• Subject List
  • Take a Tour
  • For Authors
  • Subscriber Services
  • Publications
  • African American Studies
  • African Studies
  • American Literature
  • Anthropology
  • Architecture Planning and Preservation
  • Art History
  • Atlantic History
  • Biblical Studies
  • British and Irish Literature
  • Childhood Studies
  • Chinese Studies
  • Cinema and Media Studies
  • Communication
  • Criminology
  • Environmental Science
  • Evolutionary Biology
  • International Law
  • International Relations
  • Islamic Studies
  • Jewish Studies
  • Latin American Studies
  • Latino Studies
  • Linguistics
  • Literary and Critical Theory
  • Medieval Studies
  • Military History
  • Political Science
  • Public Health
  • Renaissance and Reformation
  • Social Work
  • Urban Studies
  • Victorian Literature
  • Browse All Subjects

How to Subscribe

  • Free Trials

In This Article Expand or collapse the "in this article" section Qualitative, Quantitative, and Mixed Methods Research Sampling Strategies

Introduction.

  • Sampling Strategies
  • Sample Size
  • Qualitative Design Considerations
  • Discipline Specific and Special Considerations
  • Sampling Strategies Unique to Mixed Methods Designs

Related Articles Expand or collapse the "related articles" section about

About related articles close popup.

Lorem Ipsum Sit Dolor Amet

Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam ligula odio, euismod ut aliquam et, vestibulum nec risus. Nulla viverra, arcu et iaculis consequat, justo diam ornare tellus, semper ultrices tellus nunc eu tellus.

  • Mixed Methods Research
  • Qualitative Research Design
  • Quantitative Research Designs in Educational Research

Other Subject Areas

Forthcoming articles expand or collapse the "forthcoming articles" section.

  • Cyber Safety in Schools
  • Girls' Education in the Developing World
  • History of Education in Europe
  • Find more forthcoming articles...
  • Export Citations
  • Share This Facebook LinkedIn Twitter

Qualitative, Quantitative, and Mixed Methods Research Sampling Strategies by Timothy C. Guetterman LAST REVIEWED: 26 February 2020 LAST MODIFIED: 26 February 2020 DOI: 10.1093/obo/9780199756810-0241

Sampling is a critical, often overlooked aspect of the research process. The importance of sampling extends to the ability to draw accurate inferences, and it is an integral part of qualitative guidelines across research methods. Sampling considerations are important in quantitative and qualitative research when considering a target population and when drawing a sample that will either allow us to generalize (i.e., quantitatively) or go into sufficient depth (i.e., qualitatively). While quantitative research is generally concerned with probability-based approaches, qualitative research typically uses nonprobability purposeful sampling approaches. Scholars generally focus on two major sampling topics: sampling strategies and sample sizes. Or simply, researchers should think about who to include and how many; both of these concerns are key. Mixed methods studies have both qualitative and quantitative sampling considerations. However, mixed methods studies also have unique considerations based on the relationship of quantitative and qualitative research within the study.

Sampling in Qualitative Research

Sampling in qualitative research may be divided into two major areas: overall sampling strategies and issues around sample size. Sampling strategies refers to the process of sampling and how to design a sampling. Qualitative sampling typically follows a nonprobability-based approach, such as purposive or purposeful sampling where participants or other units of analysis are selected intentionally for their ability to provide information to address research questions. Sample size refers to how many participants or other units are needed to address research questions. The methodological literature about sampling tends to fall into these two broad categories, though some articles, chapters, and books cover both concepts. Others have connected sampling to the type of qualitative design that is employed. Additionally, researchers might consider discipline specific sampling issues as much research does tend to operate within disciplinary views and constraints. Scholars in many disciplines have examined sampling around specific topics, research problems, or disciplines and provide guidance to making sampling decisions, such as appropriate strategies and sample size.

back to top

Users without a subscription are not able to see the full content on this page. Please subscribe or login .

Oxford Bibliographies Online is available by subscription and perpetual access to institutions. For more information or to contact an Oxford Sales Representative click here .

  • About Education »
  • Meet the Editorial Board »
  • Academic Achievement
  • Academic Audit for Universities
  • Academic Freedom and Tenure in the United States
  • Action Research in Education
  • Adjuncts in Higher Education in the United States
  • Administrator Preparation
  • Adolescence
  • Advanced Placement and International Baccalaureate Courses
  • Advocacy and Activism in Early Childhood
  • African American Racial Identity and Learning
  • Alaska Native Education
  • Alternative Certification Programs for Educators
  • Alternative Schools
  • American Indian Education
  • Animals in Environmental Education
  • Art Education
  • Artificial Intelligence and Learning
  • Assessing School Leader Effectiveness
  • Assessment, Behavioral
  • Assessment, Educational
  • Assessment in Early Childhood Education
  • Assistive Technology
  • Augmented Reality in Education
  • Beginning-Teacher Induction
  • Bilingual Education and Bilingualism
  • Black Undergraduate Women: Critical Race and Gender Perspe...
  • Black Women in Academia
  • Blended Learning
  • Case Study in Education Research
  • Changing Professional and Academic Identities
  • Character Education
  • Children’s and Young Adult Literature
  • Children's Beliefs about Intelligence
  • Children's Rights in Early Childhood Education
  • Citizenship Education
  • Civic and Social Engagement of Higher Education
  • Classroom Learning Environments: Assessing and Investigati...
  • Classroom Management
  • Coherent Instructional Systems at the School and School Sy...
  • College Admissions in the United States
  • College Athletics in the United States
  • Community Relations
  • Comparative Education
  • Computer-Assisted Language Learning
  • Computer-Based Testing
  • Conceptualizing, Measuring, and Evaluating Improvement Net...
  • Continuous Improvement and "High Leverage" Educational Pro...
  • Counseling in Schools
  • Critical Approaches to Gender in Higher Education
  • Critical Perspectives on Educational Innovation and Improv...
  • Critical Race Theory
  • Crossborder and Transnational Higher Education
  • Cross-National Research on Continuous Improvement
  • Cross-Sector Research on Continuous Learning and Improveme...
  • Cultural Diversity in Early Childhood Education
  • Culturally Responsive Leadership
  • Culturally Responsive Pedagogies
  • Culturally Responsive Teacher Education in the United Stat...
  • Curriculum Design
  • Data Collection in Educational Research
  • Data-driven Decision Making in the United States
  • Deaf Education
  • Desegregation and Integration
  • Design Thinking and the Learning Sciences: Theoretical, Pr...
  • Development, Moral
  • Dialogic Pedagogy
  • Digital Age Teacher, The
  • Digital Citizenship
  • Digital Divides
  • Disabilities
  • Distance Learning
  • Distributed Leadership
  • Doctoral Education and Training
  • Early Childhood Education and Care (ECEC) in Denmark
  • Early Childhood Education and Development in Mexico
  • Early Childhood Education in Aotearoa New Zealand
  • Early Childhood Education in Australia
  • Early Childhood Education in China
  • Early Childhood Education in Europe
  • Early Childhood Education in Sub-Saharan Africa
  • Early Childhood Education in Sweden
  • Early Childhood Education Pedagogy
  • Early Childhood Education Policy
  • Early Childhood Education, The Arts in
  • Early Childhood Mathematics
  • Early Childhood Science
  • Early Childhood Teacher Education
  • Early Childhood Teachers in Aotearoa New Zealand
  • Early Years Professionalism and Professionalization Polici...
  • Economics of Education
  • Education For Children with Autism
  • Education for Sustainable Development
  • Education Leadership, Empirical Perspectives in
  • Education of Native Hawaiian Students
  • Education Reform and School Change
  • Educational Research Approaches: A Comparison
  • Educational Statistics for Longitudinal Research
  • Educator Partnerships with Parents and Families with a Foc...
  • Emotional and Affective Issues in Environmental and Sustai...
  • Emotional and Behavioral Disorders
  • English as an International Language for Academic Publishi...
  • Environmental and Science Education: Overlaps and Issues
  • Environmental Education
  • Environmental Education in Brazil
  • Epistemic Beliefs
  • Equity and Improvement: Engaging Communities in Educationa...
  • Equity, Ethnicity, Diversity, and Excellence in Education
  • Ethical Research with Young Children
  • Ethics and Education
  • Ethics of Teaching
  • Ethnic Studies
  • Evidence-Based Communication Assessment and Intervention
  • Family and Community Partnerships in Education
  • Family Day Care
  • Federal Government Programs and Issues
  • Feminization of Labor in Academia
  • Finance, Education
  • Financial Aid
  • Formative Assessment
  • Future-Focused Education
  • Gender and Achievement
  • Gender and Alternative Education
  • Gender, Power and Politics in the Academy
  • Gender-Based Violence on University Campuses
  • Gifted Education
  • Global Mindedness and Global Citizenship Education
  • Global University Rankings
  • Governance, Education
  • Grounded Theory
  • Growth of Effective Mental Health Services in Schools in t...
  • Higher Education and Globalization
  • Higher Education and the Developing World
  • Higher Education Faculty Characteristics and Trends in the...
  • Higher Education Finance
  • Higher Education Governance
  • Higher Education Graduate Outcomes and Destinations
  • Higher Education in Africa
  • Higher Education in China
  • Higher Education in Latin America
  • Higher Education in the United States, Historical Evolutio...
  • Higher Education, International Issues in
  • Higher Education Management
  • Higher Education Policy
  • Higher Education Research
  • Higher Education Student Assessment
  • High-stakes Testing
  • History of Early Childhood Education in the United States
  • History of Education in the United States
  • History of Technology Integration in Education
  • Homeschooling
  • Inclusion in Early Childhood: Difference, Disability, and ...
  • Inclusive Education
  • Indigenous Education in a Global Context
  • Indigenous Learning Environments
  • Indigenous Students in Higher Education in the United Stat...
  • Infant and Toddler Pedagogy
  • Inservice Teacher Education
  • Integrating Art across the Curriculum
  • Intelligence
  • Intensive Interventions for Children and Adolescents with ...
  • International Perspectives on Academic Freedom
  • Intersectionality and Education
  • Knowledge Development in Early Childhood
  • Leadership Development, Coaching and Feedback for
  • Leadership in Early Childhood Education
  • Leadership Training with an Emphasis on the United States
  • Learning Analytics in Higher Education
  • Learning Difficulties
  • Learning, Lifelong
  • Learning, Multimedia
  • Learning Strategies
  • Legal Matters and Education Law
  • LGBT Youth in Schools
  • Linguistic Diversity
  • Linguistically Inclusive Pedagogy
  • Literacy Development and Language Acquisition
  • Literature Reviews
  • Mathematics Identity
  • Mathematics Instruction and Interventions for Students wit...
  • Mathematics Teacher Education
  • Measurement for Improvement in Education
  • Measurement in Education in the United States
  • Meta-Analysis and Research Synthesis in Education
  • Methodological Approaches for Impact Evaluation in Educati...
  • Methodologies for Conducting Education Research
  • Mindfulness, Learning, and Education
  • Motherscholars
  • Multiliteracies in Early Childhood Education
  • Multiple Documents Literacy: Theory, Research, and Applica...
  • Multivariate Research Methodology
  • Museums, Education, and Curriculum
  • Music Education
  • Narrative Research in Education
  • Native American Studies
  • Nonformal and Informal Environmental Education
  • Note-Taking
  • Numeracy Education
  • One-to-One Technology in the K-12 Classroom
  • Online Education
  • Open Education
  • Organizing for Continuous Improvement in Education
  • Organizing Schools for the Inclusion of Students with Disa...
  • Outdoor Play and Learning
  • Outdoor Play and Learning in Early Childhood Education
  • Pedagogical Leadership
  • Pedagogy of Teacher Education, A
  • Performance Objectives and Measurement
  • Performance-based Research Assessment in Higher Education
  • Performance-based Research Funding
  • Phenomenology in Educational Research
  • Philosophy of Education
  • Physical Education
  • Podcasts in Education
  • Policy Context of United States Educational Innovation and...
  • Politics of Education
  • Portable Technology Use in Special Education Programs and ...
  • Post-humanism and Environmental Education
  • Pre-Service Teacher Education
  • Problem Solving
  • Productivity and Higher Education
  • Professional Development
  • Professional Learning Communities
  • Program Evaluation
  • Programs and Services for Students with Emotional or Behav...
  • Psychology Learning and Teaching
  • Psychometric Issues in the Assessment of English Language ...
  • Qualitative Data Analysis Techniques
  • Qualitative, Quantitative, and Mixed Methods Research Samp...
  • Queering the English Language Arts (ELA) Writing Classroom
  • Race and Affirmative Action in Higher Education
  • Reading Education
  • Refugee and New Immigrant Learners
  • Relational and Developmental Trauma and Schools
  • Relational Pedagogies in Early Childhood Education
  • Reliability in Educational Assessments
  • Religion in Elementary and Secondary Education in the Unit...
  • Researcher Development and Skills Training within the Cont...
  • Research-Practice Partnerships in Education within the Uni...
  • Response to Intervention
  • Restorative Practices
  • Risky Play in Early Childhood Education
  • Scale and Sustainability of Education Innovation and Impro...
  • Scaling Up Research-based Educational Practices
  • School Accreditation
  • School Choice
  • School Culture
  • School District Budgeting and Financial Management in the ...
  • School Improvement through Inclusive Education
  • School Reform
  • Schools, Private and Independent
  • School-Wide Positive Behavior Support
  • Science Education
  • Secondary to Postsecondary Transition Issues
  • Self-Regulated Learning
  • Self-Study of Teacher Education Practices
  • Service-Learning
  • Severe Disabilities
  • Single Salary Schedule
  • Single-sex Education
  • Single-Subject Research Design
  • Social Context of Education
  • Social Justice
  • Social Network Analysis
  • Social Pedagogy
  • Social Science and Education Research
  • Social Studies Education
  • Sociology of Education
  • Standards-Based Education
  • Statistical Assumptions
  • Student Access, Equity, and Diversity in Higher Education
  • Student Assignment Policy
  • Student Engagement in Tertiary Education
  • Student Learning, Development, Engagement, and Motivation ...
  • Student Participation
  • Student Voice in Teacher Development
  • Sustainability Education in Early Childhood Education
  • Sustainability in Early Childhood Education
  • Sustainability in Higher Education
  • Teacher Beliefs and Epistemologies
  • Teacher Collaboration in School Improvement
  • Teacher Evaluation and Teacher Effectiveness
  • Teacher Preparation
  • Teacher Training and Development
  • Teacher Unions and Associations
  • Teacher-Student Relationships
  • Teaching Critical Thinking
  • Technologies, Teaching, and Learning in Higher Education
  • Technology Education in Early Childhood
  • Technology, Educational
  • Technology-based Assessment
  • The Bologna Process
  • The Regulation of Standards in Higher Education
  • Theories of Educational Leadership
  • Three Conceptions of Literacy: Media, Narrative, and Gamin...
  • Tracking and Detracking
  • Traditions of Quality Improvement in Education
  • Transformative Learning
  • Transitions in Early Childhood Education
  • Tribally Controlled Colleges and Universities in the Unite...
  • Understanding the Psycho-Social Dimensions of Schools and ...
  • University Faculty Roles and Responsibilities in the Unite...
  • Using Ethnography in Educational Research
  • Value of Higher Education for Students and Other Stakehold...
  • Virtual Learning Environments
  • Vocational and Technical Education
  • Wellness and Well-Being in Education
  • Women's and Gender Studies
  • Young Children and Spirituality
  • Young Children's Learning Dispositions
  • Young Children's Working Theories
  • Privacy Policy
  • Cookie Policy
  • Legal Notice
  • Accessibility

Powered by:

  • [185.66.15.189]
  • 185.66.15.189

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Sampling Methods | Types, Techniques & Examples

Sampling Methods | Types, Techniques & Examples

Published on September 19, 2019 by Shona McCombes . Revised on June 22, 2023.

When you conduct research about a group of people, it’s rarely possible to collect data from every person in that group. Instead, you select a sample . The sample is the group of individuals who will actually participate in the research.

To draw valid conclusions from your results, you have to carefully decide how you will select a sample that is representative of the group as a whole. This is called a sampling method . There are two primary types of sampling methods that you can use in your research:

  • Probability sampling involves random selection, allowing you to make strong statistical inferences about the whole group.
  • Non-probability sampling involves non-random selection based on convenience or other criteria, allowing you to easily collect data.

You should clearly explain how you selected your sample in the methodology section of your paper or thesis, as well as how you approached minimizing research bias in your work.

Table of contents

Population vs. sample, probability sampling methods, non-probability sampling methods, other interesting articles, frequently asked questions about sampling.

First, you need to understand the difference between a population and a sample , and identify the target population of your research.

  • The population is the entire group that you want to draw conclusions about.
  • The sample is the specific group of individuals that you will collect data from.

The population can be defined in terms of geographical location, age, income, or many other characteristics.

Population vs sample

It is important to carefully define your target population according to the purpose and practicalities of your project.

If the population is very large, demographically mixed, and geographically dispersed, it might be difficult to gain access to a representative sample. A lack of a representative sample affects the validity of your results, and can lead to several research biases , particularly sampling bias .

Sampling frame

The sampling frame is the actual list of individuals that the sample will be drawn from. Ideally, it should include the entire target population (and nobody who is not part of that population).

Sample size

The number of individuals you should include in your sample depends on various factors, including the size and variability of the population and your research design. There are different sample size calculators and formulas depending on what you want to achieve with statistical analysis .

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

sampling techniques for qualitative and quantitative research

Probability sampling means that every member of the population has a chance of being selected. It is mainly used in quantitative research . If you want to produce results that are representative of the whole population, probability sampling techniques are the most valid choice.

There are four main types of probability sample.

Probability sampling

1. Simple random sampling

In a simple random sample, every member of the population has an equal chance of being selected. Your sampling frame should include the whole population.

To conduct this type of sampling, you can use tools like random number generators or other techniques that are based entirely on chance.

2. Systematic sampling

Systematic sampling is similar to simple random sampling, but it is usually slightly easier to conduct. Every member of the population is listed with a number, but instead of randomly generating numbers, individuals are chosen at regular intervals.

If you use this technique, it is important to make sure that there is no hidden pattern in the list that might skew the sample. For example, if the HR database groups employees by team, and team members are listed in order of seniority, there is a risk that your interval might skip over people in junior roles, resulting in a sample that is skewed towards senior employees.

3. Stratified sampling

Stratified sampling involves dividing the population into subpopulations that may differ in important ways. It allows you draw more precise conclusions by ensuring that every subgroup is properly represented in the sample.

To use this sampling method, you divide the population into subgroups (called strata) based on the relevant characteristic (e.g., gender identity, age range, income bracket, job role).

Based on the overall proportions of the population, you calculate how many people should be sampled from each subgroup. Then you use random or systematic sampling to select a sample from each subgroup.

4. Cluster sampling

Cluster sampling also involves dividing the population into subgroups, but each subgroup should have similar characteristics to the whole sample. Instead of sampling individuals from each subgroup, you randomly select entire subgroups.

If it is practically possible, you might include every individual from each sampled cluster. If the clusters themselves are large, you can also sample individuals from within each cluster using one of the techniques above. This is called multistage sampling .

This method is good for dealing with large and dispersed populations, but there is more risk of error in the sample, as there could be substantial differences between clusters. It’s difficult to guarantee that the sampled clusters are really representative of the whole population.

In a non-probability sample, individuals are selected based on non-random criteria, and not every individual has a chance of being included.

This type of sample is easier and cheaper to access, but it has a higher risk of sampling bias . That means the inferences you can make about the population are weaker than with probability samples, and your conclusions may be more limited. If you use a non-probability sample, you should still aim to make it as representative of the population as possible.

Non-probability sampling techniques are often used in exploratory and qualitative research . In these types of research, the aim is not to test a hypothesis about a broad population, but to develop an initial understanding of a small or under-researched population.

Non probability sampling

1. Convenience sampling

A convenience sample simply includes the individuals who happen to be most accessible to the researcher.

This is an easy and inexpensive way to gather initial data, but there is no way to tell if the sample is representative of the population, so it can’t produce generalizable results. Convenience samples are at risk for both sampling bias and selection bias .

2. Voluntary response sampling

Similar to a convenience sample, a voluntary response sample is mainly based on ease of access. Instead of the researcher choosing participants and directly contacting them, people volunteer themselves (e.g. by responding to a public online survey).

Voluntary response samples are always at least somewhat biased , as some people will inherently be more likely to volunteer than others, leading to self-selection bias .

3. Purposive sampling

This type of sampling, also known as judgement sampling, involves the researcher using their expertise to select a sample that is most useful to the purposes of the research.

It is often used in qualitative research , where the researcher wants to gain detailed knowledge about a specific phenomenon rather than make statistical inferences, or where the population is very small and specific. An effective purposive sample must have clear criteria and rationale for inclusion. Always make sure to describe your inclusion and exclusion criteria and beware of observer bias affecting your arguments.

4. Snowball sampling

If the population is hard to access, snowball sampling can be used to recruit participants via other participants. The number of people you have access to “snowballs” as you get in contact with more people. The downside here is also representativeness, as you have no way of knowing how representative your sample is due to the reliance on participants recruiting others. This can lead to sampling bias .

5. Quota sampling

Quota sampling relies on the non-random selection of a predetermined number or proportion of units. This is called a quota.

