Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology

Research Design | Step-by-Step Guide with Examples

Published on 5 May 2022 by Shona McCombes . Revised on 20 March 2023.

A research design is a strategy for answering your research question  using empirical data. Creating a research design means making decisions about:

  • Your overall aims and approach
  • The type of research design you’ll use
  • Your sampling methods or criteria for selecting subjects
  • Your data collection methods
  • The procedures you’ll follow to collect data
  • Your data analysis methods

A well-planned research design helps ensure that your methods match your research aims and that you use the right kind of analysis for your data.

Table of contents

Step 1: consider your aims and approach, step 2: choose a type of research design, step 3: identify your population and sampling method, step 4: choose your data collection methods, step 5: plan your data collection procedures, step 6: decide on your data analysis strategies, frequently asked questions.

  • Introduction

Before you can start designing your research, you should already have a clear idea of the research question you want to investigate.

There are many different ways you could go about answering this question. Your research design choices should be driven by your aims and priorities – start by thinking carefully about what you want to achieve.

The first choice you need to make is whether you’ll take a qualitative or quantitative approach.

Qualitative approach Quantitative approach

Qualitative research designs tend to be more flexible and inductive , allowing you to adjust your approach based on what you find throughout the research process.

Quantitative research designs tend to be more fixed and deductive , with variables and hypotheses clearly defined in advance of data collection.

It’s also possible to use a mixed methods design that integrates aspects of both approaches. By combining qualitative and quantitative insights, you can gain a more complete picture of the problem you’re studying and strengthen the credibility of your conclusions.

Practical and ethical considerations when designing research

As well as scientific considerations, you need to think practically when designing your research. If your research involves people or animals, you also need to consider research ethics .

  • How much time do you have to collect data and write up the research?
  • Will you be able to gain access to the data you need (e.g., by travelling to a specific location or contacting specific people)?
  • Do you have the necessary research skills (e.g., statistical analysis or interview techniques)?
  • Will you need ethical approval ?

At each stage of the research design process, make sure that your choices are practically feasible.

Prevent plagiarism, run a free check.

Within both qualitative and quantitative approaches, there are several types of research design to choose from. Each type provides a framework for the overall shape of your research.

Types of quantitative research designs

Quantitative designs can be split into four main types. Experimental and   quasi-experimental designs allow you to test cause-and-effect relationships, while descriptive and correlational designs allow you to measure variables and describe relationships between them.

Type of design Purpose and characteristics
Experimental
Quasi-experimental
Correlational
Descriptive

With descriptive and correlational designs, you can get a clear picture of characteristics, trends, and relationships as they exist in the real world. However, you can’t draw conclusions about cause and effect (because correlation doesn’t imply causation ).

Experiments are the strongest way to test cause-and-effect relationships without the risk of other variables influencing the results. However, their controlled conditions may not always reflect how things work in the real world. They’re often also more difficult and expensive to implement.

Types of qualitative research designs

Qualitative designs are less strictly defined. This approach is about gaining a rich, detailed understanding of a specific context or phenomenon, and you can often be more creative and flexible in designing your research.

The table below shows some common types of qualitative design. They often have similar approaches in terms of data collection, but focus on different aspects when analysing the data.

Type of design Purpose and characteristics
Grounded theory
Phenomenology

Your research design should clearly define who or what your research will focus on, and how you’ll go about choosing your participants or subjects.

In research, a population is the entire group that you want to draw conclusions about, while a sample is the smaller group of individuals you’ll actually collect data from.

Defining the population

A population can be made up of anything you want to study – plants, animals, organisations, texts, countries, etc. In the social sciences, it most often refers to a group of people.

For example, will you focus on people from a specific demographic, region, or background? Are you interested in people with a certain job or medical condition, or users of a particular product?

The more precisely you define your population, the easier it will be to gather a representative sample.

Sampling methods

Even with a narrowly defined population, it’s rarely possible to collect data from every individual. Instead, you’ll collect data from a sample.

To select a sample, there are two main approaches: probability sampling and non-probability sampling . The sampling method you use affects how confidently you can generalise your results to the population as a whole.

Probability sampling Non-probability sampling

Probability sampling is the most statistically valid option, but it’s often difficult to achieve unless you’re dealing with a very small and accessible population.

For practical reasons, many studies use non-probability sampling, but it’s important to be aware of the limitations and carefully consider potential biases. You should always make an effort to gather a sample that’s as representative as possible of the population.

Case selection in qualitative research

In some types of qualitative designs, sampling may not be relevant.

For example, in an ethnography or a case study, your aim is to deeply understand a specific context, not to generalise to a population. Instead of sampling, you may simply aim to collect as much data as possible about the context you are studying.

In these types of design, you still have to carefully consider your choice of case or community. You should have a clear rationale for why this particular case is suitable for answering your research question.

For example, you might choose a case study that reveals an unusual or neglected aspect of your research problem, or you might choose several very similar or very different cases in order to compare them.

Data collection methods are ways of directly measuring variables and gathering information. They allow you to gain first-hand knowledge and original insights into your research problem.

You can choose just one data collection method, or use several methods in the same study.

Survey methods

Surveys allow you to collect data about opinions, behaviours, experiences, and characteristics by asking people directly. There are two main survey methods to choose from: questionnaires and interviews.

Questionnaires Interviews

Observation methods

Observations allow you to collect data unobtrusively, observing characteristics, behaviours, or social interactions without relying on self-reporting.

Observations may be conducted in real time, taking notes as you observe, or you might make audiovisual recordings for later analysis. They can be qualitative or quantitative.

Quantitative observation

Other methods of data collection

There are many other ways you might collect data depending on your field and topic.

Field Examples of data collection methods
Media & communication Collecting a sample of texts (e.g., speeches, articles, or social media posts) for data on cultural norms and narratives
Psychology Using technologies like neuroimaging, eye-tracking, or computer-based tasks to collect data on things like attention, emotional response, or reaction time
Education Using tests or assignments to collect data on knowledge and skills
Physical sciences Using scientific instruments to collect data on things like weight, blood pressure, or chemical composition

If you’re not sure which methods will work best for your research design, try reading some papers in your field to see what data collection methods they used.

Secondary data

If you don’t have the time or resources to collect data from the population you’re interested in, you can also choose to use secondary data that other researchers already collected – for example, datasets from government surveys or previous studies on your topic.

With this raw data, you can do your own analysis to answer new research questions that weren’t addressed by the original study.

Using secondary data can expand the scope of your research, as you may be able to access much larger and more varied samples than you could collect yourself.

However, it also means you don’t have any control over which variables to measure or how to measure them, so the conclusions you can draw may be limited.

As well as deciding on your methods, you need to plan exactly how you’ll use these methods to collect data that’s consistent, accurate, and unbiased.

Planning systematic procedures is especially important in quantitative research, where you need to precisely define your variables and ensure your measurements are reliable and valid.

Operationalisation

Some variables, like height or age, are easily measured. But often you’ll be dealing with more abstract concepts, like satisfaction, anxiety, or competence. Operationalisation means turning these fuzzy ideas into measurable indicators.

If you’re using observations , which events or actions will you count?

If you’re using surveys , which questions will you ask and what range of responses will be offered?

You may also choose to use or adapt existing materials designed to measure the concept you’re interested in – for example, questionnaires or inventories whose reliability and validity has already been established.

Reliability and validity

Reliability means your results can be consistently reproduced , while validity means that you’re actually measuring the concept you’re interested in.

Reliability Validity

For valid and reliable results, your measurement materials should be thoroughly researched and carefully designed. Plan your procedures to make sure you carry out the same steps in the same way for each participant.

If you’re developing a new questionnaire or other instrument to measure a specific concept, running a pilot study allows you to check its validity and reliability in advance.

Sampling procedures

As well as choosing an appropriate sampling method, you need a concrete plan for how you’ll actually contact and recruit your selected sample.

That means making decisions about things like:

  • How many participants do you need for an adequate sample size?
  • What inclusion and exclusion criteria will you use to identify eligible participants?
  • How will you contact your sample – by mail, online, by phone, or in person?

If you’re using a probability sampling method, it’s important that everyone who is randomly selected actually participates in the study. How will you ensure a high response rate?

If you’re using a non-probability method, how will you avoid bias and ensure a representative sample?

Data management

It’s also important to create a data management plan for organising and storing your data.

Will you need to transcribe interviews or perform data entry for observations? You should anonymise and safeguard any sensitive data, and make sure it’s backed up regularly.

Keeping your data well organised will save time when it comes to analysing them. It can also help other researchers validate and add to your findings.

On their own, raw data can’t answer your research question. The last step of designing your research is planning how you’ll analyse the data.

