment; you will note the type and amount ... -fragments can be difficult to ...

  2. Independent and Dependent Variables Examples

    The independent variable may be called the "controlled variable" because it is the one that is changed or controlled. This is different from the "control variable," which is variable that is held constant so it won't influence the outcome of the experiment. Dependent Variable. The dependent variable is the factor that changes in ...

  3. Identifying Variables

    Independent Variables. The independent variable, also known as the experimental treatment, is the difference or change in the experimental conditions that is chosen by the scientist (the cause). To ensure a fair test, a good experimental inquiry only has one independent variable and that variable should be something that can be measured ...

  4. Variables in Research: Breaking Down the Essentials of Experimental

    These variables are crucial for defining the relationships between factors within an experiment or study and determining the cause-and-effect relationships that underpin scientific knowledge. Independent Variables: An independent variable is a factor or characteristic that the researcher manipulates or controls in an experiment or study. It is ...

  5. Control Variables: Definition, Uses & Examples

    Control variables, also known as controlled variables, are properties that researchers hold constant for all observations in an experiment. While these variables are not the primary focus of the research, keeping their values consistent helps the study establish the true relationships between the independent and dependent variables. The ...

  6. A Guide to Independent, Dependent, and Controlled Variables

    Independent variable: The independent variable in this experiment is the amount of water used to water the plants. We could use different amounts of water, such as 100 ml, 200 ml, or 300 ml. Dependent variable: The dependent variable is still the growth of the plants, which we could measure by tracking the height, weight, or number of leaves of ...

  7. What Is a Control Variable? Definition and Examples

    A single experiment may contain many control variables. Unlike the independent and dependent variables, control variables aren't a part of the experiment, but they are important because they could affect the outcome. Take a look at the difference between a control variable and control group and see examples of control variables.

  8. Experimental Design

    The " variables " are any factor, trait, or condition that can be changed in the experiment and that can have an effect on the outcome of the experiment. An experiment can have three kinds of variables: i ndependent, dependent, and controlled. The independent variable is one single factor that is changed by the scientist followed by ...

  9. Types of Variables in Science Experiments

    The two key variables in science are the independent and dependent variable, but there are other types of variables that are important. In a science experiment, a variable is any factor, attribute, or value that describes an object or situation and is subject to change. An experiment uses the scientific method to test a hypothesis and establish whether or not there is a cause and effect ...

  10. Controls & Variables in Science Experiments

    An example of a control in science would be cells that get no treatment in an experiment. Say there is a scientist testing how a new drug causes cells to grow. One group, the experimental group ...

  11. Definitions of Control, Constant, Independent and Dependent Variables

    The point of an experiment is to help define the cause and effect relationships between components of a natural process or reaction. The factors that can change value during an experiment or between experiments, such as water temperature, are called scientific variables, while those that stay the same, such as acceleration due to gravity at a certain location, are called constants.

  12. What Are Dependent, Independent & Controlled Variables?

    References. About the Author. In an experiment, there are multiple kinds of variables: independent, dependent and controlled variables. The independent variable is the one the experimenter changes. The dependent variable is what changes in response to the independent variable. Controlled variables are conditions kept the same.

  13. Controlled Variable Role in Science Experiments

    A controlled variable is one which the researcher holds constant (controls) during an experiment. It is also known as a constant variable or simply as a "control." The control variable is not part of an experiment itself—it is neither the independent nor dependent variable—but it is important because it can have an effect on the results. It is not the same as a control group.

  14. Controlling Variables

    Controlling variables is an important part of experimental design. Controlled variables refer to variables or contributing factors that are fixed or eliminated in order to clearly identify the relationship between an independent variable and a dependent variable. For example, in an experiment designed to quantify the effect of vitamin A dose on ...

  15. Identifying Variables Flashcards

    The data or variable that is measured by the scientist to see if they're experiment worked. Dependent Variable. All the parts of the experiment that are kept the same to make the experiment fair and accurate. Control Variables. You want to test which size of soccer ball is easier to juggle with your feet. You test a size 3, size 4, and a size 5 ...

  16. What Is a Controlled Experiment?

    Revised on June 22, 2023. In experiments, researchers manipulate independent variables to test their effects on dependent variables. In a controlled experiment, all variables other than the independent variable are controlled or held constant so they don't influence the dependent variable. Controlling variables can involve:

  17. Identifying Variables Flashcards

    All variables that are kept the same to make the experiment fair and accurate. Controlled Variables. You want to test which size of football is easier to juggle with your feet. You test a size 3, size 4, and a size 5 ball. You count the seconds the ball stays in the air for each of the trials. I.V. Type of football.

  18. Identify the variables and controls in Carla's experiment. Type of

    Carla's experiment had variables such as type of plant and addition of carbon dioxide, with controls including identical incubators, no carbon dioxide for some plants, consistent lighting, and humidity. Explanation: In Carla's experiment, the variables are: 1. Type of plant - this is the independent variable because it is what Carla is testing. 2.

  19. Controlled Experiments

    Control in experiments is critical for internal validity, which allows you to establish a cause-and-effect relationship between variables. Example: Experiment. You're studying the effects of colours in advertising. You want to test whether using green for advertising fast food chains increases the value of their products.

  20. Control Variables

    A control variable is anything that is held constant or limited in a research study. It's a variable that is not of interest to the study's objectives, but is controlled because it could influence the outcomes. Variables may be controlled directly by holding them constant throughout a study (e.g., by controlling the room temperature in an ...

  21. PDF Scientific Method: Identifying Variables and Constants

    Constant The variables are not changed in an experiment. Independent Variable The variable that is changed in the experiment. This variable is being tested. Dependent Variable The variable that changes as a result of change in the independent variable. This is what you are observing. Control Group Only one condition is being changed at a time ...

  22. PDF Simpsons- Identify the Variables and Controls

    Simpson's- Identify the Variables and Controls. Learning Target 3: I can identify independent and dependent variables, controlled variables, and controls and manipulate variables in an experiment. Smithers thinks that a special juice will increase the productivity of workers. He creates two groups of 50 workers each and assigns each group the ...