You first divide the population into mutually exclusive subgroups (called strata) and then recruit sample units until you reach your quota. These units share specific characteristics, determined by you prior to forming your strata. The aim of quota sampling is to control what or who makes up your sample.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Student’s  t -distribution
  • Normal distribution
  • Null and Alternative Hypotheses
  • Chi square tests
  • Confidence interval
  • Quartiles & Quantiles
  • Cluster sampling
  • Stratified sampling
  • Data cleansing
  • Reproducibility vs Replicability
  • Peer review
  • Prospective cohort study

Research bias

  • Implicit bias
  • Cognitive bias
  • Placebo effect
  • Hawthorne effect
  • Hindsight bias
  • Affect heuristic
  • Social desirability bias

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

A sample is a subset of individuals from a larger population . Sampling means selecting the group that you will actually collect data from in your research. For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

In statistics, sampling allows you to test a hypothesis about the characteristics of a population.

Samples are used to make inferences about populations . Samples are easier to collect data from because they are practical, cost-effective, convenient, and manageable.

Probability sampling means that every member of the target population has a known chance of being included in the sample.

Probability sampling methods include simple random sampling , systematic sampling , stratified sampling , and cluster sampling .

In non-probability sampling , the sample is selected based on non-random criteria, and not every member of the population has a chance of being included.

Common non-probability sampling methods include convenience sampling , voluntary response sampling, purposive sampling , snowball sampling, and quota sampling .

In multistage sampling , or multistage cluster sampling, you draw a sample from a population using smaller and smaller groups at each stage.

This method is often used to collect data from a large, geographically spread group of people in national surveys, for example. You take advantage of hierarchical groupings (e.g., from state to city to neighborhood) to create a sample that’s less expensive and time-consuming to collect data from.

Sampling bias occurs when some members of a population are systematically more likely to be selected in a sample than others.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, June 22). Sampling Methods | Types, Techniques & Examples. Scribbr. Retrieved August 2, 2024, from https://www.scribbr.com/methodology/sampling-methods/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, population vs. sample | definitions, differences & examples, simple random sampling | definition, steps & examples, sampling bias and how to avoid it | types & examples, what is your plagiarism score.

Sago

What We Offer

With a comprehensive suite of qualitative and quantitative capabilities and 55 years of experience in the industry, Sago powers insights through adaptive solutions.

  • Recruitment
  • Communities
  • Methodify® Automated research
  • QualBoard® Digital Discussions
  • QualMeeting® Digital Interviews
  • Global Qualitative
  • Global Quantitative
  • In-Person Facilities
  • Healthcare Solutions
  • Research Consulting
  • Europe Solutions
  • Neuromarketing Tools
  • Trial & Jury Consulting

Who We Serve

Form deeper customer connections and make the process of answering your business questions easier. Sago delivers unparalleled access to the audiences you need through adaptive solutions and a consultative approach.

  • Consumer Packaged Goods
  • Financial Services
  • Media Technology
  • Medical Device Manufacturing
  • Marketing Research

With a 55-year legacy of impact, Sago has proven we have what it takes to be a long-standing industry leader and partner. We continually advance our range of expertise to provide our clients with the highest level of confidence.​

  • Global Offices
  • Partnerships & Certifications
  • News & Media
  • Researcher Events

steve schlesinger, mrx council hall of fame

Steve Schlesinger Inducted Into 2024 Market Research Council Hall of Fame

professional woman looking down at tablet in office at night

Sago Announces Launch of Sago Health to Elevate Healthcare Research

man and woman sitting in front of laptop smiling broadly

Sago Launches AI Video Summaries on QualBoard to Streamline Data Synthesis

Drop into your new favorite insights rabbit hole and explore content created by the leading minds in market research.

  • Case Studies
  • Knowledge Kit

swing voters, july 2024 florida thumbnail

The Swing Voter Project, July 2024: Florida

summer 2024 travel trends

Exploring Travel Trends and Behaviors for Summer 2024

Get in touch

sampling techniques for qualitative and quantitative research

  • Account Logins

sampling techniques for qualitative and quantitative research

Different Types of Sampling Techniques in Qualitative Research

  • Resources , Blog

clock icon

Key Takeaways:

  • Sampling techniques in qualitative research include purposive, convenience, snowball, and theoretical sampling.
  • Choosing the right sampling technique significantly impacts the accuracy and reliability of the research results.
  • It’s crucial to consider the potential impact on the bias, sample diversity, and generalizability when choosing a sampling technique for your qualitative research.

Qualitative research seeks to understand social phenomena from the perspective of those experiencing them. It involves collecting non-numerical data such as interviews, observations, and written documents to gain insights into human experiences, attitudes, and behaviors. While qualitative research can provide rich and nuanced insights, the accuracy and generalizability of findings depend on the quality of the sampling process. Sampling techniques are a critical component of qualitative research as it involves selecting a group of participants who can provide valuable insights into the research questions.

This article explores different types of sampling techniques in qualitative research. First, we’ll provide a comprehensive overview of four standard sampling techniques in qualitative research. and then compare and contrast these techniques to provide guidance on choosing the most appropriate method for a particular study. Additionally, you’ll find best practices for sampling and learn about ethical considerations researchers need to consider in selecting a sample. Overall, this article aims to help researchers conduct effective and high-quality sampling in qualitative research.

In this Article:

  • Purposive Sampling
  • Convenience Sampling
  • Snowball Sampling
  • Theoretical Sampling

Factors to Consider When Choosing a Sampling Technique

Practical approaches to sampling: recommended practices, final thoughts, get expert guidance on your sample needs.

Want expert input on the best sampling technique for your qualitative research project? Book a consultation for trusted advice.

Request a consultation

4 Types of Sampling Techniques and Their Applications

Sampling is a crucial aspect of qualitative research as it determines the representativeness and credibility of the data collected. Several sampling techniques are used in qualitative research, each with strengths and weaknesses. In this section, let’s explore four standard sampling techniques in qualitative research: purposive sampling, convenience sampling, snowball sampling, and theoretical sampling. We’ll break down the definition of each technique, when to use it, and its advantages and disadvantages.

1. Purposive Sampling

Purposive sampling, or judgmental sampling, is a non-probability sampling technique in qualitative research that’s commonly used. In purposive sampling, researchers intentionally select participants with specific characteristics or unique experiences related to the research question. The goal is to identify and recruit participants who can provide rich and diverse data to enhance the research findings.

Purposive sampling is used when researchers seek to identify individuals or groups with particular knowledge, skills, or experiences relevant to the research question. For instance, in a study examining the experiences of cancer patients undergoing chemotherapy, purposive sampling may be used to recruit participants who have undergone chemotherapy in the past year. Researchers can better understand the phenomenon under investigation by selecting individuals with relevant backgrounds.

Purposive Sampling: Strengths and Weaknesses

Purposive sampling is a powerful tool for researchers seeking to select participants who can provide valuable insight into their research question. This method is advantageous when studying groups with technical characteristics or experiences where a random selection of participants may yield different results.

One of the main advantages of purposive sampling is the ability to improve the quality and accuracy of data collected by selecting participants most relevant to the research question. This approach also enables researchers to collect data from diverse participants with unique perspectives and experiences related to the research question.

However, researchers should also be aware of potential bias when using purposive sampling. The researcher’s judgment may influence the selection of participants, resulting in a biased sample that does not accurately represent the broader population. Another disadvantage is that purposive sampling may not be representative of the more general population, which limits the generalizability of the findings. To guarantee the accuracy and dependability of data obtained through purposive sampling, researchers must provide a clear and transparent justification of their selection criteria and sampling approach. This entails outlining the specific characteristics or experiences required for participants to be included in the study and explaining the rationale behind these criteria. This level of transparency not only helps readers to evaluate the validity of the findings, but also enhances the replicability of the research.

2. Convenience Sampling  

When time and resources are limited, researchers may opt for convenience sampling as a quick and cost-effective way to recruit participants. In this non-probability sampling technique, participants are selected based on their accessibility and willingness to participate rather than their suitability for the research question. Qualitative research often uses this approach to generate various perspectives and experiences.

During the COVID-19 pandemic, convenience sampling was a valuable method for researchers to collect data quickly and efficiently from participants who were easily accessible and willing to participate. For example, in a study examining the experiences of university students during the pandemic, convenience sampling allowed researchers to recruit students who were available and willing to share their experiences quickly. While the pandemic may be over, convenience sampling during this time highlights its value in urgent situations where time and resources are limited.

Convenience Sampling: Strengths and Weaknesses

Convenience sampling offers several advantages to researchers, including its ease of implementation and cost-effectiveness. This technique allows researchers to quickly and efficiently recruit participants without spending time and resources identifying and contacting potential participants. Furthermore, convenience sampling can result in a diverse pool of participants, as individuals from various backgrounds and experiences may be more likely to participate.

While convenience sampling has the advantage of being efficient, researchers need to acknowledge its limitations. One of the primary drawbacks of convenience sampling is that it is susceptible to selection bias. Participants who are more easily accessible may not be representative of the broader population, which can limit the generalizability of the findings. Furthermore, convenience sampling may lead to issues with the reliability of the results, as it may not be possible to replicate the study using the same sample or a similar one.

To mitigate these limitations, researchers should carefully define the population of interest and ensure the sample is drawn from that population. For instance, if a study is investigating the experiences of individuals with a particular medical condition, researchers can recruit participants from specialized clinics or support groups for that condition. Researchers can also use statistical techniques such as stratified sampling or weighting to adjust for potential biases in the sample.

3. Snowball Sampling

Snowball sampling, also called referral sampling, is a unique approach researchers use to recruit participants in qualitative research. The technique involves identifying a few initial participants who meet the eligibility criteria and asking them to refer others they know who also fit the requirements. The sample size grows as referrals are added, creating a chain-like structure.

Snowball sampling enables researchers to reach out to individuals who may be hard to locate through traditional sampling methods, such as members of marginalized or hidden communities. For instance, in a study examining the experiences of undocumented immigrants, snowball sampling may be used to identify and recruit participants through referrals from other undocumented immigrants.

Snowball Sampling: Strengths and Weaknesses

Snowball sampling can produce in-depth and detailed data from participants with common characteristics or experiences. Since referrals are made within a network of individuals who share similarities, researchers can gain deep insights into a specific group’s attitudes, behaviors, and perspectives.

4. Theoretical Sampling

Theoretical sampling is a sophisticated and strategic technique that can help researchers develop more in-depth and nuanced theories from their data. Instead of selecting participants based on convenience or accessibility, researchers using theoretical sampling choose participants based on their potential to contribute to the emerging themes and concepts in the data. This approach allows researchers to refine their research question and theory based on the data they collect rather than forcing their data to fit a preconceived idea.

Theoretical sampling is used when researchers conduct grounded theory research and have developed an initial theory or conceptual framework. In a study examining cancer survivors’ experiences, for example, theoretical sampling may be used to identify and recruit participants who can provide new insights into the coping strategies of survivors.

Theoretical Sampling: Strengths and Weaknesses

One of the significant advantages of theoretical sampling is that it allows researchers to refine their research question and theory based on emerging data. This means the research can be highly targeted and focused, leading to a deeper understanding of the phenomenon being studied. Additionally, theoretical sampling can generate rich and in-depth data, as participants are selected based on their potential to provide new insights into the research question.

Participants are selected based on their perceived ability to offer new perspectives on the research question. This means specific perspectives or experiences may be overrepresented in the sample, leading to an incomplete understanding of the phenomenon being studied. Additionally, theoretical sampling can be time-consuming and resource-intensive, as researchers must continuously analyze the data and recruit new participants.

To mitigate the potential for bias, researchers can take several steps. One way to reduce bias is to use a diverse team of researchers to analyze the data and make participant selection decisions. Having multiple perspectives and backgrounds can help prevent researchers from unconsciously selecting participants who fit their preconceived notions or biases.

Another solution would be to use reflexive sampling. Reflexive sampling involves selecting participants aware of the research process and provides insights into how their biases and experiences may influence their perspectives. By including participants who are reflexive about their subjectivity, researchers can generate more nuanced and self-aware findings.

Choosing the proper sampling technique in qualitative research is one of the most critical decisions a researcher makes when conducting a study. The preferred method can significantly impact the accuracy and reliability of the research results.

For instance, purposive sampling provides a more targeted and specific sample, which helps to answer research questions related to that particular population or phenomenon. However, this approach may also introduce bias by limiting the diversity of the sample.

Conversely, convenience sampling may offer a more diverse sample regarding demographics and backgrounds but may also introduce bias by selecting more willing or available participants.

Snowball sampling may help study hard-to-reach populations, but it can also limit the sample’s diversity as participants are selected based on their connections to existing participants.

Theoretical sampling may offer an opportunity to refine the research question and theory based on emerging data, but it can also be time-consuming and resource-intensive.

Additionally, the choice of sampling technique can impact the generalizability of the research findings. Therefore, it’s crucial to consider the potential impact on the bias, sample diversity, and generalizability when choosing a sampling technique. By doing so, researchers can select the most appropriate method for their research question and ensure the validity and reliability of their findings.

Tips for Selecting Participants

When selecting participants for a qualitative research study, it is crucial to consider the research question and the purpose of the study. In addition, researchers should identify the specific characteristics or criteria they seek in their sample and select participants accordingly.

One helpful tip for selecting participants is to use a pre-screening process to ensure potential participants meet the criteria for inclusion in the study. Another technique is using multiple recruitment methods to ensure the sample is diverse and representative of the studied population.

Ensuring Diversity in Samples

Diversity in the sample is important to ensure the study’s findings apply to a wide range of individuals and situations. One way to ensure diversity is to use stratified sampling, which involves dividing the population into subgroups and selecting participants from each subset. This helps establish that the sample is representative of the larger population.

Maintaining Ethical Considerations

When selecting participants for a qualitative research study, it is essential to ensure ethical considerations are taken into account. Researchers must ensure participants are fully informed about the study and provide their voluntary consent to participate. They must also ensure participants understand their rights and that their confidentiality and privacy will be protected.

A qualitative research study’s success hinges on its sampling technique’s effectiveness. The choice of sampling technique must be guided by the research question, the population being studied, and the purpose of the study. Whether purposive, convenience, snowball, or theoretical sampling, the primary goal is to ensure the validity and reliability of the study’s findings.

By thoughtfully weighing the pros and cons of each sampling technique in qualitative research, researchers can make informed decisions that lead to more reliable and accurate results. In conclusion, carefully selecting a sampling technique is integral to the success of a qualitative research study, and a thorough understanding of the available options can make all the difference in achieving high-quality research outcomes.

If you’re interested in improving your research and sampling methods, Sago offers a variety of solutions. Our qualitative research platforms, such as QualBoard and QualMeeting, can assist you in conducting research studies with precision and efficiency. Our robust global panel and recruitment options help you reach the right people. We also offer qualitative and quantitative research services to meet your research needs. Contact us today to learn more about how we can help improve your research outcomes.

Find the Right Sample for Your Qualitative Research

Trust our team to recruit the participants you need using the appropriate techniques. Book a consultation with our team to get started .

toddler girl surrounded by stuffed animals and using an ipad

Pioneering the Future of Pediatric Health

The Deciders, June 2024, Georgia

The Deciders, June 24, 2024: Third-Party Georgia Voters

Summer 2024 Insights: The Compass to This Year's Travel Choices

Summer 2024 Insights: The Compass to This Year’s Travel Choices

swing voters, north carolina, june 2024, thumbnail

The Swing Voter Project, June 2024: North Carolina

Making the Case for Virtual Audiences: Unleashing Insights in a Creative Agency

Making the Case for Virtual Audiences: Unleashing Insights in a Creative Agency

two men working on laptop in office

Boost Efficiency with Quantitative Methods Designed for You

arizona state map, deciders project

The Deciders, June 2024: Hispanic American voters in Arizona

happy young people with a blue sky background

OnDemand: Decoding Gen C: Mastering Engagement with a New Consumer Powerhouse

georgia swing voter project

The Swing Voters Project, May 2024: Georgia

Take a deep dive into your favorite market research topics

sampling techniques for qualitative and quantitative research

How can we help support you and your research needs?

sampling techniques for qualitative and quantitative research

BEFORE YOU GO

Have you considered how to harness AI in your research process? Check out our on-demand webinar for everything you need to know

sampling techniques for qualitative and quantitative research

Logo for Open Educational Resources

Chapter 5. Sampling

Introduction.

Most Americans will experience unemployment at some point in their lives. Sarah Damaske ( 2021 ) was interested in learning about how men and women experience unemployment differently. To answer this question, she interviewed unemployed people. After conducting a “pilot study” with twenty interviewees, she realized she was also interested in finding out how working-class and middle-class persons experienced unemployment differently. She found one hundred persons through local unemployment offices. She purposefully selected a roughly equal number of men and women and working-class and middle-class persons for the study. This would allow her to make the kinds of comparisons she was interested in. She further refined her selection of persons to interview:

I decided that I needed to be able to focus my attention on gender and class; therefore, I interviewed only people born between 1962 and 1987 (ages 28–52, the prime working and child-rearing years), those who worked full-time before their job loss, those who experienced an involuntary job loss during the past year, and those who did not lose a job for cause (e.g., were not fired because of their behavior at work). ( 244 )

The people she ultimately interviewed compose her sample. They represent (“sample”) the larger population of the involuntarily unemployed. This “theoretically informed stratified sampling design” allowed Damaske “to achieve relatively equal distribution of participation across gender and class,” but it came with some limitations. For one, the unemployment centers were located in primarily White areas of the country, so there were very few persons of color interviewed. Qualitative researchers must make these kinds of decisions all the time—who to include and who not to include. There is never an absolutely correct decision, as the choice is linked to the particular research question posed by the particular researcher, although some sampling choices are more compelling than others. In this case, Damaske made the choice to foreground both gender and class rather than compare all middle-class men and women or women of color from different class positions or just talk to White men. She leaves the door open for other researchers to sample differently. Because science is a collective enterprise, it is most likely someone will be inspired to conduct a similar study as Damaske’s but with an entirely different sample.

This chapter is all about sampling. After you have developed a research question and have a general idea of how you will collect data (observations or interviews), how do you go about actually finding people and sites to study? Although there is no “correct number” of people to interview, the sample should follow the research question and research design. You might remember studying sampling in a quantitative research course. Sampling is important here too, but it works a bit differently. Unlike quantitative research, qualitative research involves nonprobability sampling. This chapter explains why this is so and what qualities instead make a good sample for qualitative research.

Quick Terms Refresher

  • The population is the entire group that you want to draw conclusions about.
  • The sample is the specific group of individuals that you will collect data from.
  • Sampling frame is the actual list of individuals that the sample will be drawn from. Ideally, it should include the entire target population (and nobody who is not part of that population).
  • Sample size is how many individuals (or units) are included in your sample.

The “Who” of Your Research Study

After you have turned your general research interest into an actual research question and identified an approach you want to take to answer that question, you will need to specify the people you will be interviewing or observing. In most qualitative research, the objects of your study will indeed be people. In some cases, however, your objects might be content left by people (e.g., diaries, yearbooks, photographs) or documents (official or unofficial) or even institutions (e.g., schools, medical centers) and locations (e.g., nation-states, cities). Chances are, whatever “people, places, or things” are the objects of your study, you will not really be able to talk to, observe, or follow every single individual/object of the entire population of interest. You will need to create a sample of the population . Sampling in qualitative research has different purposes and goals than sampling in quantitative research. Sampling in both allows you to say something of interest about a population without having to include the entire population in your sample.

We begin this chapter with the case of a population of interest composed of actual people. After we have a better understanding of populations and samples that involve real people, we’ll discuss sampling in other types of qualitative research, such as archival research, content analysis, and case studies. We’ll then move to a larger discussion about the difference between sampling in qualitative research generally versus quantitative research, then we’ll move on to the idea of “theoretical” generalizability, and finally, we’ll conclude with some practical tips on the correct “number” to include in one’s sample.

Sampling People

To help think through samples, let’s imagine we want to know more about “vaccine hesitancy.” We’ve all lived through 2020 and 2021, and we know that a sizable number of people in the United States (and elsewhere) were slow to accept vaccines, even when these were freely available. By some accounts, about one-third of Americans initially refused vaccination. Why is this so? Well, as I write this in the summer of 2021, we know that some people actively refused the vaccination, thinking it was harmful or part of a government plot. Others were simply lazy or dismissed the necessity. And still others were worried about harmful side effects. The general population of interest here (all adult Americans who were not vaccinated by August 2021) may be as many as eighty million people. We clearly cannot talk to all of them. So we will have to narrow the number to something manageable. How can we do this?

Null

First, we have to think about our actual research question and the form of research we are conducting. I am going to begin with a quantitative research question. Quantitative research questions tend to be simpler to visualize, at least when we are first starting out doing social science research. So let us say we want to know what percentage of each kind of resistance is out there and how race or class or gender affects vaccine hesitancy. Again, we don’t have the ability to talk to everyone. But harnessing what we know about normal probability distributions (see quantitative methods for more on this), we can find this out through a sample that represents the general population. We can’t really address these particular questions if we only talk to White women who go to college with us. And if you are really trying to generalize the specific findings of your sample to the larger population, you will have to employ probability sampling , a sampling technique where a researcher sets a selection of a few criteria and chooses members of a population randomly. Why randomly? If truly random, all the members have an equal opportunity to be a part of the sample, and thus we avoid the problem of having only our friends and neighbors (who may be very different from other people in the population) in the study. Mathematically, there is going to be a certain number that will be large enough to allow us to generalize our particular findings from our sample population to the population at large. It might surprise you how small that number can be. Election polls of no more than one thousand people are routinely used to predict actual election outcomes of millions of people. Below that number, however, you will not be able to make generalizations. Talking to five people at random is simply not enough people to predict a presidential election.