Quantitative data analysis

In quantitative research, you’ll most likely use some form of statistical analysis . With statistics, you can summarise your sample data, make estimates, and test hypotheses.

Using descriptive statistics , you can summarise your sample data in terms of:

  • The distribution of the data (e.g., the frequency of each score on a test)
  • The central tendency of the data (e.g., the mean to describe the average score)
  • The variability of the data (e.g., the standard deviation to describe how spread out the scores are)

The specific calculations you can do depend on the level of measurement of your variables.

Using inferential statistics , you can:

  • Make estimates about the population based on your sample data.
  • Test hypotheses about a relationship between variables.

Regression and correlation tests look for associations between two or more variables, while comparison tests (such as t tests and ANOVAs ) look for differences in the outcomes of different groups.

Your choice of statistical test depends on various aspects of your research design, including the types of variables you’re dealing with and the distribution of your data.

Qualitative data analysis

In qualitative research, your data will usually be very dense with information and ideas. Instead of summing it up in numbers, you’ll need to comb through the data in detail, interpret its meanings, identify patterns, and extract the parts that are most relevant to your research question.

Two of the most common approaches to doing this are thematic analysis and discourse analysis .

Approach Characteristics
Thematic analysis
Discourse analysis

There are many other ways of analysing qualitative data depending on the aims of your research. To get a sense of potential approaches, try reading some qualitative research papers in your field.

A sample is a subset of individuals from a larger population. Sampling means selecting the group that you will actually collect data from in your research.

For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

Statistical sampling allows you to test a hypothesis about the characteristics of a population. There are various sampling methods you can use to ensure that your sample is representative of the population as a whole.

Operationalisation means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioural avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalise the variables that you want to measure.

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts, and meanings, use qualitative methods .
  • If you want to analyse a large amount of readily available data, use secondary data. If you want data specific to your purposes with control over how they are generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2023, March 20). Research Design | Step-by-Step Guide with Examples. Scribbr. Retrieved 24 June 2024, from https://www.scribbr.co.uk/research-methods/research-design/

Is this article helpful?

Shona McCombes

Shona McCombes

  • How it works

researchprospect post subheader

How to Write a Research Design – Guide with Examples

Published by Alaxendra Bets at August 14th, 2021 , Revised On June 24, 2024

A research design is a structure that combines different components of research. It involves the use of different data collection and data analysis techniques logically to answer the  research questions .

It would be best to make some decisions about addressing the research questions adequately before starting the research process, which is achieved with the help of the research design.

Below are the key aspects of the decision-making process:

  • Data type required for research
  • Research resources
  • Participants required for research
  • Hypothesis based upon research question(s)
  • Data analysis  methodologies
  • Variables (Independent, dependent, and confounding)
  • The location and timescale for conducting the data
  • The time period required for research

The research design provides the strategy of investigation for your project. Furthermore, it defines the parameters and criteria to compile the data to evaluate results and conclude.

Your project’s validity depends on the data collection and  interpretation techniques.  A strong research design reflects a strong  dissertation , scientific paper, or research proposal .

Steps of research design

Step 1: Establish Priorities for Research Design

Before conducting any research study, you must address an important question: “how to create a research design.”

The research design depends on the researcher’s priorities and choices because every research has different priorities. For a complex research study involving multiple methods, you may choose to have more than one research design.

Multimethodology or multimethod research includes using more than one data collection method or research in a research study or set of related studies.

If one research design is weak in one area, then another research design can cover that weakness. For instance, a  dissertation analyzing different situations or cases will have more than one research design.

For example:

  • Experimental research involves experimental investigation and laboratory experience, but it does not accurately investigate the real world.
  • Quantitative research is good for the  statistical part of the project, but it may not provide an in-depth understanding of the  topic .
  • Also, correlational research will not provide experimental results because it is a technique that assesses the statistical relationship between two variables.

While scientific considerations are a fundamental aspect of the research design, It is equally important that the researcher think practically before deciding on its structure. Here are some questions that you should think of;

  • Do you have enough time to gather data and complete the write-up?
  • Will you be able to collect the necessary data by interviewing a specific person or visiting a specific location?
  • Do you have in-depth knowledge about the  different statistical analysis and data collection techniques to address the research questions  or test the  hypothesis ?

If you think that the chosen research design cannot answer the research questions properly, you can refine your research questions to gain better insight.

Step 2: Data Type you Need for Research

Decide on the type of data you need for your research. The type of data you need to collect depends on your research questions or research hypothesis. Two types of research data can be used to answer the research questions:

Primary Data Vs. Secondary Data

The researcher collects the primary data from first-hand sources with the help of different data collection methods such as interviews, experiments, surveys, etc. Primary research data is considered far more authentic and relevant, but it involves additional cost and time.
Research on academic references which themselves incorporate primary data will be regarded as secondary data. There is no need to do a survey or interview with a person directly, and it is time effective. The researcher should focus on the validity and reliability of the source.

Qualitative Vs. Quantitative Data

This type of data encircles the researcher’s descriptive experience and shows the relationship between the observation and collected data. It involves interpretation and conceptual understanding of the research. There are many theories involved which can approve or disapprove the mathematical and statistical calculation. For instance, you are searching how to write a research design proposal. It means you require qualitative data about the mentioned topic.
If your research requires statistical and mathematical approaches for measuring the variable and testing your hypothesis, your objective is to compile quantitative data. Many businesses and researchers use this type of data with pre-determined data collection methods and variables for their research design.

Also, see; Research methods, design, and analysis .

Need help with a thesis chapter?

  • Hire an expert from ResearchProspect today!
  • Statistical analysis, research methodology, discussion of the results or conclusion – our experts can help you no matter how complex the requirements are.

analysis image

Step 3: Data Collection Techniques

Once you have selected the type of research to answer your research question, you need to decide where and how to collect the data.

It is time to determine your research method to address the  research problem . Research methods involve procedures, techniques, materials, and tools used for the study.

For instance, a dissertation research design includes the different resources and data collection techniques and helps establish your  dissertation’s structure .

The following table shows the characteristics of the most popularly employed research methods.

Research Methods

Methods What to consider
Surveys The survey planning requires;

Selection of responses and how many responses are required for the research?

Survey distribution techniques (online, by post, in person, etc.)

Techniques to design the question

Interviews Criteria to select the interviewee.

Time and location of the interview.

Type of interviews; i.e., structured, semi-structured, or unstructured

Experiments Place of the experiment; laboratory or in the field.

Measuring of the variables

Design of the experiment

Secondary Data Criteria to select the references and source for the data.

The reliability of the references.

The technique used for compiling the data source.

Step 4: Procedure of Data Analysis

Use of the  correct data and statistical analysis technique is necessary for the validity of your research. Therefore, you need to be certain about the data type that would best address the research problem. Choosing an appropriate analysis method is the final step for the research design. It can be split into two main categories;

Quantitative Data Analysis

The quantitative data analysis technique involves analyzing the numerical data with the help of different applications such as; SPSS, STATA, Excel, origin lab, etc.

This data analysis strategy tests different variables such as spectrum, frequencies, averages, and more. The research question and the hypothesis must be established to identify the variables for testing.

Qualitative Data Analysis

Qualitative data analysis of figures, themes, and words allows for flexibility and the researcher’s subjective opinions. This means that the researcher’s primary focus will be interpreting patterns, tendencies, and accounts and understanding the implications and social framework.

You should be clear about your research objectives before starting to analyze the data. For example, you should ask yourself whether you need to explain respondents’ experiences and insights or do you also need to evaluate their responses with reference to a certain social framework.

Step 5: Write your Research Proposal

The research design is an important component of a research proposal because it plans the project’s execution. You can share it with the supervisor, who would evaluate the feasibility and capacity of the results  and  conclusion .

Read our guidelines to write a research proposal  if you have already formulated your research design. The research proposal is written in the future tense because you are writing your proposal before conducting research.

The  research methodology  or research design, on the other hand, is generally written in the past tense.

How to Write a Research Design – Conclusion

A research design is the plan, structure, strategy of investigation conceived to answer the research question and test the hypothesis. The dissertation research design can be classified based on the type of data and the type of analysis.

Above mentioned five steps are the answer to how to write a research design. So, follow these steps to  formulate the perfect research design for your dissertation .

ResearchProspect writers have years of experience creating research designs that align with the dissertation’s aim and objectives. If you are struggling with your dissertation methodology chapter, you might want to look at our dissertation part-writing service.

Our dissertation writers can also help you with the full dissertation paper . No matter how urgent or complex your need may be, ResearchProspect can help. We also offer PhD level research paper writing services.

Frequently Asked Questions

What is research design.