In order to answer quantitative research questions of causality, one must employ probability sampling. Quantitative researchers try to generalize their findings to a larger population. Samples are designed with that in mind. Qualitative researchers ask very different questions, though. Qualitative research questions are not about “how many” of a certain group do X (in this case, what percentage of the unvaccinated hesitate for concern about safety rather than reject vaccination on political grounds). Qualitative research employs nonprobability sampling . By definition, not everyone has an equal opportunity to be included in the sample. The researcher might select White women they go to college with to provide insight into racial and gender dynamics at play. Whatever is found by doing so will not be generalizable to everyone who has not been vaccinated, or even all White women who have not been vaccinated, or even all White women who have not been vaccinated who are in this particular college. That is not the point of qualitative research at all. This is a really important distinction, so I will repeat in bold: Qualitative researchers are not trying to statistically generalize specific findings to a larger population . They have not failed when their sample cannot be generalized, as that is not the point at all.

In the previous paragraph, I said it would be perfectly acceptable for a qualitative researcher to interview five White women with whom she goes to college about their vaccine hesitancy “to provide insight into racial and gender dynamics at play.” The key word here is “insight.” Rather than use a sample as a stand-in for the general population, as quantitative researchers do, the qualitative researcher uses the sample to gain insight into a process or phenomenon. The qualitative researcher is not going to be content with simply asking each of the women to state her reason for not being vaccinated and then draw conclusions that, because one in five of these women were concerned about their health, one in five of all people were also concerned about their health. That would be, frankly, a very poor study indeed. Rather, the qualitative researcher might sit down with each of the women and conduct a lengthy interview about what the vaccine means to her, why she is hesitant, how she manages her hesitancy (how she explains it to her friends), what she thinks about others who are unvaccinated, what she thinks of those who have been vaccinated, and what she knows or thinks she knows about COVID-19. The researcher might include specific interview questions about the college context, about their status as White women, about the political beliefs they hold about racism in the US, and about how their own political affiliations may or may not provide narrative scripts about “protective whiteness.” There are many interesting things to ask and learn about and many things to discover. Where a quantitative researcher begins with clear parameters to set their population and guide their sample selection process, the qualitative researcher is discovering new parameters, making it impossible to engage in probability sampling.

Looking at it this way, sampling for qualitative researchers needs to be more strategic. More theoretically informed. What persons can be interviewed or observed that would provide maximum insight into what is still unknown? In other words, qualitative researchers think through what cases they could learn the most from, and those are the cases selected to study: “What would be ‘bias’ in statistical sampling, and therefore a weakness, becomes intended focus in qualitative sampling, and therefore a strength. The logic and power of purposeful sampling like in selecting information-rich cases for study in depth. Information-rich cases are those from which one can learn a great deal about issues of central importance to the purpose of the inquiry, thus the term purposeful sampling” ( Patton 2002:230 ; emphases in the original).

Before selecting your sample, though, it is important to clearly identify the general population of interest. You need to know this before you can determine the sample. In our example case, it is “adult Americans who have not yet been vaccinated.” Depending on the specific qualitative research question, however, it might be “adult Americans who have been vaccinated for political reasons” or even “college students who have not been vaccinated.” What insights are you seeking? Do you want to know how politics is affecting vaccination? Or do you want to understand how people manage being an outlier in a particular setting (unvaccinated where vaccinations are heavily encouraged if not required)? More clearly stated, your population should align with your research question . Think back to the opening story about Damaske’s work studying the unemployed. She drew her sample narrowly to address the particular questions she was interested in pursuing. Knowing your questions or, at a minimum, why you are interested in the topic will allow you to draw the best sample possible to achieve insight.

Once you have your population in mind, how do you go about getting people to agree to be in your sample? In qualitative research, it is permissible to find people by convenience. Just ask for people who fit your sample criteria and see who shows up. Or reach out to friends and colleagues and see if they know anyone that fits. Don’t let the name convenience sampling mislead you; this is not exactly “easy,” and it is certainly a valid form of sampling in qualitative research. The more unknowns you have about what you will find, the more convenience sampling makes sense. If you don’t know how race or class or political affiliation might matter, and your population is unvaccinated college students, you can construct a sample of college students by placing an advertisement in the student paper or posting a flyer on a notice board. Whoever answers is your sample. That is what is meant by a convenience sample. A common variation of convenience sampling is snowball sampling . This is particularly useful if your target population is hard to find. Let’s say you posted a flyer about your study and only two college students responded. You could then ask those two students for referrals. They tell their friends, and those friends tell other friends, and, like a snowball, your sample gets bigger and bigger.

Researcher Note

Gaining Access: When Your Friend Is Your Research Subject

My early experience with qualitative research was rather unique. At that time, I needed to do a project that required me to interview first-generation college students, and my friends, with whom I had been sharing a dorm for two years, just perfectly fell into the sample category. Thus, I just asked them and easily “gained my access” to the research subject; I know them, we are friends, and I am part of them. I am an insider. I also thought, “Well, since I am part of the group, I can easily understand their language and norms, I can capture their honesty, read their nonverbal cues well, will get more information, as they will be more opened to me because they trust me.” All in all, easy access with rich information. But, gosh, I did not realize that my status as an insider came with a price! When structuring the interview questions, I began to realize that rather than focusing on the unique experiences of my friends, I mostly based the questions on my own experiences, assuming we have similar if not the same experiences. I began to struggle with my objectivity and even questioned my role; am I doing this as part of the group or as a researcher? I came to know later that my status as an insider or my “positionality” may impact my research. It not only shapes the process of data collection but might heavily influence my interpretation of the data. I came to realize that although my inside status came with a lot of benefits (especially for access), it could also bring some drawbacks.

—Dede Setiono, PhD student focusing on international development and environmental policy, Oregon State University

The more you know about what you might find, the more strategic you can be. If you wanted to compare how politically conservative and politically liberal college students explained their vaccine hesitancy, for example, you might construct a sample purposively, finding an equal number of both types of students so that you can make those comparisons in your analysis. This is what Damaske ( 2021 ) did. You could still use convenience or snowball sampling as a way of recruitment. Post a flyer at the conservative student club and then ask for referrals from the one student that agrees to be interviewed. As with convenience sampling, there are variations of purposive sampling as well as other names used (e.g., judgment, quota, stratified, criterion, theoretical). Try not to get bogged down in the nomenclature; instead, focus on identifying the general population that matches your research question and then using a sampling method that is most likely to provide insight, given the types of questions you have.

There are all kinds of ways of being strategic with sampling in qualitative research. Here are a few of my favorite techniques for maximizing insight:

  • Consider using “extreme” or “deviant” cases. Maybe your college houses a prominent anti-vaxxer who has written about and demonstrated against the college’s policy on vaccines. You could learn a lot from that single case (depending on your research question, of course).
  • Consider “intensity”: people and cases and circumstances where your questions are more likely to feature prominently (but not extremely or deviantly). For example, you could compare those who volunteer at local Republican and Democratic election headquarters during an election season in a study on why party matters. Those who volunteer are more likely to have something to say than those who are more apathetic.
  • Maximize variation, as with the case of “politically liberal” versus “politically conservative,” or include an array of social locations (young vs. old; Northwest vs. Southeast region). This kind of heterogeneity sampling can capture and describe the central themes that cut across the variations: any common patterns that emerge, even in this wildly mismatched sample, are probably important to note!
  • Rather than maximize the variation, you could select a small homogenous sample to describe some particular subgroup in depth. Focus groups are often the best form of data collection for homogeneity sampling.
  • Think about which cases are “critical” or politically important—ones that “if it happens here, it would happen anywhere” or a case that is politically sensitive, as with the single “blue” (Democratic) county in a “red” (Republican) state. In both, you are choosing a site that would yield the most information and have the greatest impact on the development of knowledge.
  • On the other hand, sometimes you want to select the “typical”—the typical college student, for example. You are trying to not generalize from the typical but illustrate aspects that may be typical of this case or group. When selecting for typicality, be clear with yourself about why the typical matches your research questions (and who might be excluded or marginalized in doing so).
  • Finally, it is often a good idea to look for disconfirming cases : if you are at the stage where you have a hypothesis (of sorts), you might select those who do not fit your hypothesis—you will surely learn something important there. They may be “exceptions that prove the rule” or exceptions that force you to alter your findings in order to make sense of these additional cases.

In addition to all these sampling variations, there is the theoretical approach taken by grounded theorists in which the researcher samples comparative people (or events) on the basis of their potential to represent important theoretical constructs. The sample, one can say, is by definition representative of the phenomenon of interest. It accompanies the constant comparative method of analysis. In the words of the funders of Grounded Theory , “Theoretical sampling is sampling on the basis of the emerging concepts, with the aim being to explore the dimensional range or varied conditions along which the properties of the concepts vary” ( Strauss and Corbin 1998:73 ).

When Your Population is Not Composed of People

I think it is easiest for most people to think of populations and samples in terms of people, but sometimes our units of analysis are not actually people. They could be places or institutions. Even so, you might still want to talk to people or observe the actions of people to understand those places or institutions. Or not! In the case of content analyses (see chapter 17), you won’t even have people involved at all but rather documents or films or photographs or news clippings. Everything we have covered about sampling applies to other units of analysis too. Let’s work through some examples.

Case Studies

When constructing a case study, it is helpful to think of your cases as sample populations in the same way that we considered people above. If, for example, you are comparing campus climates for diversity, your overall population may be “four-year college campuses in the US,” and from there you might decide to study three college campuses as your sample. Which three? Will you use purposeful sampling (perhaps [1] selecting three colleges in Oregon that are different sizes or [2] selecting three colleges across the US located in different political cultures or [3] varying the three colleges by racial makeup of the student body)? Or will you select three colleges at random, out of convenience? There are justifiable reasons for all approaches.

As with people, there are different ways of maximizing insight in your sample selection. Think about the following rationales: typical, diverse, extreme, deviant, influential, crucial, or even embodying a particular “pathway” ( Gerring 2008 ). When choosing a case or particular research site, Rubin ( 2021 ) suggests you bear in mind, first, what you are leaving out by selecting this particular case/site; second, what you might be overemphasizing by studying this case/site and not another; and, finally, whether you truly need to worry about either of those things—“that is, what are the sources of bias and how bad are they for what you are trying to do?” ( 89 ).

Once you have selected your cases, you may still want to include interviews with specific people or observations at particular sites within those cases. Then you go through possible sampling approaches all over again to determine which people will be contacted.

Content: Documents, Narrative Accounts, And So On

Although not often discussed as sampling, your selection of documents and other units to use in various content/historical analyses is subject to similar considerations. When you are asking quantitative-type questions (percentages and proportionalities of a general population), you will want to follow probabilistic sampling. For example, I created a random sample of accounts posted on the website studentloanjustice.org to delineate the types of problems people were having with student debt ( Hurst 2007 ). Even though my data was qualitative (narratives of student debt), I was actually asking a quantitative-type research question, so it was important that my sample was representative of the larger population (debtors who posted on the website). On the other hand, when you are asking qualitative-type questions, the selection process should be very different. In that case, use nonprobabilistic techniques, either convenience (where you are really new to this data and do not have the ability to set comparative criteria or even know what a deviant case would be) or some variant of purposive sampling. Let’s say you were interested in the visual representation of women in media published in the 1950s. You could select a national magazine like Time for a “typical” representation (and for its convenience, as all issues are freely available on the web and easy to search). Or you could compare one magazine known for its feminist content versus one antifeminist. The point is, sample selection is important even when you are not interviewing or observing people.

Goals of Qualitative Sampling versus Goals of Quantitative Sampling

We have already discussed some of the differences in the goals of quantitative and qualitative sampling above, but it is worth further discussion. The quantitative researcher seeks a sample that is representative of the population of interest so that they may properly generalize the results (e.g., if 80 percent of first-gen students in the sample were concerned with costs of college, then we can say there is a strong likelihood that 80 percent of first-gen students nationally are concerned with costs of college). The qualitative researcher does not seek to generalize in this way . They may want a representative sample because they are interested in typical responses or behaviors of the population of interest, but they may very well not want a representative sample at all. They might want an “extreme” or deviant case to highlight what could go wrong with a particular situation, or maybe they want to examine just one case as a way of understanding what elements might be of interest in further research. When thinking of your sample, you will have to know why you are selecting the units, and this relates back to your research question or sets of questions. It has nothing to do with having a representative sample to generalize results. You may be tempted—or it may be suggested to you by a quantitatively minded member of your committee—to create as large and representative a sample as you possibly can to earn credibility from quantitative researchers. Ignore this temptation or suggestion. The only thing you should be considering is what sample will best bring insight into the questions guiding your research. This has implications for the number of people (or units) in your study as well, which is the topic of the next section.

What is the Correct “Number” to Sample?

Because we are not trying to create a generalizable representative sample, the guidelines for the “number” of people to interview or news stories to code are also a bit more nebulous. There are some brilliant insightful studies out there with an n of 1 (meaning one person or one account used as the entire set of data). This is particularly so in the case of autoethnography, a variation of ethnographic research that uses the researcher’s own subject position and experiences as the basis of data collection and analysis. But it is true for all forms of qualitative research. There are no hard-and-fast rules here. The number to include is what is relevant and insightful to your particular study.

That said, humans do not thrive well under such ambiguity, and there are a few helpful suggestions that can be made. First, many qualitative researchers talk about “saturation” as the end point for data collection. You stop adding participants when you are no longer getting any new information (or so very little that the cost of adding another interview subject or spending another day in the field exceeds any likely benefits to the research). The term saturation was first used here by Glaser and Strauss ( 1967 ), the founders of Grounded Theory. Here is their explanation: “The criterion for judging when to stop sampling the different groups pertinent to a category is the category’s theoretical saturation . Saturation means that no additional data are being found whereby the sociologist can develop properties of the category. As he [or she] sees similar instances over and over again, the researcher becomes empirically confident that a category is saturated. [They go] out of [their] way to look for groups that stretch diversity of data as far as possible, just to make certain that saturation is based on the widest possible range of data on the category” ( 61 ).

It makes sense that the term was developed by grounded theorists, since this approach is rather more open-ended than other approaches used by qualitative researchers. With so much left open, having a guideline of “stop collecting data when you don’t find anything new” is reasonable. However, saturation can’t help much when first setting out your sample. How do you know how many people to contact to interview? What number will you put down in your institutional review board (IRB) protocol (see chapter 8)? You may guess how many people or units it will take to reach saturation, but there really is no way to know in advance. The best you can do is think about your population and your questions and look at what others have done with similar populations and questions.

Here are some suggestions to use as a starting point: For phenomenological studies, try to interview at least ten people for each major category or group of people . If you are comparing male-identified, female-identified, and gender-neutral college students in a study on gender regimes in social clubs, that means you might want to design a sample of thirty students, ten from each group. This is the minimum suggested number. Damaske’s ( 2021 ) sample of one hundred allows room for up to twenty-five participants in each of four “buckets” (e.g., working-class*female, working-class*male, middle-class*female, middle-class*male). If there is more than one comparative group (e.g., you are comparing students attending three different colleges, and you are comparing White and Black students in each), you can sometimes reduce the number for each group in your sample to five for, in this case, thirty total students. But that is really a bare minimum you will want to go. A lot of people will not trust you with only “five” cases in a bucket. Lareau ( 2021:24 ) advises a minimum of seven or nine for each bucket (or “cell,” in her words). The point is to think about what your analyses might look like and how comfortable you will be with a certain number of persons fitting each category.

Because qualitative research takes so much time and effort, it is rare for a beginning researcher to include more than thirty to fifty people or units in the study. You may not be able to conduct all the comparisons you might want simply because you cannot manage a larger sample. In that case, the limits of who you can reach or what you can include may influence you to rethink an original overcomplicated research design. Rather than include students from every racial group on a campus, for example, you might want to sample strategically, thinking about the most contrast (insightful), possibly excluding majority-race (White) students entirely, and simply using previous literature to fill in gaps in our understanding. For example, one of my former students was interested in discovering how race and class worked at a predominantly White institution (PWI). Due to time constraints, she simplified her study from an original sample frame of middle-class and working-class domestic Black and international African students (four buckets) to a sample frame of domestic Black and international African students (two buckets), allowing the complexities of class to come through individual accounts rather than from part of the sample frame. She wisely decided not to include White students in the sample, as her focus was on how minoritized students navigated the PWI. She was able to successfully complete her project and develop insights from the data with fewer than twenty interviewees. [1]

But what if you had unlimited time and resources? Would it always be better to interview more people or include more accounts, documents, and units of analysis? No! Your sample size should reflect your research question and the goals you have set yourself. Larger numbers can sometimes work against your goals. If, for example, you want to help bring out individual stories of success against the odds, adding more people to the analysis can end up drowning out those individual stories. Sometimes, the perfect size really is one (or three, or five). It really depends on what you are trying to discover and achieve in your study. Furthermore, studies of one hundred or more (people, documents, accounts, etc.) can sometimes be mistaken for quantitative research. Inevitably, the large sample size will push the researcher into simplifying the data numerically. And readers will begin to expect generalizability from such a large sample.

To summarize, “There are no rules for sample size in qualitative inquiry. Sample size depends on what you want to know, the purpose of the inquiry, what’s at stake, what will be useful, what will have credibility, and what can be done with available time and resources” ( Patton 2002:244 ).

How did you find/construct a sample?

Since qualitative researchers work with comparatively small sample sizes, getting your sample right is rather important. Yet it is also difficult to accomplish. For instance, a key question you need to ask yourself is whether you want a homogeneous or heterogeneous sample. In other words, do you want to include people in your study who are by and large the same, or do you want to have diversity in your sample?

For many years, I have studied the experiences of students who were the first in their families to attend university. There is a rather large number of sampling decisions I need to consider before starting the study. (1) Should I only talk to first-in-family students, or should I have a comparison group of students who are not first-in-family? (2) Do I need to strive for a gender distribution that matches undergraduate enrollment patterns? (3) Should I include participants that reflect diversity in gender identity and sexuality? (4) How about racial diversity? First-in-family status is strongly related to some ethnic or racial identity. (5) And how about areas of study?

As you can see, if I wanted to accommodate all these differences and get enough study participants in each category, I would quickly end up with a sample size of hundreds, which is not feasible in most qualitative research. In the end, for me, the most important decision was to maximize the voices of first-in-family students, which meant that I only included them in my sample. As for the other categories, I figured it was going to be hard enough to find first-in-family students, so I started recruiting with an open mind and an understanding that I may have to accept a lack of gender, sexuality, or racial diversity and then not be able to say anything about these issues. But I would definitely be able to speak about the experiences of being first-in-family.

—Wolfgang Lehmann, author of “Habitus Transformation and Hidden Injuries”

Examples of “Sample” Sections in Journal Articles

Think about some of the studies you have read in college, especially those with rich stories and accounts about people’s lives. Do you know how the people were selected to be the focus of those stories? If the account was published by an academic press (e.g., University of California Press or Princeton University Press) or in an academic journal, chances are that the author included a description of their sample selection. You can usually find these in a methodological appendix (book) or a section on “research methods” (article).

Here are two examples from recent books and one example from a recent article:

Example 1 . In It’s Not like I’m Poor: How Working Families Make Ends Meet in a Post-welfare World , the research team employed a mixed methods approach to understand how parents use the earned income tax credit, a refundable tax credit designed to provide relief for low- to moderate-income working people ( Halpern-Meekin et al. 2015 ). At the end of their book, their first appendix is “Introduction to Boston and the Research Project.” After describing the context of the study, they include the following description of their sample selection:

In June 2007, we drew 120 names at random from the roughly 332 surveys we gathered between February and April. Within each racial and ethnic group, we aimed for one-third married couples with children and two-thirds unmarried parents. We sent each of these families a letter informing them of the opportunity to participate in the in-depth portion of our study and then began calling the home and cell phone numbers they provided us on the surveys and knocking on the doors of the addresses they provided.…In the end, we interviewed 115 of the 120 families originally selected for the in-depth interview sample (the remaining five families declined to participate). ( 22 )

Was their sample selection based on convenience or purpose? Why do you think it was important for them to tell you that five families declined to be interviewed? There is actually a trick here, as the names were pulled randomly from a survey whose sample design was probabilistic. Why is this important to know? What can we say about the representativeness or the uniqueness of whatever findings are reported here?

Example 2 . In When Diversity Drops , Park ( 2013 ) examines the impact of decreasing campus diversity on the lives of college students. She does this through a case study of one student club, the InterVarsity Christian Fellowship (IVCF), at one university (“California University,” a pseudonym). Here is her description:

I supplemented participant observation with individual in-depth interviews with sixty IVCF associates, including thirty-four current students, eight former and current staff members, eleven alumni, and seven regional or national staff members. The racial/ethnic breakdown was twenty-five Asian Americans (41.6 percent), one Armenian (1.6 percent), twelve people who were black (20.0 percent), eight Latino/as (13.3 percent), three South Asian Americans (5.0 percent), and eleven people who were white (18.3 percent). Twenty-nine were men, and thirty-one were women. Looking back, I note that the higher number of Asian Americans reflected both the group’s racial/ethnic composition and my relative ease about approaching them for interviews. ( 156 )

How can you tell this is a convenience sample? What else do you note about the sample selection from this description?

Example 3. The last example is taken from an article published in the journal Research in Higher Education . Published articles tend to be more formal than books, at least when it comes to the presentation of qualitative research. In this article, Lawson ( 2021 ) is seeking to understand why female-identified college students drop out of majors that are dominated by male-identified students (e.g., engineering, computer science, music theory). Here is the entire relevant section of the article:

Method Participants Data were collected as part of a larger study designed to better understand the daily experiences of women in MDMs [male-dominated majors].…Participants included 120 students from a midsize, Midwestern University. This sample included 40 women and 40 men from MDMs—defined as any major where at least 2/3 of students are men at both the university and nationally—and 40 women from GNMs—defined as any may where 40–60% of students are women at both the university and nationally.… Procedure A multi-faceted approach was used to recruit participants; participants were sent targeted emails (obtained based on participants’ reported gender and major listings), campus-wide emails sent through the University’s Communication Center, flyers, and in-class presentations. Recruitment materials stated that the research focused on the daily experiences of college students, including classroom experiences, stressors, positive experiences, departmental contexts, and career aspirations. Interested participants were directed to email the study coordinator to verify eligibility (at least 18 years old, man/woman in MDM or woman in GNM, access to a smartphone). Sixteen interested individuals were not eligible for the study due to the gender/major combination. ( 482ff .)

What method of sample selection was used by Lawson? Why is it important to define “MDM” at the outset? How does this definition relate to sampling? Why were interested participants directed to the study coordinator to verify eligibility?

Final Words

I have found that students often find it difficult to be specific enough when defining and choosing their sample. It might help to think about your sample design and sample recruitment like a cookbook. You want all the details there so that someone else can pick up your study and conduct it as you intended. That person could be yourself, but this analogy might work better if you have someone else in mind. When I am writing down recipes, I often think of my sister and try to convey the details she would need to duplicate the dish. We share a grandmother whose recipes are full of handwritten notes in the margins, in spidery ink, that tell us what bowl to use when or where things could go wrong. Describe your sample clearly, convey the steps required accurately, and then add any other details that will help keep you on track and remind you why you have chosen to limit possible interviewees to those of a certain age or class or location. Imagine actually going out and getting your sample (making your dish). Do you have all the necessary details to get started?

Table 5.1. Sampling Type and Strategies

Type Used primarily in... Strategies  
Probabilistic Quantitative research
Simple random Each member of the population has an equal chance at being selected
Stratified The sample is split into strata; members of each strata are selected in proportion to the population at large
Non-probabilistic Qualitative research
Convenience Simply includes the individuals who happen to be most accessible to the researcher
Snowball Used to recruit participants via other participants. The number of people you have access to “snowballs” as you get in contact with more people
Purposive Involves the researcher using their expertise to select a sample that is most useful to the purposes of the research; An effective purposive sample must have clear criteria and rationale for inclusion (e.g., )
Quota Set quotas to ensure that the sample you get represents certain characteristics in proportion to their prevalence in the population

Further Readings

Fusch, Patricia I., and Lawrence R. Ness. 2015. “Are We There Yet? Data Saturation in Qualitative Research.” Qualitative Report 20(9):1408–1416.

Saunders, Benjamin, Julius Sim, Tom Kinstone, Shula Baker, Jackie Waterfield, Bernadette Bartlam, Heather Burroughs, and Clare Jinks. 2018. “Saturation in Qualitative Research: Exploring Its Conceptualization and Operationalization.”  Quality & Quantity  52(4):1893–1907.

  • Rubin ( 2021 ) suggests a minimum of twenty interviews (but safer with thirty) for an interview-based study and a minimum of three to six months in the field for ethnographic studies. For a content-based study, she suggests between five hundred and one thousand documents, although some will be “very small” ( 243–244 ). ↵

The process of selecting people or other units of analysis to represent a larger population. In quantitative research, this representation is taken quite literally, as statistically representative.  In qualitative research, in contrast, sample selection is often made based on potential to generate insight about a particular topic or phenomenon.

The actual list of individuals that the sample will be drawn from. Ideally, it should include the entire target population (and nobody who is not part of that population).  Sampling frames can differ from the larger population when specific exclusions are inherent, as in the case of pulling names randomly from voter registration rolls where not everyone is a registered voter.  This difference in frame and population can undercut the generalizability of quantitative results.

The specific group of individuals that you will collect data from.  Contrast population.

The large group of interest to the researcher.  Although it will likely be impossible to design a study that incorporates or reaches all members of the population of interest, this should be clearly defined at the outset of a study so that a reasonable sample of the population can be taken.  For example, if one is studying working-class college students, the sample may include twenty such students attending a particular college, while the population is “working-class college students.”  In quantitative research, clearly defining the general population of interest is a necessary step in generalizing results from a sample.  In qualitative research, defining the population is conceptually important for clarity.

A sampling strategy in which the sample is chosen to represent (numerically) the larger population from which it is drawn by random selection.  Each person in the population has an equal chance of making it into the sample.  This is often done through a lottery or other chance mechanisms (e.g., a random selection of every twelfth name on an alphabetical list of voters).  Also known as random sampling .

The selection of research participants or other data sources based on availability or accessibility, in contrast to purposive sampling .

A sample generated non-randomly by asking participants to help recruit more participants the idea being that a person who fits your sampling criteria probably knows other people with similar criteria.

Broad codes that are assigned to the main issues emerging in the data; identifying themes is often part of initial coding . 

A form of case selection focusing on examples that do not fit the emerging patterns. This allows the researcher to evaluate rival explanations or to define the limitations of their research findings. While disconfirming cases are found (not sought out), researchers should expand their analysis or rethink their theories to include/explain them.

A methodological tradition of inquiry and approach to analyzing qualitative data in which theories emerge from a rigorous and systematic process of induction.  This approach was pioneered by the sociologists Glaser and Strauss (1967).  The elements of theory generated from comparative analysis of data are, first, conceptual categories and their properties and, second, hypotheses or generalized relations among the categories and their properties – “The constant comparing of many groups draws the [researcher’s] attention to their many similarities and differences.  Considering these leads [the researcher] to generate abstract categories and their properties, which, since they emerge from the data, will clearly be important to a theory explaining the kind of behavior under observation.” (36).

The result of probability sampling, in which a sample is chosen to represent (numerically) the larger population from which it is drawn by random selection.  Each person in the population has an equal chance of making it into the random sample.  This is often done through a lottery or other chance mechanisms (e.g., the random selection of every twelfth name on an alphabetical list of voters).  This is typically not required in qualitative research but rather essential for the generalizability of quantitative research.

A form of case selection or purposeful sampling in which cases that are unusual or special in some way are chosen to highlight processes or to illuminate gaps in our knowledge of a phenomenon.   See also extreme case .

The point at which you can conclude data collection because every person you are interviewing, the interaction you are observing, or content you are analyzing merely confirms what you have already noted.  Achieving saturation is often used as the justification for the final sample size.

The accuracy with which results or findings can be transferred to situations or people other than those originally studied.  Qualitative studies generally are unable to use (and are uninterested in) statistical generalizability where the sample population is said to be able to predict or stand in for a larger population of interest.  Instead, qualitative researchers often discuss “theoretical generalizability,” in which the findings of a particular study can shed light on processes and mechanisms that may be at play in other settings.  See also statistical generalization and theoretical generalization .

A term used by IRBs to denote all materials aimed at recruiting participants into a research study (including printed advertisements, scripts, audio or video tapes, or websites).  Copies of this material are required in research protocols submitted to IRB.

Introduction to Qualitative Research Methods Copyright © 2023 by Allison Hurst is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License , except where otherwise noted.

Sampling in Qualitative Research

  • January 2019
  • In book: Qualitative Techniques for Workplace Data Analysis (pp.25-51)

Musarrat Shaheen at ICFAI Business School

  • ICFAI Business School

Sudeepta Pradhan at ICFAI Business School

Discover the world's research

  • 25+ million members
  • 160+ million publication pages
  • 2.3+ billion citations
  • Lebogang B. Phehla
  • Agnes Makhene
  • Lerato Matshaka

Joseph Agbuya Villarama

  • Nyiko Amos Sibuyi

Mapule Yvonne Segooa

  • Thinavhudzulo Mafumo
  • J BUS ETHICS
  • Laura J. Reeves
  • Alexandra Bristow

Jared Oguta Ontobo

  • Korsi K. Agbozo

Francis Ohene Boateng

  • Evelyn Agyei
  • Ebenezer Appiagyei
  • PUBLIC HEALTH NURS

Elif Güzide Emirza

  • Medine Şenses

Katharina Reindl

  • Emma Brodén

Michelle Chin Chin Lee

  • SrinivasaS R R Yerramilli
  • VinayakK Nahar
  • Reprod Health

Emily Dansereau

  • Int J Islam Middle E Finance Manag

Sutan Emir Hidayat

  • RES NURS HEALTH
  • Margarete Sandelowski

Ibrahim Abiodun Oladapo

  • Selin Dinckal
  • DRUG ALCOHOL DEPEN
  • Lainie Rutkow

Katherine Clegg Smith

  • Recruit researchers
  • Join for free
  • Login Email Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google Welcome back! Please log in. Email · Hint Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google No account? Sign up

Qualitative, Quantitative, and Mixed Methods Research Sampling Strategies

Sampling is a critical, often overlooked aspect of the research process. The importance of sampling extends to the ability to draw accurate inferences, and it is an integral part of qualitative guidelines across research methods. Sampling considerations are important in quantitative and qualitative research when considering a target population and when drawing a sample that will either allow us to generalize (i.e., quantitatively) or go into sufficient depth (i.e., qualitatively). While quantitative research is generally concerned with probability-based approaches, qualitative research typically uses nonprobability purposeful sampling approaches. Scholars generally focus on two major sampling topics: sampling strategies and sample sizes. Or simply, researchers should think about who to include and how many; both of these concerns are key. Mixed methods studies have both qualitative and quantitative sampling considerations. However, mixed methods studies also have unique considerations based on the relationship of quantitative and qualitative research within the study.

  • Related Documents

Linking Research Questions to Mixed Methods Data Analysis Procedures 1

The purpose of this paper is to discuss the development of research questions in mixed methods studies. First, we discuss the ways that the goal of the study, the research objective(s), and the research purpose shape the formation of research questions. Second, we compare and contrast quantitative research questions and qualitative research questions. Third, we describe how to write mixed methods research questions, which we define as questions that embed quantitative and qualitative research questions. Finally, we provide a framework for linking research questions to mixed methods data analysis techniques. A major goal of our framework is to illustrate that the development of research questions and data analysis procedures in mixed method studies should occur logically and sequentially.

Mixed methods research in pedagogy: Characteristics, advantages and difficulties in application

The mixed methods research, as a new type of research, is discussed in the context of re-examining the relation between the two approaches, i.e. the possibility of not opposing, but connecting, combining and integrating them within research. The possibility to use such grounding in research as well could be quite important for pedagogy since the nature of the examined phenomena in this field is such that the majority has both quantitative and qualitative aspects. In order to explain the essence of a mixed methods research, the paper analyses its characteristics, first of all, what elements are combined, what is the nature of the relation between the combined elements and why they are combined, as well as its advantages and difficulties in application. The essential thing in a mixed methods research is the fact that combining refers to the research process as a whole, including the ontological and epistemological assumptions it is based on, which implies that the elements that are combined are understood rather broadly. The advantages and difficulties in application are considered in the context of the discussion of the possibility to combine all research elements, neutralise the limitations of quantitative and qualitative research methodology, implement the complex combining procedures etc.

How Marketers Conduct Mixed Methods Research

The complimentary nature of qualitative and quantitative research methods are examined with respect to a study assessing the market's view of a training and development institute in the Middle East. The qualitative portion consisted of focus groups conducted with seven distinct market segments served by the institute. The results proved insightful with respect to uncovering and understanding differences of opinion among the seven groups; however, taken alone, the qualitative research would have been very misleading with respect to the institute's standing in the Middle East.

Using Mixed-methods Research in Health & Education in Nepal

In the areas of health promotion and health education, mixed-methods research approach has become widely used. In mixed-methods research, also called multi-methods research, the researchers combine quantitative and qualitative research designs in a single study. This paper introduces the mixed-methods approach for use in research in health education. To illustrate this pragmatic research approach we are including an example of mixed-methods research as applied in Nepalese research.Journal of Health Promotion Vol.6 2008, p.45-48

Research Methods

<p class="MsoNormal" style="text-justify: inter-ideograph; text-align: justify; margin: 0in 34.2pt 0pt 0.5in;"><span style="font-size: 10pt;"><span style="font-family: Times New Roman;">This paper discusses three common research approaches, qualitative, quantitative, and mixed methods, along with the various research designs commonly used when conducting research within the framework of each approach. Creswell (2002) noted that quantitative research is the process of collecting, analyzing, interpreting, and writing the results of a study, while qualitative research is the approach to data collection, analysis, and report writing differing from the traditional, quantitative approaches. This paper provides a further distinction between quantitative and qualitative research methods. This paper also presents a summary of the different research methods to conduct research in quantitative, qualitative, and mixed methods studies.</span></span></p>

Distinguishing Between Quantitative and Qualitative Research: A Response to Morgan

This is a response to Morgan’s article ( Journal of Mixed Methods Research, 12(3), 268-279) on the qualitative/quantitative distinction. I argue that Morgan has mischaracterized my views on this distinction, and on the value of design typologies in mixed methods research, and that the qualitative/quantitative distinction is more productively framed on a different basis than the one he proposed.

Analysis of Community Preparedness Facing Erosion Disaster in Sambas Regency

This research was conducted to analyze the community's preparedness in the face of erosion in Sambas Regency, which is erosion caused by filing by river water. This research is a mixed methods research<em>.</em> This mixed research combines qualitative research and quantitative research, with a sample of people living in riverbank areas. The head of the local household was also asked for information on preparedness to face erosion disasters. The results of the research on community preparedness for erosion in Sambas District were based on the researchers' view that the community was not ready, people who had filled out the new research questionnaire were about 15% out of 100% who were ready. The results of interviews with residents indicated that there was no counselling, training on this preparedness was also one of the causes of the low level of community preparedness.

Kesejahteraan Anak Adopsi Usia Prasekolah (3-5 Tahun)

Child welfare is the responsibility of the family because the child is part of the family. However, in reality there are still many who neglect their children so that the children's welfare is threatened. Abandoned children need protection to ensure their survival. One of the efforts made in dealing with the problem of neglected children is through an institution-based child service program through child social service institutions. However, institution-based child services have not been optimal in realizing children's welfare. Thus, children who are in institution-based care need to be transferred to family-based care so that the child's welfare can be better. One of the permanent efforts to care for children is through adoption. The method used in this research is mixed methods research method. The design chosen in this study is Explanatory Sequential Mixed Methods, the researcher will measure the level of children's welfare with quantitative research first followed by qualitative research. The results of quantitative research regarding the welfare of preschool adopted children show that basically the welfare of adopted children is in the good category. The results of the qualitative research found that the background and reasons or motivation of adoptive parents to adopt an effect on the care of the adopted child so that the child's welfare can be better. Most adoptive parents do not yet have biological children, so the presence of adopted children is a complement to their long-awaited family. The opportunity they get for adoption makes them try to care for, nurture, and treat their adopted child very well. They always pay attention to children's physical development, children's psychological development, children's social development and children's cognitive development so that children's welfare can be achieved.

Change, Challenges, and Mixed Methods

This chapter discusses three ongoing issues related to the evaluation of qualitative research. First, the chapter considers whether a set of evaluation criteria is either determinative or changeable. Due to the evolving nature of qualitative research, it is likely that the way in which qualitative research is evaluated can change—not all at once, but gradually. Second, qualitative research has been criticized by newly resurrected positivists whose definitions of scientific research and evaluation criteria are narrow. “Politics of evidence” and a recent big-tent evaluation strategy are examined. Last, this chapter analyzes how validity criteria of qualitative research are incorporated into the evaluation of mixed methods research. The elements of qualitative research seem to be fairly represented but are largely treated as trivial. A criterion, the fit of research questions to design, is identified as distinctive in the review guide of the Journal of Mixed Methods Research.

Mixed Methods Research in Developing Country Contexts: Lessons From Field Research in Six Countries Across Africa and the Caribbean

Mixed methods research in developing countries has been increasing since the turn of the century. Given this, there is need to consolidate insights for future researchers. This article contributes to the methodological literature by exploring how cultural factors and logistical challenges in developing contexts interplay with mixed methods research design and implementation. Insights are based on the author’s research experience of using mixed methods in six projects across three African and three Caribbean countries. Three lessons are provided to aid researchers using mixed methods working in developing countries. First, cultural factors call for more reflexivity. Second, adopting a pragmatic research paradigm is necessary. And third, the research process should be iterative and adaptive.

Export Citation Format

Share document.

sampling techniques for qualitative and quantitative research

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • My Bibliography
  • Collections
  • Citation manager

Save citation to file

Email citation, add to collections.

  • Create a new collection
  • Add to an existing collection

Add to My Bibliography

Your saved search, create a file for external citation management software, your rss feed.

  • Search in PubMed
  • Search in NLM Catalog
  • Add to Search

Qualitative Sampling Methods

Affiliation.

  • 1 14742 School of Nursing, University of Texas Health Science Center, San Antonio, TX, USA.
  • PMID: 32813616
  • DOI: 10.1177/0890334420949218

Qualitative sampling methods differ from quantitative sampling methods. It is important that one understands those differences, as well as, appropriate qualitative sampling techniques. Appropriate sampling choices enhance the rigor of qualitative research studies. These types of sampling strategies are presented, along with the pros and cons of each. Sample size and data saturation are discussed.

Keywords: breastfeeding; qualitative methods; sampling; sampling methods.

PubMed Disclaimer

Similar articles

  • [Saturation sampling in qualitative health research: theoretical contributions]. Fontanella BJ, Ricas J, Turato ER. Fontanella BJ, et al. Cad Saude Publica. 2008 Jan;24(1):17-27. doi: 10.1590/s0102-311x2008000100003. Cad Saude Publica. 2008. PMID: 18209831 Portuguese.
  • (I Can't Get No) Saturation: A simulation and guidelines for sample sizes in qualitative research. van Rijnsoever FJ. van Rijnsoever FJ. PLoS One. 2017 Jul 26;12(7):e0181689. doi: 10.1371/journal.pone.0181689. eCollection 2017. PLoS One. 2017. PMID: 28746358 Free PMC article.
  • Enhancing rigor in qualitative description: a case study. Milne J, Oberle K. Milne J, et al. J Wound Ostomy Continence Nurs. 2005 Nov-Dec;32(6):413-20. doi: 10.1097/00152192-200511000-00014. J Wound Ostomy Continence Nurs. 2005. PMID: 16301909 Review.
  • Sampling Methods. Berndt AE. Berndt AE. J Hum Lact. 2020 May;36(2):224-226. doi: 10.1177/0890334420906850. Epub 2020 Mar 10. J Hum Lact. 2020. PMID: 32155099
  • Sampling issues in qualitative research. Higginbottom GM. Higginbottom GM. Nurse Res. 2004;12(1):7-19. doi: 10.7748/nr2004.07.12.1.7.c5927. Nurse Res. 2004. PMID: 15493211 Review.
  • Exploring illness perceptions of multimorbidity among community-dwelling older adults: a mixed methods study. Okanlawon Bankole A, Jiwani RB, Avorgbedor F, Wang J, Osokpo OH, Gill SL, Jo Braden C. Okanlawon Bankole A, et al. Aging Health Res. 2023 Dec;3(4):100158. doi: 10.1016/j.ahr.2023.100158. Epub 2023 Sep 16. Aging Health Res. 2023. PMID: 38779434 Free PMC article.
  • Virtual reality as a method of cognitive training of processing speed, working memory, and sustained attention in persons with acquired brain injury: a protocol for a randomized controlled trial. Johansen T, Matre M, Løvstad M, Lund A, Martinsen AC, Olsen A, Becker F, Brunborg C, Ponsford J, Spikman J, Neumann D, Tornås S. Johansen T, et al. Trials. 2024 May 22;25(1):340. doi: 10.1186/s13063-024-08178-7. Trials. 2024. PMID: 38778411 Free PMC article.
  • Participatory Health Cadre Model to Improve Exclusive Breastfeeding Coverage with King's Conceptual System. Sukmawati E, Wijaya M, Hilmanto D. Sukmawati E, et al. J Multidiscip Healthc. 2024 Apr 24;17:1857-1875. doi: 10.2147/JMDH.S450634. eCollection 2024. J Multidiscip Healthc. 2024. PMID: 38699558 Free PMC article.
  • Exploring gestational age, and birth weight assessment in Thatta district, Sindh, Pakistan: Healthcare providers' knowledge, practices, perceived barriers, and the potential of a mobile app for identifying preterm and low birth weight. Tikmani SS, Mårtensson T, Roujani S, Feroz AS, Seyfulayeva A, Mårtensson A, Brown N, Saleem S. Tikmani SS, et al. PLoS One. 2024 Apr 11;19(4):e0299395. doi: 10.1371/journal.pone.0299395. eCollection 2024. PLoS One. 2024. PMID: 38603767 Free PMC article.
  • Caregiving experiences of family caregivers of patients with schizophrenia in a community: a qualitative study in Beijing. Pan Z, Li T, Jin G, Lu X. Pan Z, et al. BMJ Open. 2024 Apr 8;14(4):e081364. doi: 10.1136/bmjopen-2023-081364. BMJ Open. 2024. PMID: 38589261 Free PMC article.
  • Search in MeSH

LinkOut - more resources

Full text sources.

  • Ovid Technologies, Inc.

Miscellaneous

  • NCI CPTAC Assay Portal

full text provider logo

  • Citation Manager

NCBI Literature Resources

MeSH PMC Bookshelf Disclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.