Research design is a systematic plan that guides the research process, outlining the methodology and procedures for collecting and analysing data. It determines the structure of the study, ensuring the research question is answered effectively, reliably, and validly. It serves as the blueprint for the entire research project.

How to write a research design?

To write a research design, define your research question, identify the research method (qualitative, quantitative, or mixed), choose data collection techniques (e.g., surveys, interviews), determine the sample size and sampling method, outline data analysis procedures, and highlight potential limitations and ethical considerations for the study.

How to write the design section of a research paper?

In the design section of a research paper, describe the research methodology chosen and justify its selection. Outline the data collection methods, participants or samples, instruments used, and procedures followed. Detail any experimental controls, if applicable. Ensure clarity and precision to enable replication of the study by other researchers.

How to write a research design in methodology?

To write a research design in methodology, clearly outline the research strategy (e.g., experimental, survey, case study). Describe the sampling technique, participants, and data collection methods. Detail the procedures for data collection and analysis. Justify choices by linking them to research objectives, addressing reliability and validity.

You May Also Like

How to write a hypothesis for dissertation,? A hypothesis is a statement that can be tested with the help of experimental or theoretical research.

This article is a step-by-step guide to how to write statement of a problem in research. The research problem will be half-solved by defining it correctly.

To help students organise their dissertation proposal paper correctly, we have put together detailed guidelines on how to structure a dissertation proposal.

USEFUL LINKS

LEARNING RESOURCES

researchprospect-reviews-trust-site

COMPANY DETAILS

Research-Prospect-Writing-Service

  • How It Works

Grad Coach

Research Design 101

Everything You Need To Get Started (With Examples)

By: Derek Jansen (MBA) | Reviewers: Eunice Rautenbach (DTech) & Kerryn Warren (PhD) | April 2023

Research design for qualitative and quantitative studies

Navigating the world of research can be daunting, especially if you’re a first-time researcher. One concept you’re bound to run into fairly early in your research journey is that of “ research design ”. Here, we’ll guide you through the basics using practical examples , so that you can approach your research with confidence.

Overview: Research Design 101

What is research design.

  • Research design types for quantitative studies
  • Video explainer : quantitative research design
  • Research design types for qualitative studies
  • Video explainer : qualitative research design
  • How to choose a research design
  • Key takeaways

Research design refers to the overall plan, structure or strategy that guides a research project , from its conception to the final data analysis. A good research design serves as the blueprint for how you, as the researcher, will collect and analyse data while ensuring consistency, reliability and validity throughout your study.

Understanding different types of research designs is essential as helps ensure that your approach is suitable  given your research aims, objectives and questions , as well as the resources you have available to you. Without a clear big-picture view of how you’ll design your research, you run the risk of potentially making misaligned choices in terms of your methodology – especially your sampling , data collection and data analysis decisions.

The problem with defining research design…

One of the reasons students struggle with a clear definition of research design is because the term is used very loosely across the internet, and even within academia.

Some sources claim that the three research design types are qualitative, quantitative and mixed methods , which isn’t quite accurate (these just refer to the type of data that you’ll collect and analyse). Other sources state that research design refers to the sum of all your design choices, suggesting it’s more like a research methodology . Others run off on other less common tangents. No wonder there’s confusion!

In this article, we’ll clear up the confusion. We’ll explain the most common research design types for both qualitative and quantitative research projects, whether that is for a full dissertation or thesis, or a smaller research paper or article.

Free Webinar: Research Methodology 101

Research Design: Quantitative Studies

Quantitative research involves collecting and analysing data in a numerical form. Broadly speaking, there are four types of quantitative research designs: descriptive , correlational , experimental , and quasi-experimental . 

Descriptive Research Design

As the name suggests, descriptive research design focuses on describing existing conditions, behaviours, or characteristics by systematically gathering information without manipulating any variables. In other words, there is no intervention on the researcher’s part – only data collection.

For example, if you’re studying smartphone addiction among adolescents in your community, you could deploy a survey to a sample of teens asking them to rate their agreement with certain statements that relate to smartphone addiction. The collected data would then provide insight regarding how widespread the issue may be – in other words, it would describe the situation.

The key defining attribute of this type of research design is that it purely describes the situation . In other words, descriptive research design does not explore potential relationships between different variables or the causes that may underlie those relationships. Therefore, descriptive research is useful for generating insight into a research problem by describing its characteristics . By doing so, it can provide valuable insights and is often used as a precursor to other research design types.

Correlational Research Design

Correlational design is a popular choice for researchers aiming to identify and measure the relationship between two or more variables without manipulating them . In other words, this type of research design is useful when you want to know whether a change in one thing tends to be accompanied by a change in another thing.

For example, if you wanted to explore the relationship between exercise frequency and overall health, you could use a correlational design to help you achieve this. In this case, you might gather data on participants’ exercise habits, as well as records of their health indicators like blood pressure, heart rate, or body mass index. Thereafter, you’d use a statistical test to assess whether there’s a relationship between the two variables (exercise frequency and health).

As you can see, correlational research design is useful when you want to explore potential relationships between variables that cannot be manipulated or controlled for ethical, practical, or logistical reasons. It is particularly helpful in terms of developing predictions , and given that it doesn’t involve the manipulation of variables, it can be implemented at a large scale more easily than experimental designs (which will look at next).

That said, it’s important to keep in mind that correlational research design has limitations – most notably that it cannot be used to establish causality . In other words, correlation does not equal causation . To establish causality, you’ll need to move into the realm of experimental design, coming up next…

Need a helping hand?

make a research design

Experimental Research Design

Experimental research design is used to determine if there is a causal relationship between two or more variables . With this type of research design, you, as the researcher, manipulate one variable (the independent variable) while controlling others (dependent variables). Doing so allows you to observe the effect of the former on the latter and draw conclusions about potential causality.

For example, if you wanted to measure if/how different types of fertiliser affect plant growth, you could set up several groups of plants, with each group receiving a different type of fertiliser, as well as one with no fertiliser at all. You could then measure how much each plant group grew (on average) over time and compare the results from the different groups to see which fertiliser was most effective.

Overall, experimental research design provides researchers with a powerful way to identify and measure causal relationships (and the direction of causality) between variables. However, developing a rigorous experimental design can be challenging as it’s not always easy to control all the variables in a study. This often results in smaller sample sizes , which can reduce the statistical power and generalisability of the results.

Moreover, experimental research design requires random assignment . This means that the researcher needs to assign participants to different groups or conditions in a way that each participant has an equal chance of being assigned to any group (note that this is not the same as random sampling ). Doing so helps reduce the potential for bias and confounding variables . This need for random assignment can lead to ethics-related issues . For example, withholding a potentially beneficial medical treatment from a control group may be considered unethical in certain situations.

Quasi-Experimental Research Design

Quasi-experimental research design is used when the research aims involve identifying causal relations , but one cannot (or doesn’t want to) randomly assign participants to different groups (for practical or ethical reasons). Instead, with a quasi-experimental research design, the researcher relies on existing groups or pre-existing conditions to form groups for comparison.

For example, if you were studying the effects of a new teaching method on student achievement in a particular school district, you may be unable to randomly assign students to either group and instead have to choose classes or schools that already use different teaching methods. This way, you still achieve separate groups, without having to assign participants to specific groups yourself.

Naturally, quasi-experimental research designs have limitations when compared to experimental designs. Given that participant assignment is not random, it’s more difficult to confidently establish causality between variables, and, as a researcher, you have less control over other variables that may impact findings.

All that said, quasi-experimental designs can still be valuable in research contexts where random assignment is not possible and can often be undertaken on a much larger scale than experimental research, thus increasing the statistical power of the results. What’s important is that you, as the researcher, understand the limitations of the design and conduct your quasi-experiment as rigorously as possible, paying careful attention to any potential confounding variables .

The four most common quantitative research design types are descriptive, correlational, experimental and quasi-experimental.

Research Design: Qualitative Studies

There are many different research design types when it comes to qualitative studies, but here we’ll narrow our focus to explore the “Big 4”. Specifically, we’ll look at phenomenological design, grounded theory design, ethnographic design, and case study design.

Phenomenological Research Design

Phenomenological design involves exploring the meaning of lived experiences and how they are perceived by individuals. This type of research design seeks to understand people’s perspectives , emotions, and behaviours in specific situations. Here, the aim for researchers is to uncover the essence of human experience without making any assumptions or imposing preconceived ideas on their subjects.

For example, you could adopt a phenomenological design to study why cancer survivors have such varied perceptions of their lives after overcoming their disease. This could be achieved by interviewing survivors and then analysing the data using a qualitative analysis method such as thematic analysis to identify commonalities and differences.

Phenomenological research design typically involves in-depth interviews or open-ended questionnaires to collect rich, detailed data about participants’ subjective experiences. This richness is one of the key strengths of phenomenological research design but, naturally, it also has limitations. These include potential biases in data collection and interpretation and the lack of generalisability of findings to broader populations.

Grounded Theory Research Design

Grounded theory (also referred to as “GT”) aims to develop theories by continuously and iteratively analysing and comparing data collected from a relatively large number of participants in a study. It takes an inductive (bottom-up) approach, with a focus on letting the data “speak for itself”, without being influenced by preexisting theories or the researcher’s preconceptions.

As an example, let’s assume your research aims involved understanding how people cope with chronic pain from a specific medical condition, with a view to developing a theory around this. In this case, grounded theory design would allow you to explore this concept thoroughly without preconceptions about what coping mechanisms might exist. You may find that some patients prefer cognitive-behavioural therapy (CBT) while others prefer to rely on herbal remedies. Based on multiple, iterative rounds of analysis, you could then develop a theory in this regard, derived directly from the data (as opposed to other preexisting theories and models).

Grounded theory typically involves collecting data through interviews or observations and then analysing it to identify patterns and themes that emerge from the data. These emerging ideas are then validated by collecting more data until a saturation point is reached (i.e., no new information can be squeezed from the data). From that base, a theory can then be developed .

As you can see, grounded theory is ideally suited to studies where the research aims involve theory generation , especially in under-researched areas. Keep in mind though that this type of research design can be quite time-intensive , given the need for multiple rounds of data collection and analysis.

make a research design

Ethnographic Research Design

Ethnographic design involves observing and studying a culture-sharing group of people in their natural setting to gain insight into their behaviours, beliefs, and values. The focus here is on observing participants in their natural environment (as opposed to a controlled environment). This typically involves the researcher spending an extended period of time with the participants in their environment, carefully observing and taking field notes .

All of this is not to say that ethnographic research design relies purely on observation. On the contrary, this design typically also involves in-depth interviews to explore participants’ views, beliefs, etc. However, unobtrusive observation is a core component of the ethnographic approach.

As an example, an ethnographer may study how different communities celebrate traditional festivals or how individuals from different generations interact with technology differently. This may involve a lengthy period of observation, combined with in-depth interviews to further explore specific areas of interest that emerge as a result of the observations that the researcher has made.

As you can probably imagine, ethnographic research design has the ability to provide rich, contextually embedded insights into the socio-cultural dynamics of human behaviour within a natural, uncontrived setting. Naturally, however, it does come with its own set of challenges, including researcher bias (since the researcher can become quite immersed in the group), participant confidentiality and, predictably, ethical complexities . All of these need to be carefully managed if you choose to adopt this type of research design.

Case Study Design

With case study research design, you, as the researcher, investigate a single individual (or a single group of individuals) to gain an in-depth understanding of their experiences, behaviours or outcomes. Unlike other research designs that are aimed at larger sample sizes, case studies offer a deep dive into the specific circumstances surrounding a person, group of people, event or phenomenon, generally within a bounded setting or context .

As an example, a case study design could be used to explore the factors influencing the success of a specific small business. This would involve diving deeply into the organisation to explore and understand what makes it tick – from marketing to HR to finance. In terms of data collection, this could include interviews with staff and management, review of policy documents and financial statements, surveying customers, etc.

While the above example is focused squarely on one organisation, it’s worth noting that case study research designs can have different variation s, including single-case, multiple-case and longitudinal designs. As you can see in the example, a single-case design involves intensely examining a single entity to understand its unique characteristics and complexities. Conversely, in a multiple-case design , multiple cases are compared and contrasted to identify patterns and commonalities. Lastly, in a longitudinal case design , a single case or multiple cases are studied over an extended period of time to understand how factors develop over time.

As you can see, a case study research design is particularly useful where a deep and contextualised understanding of a specific phenomenon or issue is desired. However, this strength is also its weakness. In other words, you can’t generalise the findings from a case study to the broader population. So, keep this in mind if you’re considering going the case study route.

Case study design often involves investigating an individual to gain an in-depth understanding of their experiences, behaviours or outcomes.

How To Choose A Research Design

Having worked through all of these potential research designs, you’d be forgiven for feeling a little overwhelmed and wondering, “ But how do I decide which research design to use? ”. While we could write an entire post covering that alone, here are a few factors to consider that will help you choose a suitable research design for your study.

Data type: The first determining factor is naturally the type of data you plan to be collecting – i.e., qualitative or quantitative. This may sound obvious, but we have to be clear about this – don’t try to use a quantitative research design on qualitative data (or vice versa)!

Research aim(s) and question(s): As with all methodological decisions, your research aim and research questions will heavily influence your research design. For example, if your research aims involve developing a theory from qualitative data, grounded theory would be a strong option. Similarly, if your research aims involve identifying and measuring relationships between variables, one of the experimental designs would likely be a better option.

Time: It’s essential that you consider any time constraints you have, as this will impact the type of research design you can choose. For example, if you’ve only got a month to complete your project, a lengthy design such as ethnography wouldn’t be a good fit.

Resources: Take into account the resources realistically available to you, as these need to factor into your research design choice. For example, if you require highly specialised lab equipment to execute an experimental design, you need to be sure that you’ll have access to that before you make a decision.

Keep in mind that when it comes to research, it’s important to manage your risks and play as conservatively as possible. If your entire project relies on you achieving a huge sample, having access to niche equipment or holding interviews with very difficult-to-reach participants, you’re creating risks that could kill your project. So, be sure to think through your choices carefully and make sure that you have backup plans for any existential risks. Remember that a relatively simple methodology executed well generally will typically earn better marks than a highly-complex methodology executed poorly.

make a research design

Recap: Key Takeaways

We’ve covered a lot of ground here. Let’s recap by looking at the key takeaways:

  • Research design refers to the overall plan, structure or strategy that guides a research project, from its conception to the final analysis of data.
  • Research designs for quantitative studies include descriptive , correlational , experimental and quasi-experimenta l designs.
  • Research designs for qualitative studies include phenomenological , grounded theory , ethnographic and case study designs.
  • When choosing a research design, you need to consider a variety of factors, including the type of data you’ll be working with, your research aims and questions, your time and the resources available to you.

If you need a helping hand with your research design (or any other aspect of your research), check out our private coaching services .

make a research design

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

You Might Also Like:

Survey Design 101: The Basics

10 Comments

Wei Leong YONG

Is there any blog article explaining more on Case study research design? Is there a Case study write-up template? Thank you.

Solly Khan

Thanks this was quite valuable to clarify such an important concept.

hetty

Thanks for this simplified explanations. it is quite very helpful.

Belz

This was really helpful. thanks

Imur

Thank you for your explanation. I think case study research design and the use of secondary data in researches needs to be talked about more in your videos and articles because there a lot of case studies research design tailored projects out there.

Please is there any template for a case study research design whose data type is a secondary data on your repository?

Sam Msongole

This post is very clear, comprehensive and has been very helpful to me. It has cleared the confusion I had in regard to research design and methodology.

Robyn Pritchard

This post is helpful, easy to understand, and deconstructs what a research design is. Thanks

kelebogile

how to cite this page

Peter

Thank you very much for the post. It is wonderful and has cleared many worries in my mind regarding research designs. I really appreciate .

ali

how can I put this blog as my reference(APA style) in bibliography part?

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly
  • Privacy Policy

Research Method

Home » Research Design – Types, Methods and Examples

Research Design – Types, Methods and Examples

Table of Contents

Research Design

Research Design

Definition:

Research design refers to the overall strategy or plan for conducting a research study. It outlines the methods and procedures that will be used to collect and analyze data, as well as the goals and objectives of the study. Research design is important because it guides the entire research process and ensures that the study is conducted in a systematic and rigorous manner.

Types of Research Design

Types of Research Design are as follows:

Descriptive Research Design

This type of research design is used to describe a phenomenon or situation. It involves collecting data through surveys, questionnaires, interviews, and observations. The aim of descriptive research is to provide an accurate and detailed portrayal of a particular group, event, or situation. It can be useful in identifying patterns, trends, and relationships in the data.

Correlational Research Design

Correlational research design is used to determine if there is a relationship between two or more variables. This type of research design involves collecting data from participants and analyzing the relationship between the variables using statistical methods. The aim of correlational research is to identify the strength and direction of the relationship between the variables.

Experimental Research Design

Experimental research design is used to investigate cause-and-effect relationships between variables. This type of research design involves manipulating one variable and measuring the effect on another variable. It usually involves randomly assigning participants to groups and manipulating an independent variable to determine its effect on a dependent variable. The aim of experimental research is to establish causality.