Logo for JCU Open eBooks

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

3.4 Sampling Techniques in Quantitative Research

Target population.

The target population includes the people the researcher is interested in conducting the research and generalizing the findings on. 40 For example, if certain researchers are interested in vaccine-preventable diseases in children five years and younger in Australia. The target population will be all children aged 0–5 years residing in Australia. The actual population is a subset of the target population from which the sample is drawn, e.g. children aged 0–5 years living in the capital cities in Australia. The sample is the people chosen for the study from the actual population (Figure 3.9). The sampling process involves choosing people, and it is distinct from the sample. 40 In quantitative research, the sample must accurately reflect the target population, be free from bias in terms of selection, and be large enough to validate or reject the study hypothesis with statistical confidence and minimise random error. 2

sampling techniques for qualitative and quantitative research

Sampling techniques

Sampling in quantitative research is a critical component that involves selecting a representative subset of individuals or cases from a larger population and often employs sampling techniques based on probability theory. 41 The goal of sampling is to obtain a sample that is large enough and representative of the target population. Examples of probability sampling techniques include simple random sampling, stratified random sampling, systematic random sampling and cluster sampling ( shown below ). 2 The key feature of probability techniques is that they involve randomization. There are two main characteristics of probability sampling. All individuals of a population are accessible to the researcher (theoretically), and there is an equal chance that each person in the population will be chosen to be part of the study sample. 41 While quantitative research often uses sampling techniques based on probability theory, some non-probability techniques may occasionally be utilised in healthcare research. 42 Non-probability sampling methods are commonly used in qualitative research. These include purposive, convenience, theoretical and snowballing and have been discussed in detail in chapter 4.

Sample size calculation

In order to enable comparisons with some level of established statistical confidence, quantitative research needs an acceptable sample size. 2 The sample size is the most crucial factor for reliability (reproducibility) in quantitative research. It is important for a study to be powered – the likelihood of identifying a difference if it exists in reality. 2 Small sample-sized studies are more likely to be underpowered, and results from small samples are more likely to be prone to random error. 2 The formula for sample size calculation varies with the study design and the research hypothesis. 2 There are numerous formulae for sample size calculations, but such details are beyond the scope of this book. For further readings, please consult the biostatistics textbook by Hirsch RP, 2021. 43 However, we will introduce a simple formula for calculating sample size for cross-sectional studies with prevalence as the outcome. 2

sampling techniques for qualitative and quantitative research

z   is the statistical confidence; therefore,  z = 1.96 translates to 95% confidence; z = 1.68 translates to 90% confidence

p = Expected prevalence (of health condition of interest)

d = Describes intended precision; d = 0.1 means that the estimate falls +/-10 percentage points of true prevalence with the considered confidence. (e.g. for a prevalence of 40% (0.4), if d=.1, then the estimate will fall between 30% and 50% (0.3 to 0.5).

Example: A district medical officer seeks to estimate the proportion of children in the district receiving appropriate childhood vaccinations. Assuming a simple random sample of a community is to be selected, how many children must be studied if the resulting estimate is to fall within 10% of the true proportion with 95% confidence? It is expected that approximately 50% of the children receive vaccinations

sampling techniques for qualitative and quantitative research

z = 1.96 (95% confidence)

d = 10% = 10/ 100 = 0.1 (estimate to fall within 10%)

p = 50% = 50/ 100 = 0.5

Now we can enter the values into the formula

sampling techniques for qualitative and quantitative research

Given that people cannot be reported in decimal points, it is important to round up to the nearest whole number.

An Introduction to Research Methods for Undergraduate Health Profession Students Copyright © 2023 by Faith Alele and Bunmi Malau-Aduli is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License , except where otherwise noted.

  • Tools and Resources
  • Customer Services
  • Business Education
  • Business Law
  • Business Policy and Strategy
  • Entrepreneurship
  • Human Resource Management
  • Information Systems
  • International Business
  • Negotiations and Bargaining
  • Operations Management
  • Organization Theory
  • Organizational Behavior
  • Problem Solving and Creativity
  • Research Methods
  • Social Issues
  • Technology and Innovation Management
  • Share This Facebook LinkedIn Twitter

Article contents

Sampling strategies for quantitative and qualitative business research.

  • Vivien Lee Vivien Lee Psychology, University of Minnesota
  •  and  Richard N. Landers Richard N. Landers Psychology, University of Minnesota
  • https://doi.org/10.1093/acrefore/9780190224851.013.216
  • Published online: 23 March 2022

Sampling refers to the process used to identify and select cases for analysis (i.e., a sample) with the goal of drawing meaningful research conclusions. Sampling is integral to the overall research process as it has substantial implications on the quality of research findings. Inappropriate sampling techniques can lead to problems of interpretation, such as drawing invalid conclusions about a population. Whereas sampling in quantitative research focuses on maximizing the statistical representativeness of a population by a chosen sample, sampling in qualitative research generally focuses on the complete representation of a phenomenon of interest. Because of this core difference in purpose, many sampling considerations differ between qualitative and quantitative approaches despite a shared general purpose: careful selection of cases to maximize the validity of conclusions.

Achieving generalizability, the extent to which observed effects from one study can be used to predict the same and similar effects in different contexts, drives most quantitative research. Obtaining a representative sample with characteristics that reflect a targeted population is critical to making accurate statistical inferences, which is core to such research. Such samples can be best acquired through probability sampling, a procedure in which all members of the target population have a known and random chance of being selected. However, probability sampling techniques are uncommon in modern quantitative research because of practical constraints; non-probability sampling, such as by convenience, is now normative. When sampling this way, special attention should be given to statistical implications of issues such as range restriction and omitted variable bias. In either case, careful planning is required to estimate an appropriate sample size before the start of data collection.

In contrast to generalizability, transferability, the degree to which study findings can be applied to other contexts, is the goal of most qualitative research. This approach is more concerned with providing information to readers and less concerned with making generalizable broad claims for readers. Similar to quantitative research, choosing a population and sample are critical for qualitative research, to help readers determine likelihood of transfer, yet representativeness is not as crucial. Sample size determination in qualitative research is drastically different from that of quantitative research, because sample size determination should occur during data collection, in an ongoing process in search of saturation, which focuses on achieving theoretical completeness instead of maximizing the quality of statistical inference.

Theoretically speaking, although quantitative and qualitative research have distinct statistical underpinnings that should drive different sampling requirements, in practice they both heavily rely on non-probability samples, and the implications of non-probability sampling is often not well understood. Although non-probability samples do not automatically generate poor-quality data, incomplete consideration of case selection strategy can harm the validity of research conclusions. The nature and number of cases collected must be determined cautiously to respect research goals and the underlying scientific paradigm employed. Understanding the commonalities and differences in sampling between quantitative and qualitative research can help researchers better identify high-quality research designs across paradigms.

  • non-probability sampling
  • convenience sampling
  • sample size
  • quantitative research
  • qualitative research

You do not currently have access to this article

Please login to access the full content.

Access to the full content requires a subscription

Printed from Oxford Research Encyclopedias, Business and Management. Under the terms of the licence agreement, an individual user may print out a single article for personal use (for details see Privacy Policy and Legal Notice).

date: 04 August 2024

  • Cookie Policy
  • Privacy Policy
  • Legal Notice
  • Accessibility
  • [185.66.15.189]
  • 185.66.15.189

Character limit 500 /500

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • HHS Author Manuscripts

Logo of nihpa

Purposeful sampling for qualitative data collection and analysis in mixed method implementation research

Lawrence a. palinkas.

1 School of Social Work, University of Southern California, Los Angeles, CA 90089-0411

Sarah M. Horwitz

2 Department of Child and Adolescent Psychiatry, New York University, New York, NY

Carla A. Green

3 Center for Health Research, Kaiser Permanente Northwest, Portland, OR

Jennifer P. Wisdom

4 George Washington University, Washington DC

Naihua Duan

5 New York State Neuropsychiatric Institute and Department of Psychiatry, Columbia University, New York, NY

Kimberly Hoagwood

Purposeful sampling is widely used in qualitative research for the identification and selection of information-rich cases related to the phenomenon of interest. Although there are several different purposeful sampling strategies, criterion sampling appears to be used most commonly in implementation research. However, combining sampling strategies may be more appropriate to the aims of implementation research and more consistent with recent developments in quantitative methods. This paper reviews the principles and practice of purposeful sampling in implementation research, summarizes types and categories of purposeful sampling strategies and provides a set of recommendations for use of single strategy or multistage strategy designs, particularly for state implementation research.

Recently there have been several calls for the use of mixed method designs in implementation research ( Proctor et al., 2009 ; Landsverk et al., 2012 ; Palinkas et al. 2011 ; Aarons et al., 2012). This has been precipitated by the realization that the challenges of implementing evidence-based and other innovative practices, treatments, interventions and programs are sufficiently complex that a single methodological approach is often inadequate. This is particularly true of efforts to implement evidence-based practices (EBPs) in statewide systems where relationships among key stakeholders extend both vertically (from state to local organizations) and horizontally (between organizations located in different parts of a state). As in other areas of research, mixed method designs are viewed as preferable in implementation research because they provide a better understanding of research issues than either qualitative or quantitative approaches alone ( Palinkas et al., 2011 ). In such designs, qualitative methods are used to explore and obtain depth of understanding as to the reasons for success or failure to implement evidence-based practice or to identify strategies for facilitating implementation while quantitative methods are used to test and confirm hypotheses based on an existing conceptual model and obtain breadth of understanding of predictors of successful implementation ( Teddlie & Tashakkori, 2003 ).

Sampling strategies for quantitative methods used in mixed methods designs in implementation research are generally well-established and based on probability theory. In contrast, sampling strategies for qualitative methods in implementation studies are less explicit and often less evident. Although the samples for qualitative inquiry are generally assumed to be selected purposefully to yield cases that are “information rich” (Patton, 2001), there are no clear guidelines for conducting purposeful sampling in mixed methods implementation studies, particularly when studies have more than one specific objective. Moreover, it is not entirely clear what forms of purposeful sampling are most appropriate for the challenges of using both quantitative and qualitative methods in the mixed methods designs used in implementation research. Such a consideration requires a determination of the objectives of each methodology and the potential impact of selecting one strategy to achieve one objective on the selection of other strategies to achieve additional objectives.

In this paper, we present different approaches to the use of purposeful sampling strategies in implementation research. We begin with a review of the principles and practice of purposeful sampling in implementation research, a summary of the types and categories of purposeful sampling strategies, and a set of recommendations for matching the appropriate single strategy or multistage strategy to study aims and quantitative method designs.

Principles of Purposeful Sampling

Purposeful sampling is a technique widely used in qualitative research for the identification and selection of information-rich cases for the most effective use of limited resources ( Patton, 2002 ). This involves identifying and selecting individuals or groups of individuals that are especially knowledgeable about or experienced with a phenomenon of interest ( Cresswell & Plano Clark, 2011 ). In addition to knowledge and experience, Bernard (2002) and Spradley (1979) note the importance of availability and willingness to participate, and the ability to communicate experiences and opinions in an articulate, expressive, and reflective manner. In contrast, probabilistic or random sampling is used to ensure the generalizability of findings by minimizing the potential for bias in selection and to control for the potential influence of known and unknown confounders.

As Morse and Niehaus (2009) observe, whether the methodology employed is quantitative or qualitative, sampling methods are intended to maximize efficiency and validity. Nevertheless, sampling must be consistent with the aims and assumptions inherent in the use of either method. Qualitative methods are, for the most part, intended to achieve depth of understanding while quantitative methods are intended to achieve breadth of understanding ( Patton, 2002 ). Qualitative methods place primary emphasis on saturation (i.e., obtaining a comprehensive understanding by continuing to sample until no new substantive information is acquired) ( Miles & Huberman, 1994 ). Quantitative methods place primary emphasis on generalizability (i.e., ensuring that the knowledge gained is representative of the population from which the sample was drawn). Each methodology, in turn, has different expectations and standards for determining the number of participants required to achieve its aims. Quantitative methods rely on established formulae for avoiding Type I and Type II errors, while qualitative methods often rely on precedents for determining number of participants based on type of analysis proposed (e.g., 3-6 participants interviewed multiple times in a phenomenological study versus 20-30 participants interviewed once or twice in a grounded theory study), level of detail required, and emphasis of homogeneity (requiring smaller samples) versus heterogeneity (requiring larger samples) ( Guest, Bunce & Johnson., 2006 ; Morse & Niehaus, 2009 ; Padgett, 2008 ).

Types of purposeful sampling designs

There exist numerous purposeful sampling designs. Examples include the selection of extreme or deviant (outlier) cases for the purpose of learning from an unusual manifestations of phenomena of interest; the selection of cases with maximum variation for the purpose of documenting unique or diverse variations that have emerged in adapting to different conditions, and to identify important common patterns that cut across variations; and the selection of homogeneous cases for the purpose of reducing variation, simplifying analysis, and facilitating group interviewing. A list of some of these strategies and examples of their use in implementation research is provided in Table 1 .

Purposeful sampling strategies in implementation research

StrategyObjectiveExampleConsiderations
Emphasis on similarity
Criterion-iTo identify and select all
cases that meet some
predetermined criterion
of importance
Selection of consultant
trainers and program
leaders at study sites to
facilitators and barriers
to EBP implementation
( ).
Can be used to identify
cases from standardized
questionnaires for in-
depth follow-up
( )
Criterion-eTo identify and select all
cases that exceed or fall
outside a specified
criterion
Selection of directors of
agencies that failed to
move to the next stage
of implementation
within expected period
of time.
Typical caseTo illustrate or highlight
what is typical, normal
or average
A child undergoing
treatment for trauma
( )
The purpose is to
describe and illustrate
what is typical to those
unfamiliar with the
setting, not to make
generalized statements
about the experiences
of all participants
( ).
HomogeneityTo describe a particular
subgroup in depth, to
reduce variation,
simplify analysis and
facilitate group
interviewing
Selecting Latino/a
directors of mental
health services agencies
to discuss challenges of
implementing evidence-
based treatments for
mental health problems
with Latino/a clients.
Often used for selecting
focus group participants
SnowballTo identify cases of
interest from sampling
people who know
people that generally
have similar
characteristics who, in
turn know people, also
with similar
characteristics.
Asking recruited
program managers to
identify clinicians,
administrative support
staff, and consumers for
project recruitment
( ).
Begins by asking key
informants or well-
situated people “Who
knows a lot about…”
(Patton, 2001)
Extreme or deviant caseTo illuminate both the
unusual and the typical
Selecting clinicians from
state agencies or
mental health with best
and worst performance
records or
implementation
outcomes
Extreme successes or
failures may be
discredited as being too
extreme or unusual to
yield useful
information, leading
one to select cases that
manifest sufficient
intensity to illuminate
the nature of success or
failure, but not in the
extreme.
Emphasis on variation
IntensitySame objective as
extreme case sampling
but with less emphasis
on extremes
Clinicians providing
usual care and clinicians
who dropped out of a
study prior to consent
to contrast with
clinicians who provided
the intervention under
investigation.
( )
Requires the researcher
to do some exploratory
work to determine the
nature of the variation
of the situation under
study, then sampling
intense examples of the
phenomenon of
interest.
Maximum variationImportant shared
patterns that cut across
cases and derived their
significance from having
emerged out of
heterogeneity.
Sampling mental health
services programs in
urban and rural areas in
different parts of the
state (north, central,
south) to capture
maximum variation in
location
( ).
Can be used to
document unique or
diverse variations that
have emerged in
adapting to different
conditions
( ).
Critical caseTo permit logical
generalization and
maximum application of
information because if
it is true in this one
case, it’s likely to be
true of all other cases
Investigation of a group
of agencies that
decided to stop using
an evidence-based
practice to identify
reasons for lack of EBP
sustainment.
Depends on recognition
of key dimensions that
make for a critical case.
Particularly important
when resources may
limit the study of only
one site (program,
community, population)
( )
Theory-basedTo find manifestations
of a theoretical
construct so as to
elaborate and examine
the construct and its
variations
Sampling therapists
based on academic
training to understand
the impact of CBT
training versus
psychodynamic training
in graduate school of
acceptance of EBPs
Sample on the basis of
potential manifestation
or representation of
important theoretical
constructs.
Sampling on the basis of
emerging concepts with
the aim being to
explore the dimensional
range or varied
conditions along which
the properties of
concepts vary.
Confirming and
disconfirming case
To confirm the
importance and
meaning of possible
patterns and checking
out the viability of
emergent findings with
new data and additional
cases.
Once trends are
identified, deliberately
seeking examples that
are counter to the
trend.
Usually employed in
later phases of data
collection. Confirmatory
cases are additional
examples that fit
already emergent
patterns to add
richness, depth and
credibility.
Disconfirming cases are
a source of rival
interpretations as well
as a means for placing
boundaries around
confirmed findings
Stratified purposefulTo capture major
variations rather than
to identify a common
core, although the
latter may emerge in
the analysis
Combining typical case
sampling with
maximum variation
sampling by taking a
stratified purposeful
sample of above
average, average, and
below average cases of
health care
expenditures for a
particular problem.
This represents less
than the full maximum
variation sample, but
more than simple
typical case sampling.
Purposeful randomTo increase the
credibility of results
Selecting for interviews
a random sample of
providers to describe
experiences with EBP
implementation.
Not as representative of
the population as a
probability random
sample.
Nonspecific emphasis
Opportunistic or
emergent
To take advantage of
circumstances, events
and opportunities for
additional data
collection as they arise.
Usually employed when
it is impossible to
identify sample or the
population from which
a sample should be
drawn at the outset of a
study. Used primarily in
conducting
ethnographic fieldwork
ConvenienceTo collect information
from participants who
are easily accessible to
the researcher
Recruiting providers
attending a staff
meeting for study
participation.
Although commonly
used, it is neither
purposeful nor strategic

Embedded in each strategy is the ability to compare and contrast, to identify similarities and differences in the phenomenon of interest. Nevertheless, some of these strategies (e.g., maximum variation sampling, extreme case sampling, intensity sampling, and purposeful random sampling) are used to identify and expand the range of variation or differences, similar to the use of quantitative measures to describe the variability or dispersion of values for a particular variable or variables, while other strategies (e.g., homogeneous sampling, typical case sampling, criterion sampling, and snowball sampling) are used to narrow the range of variation and focus on similarities. The latter are similar to the use of quantitative central tendency measures (e.g., mean, median, and mode). Moreover, certain strategies, like stratified purposeful sampling or opportunistic or emergent sampling, are designed to achieve both goals. As Patton (2002 , p. 240) explains, “the purpose of a stratified purposeful sample is to capture major variations rather than to identify a common core, although the latter may also emerge in the analysis. Each of the strata would constitute a fairly homogeneous sample.”

Challenges to use of purposeful sampling

Despite its wide use, there are numerous challenges in identifying and applying the appropriate purposeful sampling strategy in any study. For instance, the range of variation in a sample from which purposive sample is to be taken is often not really known at the outset of a study. To set as the goal the sampling of information-rich informants that cover the range of variation assumes one knows that range of variation. Consequently, an iterative approach of sampling and re-sampling to draw an appropriate sample is usually recommended to make certain the theoretical saturation occurs ( Miles & Huberman, 1994 ). However, that saturation may be determined a-priori on the basis of an existing theory or conceptual framework, or it may emerge from the data themselves, as in a grounded theory approach ( Glaser & Strauss, 1967 ). Second, there are a not insignificant number in the qualitative methods field who resist or refuse systematic sampling of any kind and reject the limiting nature of such realist, systematic, or positivist approaches. This includes critics of interventions and “bottom up” case studies and critiques. However, even those who equate purposeful sampling with systematic sampling must offer a rationale for selecting study participants that is linked with the aims of the investigation (i.e., why recruit these individuals for this particular study? What qualifies them to address the aims of the study?). While systematic sampling may be associated with a post-positivist tradition of qualitative data collection and analysis, such sampling is not inherently limited to such analyses and the need for such sampling is not inherently limited to post-positivist qualitative approaches ( Patton, 2002 ).

Purposeful Sampling in Implementation Research

Characteristics of implementation research.

In implementation research, quantitative and qualitative methods often play important roles, either simultaneously or sequentially, for the purpose of answering the same question through convergence of results from different sources, answering related questions in a complementary fashion, using one set of methods to expand or explain the results obtained from use of the other set of methods, using one set of methods to develop questionnaires or conceptual models that inform the use of the other set, and using one set of methods to identify the sample for analysis using the other set of methods ( Palinkas et al., 2011 ). A review of mixed method designs in implementation research conducted by Palinkas and colleagues (2011) revealed seven different sequential and simultaneous structural arrangements, five different functions of mixed methods, and three different ways of linking quantitative and qualitative data together. However, this review did not consider the sampling strategies involved in the types of quantitative and qualitative methods common to implementation research, nor did it consider the consequences of the sampling strategy selected for one method or set of methods on the choice of sampling strategy for the other method or set of methods. For instance, one of the most significant challenges to sampling in sequential mixed method designs lies in the limitations the initial method may place on sampling for the subsequent method. As Morse and Neihaus (2009) observe, when the initial method is qualitative, the sample selected may be too small and lack randomization necessary to fulfill the assumptions for a subsequent quantitative analysis. On the other hand, when the initial method is quantitative, the sample selected may be too large for each individual to be included in qualitative inquiry and lack purposeful selection to reduce the sample size to one more appropriate for qualitative research. The fact that potential participants were recruited and selected at random does not necessarily make them information rich.