Quasi-experimental Research Design

Quasi-experimental research design is similar to experimental research design, but it lacks one or more of the features of a true experiment. For example, there may not be random assignment to groups or a control group. This type of research design is used when it is not feasible or ethical to conduct a true experiment.

Case Study Research Design

Case study research design is used to investigate a single case or a small number of cases in depth. It involves collecting data through various methods, such as interviews, observations, and document analysis. The aim of case study research is to provide an in-depth understanding of a particular case or situation.

Longitudinal Research Design

Longitudinal research design is used to study changes in a particular phenomenon over time. It involves collecting data at multiple time points and analyzing the changes that occur. The aim of longitudinal research is to provide insights into the development, growth, or decline of a particular phenomenon over time.

Structure of Research Design

The format of a research design typically includes the following sections:

  • Introduction : This section provides an overview of the research problem, the research questions, and the importance of the study. It also includes a brief literature review that summarizes previous research on the topic and identifies gaps in the existing knowledge.
  • Research Questions or Hypotheses: This section identifies the specific research questions or hypotheses that the study will address. These questions should be clear, specific, and testable.
  • Research Methods : This section describes the methods that will be used to collect and analyze data. It includes details about the study design, the sampling strategy, the data collection instruments, and the data analysis techniques.
  • Data Collection: This section describes how the data will be collected, including the sample size, data collection procedures, and any ethical considerations.
  • Data Analysis: This section describes how the data will be analyzed, including the statistical techniques that will be used to test the research questions or hypotheses.
  • Results : This section presents the findings of the study, including descriptive statistics and statistical tests.
  • Discussion and Conclusion : This section summarizes the key findings of the study, interprets the results, and discusses the implications of the findings. It also includes recommendations for future research.
  • References : This section lists the sources cited in the research design.

Example of Research Design

An Example of Research Design could be:

Research question: Does the use of social media affect the academic performance of high school students?

Research design:

  • Research approach : The research approach will be quantitative as it involves collecting numerical data to test the hypothesis.
  • Research design : The research design will be a quasi-experimental design, with a pretest-posttest control group design.
  • Sample : The sample will be 200 high school students from two schools, with 100 students in the experimental group and 100 students in the control group.
  • Data collection : The data will be collected through surveys administered to the students at the beginning and end of the academic year. The surveys will include questions about their social media usage and academic performance.
  • Data analysis : The data collected will be analyzed using statistical software. The mean scores of the experimental and control groups will be compared to determine whether there is a significant difference in academic performance between the two groups.
  • Limitations : The limitations of the study will be acknowledged, including the fact that social media usage can vary greatly among individuals, and the study only focuses on two schools, which may not be representative of the entire population.
  • Ethical considerations: Ethical considerations will be taken into account, such as obtaining informed consent from the participants and ensuring their anonymity and confidentiality.

How to Write Research Design

Writing a research design involves planning and outlining the methodology and approach that will be used to answer a research question or hypothesis. Here are some steps to help you write a research design:

  • Define the research question or hypothesis : Before beginning your research design, you should clearly define your research question or hypothesis. This will guide your research design and help you select appropriate methods.
  • Select a research design: There are many different research designs to choose from, including experimental, survey, case study, and qualitative designs. Choose a design that best fits your research question and objectives.
  • Develop a sampling plan : If your research involves collecting data from a sample, you will need to develop a sampling plan. This should outline how you will select participants and how many participants you will include.
  • Define variables: Clearly define the variables you will be measuring or manipulating in your study. This will help ensure that your results are meaningful and relevant to your research question.
  • Choose data collection methods : Decide on the data collection methods you will use to gather information. This may include surveys, interviews, observations, experiments, or secondary data sources.
  • Create a data analysis plan: Develop a plan for analyzing your data, including the statistical or qualitative techniques you will use.
  • Consider ethical concerns : Finally, be sure to consider any ethical concerns related to your research, such as participant confidentiality or potential harm.

When to Write Research Design

Research design should be written before conducting any research study. It is an important planning phase that outlines the research methodology, data collection methods, and data analysis techniques that will be used to investigate a research question or problem. The research design helps to ensure that the research is conducted in a systematic and logical manner, and that the data collected is relevant and reliable.

Ideally, the research design should be developed as early as possible in the research process, before any data is collected. This allows the researcher to carefully consider the research question, identify the most appropriate research methodology, and plan the data collection and analysis procedures in advance. By doing so, the research can be conducted in a more efficient and effective manner, and the results are more likely to be valid and reliable.

Purpose of Research Design

The purpose of research design is to plan and structure a research study in a way that enables the researcher to achieve the desired research goals with accuracy, validity, and reliability. Research design is the blueprint or the framework for conducting a study that outlines the methods, procedures, techniques, and tools for data collection and analysis.

Some of the key purposes of research design include:

  • Providing a clear and concise plan of action for the research study.
  • Ensuring that the research is conducted ethically and with rigor.
  • Maximizing the accuracy and reliability of the research findings.
  • Minimizing the possibility of errors, biases, or confounding variables.
  • Ensuring that the research is feasible, practical, and cost-effective.
  • Determining the appropriate research methodology to answer the research question(s).
  • Identifying the sample size, sampling method, and data collection techniques.
  • Determining the data analysis method and statistical tests to be used.
  • Facilitating the replication of the study by other researchers.
  • Enhancing the validity and generalizability of the research findings.

Applications of Research Design

There are numerous applications of research design in various fields, some of which are:

  • Social sciences: In fields such as psychology, sociology, and anthropology, research design is used to investigate human behavior and social phenomena. Researchers use various research designs, such as experimental, quasi-experimental, and correlational designs, to study different aspects of social behavior.
  • Education : Research design is essential in the field of education to investigate the effectiveness of different teaching methods and learning strategies. Researchers use various designs such as experimental, quasi-experimental, and case study designs to understand how students learn and how to improve teaching practices.
  • Health sciences : In the health sciences, research design is used to investigate the causes, prevention, and treatment of diseases. Researchers use various designs, such as randomized controlled trials, cohort studies, and case-control studies, to study different aspects of health and healthcare.
  • Business : Research design is used in the field of business to investigate consumer behavior, marketing strategies, and the impact of different business practices. Researchers use various designs, such as survey research, experimental research, and case studies, to study different aspects of the business world.
  • Engineering : In the field of engineering, research design is used to investigate the development and implementation of new technologies. Researchers use various designs, such as experimental research and case studies, to study the effectiveness of new technologies and to identify areas for improvement.

Advantages of Research Design

Here are some advantages of research design:

  • Systematic and organized approach : A well-designed research plan ensures that the research is conducted in a systematic and organized manner, which makes it easier to manage and analyze the data.
  • Clear objectives: The research design helps to clarify the objectives of the study, which makes it easier to identify the variables that need to be measured, and the methods that need to be used to collect and analyze data.
  • Minimizes bias: A well-designed research plan minimizes the chances of bias, by ensuring that the data is collected and analyzed objectively, and that the results are not influenced by the researcher’s personal biases or preferences.
  • Efficient use of resources: A well-designed research plan helps to ensure that the resources (time, money, and personnel) are used efficiently and effectively, by focusing on the most important variables and methods.
  • Replicability: A well-designed research plan makes it easier for other researchers to replicate the study, which enhances the credibility and reliability of the findings.
  • Validity: A well-designed research plan helps to ensure that the findings are valid, by ensuring that the methods used to collect and analyze data are appropriate for the research question.
  • Generalizability : A well-designed research plan helps to ensure that the findings can be generalized to other populations, settings, or situations, which increases the external validity of the study.

Research Design Vs Research Methodology

Research DesignResearch Methodology
The plan and structure for conducting research that outlines the procedures to be followed to collect and analyze data.The set of principles, techniques, and tools used to carry out the research plan and achieve research objectives.
Describes the overall approach and strategy used to conduct research, including the type of data to be collected, the sources of data, and the methods for collecting and analyzing data.Refers to the techniques and methods used to gather, analyze and interpret data, including sampling techniques, data collection methods, and data analysis techniques.
Helps to ensure that the research is conducted in a systematic, rigorous, and valid way, so that the results are reliable and can be used to make sound conclusions.Includes a set of procedures and tools that enable researchers to collect and analyze data in a consistent and valid manner, regardless of the research design used.
Common research designs include experimental, quasi-experimental, correlational, and descriptive studies.Common research methodologies include qualitative, quantitative, and mixed-methods approaches.
Determines the overall structure of the research project and sets the stage for the selection of appropriate research methodologies.Guides the researcher in selecting the most appropriate research methods based on the research question, research design, and other contextual factors.
Helps to ensure that the research project is feasible, relevant, and ethical.Helps to ensure that the data collected is accurate, valid, and reliable, and that the research findings can be interpreted and generalized to the population of interest.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Research Summary

Research Summary – Structure, Examples and...

Research Topic

Research Topics – Ideas and Examples

Appendices

Appendices – Writing Guide, Types and Examples

Research Paper Conclusion

Research Paper Conclusion – Writing Guide and...

Survey Instruments

Survey Instruments – List and Their Uses

Research Problem

Research Problem – Examples, Types and Guide

Leave a comment x.

Save my name, email, and website in this browser for the next time I comment.

make a research design

What Is a Research Design? | Definition, Types & Guide

make a research design

Introduction

Parts of a research design, types of research methodology in qualitative research, narrative research designs, phenomenological research designs, grounded theory research designs.

  • Ethnographic research designs

Case study research design

Important reminders when designing a research study.

A research design in qualitative research is a critical framework that guides the methodological approach to studying complex social phenomena. Qualitative research designs determine how data is collected, analyzed, and interpreted, ensuring that the research captures participants' nuanced and subjective perspectives. Research designs also recognize ethical considerations and involve informed consent, ensuring confidentiality, and handling sensitive topics with the utmost respect and care. These considerations are crucial in qualitative research and other contexts where participants may share personal or sensitive information. A research design should convey coherence as it is essential for producing high-quality qualitative research, often following a recursive and evolving process.

make a research design

Theoretical concepts and research question

The first step in creating a research design is identifying the main theoretical concepts. To identify these concepts, a researcher should ask which theoretical keywords are implicit in the investigation. The next step is to develop a research question using these theoretical concepts. This can be done by identifying the relationship of interest among the concepts that catch the focus of the investigation. The question should address aspects of the topic that need more knowledge, shed light on new information, and specify which aspects should be prioritized before others. This step is essential in identifying which participants to include or which data collection methods to use. Research questions also put into practice the conceptual framework and make the initial theoretical concepts more explicit. Once the research question has been established, the main objectives of the research can be specified. For example, these objectives may involve identifying shared experiences around a phenomenon or evaluating perceptions of a new treatment.

Methodology

After identifying the theoretical concepts, research question, and objectives, the next step is to determine the methodology that will be implemented. This is the lifeline of a research design and should be coherent with the objectives and questions of the study. The methodology will determine how data is collected, analyzed, and presented. Popular qualitative research methodologies include case studies, ethnography , grounded theory , phenomenology, and narrative research . Each methodology is tailored to specific research questions and facilitates the collection of rich, detailed data. For example, a narrative approach may focus on only one individual and their story, while phenomenology seeks to understand participants' lived common experiences. Qualitative research designs differ significantly from quantitative research, which often involves experimental research, correlational designs, or variance analysis to test hypotheses about relationships between two variables, a dependent variable and an independent variable while controlling for confounding variables.

make a research design

Literature review

After the methodology is identified, conducting a thorough literature review is integral to the research design. This review identifies gaps in knowledge, positioning the new study within the larger academic dialogue and underlining its contribution and relevance. Meta-analysis, a form of secondary research, can be particularly useful in synthesizing findings from multiple studies to provide a clear picture of the research landscape.

Data collection

The sampling method in qualitative research is designed to delve deeply into specific phenomena rather than to generalize findings across a broader population. The data collection methods—whether interviews, focus groups, observations, or document analysis—should align with the chosen methodology, ethical considerations, and other factors such as sample size. In some cases, repeated measures may be collected to observe changes over time.

Data analysis

Analysis in qualitative research typically involves methods such as coding and thematic analysis to distill patterns from the collected data. This process delineates how the research results will be systematically derived from the data. It is recommended that the researcher ensures that the final interpretations are coherent with the observations and analyses, making clear connections between the data and the conclusions drawn. Reporting should be narrative-rich, offering a comprehensive view of the context and findings.

Overall, a coherent qualitative research design that incorporates these elements facilitates a study that not only adds theoretical and practical value to the field but also adheres to high quality. This methodological thoroughness is essential for achieving significant, insightful findings. Examples of well-executed research designs can be valuable references for other researchers conducting qualitative or quantitative investigations. An effective research design is critical for producing robust and impactful research outcomes.

Each qualitative research design is unique, diverse, and meticulously tailored to answer specific research questions, meet distinct objectives, and explore the unique nature of the phenomenon under investigation. The methodology is the wider framework that a research design follows. Each methodology in a research design consists of methods, tools, or techniques that compile data and analyze it following a specific approach.

The methods enable researchers to collect data effectively across individuals, different groups, or observations, ensuring they are aligned with the research design. The following list includes the most commonly used methodologies employed in qualitative research designs, highlighting how they serve different purposes and utilize distinct methods to gather and analyze data.

make a research design

The narrative approach in research focuses on the collection and detailed examination of life stories, personal experiences, or narratives to gain insights into individuals' lives as told from their perspectives. It involves constructing a cohesive story out of the diverse experiences shared by participants, often using chronological accounts. It seeks to understand human experience and social phenomena through the form and content of the stories. These can include spontaneous narrations such as memoirs or diaries from participants or diaries solicited by the researcher. Narration helps construct the identity of an individual or a group and can rationalize, persuade, argue, entertain, confront, or make sense of an event or tragedy. To conduct a narrative investigation, it is recommended that researchers follow these steps:

Identify if the research question fits the narrative approach. Its methods are best employed when a researcher wants to learn about the lifestyle and life experience of a single participant or a small number of individuals.

Select the best-suited participants for the research design and spend time compiling their stories using different methods such as observations, diaries, interviewing their family members, or compiling related secondary sources.

Compile the information related to the stories. Narrative researchers collect data based on participants' stories concerning their personal experiences, for example about their workplace or homes, their racial or ethnic culture, and the historical context in which the stories occur.

Analyze the participant stories and "restore" them within a coherent framework. This involves collecting the stories, analyzing them based on key elements such as time, place, plot, and scene, and then rewriting them in a chronological sequence (Ollerenshaw & Creswell, 2000). The framework may also include elements such as a predicament, conflict, or struggle; a protagonist; and a sequence with implicit causality, where the predicament is somehow resolved (Carter, 1993).

Collaborate with participants by actively involving them in the research. Both the researcher and the participant negotiate the meaning of their stories, adding a credibility check to the analysis (Creswell & Miller, 2000).

A narrative investigation includes collecting a large amount of data from the participants and the researcher needs to understand the context of the individual's life. A keen eye is needed to collect particular stories that capture the individual experiences. Active collaboration with the participant is necessary, and researchers need to discuss and reflect on their own beliefs and backgrounds. Multiple questions could arise in the collection, analysis, and storytelling of individual stories that need to be addressed, such as: Whose story is it? Who can tell it? Who can change it? Which version is compelling? What happens when narratives compete? In a community, what do the stories do among them? (Pinnegar & Daynes, 2006).

make a research design

Make the most of your data with ATLAS.ti

Powerful tools in an intuitive interface, ready for you with a free trial today.

A research design based on phenomenology aims to understand the essence of the lived experiences of a group of people regarding a particular concept or phenomenon. Researchers gather deep insights from individuals who have experienced the phenomenon, striving to describe "what" they experienced and "how" they experienced it. This approach to a research design typically involves detailed interviews and aims to reach a deep existential understanding. The purpose is to reduce individual experiences to a description of the universal essence or understanding the phenomenon's nature (van Manen, 1990). In phenomenology, the following steps are usually followed:

Identify a phenomenon of interest . For example, the phenomenon might be anger, professionalism in the workplace, or what it means to be a fighter.

Recognize and specify the philosophical assumptions of phenomenology , for example, one could reflect on the nature of objective reality and individual experiences.

Collect data from individuals who have experienced the phenomenon . This typically involves conducting in-depth interviews, including multiple sessions with each participant. Additionally, other forms of data may be collected using several methods, such as observations, diaries, art, poetry, music, recorded conversations, written responses, or other secondary sources.

Ask participants two general questions that encompass the phenomenon and how the participant experienced it (Moustakas, 1994). For example, what have you experienced in this phenomenon? And what contexts or situations have typically influenced your experiences within the phenomenon? Other open-ended questions may also be asked, but these two questions particularly focus on collecting research data that will lead to a textural description and a structural description of the experiences, and ultimately provide an understanding of the common experiences of the participants.

Review data from the questions posed to participants . It is recommended that researchers review the answers and highlight "significant statements," phrases, or quotes that explain how participants experienced the phenomenon. The researcher can then develop meaningful clusters from these significant statements into patterns or key elements shared across participants.

Write a textual description of what the participants experienced based on the answers and themes of the two main questions. The answers are also used to write about the characteristics and describe the context that influenced the way the participants experienced the phenomenon, called imaginative variation or structural description. Researchers should also write about their own experiences and context or situations that influenced them.