A re-examination of the 22 studies and an additional 6 studies published since 2009 revealed that only 5 studies ( Aarons & Palinkas, 2007 ; Bachman et al., 2009 ; Palinkas et al., 2011 ; Palinkas et al., 2012 ; Slade et al., 2003) made a specific reference to purposeful sampling. An additional three studies ( Henke et al., 2008 ; Proctor et al., 2007 ; Swain et al., 2010 ) did not make explicit reference to purposeful sampling but did provide a rationale for sample selection. The remaining 20 studies provided no description of the sampling strategy used to identify participants for qualitative data collection and analysis; however, a rationale could be inferred based on a description of who were recruited and selected for participation. Of the 28 studies, 3 used more than one sampling strategy. Twenty-one of the 28 studies (75%) used some form of criterion sampling. In most instances, the criterion used is related to the individual’s role, either in the research project (i.e., trainer, team leader), or the agency (program director, clinical supervisor, clinician); in other words, criterion of inclusion in a certain category (criterion-i), in contrast to cases that are external to a specific criterion (criterion-e). For instance, in a series of studies based on the National Implementing Evidence-Based Practices Project, participants included semi-structured interviews with consultant trainers and program leaders at each study site ( Brunette et al., 2008 ; Marshall et al., 2008 ; Marty et al., 2007; Rapp et al., 2010 ; Woltmann et al., 2008 ). Six studies used some form of maximum variation sampling to ensure representativeness and diversity of organizations and individual practitioners. Two studies used intensity sampling to make contrasts. Aarons and Palinkas (2007) , for example, purposefully selected 15 child welfare case managers representing those having the most positive and those having the most negative views of SafeCare, an evidence-based prevention intervention, based on results of a web-based quantitative survey asking about the perceived value and usefulness of SafeCare. Kramer and Burns (2008) recruited and interviewed clinicians providing usual care and clinicians who dropped out of a study prior to consent to contrast with clinicians who provided the intervention under investigation. One study ( Hoagwood et al., 2007 ), used a typical case approach to identify participants for a qualitative assessment of the challenges faced in implementing a trauma-focused intervention for youth. One study ( Green & Aarons, 2011 ) used a combined snowball sampling/criterion-i strategy by asking recruited program managers to identify clinicians, administrative support staff, and consumers for project recruitment. County mental directors, agency directors, and program managers were recruited to represent the policy interests of implementation while clinicians, administrative support staff and consumers were recruited to represent the direct practice perspectives of EBP implementation.

Table 2 below provides a description of the use of different purposeful sampling strategies in mixed methods implementation studies. Criterion-i sampling was most frequently used in mixed methods implementation studies that employed a simultaneous design where the qualitative method was secondary to the quantitative method or studies that employed a simultaneous structure where the qualitative and quantitative methods were assigned equal priority. These mixed method designs were used to complement the depth of understanding afforded by the qualitative methods with the breadth of understanding afforded by the quantitative methods (n = 13), to explain or elaborate upon the findings of one set of methods (usually quantitative) with the findings from the other set of methods (n = 10), or to seek convergence through triangulation of results or quantifying qualitative data (n = 8). The process of mixing methods in the large majority (n = 18) of these studies involved embedding the qualitative study within the larger quantitative study. In one study (Goia & Dziadosz, 2008), criterion sampling was used in a simultaneous design where quantitative and qualitative data were merged together in a complementary fashion, and in two studies (Aarons et al., 2012; Zazelli et al., 2008 ), quantitative and qualitative data were connected together, one in sequential design for the purpose of developing a conceptual model ( Zazelli et al., 2008 ), and one in a simultaneous design for the purpose of complementing one another (Aarons et al., 2012). Three of the six studies that used maximum variation sampling used a simultaneous structure with quantitative methods taking priority over qualitative methods and a process of embedding the qualitative methods in a larger quantitative study ( Henke et al., 2008 ; Palinkas et al., 2010; Slade et al., 2008 ). Two of the six studies used maximum variation sampling in a sequential design ( Aarons et al., 2009 ; Zazelli et al., 2008 ) and one in a simultaneous design (Henke et al., 2010) for the purpose of development, and three used it in a simultaneous design for complementarity ( Bachman et al., 2009 ; Henke et al., 2008; Palinkas, Ell, Hansen, Cabassa, & Wells, 2011 ). The two studies relying upon intensity sampling used a simultaneous structure for the purpose of either convergence or expansion, and both studies involved a qualitative study embedded in a larger quantitative study ( Aarons & Palinkas, 2007 ; Kramer & Burns, 2008 ). The single typical case study involved a simultaneous design where the qualitative study was embedded in a larger quantitative study for the purpose of complementarity ( Hoagwood et al., 2007 ). The snowball/maximum variation study involved a sequential design where the qualitative study was merged into the quantitative data for the purpose of convergence and conceptual model development ( Green & Aarons, 2011 ). Although not used in any of the 28 implementation studies examined here, another common sequential sampling strategy is using criteria sampling of the larger quantitative sample to produce a second-stage qualitative sample in a manner similar to maximum variation sampling, except that the former narrows the range of variation while the latter expands the range.

Purposeful sampling strategies and mixed method designs in implementation research

Sampling strategyStructureDesignFunction
Single stage sampling (n = 22)
Criterion
(n = 18)
Simultaneous (n = 17)
Sequential (n = 6)
Merged (n = 9)
Connected (n = 9)
Embedded (n = 14)
Convergence (n = 6)
Complementarity (n = 12)
Expansion (n = 10)
Development (n = 3)
Sampling (n = 4)
Maximum variation
(n = 4)
Simultaneous (n = 3)
Sequential (n = 1)
Merged (n = 1)
Connected (n = 1)
Embedded (n = 2)
Convergence (n = 1)
Complementarity (n = 2)
Expansion (n = 1)
Development (n = 2)
Intensity
(n = 1)
Simultaneous
Sequential
Merged
Connected
Embedded
Convergence
Complementarity
Expansion
Development
Typical case Study
(n = 1)
SimultaneousEmbeddedComplementarity
Multistage sampling (n = 4)
Criterion/maximum
variation
(n = 2)
Simultaneous
Sequential
Embedded
Connected
Complementarity
Development
Criterion/intensity
(n = 1)
SimultaneousEmbeddedConvergence
Complementarity
Expansion
Criterion/snowball
(n = 1)
SequentialConnectedConvergence
Development

Criterion-i sampling as a purposeful sampling strategy shares many characteristics with random probability sampling, despite having different aims and different procedures for identifying and selecting potential participants. In both instances, study participants are drawn from agencies, organizations or systems involved in the implementation process. Individuals are selected based on the assumption that they possess knowledge and experience with the phenomenon of interest (i.e., the implementation of an EBP) and thus will be able to provide information that is both detailed (depth) and generalizable (breadth). Participants for a qualitative study, usually service providers, consumers, agency directors, or state policy-makers, are drawn from the larger sample of participants in the quantitative study. They are selected from the larger sample because they meet the same criteria, in this case, playing a specific role in the organization and/or implementation process. To some extent, they are assumed to be “representative” of that role, although implementation studies rarely explain the rationale for selecting only some and not all of the available role representatives (i.e., recruiting 15 providers from an agency for semi-structured interviews out of an available sample of 25 providers). From the perspective of qualitative methodology, participants who meet or exceed a specific criterion or criteria possess intimate (or, at the very least, greater) knowledge of the phenomenon of interest by virtue of their experience, making them information-rich cases.

However, criterion sampling may not be the most appropriate strategy for implementation research because by attempting to capture both breadth and depth of understanding, it may actually be inadequate to the task of accomplishing either. Although qualitative methods are often contrasted with quantitative methods on the basis of depth versus breadth, they actually require elements of both in order to provide a comprehensive understanding of the phenomenon of interest. Ideally, the goal of achieving theoretical saturation by providing as much detail as possible involves selection of individuals or cases that can ensure all aspects of that phenomenon are included in the examination and that any one aspect is thoroughly examined. This goal, therefore, requires an approach that sequentially or simultaneously expands and narrows the field of view, respectively. By selecting only individuals who meet a specific criterion defined on the basis of their role in the implementation process or who have a specific experience (e.g., engaged only in an implementation defined as successful or only in one defined as unsuccessful), one may fail to capture the experiences or activities of other groups playing other roles in the process. For instance, a focus only on practitioners may fail to capture the insights, experiences, and activities of consumers, family members, agency directors, administrative staff, or state policy leaders in the implementation process, thus limiting the breadth of understanding of that process. On the other hand, selecting participants on the basis of whether they were a practitioner, consumer, director, staff, or any of the above, may fail to identify those with the greatest experience or most knowledgeable or most able to communicate what they know and/or have experienced, thus limiting the depth of understanding of the implementation process.

To address the potential limitations of criterion sampling, other purposeful sampling strategies should be considered and possibly adopted in implementation research ( Figure 1 ). For instance, strategies placing greater emphasis on breadth and variation such as maximum variation, extreme case, confirming and disconfirming case sampling are better suited for an examination of differences, while strategies placing greater emphasis on depth and similarity such as homogeneous, snowball, and typical case sampling are better suited for an examination of commonalities or similarities, even though both types of sampling strategies include a focus on both differences and similarities. Alternatives to criterion sampling may be more appropriate to the specific functions of mixed methods, however. For instance, using qualitative methods for the purpose of complementarity may require that a sampling strategy emphasize similarity if it is to achieve depth of understanding or explore and develop hypotheses that complement a quantitative probability sampling strategy achieving breadth of understanding and testing hypotheses ( Kemper et al., 2003 ). Similarly, mixed methods that address related questions for the purpose of expanding or explaining results or developing new measures or conceptual models may require a purposeful sampling strategy aiming for similarity that complements probability sampling aiming for variation or dispersion. A narrowly focused purposeful sampling strategy for qualitative analysis that “complements” a broader focused probability sample for quantitative analysis may help to achieve a balance between increasing inference quality/trustworthiness (internal validity) and generalizability/transferability (external validity). A single method that focuses only on a broad view may decrease internal validity at the expense of external validity ( Kemper et al., 2003 ). On the other hand, the aim of convergence (answering the same question with either method) may suggest use of a purposeful sampling strategy that aims for breadth that parallels the quantitative probability sampling strategy.

An external file that holds a picture, illustration, etc.
Object name is nihms-538401-f0001.jpg

Purposeful and Random Sampling Strategies for Mixed Method Implementation Studies

  • (1) Priority and sequencing of Qualitative (QUAL) and Quantitative (QUAN) can be reversed.
  • (2) Refers to emphasis of sampling strategy.

An external file that holds a picture, illustration, etc.
Object name is nihms-538401-ig0002.jpg

Furthermore, the specific nature of implementation research suggests that a multistage purposeful sampling strategy be used. Three different multistage sampling strategies are illustrated in Figure 1 below. Several qualitative methodologists recommend sampling for variation (breadth) before sampling for commonalities (depth) ( Glaser, 1978 ; Bernard, 2002 ) (Multistage I). Also known as a “funnel approach”, this strategy is often recommended when conducting semi-structured interviews ( Spradley, 1979 ) or focus groups ( Morgan, 1997 ). This approach begins with a broad view of the topic and then proceeds to narrow down the conversation to very specific components of the topic. However, as noted earlier, the lack of a clear understanding of the nature of the range may require an iterative approach where each stage of data analysis helps to determine subsequent means of data collection and analysis ( Denzen, 1978 ; Patton, 2001) (Multistage II). Similarly, multistage purposeful sampling designs like opportunistic or emergent sampling, allow the option of adding to a sample to take advantage of unforeseen opportunities after data collection has been initiated (Patton, 2001, p. 240) (Multistage III). Multistage I models generally involve two stages, while a Multistage II model requires a minimum of 3 stages, alternating from sampling for variation to sampling for similarity. A Multistage III model begins with sampling for variation and ends with sampling for similarity, but may involve one or more intervening stages of sampling for variation or similarity as the need or opportunity arises.

Multistage purposeful sampling is also consistent with the use of hybrid designs to simultaneously examine intervention effectiveness and implementation. An extension of the concept of “practical clinical trials” ( Tunis, Stryer & Clancey, 2003 ), effectiveness-implementation hybrid designs provide benefits such as more rapid translational gains in clinical intervention uptake, more effective implementation strategies, and more useful information for researchers and decision makers ( Curran et al., 2012 ). Such designs may give equal priority to the testing of clinical treatments and implementation strategies (Hybrid Type 2) or give priority to the testing of treatment effectiveness (Hybrid Type 1) or implementation strategy (Hybrid Type 3). Curran and colleagues (2012) suggest that evaluation of the intervention’s effectiveness will require or involve use of quantitative measures while evaluation of the implementation process will require or involve use of mixed methods. When conducting a Hybrid Type 1 design (conducting a process evaluation of implementation in the context of a clinical effectiveness trial), the qualitative data could be used to inform the findings of the effectiveness trial. Thus, an effectiveness trial that finds substantial variation might purposefully select participants using a broader strategy like sampling for disconfirming cases to account for the variation. For instance, group randomized trials require knowledge of the contexts and circumstances similar and different across sites to account for inevitable site differences in interventions and assist local implementations of an intervention ( Bloom & Michalopoulos, 2013 ; Raudenbush & Liu, 2000 ). Alternatively, a narrow strategy may be used to account for the lack of variation. In either instance, the choice of a purposeful sampling strategy is determined by the outcomes of the quantitative analysis that is based on a probability sampling strategy. In Hybrid Type 2 and Type 3 designs where the implementation process is given equal or greater priority than the effectiveness trial, the purposeful sampling strategy must be first and foremost consistent with the aims of the implementation study, which may be to understand variation, central tendencies, or both. In all three instances, the sampling strategy employed for the implementation study may vary based on the priority assigned to that study relative to the effectiveness trial. For instance, purposeful sampling for a Hybrid Type 1 design may give higher priority to variation and comparison to understand the parameters of implementation processes or context as a contribution to an understanding of effectiveness outcomes (i.e., using qualitative data to expand upon or explain the results of the effectiveness trial), In effect, these process measures could be seen as modifiers of innovation/EBP outcome. In contrast, purposeful sampling for a Hybrid Type 3 design may give higher priority to similarity and depth to understand the core features of successful outcomes only.

Finally, multistage sampling strategies may be more consistent with innovations in experimental designs representing alternatives to the classic randomized controlled trial in community-based settings that have greater feasibility, acceptability, and external validity. While RCT designs provide the highest level of evidence, “in many clinical and community settings, and especially in studies with underserved populations and low resource settings, randomization may not be feasible or acceptable” ( Glasgow, et al., 2005 , p. 554). Randomized trials are also “relatively poor in assessing the benefit from complex public health or medical interventions that account for individual preferences for or against certain interventions, differential adherence or attrition, or varying dosage or tailoring of an intervention to individual needs” ( Brown et al., 2009 , p. 2). Several alternatives to the randomized design have been proposed, such as “interrupted time series,” “multiple baseline across settings” or “regression-discontinuity” designs. Optimal designs represent one such alternative to the classic RCT and are addressed in detail by Duan and colleagues (this issue) . Like purposeful sampling, optimal designs are intended to capture information-rich cases, usually identified as individuals most likely to benefit from the experimental intervention. The goal here is not to identify the typical or average patient, but patients who represent one end of the variation in an extreme case, intensity sampling, or criterion sampling strategy. Hence, a sampling strategy that begins by sampling for variation at the first stage and then sampling for homogeneity within a specific parameter of that variation (i.e., one end or the other of the distribution) at the second stage would seem the best approach for identifying an “optimal” sample for the clinical trial.

Another alternative to the classic RCT are the adaptive designs proposed by Brown and colleagues ( Brown et al, 2006 ; Brown et al., 2008 ; Brown et al., 2009 ). Adaptive designs are a sequence of trials that draw on the results of existing studies to determine the next stage of evaluation research. They use cumulative knowledge of current treatment successes or failures to change qualities of the ongoing trial. An adaptive intervention modifies what an individual subject (or community for a group-based trial) receives in response to his or her preferences or initial responses to an intervention. Consistent with multistage sampling in qualitative research, the design is somewhat iterative in nature in the sense that information gained from analysis of data collected at the first stage influences the nature of the data collected, and the way they are collected, at subsequent stages ( Denzen, 1978 ). Furthermore, many of these adaptive designs may benefit from a multistage purposeful sampling strategy at early phases of the clinical trial to identify the range of variation and core characteristics of study participants. This information can then be used for the purposes of identifying optimal dose of treatment, limiting sample size, randomizing participants into different enrollment procedures, determining who should be eligible for random assignment (as in the optimal design) to maximize treatment adherence and minimize dropout, or identifying incentives and motives that may be used to encourage participation in the trial itself.

Alternatives to the classic RCT design may also be desirable in studies that adopt a community-based participatory research framework ( Minkler & Wallerstein, 2003 ), considered to be an important tool on conducting implementation research ( Palinkas & Soydan, 2012 ). Such frameworks suggest that identification and recruitment of potential study participants will place greater emphasis on the priorities and “local knowledge” of community partners than on the need to sample for variation or uniformity. In this instance, the first stage of sampling may approximate the strategy of sampling politically important cases ( Patton, 2002 ) at the first stage, followed by other sampling strategies intended to maximize variations in stakeholder opinions or experience.

On the basis of this review, the following recommendations are offered for the use of purposeful sampling in mixed method implementation research. First, many mixed methods studies in health services research and implementation science do not clearly identify or provide a rationale for the sampling procedure for either quantitative or qualitative components of the study ( Wisdom et al., 2011 ), so a primary recommendation is for researchers to clearly describe their sampling strategies and provide the rationale for the strategy.

Second, use of a single stage strategy for purposeful sampling for qualitative portions of a mixed methods implementation study should adhere to the same general principles that govern all forms of sampling, qualitative or quantitative. Kemper and colleagues (2003) identify seven such principles: 1) the sampling strategy should stem logically from the conceptual framework as well as the research questions being addressed by the study; 2) the sample should be able to generate a thorough database on the type of phenomenon under study; 3) the sample should at least allow the possibility of drawing clear inferences and credible explanations from the data; 4) the sampling strategy must be ethical; 5) the sampling plan should be feasible; 6) the sampling plan should allow the researcher to transfer/generalize the conclusions of the study to other settings or populations; and 7) the sampling scheme should be as efficient as practical.

Third, the field of implementation research is at a stage itself where qualitative methods are intended primarily to explore the barriers and facilitators of EBP implementation and to develop new conceptual models of implementation process and outcomes. This is especially important in state implementation research, where fiscal necessities are driving policy reforms for which knowledge about EBP implementation barriers and facilitators are urgently needed. Thus a multistage strategy for purposeful sampling should begin first with a broader view with an emphasis on variation or dispersion and move to a narrow view with an emphasis on similarity or central tendencies. Such a strategy is necessary for the task of finding the optimal balance between internal and external validity.

Fourth, if we assume that probability sampling will be the preferred strategy for the quantitative components of most implementation research, the selection of a single or multistage purposeful sampling strategy should be based, in part, on how it relates to the probability sample, either for the purpose of answering the same question (in which case a strategy emphasizing variation and dispersion is preferred) or the for answering related questions (in which case, a strategy emphasizing similarity and central tendencies is preferred).

Fifth, it should be kept in mind that all sampling procedures, whether purposeful or probability, are designed to capture elements of both similarity and differences, of both centrality and dispersion, because both elements are essential to the task of generating new knowledge through the processes of comparison and contrast. Selecting a strategy that gives emphasis to one does not mean that it cannot be used for the other. Having said that, our analysis has assumed at least some degree of concordance between breadth of understanding associated with quantitative probability sampling and purposeful sampling strategies that emphasize variation on the one hand, and between the depth of understanding and purposeful sampling strategies that emphasize similarity on the other hand. While there may be some merit to that assumption, depth of understanding requires both an understanding of variation and common elements.

Finally, it should also be kept in mind that quantitative data can be generated from a purposeful sampling strategy and qualitative data can be generated from a probability sampling strategy. Each set of data is suited to a specific objective and each must adhere to a specific set of assumptions and requirements. Nevertheless, the promise of mixed methods, like the promise of implementation science, lies in its ability to move beyond the confines of existing methodological approaches and develop innovative solutions to important and complex problems. For states engaged in EBP implementation, the need for these solutions is urgent.

An external file that holds a picture, illustration, etc.
Object name is nihms-538401-f0004.jpg

Multistage Purposeful Sampling Strategies

Acknowledgments

This study was funded through a grant from the National Institute of Mental Health (P30-MH090322: K. Hoagwood, PI).

Sampling Techniques for Quantitative Research

  • First Online: 27 October 2022

Cite this chapter

sampling techniques for qualitative and quantitative research

  • Moniruzzaman Sarker   ORCID: orcid.org/0000-0003-3595-5838 4 &
  • Mohammed Abdulmalek AL-Muaalemi 5  

4215 Accesses

12 Citations

In quantitative research, collecting data from an entire population of a study is impractical in many instances. It squanders resources like time and money which can be minimized by choosing suitable sampling techniques between probability and non-probability methods. The chapter outlines a brief idea about the different categories of sampling techniques with examples. Sensibly selecting among the sampling techniques allows the researcher to generalize the findings to a specific study context. Although probability sampling is more appealing to draw a representative sample, non-probability sampling techniques also enable the researcher to generalize the findings upon implementing the sampling strategy wisely. Moreover, adopting probability sampling techniques is not feasible in many situations. The chapter suggests selecting sampling techniques should be guided by research objectives, study scope, and availability of sampling frame rather than looking at the nature of sampling techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

sampling techniques for qualitative and quantitative research

Sampling Errors, Bias, and Objectivity

sampling techniques for qualitative and quantitative research

Recent developments in systematic sampling: A review

Reviewing the research methods literature: principles and strategies illustrated by a systematic overview of sampling in qualitative research.