Write a composite description from the structural and textural description that presents the "essence" of the phenomenon, called the essential and invariant structure.

A phenomenological approach to a research design includes the strict and careful selection of participants in the study where bracketing personal experiences can be difficult to implement. The researcher decides how and in which way their knowledge will be introduced. It also involves some understanding and identification of the broader philosophical assumptions.

make a research design

Grounded theory is used in a research design when the goal is to inductively develop a theory "grounded" in data that has been systematically gathered and analyzed. Starting from the data collection, researchers identify characteristics, patterns, themes, and relationships, gradually forming a theoretical framework that explains relevant processes, actions, or interactions grounded in the observed reality. A grounded theory study goes beyond descriptions and its objective is to generate a theory, an abstract analytical scheme of a process. Developing a theory doesn't come "out of nothing" but it is constructed and based on clear data collection. We suggest the following steps to follow a grounded theory approach in a research design:

Determine if grounded theory is the best for your research problem . Grounded theory is a good design when a theory is not already available to explain a process.

Develop questions that aim to understand how individuals experienced or enacted the process (e.g., What was the process? How did it unfold?). Data collection and analysis occur in tandem, so that researchers can ask more detailed questions that shape further analysis, such as: What was the focal point of the process (central phenomenon)? What influenced or caused this phenomenon to occur (causal conditions)? What strategies were employed during the process? What effect did it have (consequences)?

Gather relevant data about the topic in question . Data gathering involves questions that are usually asked in interviews, although other forms of data can also be collected, such as observations, documents, and audio-visual materials from different groups.

Carry out the analysis in stages . Grounded theory analysis begins with open coding, where the researcher forms codes that inductively emerge from the data (rather than preconceived categories). Researchers can thus identify specific properties and dimensions relevant to their research question.

Assemble the data in new ways and proceed to axial coding . Axial coding involves using a coding paradigm or logic diagram, such as a visual model, to systematically analyze the data. Begin by identifying a central phenomenon, which is the main category or focus of the research problem. Next, explore the causal conditions, which are the categories of factors that influence the phenomenon. Specify the strategies, which are the actions or interactions associated with the phenomenon. Then, identify the context and intervening conditions—both narrow and broad factors that affect the strategies. Finally, delineate the consequences, which are the outcomes or results of employing the strategies.

Use selective coding to construct a "storyline" that links the categories together. Alternatively, the researcher may formulate propositions or theory-driven questions that specify predicted relationships among these categories.

Develop and visually present a matrix that clarifies the social, historical, and economic conditions influencing the central phenomenon. This optional step encourages viewing the model from the narrowest to the broadest perspective.

Write a substantive-level theory that is closely related to a specific problem or population. This step is optional but provides a focused theoretical framework that can later be tested with quantitative data to explore its generalizability to a broader sample.

Allow theory to emerge through the memo-writing process, where ideas about the theory evolve continuously throughout the stages of open, axial, and selective coding.

The researcher should initially set aside any preconceived theoretical ideas to allow for the emergence of analytical and substantive theories. This is a systematic research approach, particularly when following the methodological steps outlined by Strauss and Corbin (1990). For those seeking more flexibility in their research process, the approach suggested by Charmaz (2006) might be preferable.

One of the challenges when using this method in a research design is determining when categories are sufficiently saturated and when the theory is detailed enough. To achieve saturation, discriminant sampling may be employed, where additional information is gathered from individuals similar to those initially interviewed to verify the applicability of the theory to these new participants. Ultimately, its goal is to develop a theory that comprehensively describes the central phenomenon, causal conditions, strategies, context, and consequences.

make a research design

Ethnographic research design

An ethnographic approach in research design involves the extended observation and data collection of a group or community. The researcher immerses themselves in the setting, often living within the community for long periods. During this time, they collect data by observing and recording behaviours, conversations, and rituals to understand the group's social dynamics and cultural norms. We suggest following these steps for ethnographic methods in a research design:

Assess whether ethnography is the best approach for the research design and questions. It's suitable if the goal is to describe how a cultural group functions and to delve into their beliefs, language, behaviours, and issues like power, resistance, and domination, particularly if there is limited literature due to the group’s marginal status or unfamiliarity to mainstream society.

Identify and select a cultural group for your research design. Choose one that has a long history together, forming distinct languages, behaviours, and attitudes. This group often might be marginalized within society.

Choose cultural themes or issues to examine within the group. Analyze interactions in everyday settings to identify pervasive patterns such as life cycles, events, and overarching cultural themes. Culture is inferred from the group members' words, actions, and the tension between their actual and expected behaviours, as well as the artifacts they use.

Conduct fieldwork to gather detailed information about the group’s living and working environments. Visit the site, respect the daily lives of the members, and collect a diverse range of materials, considering ethical aspects such as respect and reciprocity.

Compile and analyze cultural data to develop a set of descriptive and thematic insights. Begin with a detailed description of the group based on observations of specific events or activities over time. Then, conduct a thematic analysis to identify patterns or themes that illustrate how the group functions and lives. The final output should be a comprehensive cultural portrait that integrates both the participants (emic) and the researcher’s (etic) perspectives, potentially advocating for the group’s needs or suggesting societal changes to better accommodate them.

Researchers engaging in ethnography need a solid understanding of cultural anthropology and the dynamics of sociocultural systems, which are commonly explored in ethnographic research. The data collection phase is notably extensive, requiring prolonged periods in the field. Ethnographers often employ a literary, quasi-narrative style in their narratives, which can pose challenges for those accustomed to more conventional social science writing methods.

Another potential issue is the risk of researchers "going native," where they become overly assimilated into the community under study, potentially jeopardizing the objectivity and completion of their research. It's crucial for researchers to be aware of their impact on the communities and environments they are studying.

The case study approach in a research design focuses on a detailed examination of a single case or a small number of cases. Cases can be individuals, groups, organizations, or events. Case studies are particularly useful for research designs that aim to understand complex issues in real-life contexts. The aim is to provide a thorough description and contextual analysis of the cases under investigation. We suggest following these steps in a case study design:

Assess if a case study approach suits your research questions . This approach works well when you have distinct cases with defined boundaries and aim to deeply understand these cases or compare multiple cases.

Choose your case or cases. These could involve individuals, groups, programs, events, or activities. Decide whether an individual or collective, multi-site or single-site case study is most appropriate, focusing on specific cases or themes (Stake, 1995; Yin, 2003).

Gather data extensively from diverse sources . Collect information through archival records, interviews, direct and participant observations, and physical artifacts (Yin, 2003).

Analyze the data holistically or in focused segments . Provide a comprehensive overview of the entire case or concentrate on specific aspects. Start with a detailed description including the history of the case and its chronological events then narrow down to key themes. The aim is to delve into the case's complexity rather than generalize findings.

Interpret and report the significance of the case in the final phase . Explain what insights were gained, whether about the subject of the case in an instrumental study or an unusual situation in an intrinsic study (Lincoln & Guba, 1985).

The investigator must carefully select the case or cases to study, recognizing that multiple potential cases could illustrate a chosen topic or issue. This selection process involves deciding whether to focus on a single case for deeper analysis or multiple cases, which may provide broader insights but less depth per case. Each choice requires a well-justified rationale for the selected cases. Researchers face the challenge of defining the boundaries of a case, such as its temporal scope and the events and processes involved. This decision in a research design is crucial as it affects the depth and value of the information presented in the study, and therefore should be planned to ensure a comprehensive portrayal of the case.

make a research design

Qualitative and quantitative research designs are distinct in their approach to data collection and data analysis. Unlike quantitative research, which focuses on numerical data and statistical analysis, qualitative research prioritizes understanding the depth and richness of human experiences, behaviours, and interactions.

Qualitative methods in a research design have to have internal coherence, meaning that all elements of the research project—research question, data collection, data analysis, findings, and theory—are well-aligned and consistent with each other. This coherence in the research study is especially crucial in inductive qualitative research, where the research process often follows a recursive and evolving path. Ensuring that each component of the research design fits seamlessly with the others enhances the clarity and impact of the study, making the research findings more robust and compelling. Whether it is a descriptive research design, explanatory research design, diagnostic research design, or correlational research design coherence is an important element in both qualitative and quantitative research.

Finally, a good research design ensures that the research is conducted ethically and considers the well-being and rights of participants when managing collected data. The research design guides researchers in providing a clear rationale for their methodologies, which is crucial for justifying the research objectives to the scientific community. A thorough research design also contributes to the body of knowledge, enabling researchers to build upon past research studies and explore new dimensions within their fields. At the core of the design, there is a clear articulation of the research objectives. These objectives should be aligned with the underlying concepts being investigated, offering a concise method to answer the research questions and guiding the direction of the study with proper qualitative methods.