Bryman, A., & Bell, E. (2015). Business research methods (4th ed.). Oxford University Press.

Google Scholar  

Clottey, T. A., & Grawe, S. J. (2014). Non-response bias assessment in logistics survey research: Use fewer tests? International Journal of Physical Distribution & Logistics Management, 44 (5), 412–426. https://doi.org/10.1108/IJPDLM-10-2012-0314

Article   Google Scholar  

Collier, J. E., & Bienstock, C. C. (2007). An analysis of how nonresponse error is assessed in academic marketing research. Marketing Theory, 7 (2), 163–183. https://doi.org/10.1177/1470593107076865

Cooper, D. R., Schindler, P. S., & Sun, J. (2006). Business research methods (9th ed.). McGraw-Hill Irwin.

Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed methods approaches (4th ed.). SAGE Publications, Incorporated.

Feild, L., Pruchno, R. A., Bewley, J., Lemay, E. P., & Levinsky, N. G. (2006). Using probability versus nonprobability sampling to identify hard-to-access participants for health-related research: Costs and contrasts. Journal of Aging and Health, 18 (4), 565–583. https://doi.org/10.1177/0898264306291420.

Hulland, J., Baumgartner, H., & Smith, K. M. (2017). Marketing survey research best practices: Evidence and recommendations from a review of JAMS articles. Journal of the Academy of Marketing Science, 46 (1), 92–108. https://doi.org/10.1007/s11747-017-0532-y

Lindner, J. R., Murphy, T. H., & Briers, G. E. (2001). Handling nonresponse in social science research. Journal of Agricultural Education, 42 (4), 43–53.

Malhotra, N. K., & Das, S. (2010). Marketing research: An applied orientation (6th ed.). Pearson Education.

Book   Google Scholar  

Marshall, M. N. (1996). Sampling for qualitative research. Family Practice, 13 (6), 522–526. https://doi.org/10.1093/fampra/13.6.522

Memon, M. A., Ting, H., Ramayah, T., Chuah, F., & Cheah, J.-H. (2017). A review of the methodological misconceptions and guidelines related to the application of structural equation modeling: A Malaysian scenario. Journal of Applied Structural Equation Modeling, 1 (1), i–xiii.

Rowley, J. (2014). Designing and using research questionnaires. Management Research Review, 37 (3), 308–330. https://doi.org/10.1108/MRR-02-2013-0027

Sarstedt, M., Bengart, P., Shaltoni, A. M., & Lehmann, S. (2018). The use of sampling methods in advertising research: A gap between theory and practice. International Journal of Advertising, 37 (4), 650–663. https://doi.org/10.1080/02650487.2017.1348329

Sax, L. J., Gilmartin, S. K., & Bryant, A. N. (2003). Assessing response rates and nonresponse bias in web and paper surveys. Research in Higher Education, 44 (4), 409–432. https://doi.org/10.1023/a:1024232915870

Seddon, P. B., & Scheepers, R. (2012). Towards the improved treatment of generalization of knowledge claims in IS research: Drawing general conclusions from samples. European Journal of Information Systems, 21 (1), 6–21.

Sekaran, U., & Bougie, R. (2016). Research methods for business: A skill building approach (7th ed.). John Wiley & Sons.

Zikmund, W. G., Babin, B. J., Carr, J. C., & Griffin, M. (2013). Business research methods (9th ed.). Cengage Learning.

Download references

Author information

Authors and affiliations.

Assistant Professor of Marketing, Southamton Malysia Business School, University of Southamton Malysia, Johor Bahru, Malaysia

Moniruzzaman Sarker

Faculty of Business and Accountancy, University of Malaya, Kuala Lumpur, Malaysia

Mohammed Abdulmalek AL-Muaalemi

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Moniruzzaman Sarker .

Editor information

Editors and affiliations.

Centre for Family and Child Studies, Research Institute of Humanities and Social Sciences, University of Sharjah, Sharjah, United Arab Emirates

M. Rezaul Islam

Department of Development Studies, University of Dhaka, Dhaka, Bangladesh

Niaz Ahmed Khan

Department of Social Work, School of Humanities, University of Johannesburg, Johannesburg, South Africa

Rajendra Baikady

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Moniruzzaman Sarker, AL-Muaalemi, M.A. (2022). Sampling Techniques for Quantitative Research. In: Islam, M.R., Khan, N.A., Baikady, R. (eds) Principles of Social Research Methodology. Springer, Singapore. https://doi.org/10.1007/978-981-19-5441-2_15

Download citation

DOI : https://doi.org/10.1007/978-981-19-5441-2_15

Published : 27 October 2022

Publisher Name : Springer, Singapore

Print ISBN : 978-981-19-5219-7

Online ISBN : 978-981-19-5441-2

eBook Packages : Social Sciences Social Sciences (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

HKT Consultant

  • Entrepreneurship
  • Growth of firm
  • Sales Management
  • Retail Management
  • Import – Export
  • International Business
  • Project Management
  • Production Management
  • Quality Management
  • Logistics Management
  • Supply Chain Management
  • Human Resource Management
  • Organizational Culture
  • Information System Management
  • Corporate Finance
  • Stock Market
  • Office Management
  • Theory of the Firm
  • Management Science
  • Microeconomics
  • Research Process
  • Experimental Research
  • Research Philosophy
  • Management Research
  • Writing a thesis
  • Writing a paper
  • Literature Review
  • Action Research
  • Qualitative Content Analysis
  • Observation
  • Phenomenology
  • Statistics and Econometrics
  • Questionnaire Survey
  • Quantitative Content Analysis
  • Meta Analysis

The differences between sampling in quantitative and qualitative research

The selection of a sample in quantitative and qualitative research is guided by two opposing philosophies. In quantitative research you attempt to select a sample in such a way that it is unbiased and represents the population from where it is selected. In qualitative research, number considerations may influence the selection of a sample such as: the ease in accessing the potential respondents; your judgement that the person has extensive knowledge about an episode, an event or a situation of interest to you; how typical the case is of a category of individuals or simply that it is totally different from the others. You make every effort to select either a case that is similar to the rest of the group or the one which is totally different. Such considerations are not acceptable in quantitative research.

The purpose of sampling in quantitative research is to draw inferences about the group from which you have selected the sample, whereas in qualitative research it is designed either to gain in-depth knowledge about a situation/event/episode or to know as much as possible about different aspects of an individual on the assumption that the individual is typical of the group and hence will provide insight into the group.

Similarly, the determination of sample size in quantitative and qualitative research is based upon the two different philosophies. In quantitative research you are guided by a predeter­mined sample size that is based upon a number of other considerations in addition to the resources available. However, in qualitative research you do not have a predetermined sample size but during the data collection phase you wait to reach a point of data saturation. When you are not getting new information or it is negligible, it is assumed you have reached a data saturation point and you stop collecting additional information.

Considerable importance is placed on the sample size in quantitative research, depending upon the type of study and the possible use of the findings. Studies which are designed to formulate policies, to test associations or relationships, or to establish impact assessments place a considerable emphasis on large sample size. This is based upon the principle that a larger sample size will ensure the inclusion of people with diverse backgrounds, thus making the sample representative of the study population. The sample size in qualitative research does not play any significant role as the purpose is to study only one or a few cases in order to identify the spread of diversity and not its magnitude. In such situations the data saturation stage during data collection determines the sample size.

In quantitative research, randomisation is used to avoid bias in the selection of a sample and is selected in such a way that it represents the study population. In qualitative research no such attempt is made in selecting a sample.You purposely select ‘information-rich’ respondents who will provide you with the information you need. In quantitative research, this is considered a biased sample.

Most of the sampling strategies, including some non-probability ones, described in this chapter can be used when undertaking a quantitative study provided it meets the require­ments. However, when conducting a qualitative study only the non-probability sampling designs can be used.

sampling techniques for qualitative and quantitative research

Source: Kumar Ranjit (2012), Research methodology: a step-by-step guide for beginners , SAGE Publications Ltd; Third edition.

29 Jul 2021

30 Jul 2021

6 thoughts on “ The differences between sampling in quantitative and qualitative research ”

' src=

These are really enormous ideas in concerning blogging.

You have touched some good things here. Any way keep up wrinting.

' src=

Dude these articles are amazing. They helped me a lot.

' src=

I want to thank you for your assistance and this post. It’s been great.

' src=

Thank you for writing this article!

' src=

Your articles are extremely helpful to me. Please provide more information!

' src=

You helped me a lot by posting this article and I love what I’m learning.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Username or email address  *

Password  *

Log in Remember me

Lost your password?

  • Privacy Policy

Research Method

Home » Quantitative Data – Types, Methods and Examples

Quantitative Data – Types, Methods and Examples

Table of Contents

 Quantitative Data

Quantitative Data

Definition:

Quantitative data refers to numerical data that can be measured or counted. This type of data is often used in scientific research and is typically collected through methods such as surveys, experiments, and statistical analysis.

Quantitative Data Types

There are two main types of quantitative data: discrete and continuous.

  • Discrete data: Discrete data refers to numerical values that can only take on specific, distinct values. This type of data is typically represented as whole numbers and cannot be broken down into smaller units. Examples of discrete data include the number of students in a class, the number of cars in a parking lot, and the number of children in a family.
  • Continuous data: Continuous data refers to numerical values that can take on any value within a certain range or interval. This type of data is typically represented as decimal or fractional values and can be broken down into smaller units. Examples of continuous data include measurements of height, weight, temperature, and time.

Quantitative Data Collection Methods

There are several common methods for collecting quantitative data. Some of these methods include:

  • Surveys : Surveys involve asking a set of standardized questions to a large number of people. Surveys can be conducted in person, over the phone, via email or online, and can be used to collect data on a wide range of topics.
  • Experiments : Experiments involve manipulating one or more variables and observing the effects on a specific outcome. Experiments can be conducted in a controlled laboratory setting or in the real world.
  • Observational studies : Observational studies involve observing and collecting data on a specific phenomenon without intervening or manipulating any variables. Observational studies can be conducted in a natural setting or in a laboratory.
  • Secondary data analysis : Secondary data analysis involves using existing data that was collected for a different purpose to answer a new research question. This method can be cost-effective and efficient, but it is important to ensure that the data is appropriate for the research question being studied.
  • Physiological measures: Physiological measures involve collecting data on biological or physiological processes, such as heart rate, blood pressure, or brain activity.
  • Computerized tracking: Computerized tracking involves collecting data automatically from electronic sources, such as social media, online purchases, or website analytics.

Quantitative Data Analysis Methods

There are several methods for analyzing quantitative data, including:

  • Descriptive statistics: Descriptive statistics are used to summarize and describe the basic features of the data, such as the mean, median, mode, standard deviation, and range.
  • Inferential statistics : Inferential statistics are used to make generalizations about a population based on a sample of data. These methods include hypothesis testing, confidence intervals, and regression analysis.
  • Data visualization: Data visualization involves creating charts, graphs, and other visual representations of the data to help identify patterns and trends. Common types of data visualization include histograms, scatterplots, and bar charts.
  • Time series analysis: Time series analysis involves analyzing data that is collected over time to identify patterns and trends in the data.
  • Multivariate analysis : Multivariate analysis involves analyzing data with multiple variables to identify relationships between the variables.
  • Factor analysis : Factor analysis involves identifying underlying factors or dimensions that explain the variation in the data.
  • Cluster analysis: Cluster analysis involves identifying groups or clusters of observations that are similar to each other based on multiple variables.

Quantitative Data Formats

Quantitative data can be represented in different formats, depending on the nature of the data and the purpose of the analysis. Here are some common formats:

  • Tables : Tables are a common way to present quantitative data, particularly when the data involves multiple variables. Tables can be used to show the frequency or percentage of data in different categories or to display summary statistics.
  • Charts and graphs: Charts and graphs are useful for visualizing quantitative data and can be used to highlight patterns and trends in the data. Some common types of charts and graphs include line charts, bar charts, scatterplots, and pie charts.
  • Databases : Quantitative data can be stored in databases, which allow for easy sorting, filtering, and analysis of large amounts of data.
  • Spreadsheets : Spreadsheets can be used to organize and analyze quantitative data, particularly when the data is relatively small in size. Spreadsheets allow for calculations and data manipulation, as well as the creation of charts and graphs.
  • Statistical software : Statistical software, such as SPSS, R, and SAS, can be used to analyze quantitative data. These programs allow for more advanced statistical analyses and data modeling, as well as the creation of charts and graphs.

Quantitative Data Gathering Guide

Here is a basic guide for gathering quantitative data:

  • Define the research question: The first step in gathering quantitative data is to clearly define the research question. This will help determine the type of data to be collected, the sample size, and the methods of data analysis.
  • Choose the data collection method: Select the appropriate method for collecting data based on the research question and available resources. This could include surveys, experiments, observational studies, or other methods.
  • Determine the sample size: Determine the appropriate sample size for the research question. This will depend on the level of precision needed and the variability of the population being studied.
  • Develop the data collection instrument: Develop a questionnaire or survey instrument that will be used to collect the data. The instrument should be designed to gather the specific information needed to answer the research question.
  • Pilot test the data collection instrument : Before collecting data from the entire sample, pilot test the instrument on a small group to identify any potential problems or issues.
  • Collect the data: Collect the data from the selected sample using the chosen data collection method.
  • Clean and organize the data : Organize the data into a format that can be easily analyzed. This may involve checking for missing data, outliers, or errors.
  • Analyze the data: Analyze the data using appropriate statistical methods. This may involve descriptive statistics, inferential statistics, or other types of analysis.
  • Interpret the results: Interpret the results of the analysis in the context of the research question. Identify any patterns, trends, or relationships in the data and draw conclusions based on the findings.
  • Communicate the findings: Communicate the findings of the analysis in a clear and concise manner, using appropriate tables, graphs, and other visual aids as necessary. The results should be presented in a way that is accessible to the intended audience.

Examples of Quantitative Data

Here are some examples of quantitative data:

  • Height of a person (measured in inches or centimeters)
  • Weight of a person (measured in pounds or kilograms)
  • Temperature (measured in Fahrenheit or Celsius)
  • Age of a person (measured in years)
  • Number of cars sold in a month
  • Amount of rainfall in a specific area (measured in inches or millimeters)
  • Number of hours worked in a week
  • GPA (grade point average) of a student
  • Sales figures for a product
  • Time taken to complete a task.
  • Distance traveled (measured in miles or kilometers)
  • Speed of an object (measured in miles per hour or kilometers per hour)
  • Number of people attending an event
  • Price of a product (measured in dollars or other currency)
  • Blood pressure (measured in millimeters of mercury)
  • Amount of sugar in a food item (measured in grams)
  • Test scores (measured on a numerical scale)
  • Number of website visitors per day
  • Stock prices (measured in dollars)
  • Crime rates (measured by the number of crimes per 100,000 people)

Applications of Quantitative Data

Quantitative data has a wide range of applications across various fields, including:

  • Scientific research: Quantitative data is used extensively in scientific research to test hypotheses and draw conclusions. For example, in biology, researchers might use quantitative data to measure the growth rate of cells or the effectiveness of a drug treatment.
  • Business and economics: Quantitative data is used to analyze business and economic trends, forecast future performance, and make data-driven decisions. For example, a company might use quantitative data to analyze sales figures and customer demographics to determine which products are most popular among which segments of their customer base.
  • Education: Quantitative data is used in education to measure student performance, evaluate teaching methods, and identify areas where improvement is needed. For example, a teacher might use quantitative data to track the progress of their students over the course of a semester and adjust their teaching methods accordingly.
  • Public policy: Quantitative data is used in public policy to evaluate the effectiveness of policies and programs, identify areas where improvement is needed, and develop evidence-based solutions. For example, a government agency might use quantitative data to evaluate the impact of a social welfare program on poverty rates.
  • Healthcare : Quantitative data is used in healthcare to evaluate the effectiveness of medical treatments, track the spread of diseases, and identify risk factors for various health conditions. For example, a doctor might use quantitative data to monitor the blood pressure levels of their patients over time and adjust their treatment plan accordingly.

Purpose of Quantitative Data

The purpose of quantitative data is to provide a numerical representation of a phenomenon or observation. Quantitative data is used to measure and describe the characteristics of a population or sample, and to test hypotheses and draw conclusions based on statistical analysis. Some of the key purposes of quantitative data include:

  • Measuring and describing : Quantitative data is used to measure and describe the characteristics of a population or sample, such as age, income, or education level. This allows researchers to better understand the population they are studying.
  • Testing hypotheses: Quantitative data is often used to test hypotheses and theories by collecting numerical data and analyzing it using statistical methods. This can help researchers determine whether there is a statistically significant relationship between variables or whether there is support for a particular theory.
  • Making predictions : Quantitative data can be used to make predictions about future events or trends based on past data. This is often done through statistical modeling or time series analysis.
  • Evaluating programs and policies: Quantitative data is often used to evaluate the effectiveness of programs and policies. This can help policymakers and program managers identify areas where improvements can be made and make evidence-based decisions about future programs and policies.

When to use Quantitative Data

Quantitative data is appropriate to use when you want to collect and analyze numerical data that can be measured and analyzed using statistical methods. Here are some situations where quantitative data is typically used:

  • When you want to measure a characteristic or behavior : If you want to measure something like the height or weight of a population or the number of people who smoke, you would use quantitative data to collect this information.
  • When you want to compare groups: If you want to compare two or more groups, such as comparing the effectiveness of two different medical treatments, you would use quantitative data to collect and analyze the data.
  • When you want to test a hypothesis : If you have a hypothesis or theory that you want to test, you would use quantitative data to collect data that can be analyzed statistically to determine whether your hypothesis is supported by the data.
  • When you want to make predictions: If you want to make predictions about future trends or events, such as predicting sales for a new product, you would use quantitative data to collect and analyze data from past trends to make your prediction.
  • When you want to evaluate a program or policy : If you want to evaluate the effectiveness of a program or policy, you would use quantitative data to collect data about the program or policy and analyze it statistically to determine whether it has had the intended effect.

Characteristics of Quantitative Data

Quantitative data is characterized by several key features, including:

  • Numerical values : Quantitative data consists of numerical values that can be measured and counted. These values are often expressed in terms of units, such as dollars, centimeters, or kilograms.
  • Continuous or discrete : Quantitative data can be either continuous or discrete. Continuous data can take on any value within a certain range, while discrete data can only take on certain values.
  • Objective: Quantitative data is objective, meaning that it is not influenced by personal biases or opinions. It is based on empirical evidence that can be measured and analyzed using statistical methods.
  • Large sample size: Quantitative data is often collected from a large sample size in order to ensure that the results are statistically significant and representative of the population being studied.
  • Statistical analysis: Quantitative data is typically analyzed using statistical methods to determine patterns, relationships, and other characteristics of the data. This allows researchers to make more objective conclusions based on empirical evidence.
  • Precision : Quantitative data is often very precise, with measurements taken to multiple decimal points or significant figures. This precision allows for more accurate analysis and interpretation of the data.

Advantages of Quantitative Data

Some advantages of quantitative data are:

  • Objectivity : Quantitative data is usually objective because it is based on measurable and observable variables. This means that different people who collect the same data will generally get the same results.
  • Precision : Quantitative data provides precise measurements of variables. This means that it is easier to make comparisons and draw conclusions from quantitative data.
  • Replicability : Since quantitative data is based on objective measurements, it is often easier to replicate research studies using the same or similar data.
  • Generalizability : Quantitative data allows researchers to generalize findings to a larger population. This is because quantitative data is often collected using random sampling methods, which help to ensure that the data is representative of the population being studied.
  • Statistical analysis : Quantitative data can be analyzed using statistical methods, which allows researchers to test hypotheses and draw conclusions about the relationships between variables.
  • Efficiency : Quantitative data can often be collected quickly and efficiently using surveys or other standardized instruments, which makes it a cost-effective way to gather large amounts of data.

Limitations of Quantitative Data

Some Limitations of Quantitative Data are as follows:

  • Limited context: Quantitative data does not provide information about the context in which the data was collected. This can make it difficult to understand the meaning behind the numbers.
  • Limited depth: Quantitative data is often limited to predetermined variables and questions, which may not capture the complexity of the phenomenon being studied.
  • Difficulty in capturing qualitative aspects: Quantitative data is unable to capture the subjective experiences and qualitative aspects of human behavior, such as emotions, attitudes, and motivations.
  • Possibility of bias: The collection and interpretation of quantitative data can be influenced by biases, such as sampling bias, measurement bias, or researcher bias.
  • Simplification of complex phenomena: Quantitative data may oversimplify complex phenomena by reducing them to numerical measurements and statistical analyses.
  • Lack of flexibility: Quantitative data collection methods may not allow for changes or adaptations in the research process, which can limit the ability to respond to unexpected findings or new insights.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Secondary Data

Secondary Data – Types, Methods and Examples

Qualitative Data

Qualitative Data – Types, Methods and Examples

Research Information

Information in Research – Types and Examples

Primary Data

Primary Data – Types, Methods and Examples

Research Data

Research Data – Types Methods and Examples

Qualitative vs. Quantitative Data: 7 Key Differences

' src=

Qualitative data is information you can describe with words rather than numbers. 

Quantitative data is information represented in a measurable way using numbers. 

One type of data isn’t better than the other. 

To conduct thorough research, you need both. But knowing the difference between them is important if you want to harness the full power of both qualitative and quantitative data. 

In this post, we’ll explore seven key differences between these two types of data. 

#1. The Type of Data

The single biggest difference between quantitative and qualitative data is that one deals with numbers, and the other deals with concepts and ideas. 

The words “qualitative” and “quantitative” are really similar, which can make it hard to keep track of which one is which. I like to think of them this way: 

  • Quantitative = quantity = numbers-related data
  • Qualitative = quality = descriptive data

Qualitative data—the descriptive one—usually involves written or spoken words, images, or even objects. It’s collected in all sorts of ways: video recordings, interviews, open-ended survey responses, and field notes, for example. 

I like how researcher James W. Crick defines qualitative research in a 2021 issue of the Journal of Strategic Marketing : “Qualitative research is designed to generate in-depth and subjective findings to build theory.”

In other words, qualitative research helps you learn more about a topic—usually from a primary, or firsthand, source—so you can form ideas about what it means. This type of data is often rich in detail, and its interpretation can vary depending on who’s analyzing it. 

Here’s what I mean: if you ask five different people to observe how 60 kittens behave when presented with a hamster wheel, you’ll get five different versions of the same event. 

Quantitative data, on the other hand, is all about numbers and statistics. There’s no wiggle room when it comes to interpretation. In our kitten scenario, quantitative data might show us that of the 60 kittens presented with a hamster wheel, 40 pawed at it, 5 jumped inside and started spinning, and 15 ignored it completely.

There’s no ifs, ands, or buts about the numbers. They just are. 

#2. When to Use Each Type of Data

You should use both quantitative and quantitative data to make decisions for your business. 

Quantitative data helps you get to the what . Qualitative data unearths the why .

Quantitative data collects surface information, like numbers. Qualitative data dives deep beneath these same numbers and fleshes out the nuances there. 

Research projects can often benefit from both types of data, which is why you’ll see the term “mixed-method” research in peer-reviewed journals. The term “mixed-method” refers to using both quantitative and qualitative methods in a study. 

So, maybe you’re diving into original research. Or maybe you’re looking at other peoples’ studies to make an important business decision. In either case, you can use both quantitative and qualitative data to guide you.

Imagine you want to start a company that makes hamster wheels for cats. You run that kitten experiment, only to learn that most kittens aren’t all that interested in the hamster wheel. That’s what your quantitative data seems to say. Of the 60 kittens who participated in the study, only 5 hopped into the wheel. 

But 40 of the kittens pawed at the wheel. According to your quantitative data, these 40 kittens touched the wheel but did not get inside. 

This is where your qualitative data comes into play. Why did these 40 kittens touch the wheel but stop exploring it? You turn to the researchers’ observations. Since there were five different researchers, you have five sets of detailed notes to study. 

From these observations, you learn that many of the kittens seemed frightened when the wheel moved after they pawed it. They grew suspicious of the structure, meowing and circling it, agitated.

One researcher noted that the kittens seemed desperate to enjoy the wheel, but they didn’t seem to feel it was safe. 

So your idea isn’t a flop, exactly. 

It just needs tweaking. 

According to your quantitative data, 75% of the kittens studied either touched or actively participated in the hamster wheel. Your qualitative data suggests more kittens would have jumped into the wheel if it hadn’t moved so easily when they pawed at it. 

You decide to make your kitten wheel sturdier and try the whole test again with a new set of kittens. Hopefully, this time a higher percentage of your feline participants will hop in and enjoy the fun. 

This is a very simplistic and fictional example of how a mixed-method approach can help you make important choices for your business. 

#3. Data You Have Access To

When you can swing it, you should look at both qualitative and quantitative data before you make any big decisions. 

But this is where we come to another big difference between quantitative vs. qualitative data: it’s a lot easier to source qualitative data than quantitative data. 

Why? Because it’s easy to run a survey, host a focus group, or conduct a round of interviews. All you have to do is hop on SurveyMonkey or Zoom and you’re on your way to gathering original qualitative data. 

And yes, you can get some quantitative data here. If you run a survey and 45 customers respond, you can collect demographic data and yes/no answers for that pool of 45 respondents.

But this is a relatively small sample size. (More on why this matters in a moment.) 

To tell you anything meaningful, quantitative data must achieve statistical significance. 

If it’s been a while since your college statistics class, here’s a refresh: statistical significance is a measuring stick. It tells you whether the results you get are due to a specific cause or if they can be attributed to random chance. 

To achieve statistical significance in a study, you have to be really careful to set the study up the right way and with a meaningful sample size.

This doesn’t mean it’s impossible to get quantitative data. But unless you have someone on your team who knows all about null hypotheses and p-values and statistical analysis, you might need to outsource quantitative research. 

Plenty of businesses do this, but it’s pricey. 

When you’re just starting out or you’re strapped for cash, qualitative data can get you valuable information—quickly and without gouging your wallet. 

#4. Big vs. Small Sample Size

Another reason qualitative data is more accessible? It requires a smaller sample size to achieve meaningful results. 

Even one person’s perspective brings value to a research project—ever heard of a case study?

The sweet spot depends on the purpose of the study, but for qualitative market research, somewhere between 10-40 respondents is a good number. 

Any more than that and you risk reaching saturation. That’s when you keep getting results that echo each other and add nothing new to the research.

Quantitative data needs enough respondents to reach statistical significance without veering into saturation territory. 

The ideal sample size number is usually higher than it is for qualitative data. But as with qualitative data, there’s no single, magic number. It all depends on statistical values like confidence level, population size, and margin of error.

Because it often requires a larger sample size, quantitative research can be more difficult for the average person to do on their own. 

#5. Methods of Analysis

Running a study is just the first part of conducting qualitative and quantitative research. 

After you’ve collected data, you have to study it. Find themes, patterns, consistencies, inconsistencies. Interpret and organize the numbers or survey responses or interview recordings. Tidy it all up into something you can draw conclusions from and apply to various situations. 

This is called data analysis, and it’s done in completely different ways for qualitative vs. quantitative data. 

For qualitative data, analysis includes: 

  • Data prep: Make all your qualitative data easy to access and read. This could mean organizing survey results by date, or transcribing interviews, or putting photographs into a slideshow format. 
  • Coding: No, not that kind. Think color coding, like you did for your notes in school. Assign colors or codes to specific attributes that make sense for your study—green for positive emotions, for instance, and red for angry emotions. Then code each of your responses. 
  • Thematic analysis: Organize your codes into themes and sub-themes, looking for the meaning—and relationships—within each one. 
  • Content analysis: Quantify the number of times certain words or concepts appear in your data. If this sounds suspiciously like quantitative research to you, it is. Sort of. It’s looking at qualitative data with a quantitative eye to identify any recurring themes or patterns. 
  • Narrative analysis: Look for similar stories and experiences and group them together. Study them and draw inferences from what they say.
  • Interpret and document: As you organize and analyze your qualitative data, decide what the findings mean for you and your project.

You can often do qualitative data analysis manually or with tools like NVivo and ATLAS.ti. These tools help you organize, code, and analyze your subjective qualitative data. 

Quantitative data analysis is a lot less subjective. Here’s how it generally goes: 

  • Data cleaning: Remove all inconsistencies and inaccuracies from your data. Check for duplicates, incorrect formatting (mistakenly writing a 1.00 value as 10.1, for example), and incomplete numbers. 
  • Summarize data with descriptive statistics: Use mean, median, mode, range, and standard deviation to summarize your data. 
  • Interpret the data with inferential statistics: This is where it gets more complicated. Instead of simply summarizing stats, you’ll now use complicated mathematical and statistical formulas and tests—t-tests, chi-square tests, analysis of variance (ANOVA), and correlation, for starters—to assign meaning to your data. 

Researchers generally use sophisticated data analysis tools like RapidMiner and Tableau to help them do this work. 

#6. Flexibility 

Quantitative research tends to be less flexible than qualitative research. It relies on structured data collection methods, which researchers must set up well before the study begins.

This rigid structure is part of what makes quantitative data so reliable. But the downside here is that once you start the study, it’s hard to change anything without negatively affecting the results. If something unexpected comes up—or if new questions arise—researchers can’t easily change the scope of the study. 

Qualitative research is a lot more flexible. This is why qualitative data can go deeper than quantitative data. If you’re interviewing someone and an interesting, unexpected topic comes up, you can immediately explore it.

Other qualitative research methods offer flexibility, too. Most big survey software brands allow you to build flexible surveys using branching and skip logic. These features let you customize which questions respondents see based on the answers they give.  

This flexibility is unheard of in quantitative research. But even though it’s as flexible as an Olympic gymnast, qualitative data can be less reliable—and harder to validate. 

#7. Reliability and Validity

Quantitative data is more reliable than qualitative data. Numbers can’t be massaged to fit a certain bias. If you replicate the study—in other words, run the exact same quantitative study two or more times—you should get nearly identical results each time. The same goes if another set of researchers runs the same study using the same methods.

This is what gives quantitative data that reliability factor. 

There are a few key benefits here. First, reliable data means you can confidently make generalizations that apply to a larger population. It also means the data is valid and accurately measures whatever it is you’re trying to measure. 

And finally, reliable data is trustworthy. Big industries like healthcare, marketing, and education frequently use quantitative data to make life-or-death decisions. The more reliable and trustworthy the data, the more confident these decision-makers can be when it’s time to make critical choices. 

Unlike quantitative data, qualitative data isn’t overtly reliable. It’s not easy to replicate. If you send out the same qualitative survey on two separate occasions, you’ll get a new mix of responses. Your interpretations of the data might look different, too. 

There’s still incredible value in qualitative data, of course—and there are ways to make sure the data is valid. These include: 

  • Member checking: Circling back with survey, interview, or focus group respondents to make sure you accurately summarized and interpreted their feedback. 
  • Triangulation: Using multiple data sources, methods, or researchers to cross-check and corroborate findings.
  • Peer debriefing: Showing the data to peers—other researchers—so they can review the research process and its findings and provide feedback on both. 

Whether you’re dealing with qualitative or quantitative data, transparency, accuracy, and validity are crucial. Focus on sourcing (or conducting) quantitative research that’s easy to replicate and qualitative research that’s been peer-reviewed.

With rock-solid data like this, you can make critical business decisions with confidence.

Make your website better. Instantly.

Keep reading about user experience.

sampling techniques for qualitative and quantitative research

The 5 Best UX Research Tools Compared

UX research tools help designers, product managers, and other teams understand users and how they interact with a company’s products and services. The tools provide…

sampling techniques for qualitative and quantitative research

Qualitative data is information you can describe with words rather than numbers.  Quantitative data is information represented in a measurable way using numbers.  One type…

sampling techniques for qualitative and quantitative research

6 Real Ways AI Has Improved the User Experience

It seems like every other company is bragging about their AI-enhanced user experiences. Consumers and the UX professionals responsible for designing great user experiences are…

sampling techniques for qualitative and quantitative research

12 Key UX Metrics: What They Mean + How To Calculate Each

UX metrics help identify where users struggle when using an app or website and where they are successful. The data collected helps designers, developers, and…

sampling techniques for qualitative and quantitative research

5 Key Principles Of Good Website Usability

Ease of use is a common expectation for a site to be considered well designed. Over the past few years, we have been used to…

increase website speed

20 Ways to Speed Up Your Website and Improve Conversion in 2024

Think that speeding up your website isn’t important? Big mistake. A one-second delay in page load time yields: Your site taking a few extra seconds to…

Why Usability Test

How to Do Usability Testing Right

User experience is one of the most important aspects of having a successful website, app, piece of software, or any other product that you’ve built. …

website navigation

Website Navigation: Tips, Examples and Best Practices

Your website’s navigation structure has a huge impact on conversions, sales, and bounce rates. If visitors can’t figure out where to find what they want,…

sampling techniques for qualitative and quantitative research

How to Create a Heatmap Online for Free in Less Than 15 Minutes

A heatmap is an extremely valuable tool for anyone with a website. Heatmaps are a visual representation of crucial website data. With just a simple…

Website Analysis: Our 4-Step Process Plus the Tools and Examples You Need to Get Started

Website Analysis: Our 4-Step Process Plus the Tools and Examples You Need to Get Started

The problem with a lot of the content that covers website analysis is that the term “website analysis” can refer to a lot of different things—and…

How to Improve My Website: Grow Engagement and Conversions by Fixing 3 Common Website Problems

How to Improve My Website: Grow Engagement and Conversions by Fixing 3 Common Website Problems

Here, we show you how to use Google Analytics together with Crazy Egg’s heatmap reports to easily identify and fix 3 common website problems.

Comprehensive Guide to Website Usability Testing (With Tools and Software to Help)

Comprehensive Guide to Website Usability Testing (With Tools and Software to Help)

We share the 3-step process for the website usability testing we recommend to our customers, plus the tools to pull actionable insights out of the process.

Hotjar Alternatives: 21 Tools for Optimizing Your Website and Conversion Rate

Hotjar Alternatives: 21 Tools for Optimizing Your Website and Conversion Rate

Hotjar is a great tool for website optimization, but some marketers may need something a little different. If that’s you, here are 21 Hotjar alternatives.

How to Interpret and Use Clickmaps to Improve Your Website’s UX

How to Interpret and Use Clickmaps to Improve Your Website’s UX

To use the info in a clickmap to improve your website experience and effectiveness, you have to know how to interpret what you see.

user-experience-design-introduction

User Experience Design: 6 Simple Steps for Developing Your UX Design Process

User Experience Design or UX design is the process for improving the satisfaction of your website visitors by making your site more usable, accessible, and…

Over 300,000 websites use Crazy Egg to improve what's working, fix what isn't and test new ideas.

Last Updated on January 30, 2019

COMMENTS

  1. Qualitative, Quantitative, and Mixed Methods Research Sampling

    However, mixed methods studies also have unique considerations based on the relationship of quantitative and qualitative research within the study. Sampling in Qualitative Research Sampling in qualitative research may be divided into two major areas: overall sampling strategies and issues around sample size.

  2. Sampling Methods

    Probability sampling methods. Probability sampling means that every member of the population has a chance of being selected. It is mainly used in quantitative research. If you want to produce results that are representative of the whole population, probability sampling techniques are the most valid choice. There are four main types of ...

  3. Different Types of Sampling Techniques in Qualitative Research

    Key Takeaways: Sampling techniques in qualitative research include purposive, convenience, snowball, and theoretical sampling. Choosing the right sampling technique significantly impacts the accuracy and reliability of the research results. It's crucial to consider the potential impact on the bias, sample diversity, and generalizability when ...

  4. Series: Practical guidance to qualitative research. Part 3: Sampling

    In quantitative studies, the sampling plan, including sample size, is determined in detail in beforehand but qualitative research projects start with a broadly defined sampling plan. This plan enables you to include a variety of settings and situations and a variety of participants, including negative cases or extreme cases to obtain rich data.

  5. Big enough? Sampling in qualitative inquiry

    Any senior researcher, or seasoned mentor, has a practiced response to the 'how many' question. Mine tends to start with a reminder about the different philosophical assumptions undergirding qualitative and quantitative research projects (Staller, 2013).As Abrams (2010) points out, this difference leads to "major differences in sampling goals and strategies."(p.537).

  6. PDF Sampling Strategies in Qualitative Research

    Sampling Strategies in Qualitative Research In: The SAGE Handbook of Qualitative Data Analysis By: Tim Rapley ... SAGE Research Methods. Page 2 of 21. Sampling Strategies in Qualitative Research. 1. 1. ... Within more quantitative work, when working with a random sample you need to be able ...

  7. Qualitative Sampling Methods

    Abstract. Qualitative sampling methods differ from quantitative sampling methods. It is important that one understands those differences, as well as, appropriate qualitative sampling techniques. Appropriate sampling choices enhance the rigor of qualitative research studies. These types of sampling strategies are presented, along with the pros ...

  8. Chapter 5. Sampling

    You might remember studying sampling in a quantitative research course. Sampling is important here too, but it works a bit differently. Unlike quantitative research, qualitative research involves nonprobability sampling. This chapter explains why this is so and what qualities instead make a good sample for qualitative research.

  9. Sampling Techniques for Qualitative Research

    Purposive Sampling. Purposive (or purposeful) sampling is a non-probability technique used to deliberately select the best sources of data to meet the purpose of the study. Purposive sampling is sometimes referred to as theoretical or selective or specific sampling. Theoretical sampling is used in qualitative research when a study is designed ...

  10. Sampling Methods

    Abstract. Knowledge of sampling methods is essential to design quality research. Critical questions are provided to help researchers choose a sampling method. This article reviews probability and non-probability sampling methods, lists and defines specific sampling techniques, and provides pros and cons for consideration.

  11. (PDF) Sampling in Qualitative Research

    Answer 1: In qualitative research, samples are selected subjectively according to. the pur pose of the study, whereas in quantitative researc h probability sampling. technique are used to select ...

  12. Sampling in Qualitative Research

    Abstract. In gerontology the most recognized and elaborate discourse about sampling is generally thought to be in quantitative research associated with survey research and medical research. But sampling has long been a central concern in the social and humanistic inquiry, albeit in a different guise suited to the different goals.

  13. PDF Sampling Techniques for Qualitative Research

    Qualitative studies use specific tools and techniques (methods) to sample people, organizations, or whatever is to be examined. The methodology guides the selection of tools and techniques for sampling, data analysis, quality assurance, etc. These all vary according to the purpose and design of the study and the RQ.

  14. Qualitative, Quantitative, and Mixed Methods Research Sampling

    The importance of sampling extends to the ability to draw accurate inferences, and it is an integral part of qualitative guidelines across research methods. Sampling considerations are important in quantitative and qualitative research when considering a target population and when drawing a sample that will either allow us to generalize (i.e ...

  15. Qualitative Sampling Methods

    Qualitative sampling methods differ from quantitative sampling methods. It is important that one understands those differences, as well as, appropriate qualitative sampling techniques. Appropriate sampling choices enhance the rigor of qualitative research studies. These types of sampling strategies are presented, along with the pros and cons of ...

  16. 3.4 Sampling Techniques in Quantitative Research

    Sampling techniques . Sampling in quantitative research is a critical component that involves selecting a representative subset of individuals or cases from a larger population and often ... some non-probability techniques may occasionally be utilised in healthcare research. 42 Non-probability sampling methods are commonly used in qualitative ...

  17. Sampling Strategies for Quantitative and Qualitative Business Research

    However, probability sampling techniques are uncommon in modern quantitative research because of practical constraints; non-probability sampling, such as by convenience, is now normative. When sampling this way, special attention should be given to statistical implications of issues such as range restriction and omitted variable bias.

  18. Purposeful sampling for qualitative data collection and analysis in

    Principles of Purposeful Sampling. Purposeful sampling is a technique widely used in qualitative research for the identification and selection of information-rich cases for the most effective use of limited resources (Patton, 2002).This involves identifying and selecting individuals or groups of individuals that are especially knowledgeable about or experienced with a phenomenon of interest ...

  19. Sampling Techniques for Quantitative Research

    Types of Sampling Techniques in Quantitative Research. There are two main types of sampling techniques are observed—probability and non-probability sampling (Malhotra & Das, 2010; Sekaran & Bougie, 2016 ). If the population is known and each element has an equal chance of being picked, then probability sampling applies.

  20. Combining Qualitative and Quantitative Sampling, Data Collection, and

    what is commonly referred to as qualitative from quantitative inquiry is the kind of sampling used. While qualitative research typically involves pur-poseful sampling to enhance understanding of the information-rich case (Patton, 1990), quantitative research ideally involves probability sampling to permit statistical inferences to be made. Although

  21. The differences between sampling in quantitative and qualitative research

    In quantitative research, this is considered a biased sample. Most of the sampling strategies, including some non-probability ones, described in this chapter can be used when undertaking a quantitative study provided it meets the require­ments. However, when conducting a qualitative study only the non-probability sampling designs can be used.

  22. Series: Practical guidance to qualitative research. Part 3: Sampling

    In quantitative studies, the sampling plan, including sample size, is determined in detail in beforehand but qualitative research projects start with a broadly defined sampling plan. This plan enables you to include a variety of settings and situations and a variety of participants, including negative cases or extreme cases to obtain rich data.

  23. Sampling in Qualitative Research: Rationale, Issues, and Methods

    In gerontology the most recognized and elaborate discourse about sampling is generally thought to be in quantitative research associated with survey research and medical research. But sampling has long been a central concern in the social and humanistic inquiry, albeit in a different guise suited to the different goals. There is a need for more ...

  24. Quantitative Data

    Difficulty in capturing qualitative aspects: Quantitative data is unable to capture the subjective experiences and qualitative aspects of human behavior, such as emotions, attitudes, and motivations. Possibility of bias: The collection and interpretation of quantitative data can be influenced by biases, such as sampling bias, measurement bias ...

  25. Qualitative vs. Quantitative Data: 7 Key Differences

    Qualitative research is a lot more flexible. This is why qualitative data can go deeper than quantitative data. If you're interviewing someone and an interesting, unexpected topic comes up, you can immediately explore it. Other qualitative research methods offer flexibility, too.

  26. What Is Quantitative Research? An Overview and Guidelines

    The necessity, importance, relevance, and urgency of quantitative research are articulated, establishing a strong foundation for the subsequent discussion, which delineates the scope, objectivity, goals, data, and methods that distinguish quantitative research, alongside a balanced inspection of its strengths and shortcomings, particularly in ...