Carter, K. (1993). The place of a story in the study of teaching and teacher education. Educational Researcher, 22(1), 5-12, 18.

Charmaz, K. (2006). Constructing grounded theory. London: Sage.

Creswell, J. W., & Miller, D. L. (2000). Determining validity in qualitative inquiry. Theory Into Practice, 39(3), 124-130.

Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. Newbury Park, CA: Sage.

Moustakas, C. (1994). Phenomenological research methods. Thousand Oaks, CA: Sage.

Ollerenshaw, J. A., & Creswell, J. W. (2000, April). Data analysis in narrative research: A comparison of two “restoring” approaches. Paper presented at the annual meeting of the American Educational Research Association, New Orleans, LA.

Stake, R. E. (1995). The art of case study research. Thousand Oaks, CA: Sage.

Strauss, A., & Corbin, J. (1990). Basics of qualitative research: Grounded theory procedures and techniques. Newbury Park, CA: Sage.

van Manen, M. (1990). Researching lived experience: Human science for an action sensitive pedagogy. Ontario, Canada: University of Western Ontario.

Yin, R. K. (2003). Case study research: Design and methods (3rd ed.). Thousand Oaks, CA: Sage

make a research design

Whatever your research objectives, make it happen with ATLAS.ti!

Download a free trial today.

make a research design

Logo for University of Southern Queensland

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

5 Research design

Research design is a comprehensive plan for data collection in an empirical research project. It is a ‘blueprint’ for empirical research aimed at answering specific research questions or testing specific hypotheses, and must specify at least three processes: the data collection process, the instrument development process, and the sampling process. The instrument development and sampling processes are described in the next two chapters, and the data collection process—which is often loosely called ‘research design’—is introduced in this chapter and is described in further detail in Chapters 9–12.

Broadly speaking, data collection methods can be grouped into two categories: positivist and interpretive. Positivist methods , such as laboratory experiments and survey research, are aimed at theory (or hypotheses) testing, while interpretive methods, such as action research and ethnography, are aimed at theory building. Positivist methods employ a deductive approach to research, starting with a theory and testing theoretical postulates using empirical data. In contrast, interpretive methods employ an inductive approach that starts with data and tries to derive a theory about the phenomenon of interest from the observed data. Often times, these methods are incorrectly equated with quantitative and qualitative research. Quantitative and qualitative methods refers to the type of data being collected—quantitative data involve numeric scores, metrics, and so on, while qualitative data includes interviews, observations, and so forth—and analysed (i.e., using quantitative techniques such as regression or qualitative techniques such as coding). Positivist research uses predominantly quantitative data, but can also use qualitative data. Interpretive research relies heavily on qualitative data, but can sometimes benefit from including quantitative data as well. Sometimes, joint use of qualitative and quantitative data may help generate unique insight into a complex social phenomenon that is not available from either type of data alone, and hence, mixed-mode designs that combine qualitative and quantitative data are often highly desirable.

Key attributes of a research design

The quality of research designs can be defined in terms of four key design attributes: internal validity, external validity, construct validity, and statistical conclusion validity.

Internal validity , also called causality, examines whether the observed change in a dependent variable is indeed caused by a corresponding change in a hypothesised independent variable, and not by variables extraneous to the research context. Causality requires three conditions: covariation of cause and effect (i.e., if cause happens, then effect also happens; if cause does not happen, effect does not happen), temporal precedence (cause must precede effect in time), and spurious correlation, or there is no plausible alternative explanation for the change. Certain research designs, such as laboratory experiments, are strong in internal validity by virtue of their ability to manipulate the independent variable (cause) via a treatment and observe the effect (dependent variable) of that treatment after a certain point in time, while controlling for the effects of extraneous variables. Other designs, such as field surveys, are poor in internal validity because of their inability to manipulate the independent variable (cause), and because cause and effect are measured at the same point in time which defeats temporal precedence making it equally likely that the expected effect might have influenced the expected cause rather than the reverse. Although higher in internal validity compared to other methods, laboratory experiments are by no means immune to threats of internal validity, and are susceptible to history, testing, instrumentation, regression, and other threats that are discussed later in the chapter on experimental designs. Nonetheless, different research designs vary considerably in their respective level of internal validity.

External validity or generalisability refers to whether the observed associations can be generalised from the sample to the population (population validity), or to other people, organisations, contexts, or time (ecological validity). For instance, can results drawn from a sample of financial firms in the United States be generalised to the population of financial firms (population validity) or to other firms within the United States (ecological validity)? Survey research, where data is sourced from a wide variety of individuals, firms, or other units of analysis, tends to have broader generalisability than laboratory experiments where treatments and extraneous variables are more controlled. The variation in internal and external validity for a wide range of research designs is shown in Figure 5.1.

Internal and external validity

Some researchers claim that there is a trade-off between internal and external validity—higher external validity can come only at the cost of internal validity and vice versa. But this is not always the case. Research designs such as field experiments, longitudinal field surveys, and multiple case studies have higher degrees of both internal and external validities. Personally, I prefer research designs that have reasonable degrees of both internal and external validities, i.e., those that fall within the cone of validity shown in Figure 5.1. But this should not suggest that designs outside this cone are any less useful or valuable. Researchers’ choice of designs are ultimately a matter of their personal preference and competence, and the level of internal and external validity they desire.

Construct validity examines how well a given measurement scale is measuring the theoretical construct that it is expected to measure. Many constructs used in social science research such as empathy, resistance to change, and organisational learning are difficult to define, much less measure. For instance, construct validity must ensure that a measure of empathy is indeed measuring empathy and not compassion, which may be difficult since these constructs are somewhat similar in meaning. Construct validity is assessed in positivist research based on correlational or factor analysis of pilot test data, as described in the next chapter.

Statistical conclusion validity examines the extent to which conclusions derived using a statistical procedure are valid. For example, it examines whether the right statistical method was used for hypotheses testing, whether the variables used meet the assumptions of that statistical test (such as sample size or distributional requirements), and so forth. Because interpretive research designs do not employ statistical tests, statistical conclusion validity is not applicable for such analysis. The different kinds of validity and where they exist at the theoretical/empirical levels are illustrated in Figure 5.2.

Different types of validity in scientific research

Improving internal and external validity

The best research designs are those that can ensure high levels of internal and external validity. Such designs would guard against spurious correlations, inspire greater faith in the hypotheses testing, and ensure that the results drawn from a small sample are generalisable to the population at large. Controls are required to ensure internal validity (causality) of research designs, and can be accomplished in five ways: manipulation, elimination, inclusion, and statistical control, and randomisation.

In manipulation , the researcher manipulates the independent variables in one or more levels (called ‘treatments’), and compares the effects of the treatments against a control group where subjects do not receive the treatment. Treatments may include a new drug or different dosage of drug (for treating a medical condition), a teaching style (for students), and so forth. This type of control is achieved in experimental or quasi-experimental designs, but not in non-experimental designs such as surveys. Note that if subjects cannot distinguish adequately between different levels of treatment manipulations, their responses across treatments may not be different, and manipulation would fail.

The elimination technique relies on eliminating extraneous variables by holding them constant across treatments, such as by restricting the study to a single gender or a single socioeconomic status. In the inclusion technique, the role of extraneous variables is considered by including them in the research design and separately estimating their effects on the dependent variable, such as via factorial designs where one factor is gender (male versus female). Such technique allows for greater generalisability, but also requires substantially larger samples. In statistical control , extraneous variables are measured and used as covariates during the statistical testing process.

Finally, the randomisation technique is aimed at cancelling out the effects of extraneous variables through a process of random sampling, if it can be assured that these effects are of a random (non-systematic) nature. Two types of randomisation are: random selection , where a sample is selected randomly from a population, and random assignment , where subjects selected in a non-random manner are randomly assigned to treatment groups.

Randomisation also ensures external validity, allowing inferences drawn from the sample to be generalised to the population from which the sample is drawn. Note that random assignment is mandatory when random selection is not possible because of resource or access constraints. However, generalisability across populations is harder to ascertain since populations may differ on multiple dimensions and you can only control for a few of those dimensions.

Popular research designs

As noted earlier, research designs can be classified into two categories—positivist and interpretive—depending on the goal of the research. Positivist designs are meant for theory testing, while interpretive designs are meant for theory building. Positivist designs seek generalised patterns based on an objective view of reality, while interpretive designs seek subjective interpretations of social phenomena from the perspectives of the subjects involved. Some popular examples of positivist designs include laboratory experiments, field experiments, field surveys, secondary data analysis, and case research, while examples of interpretive designs include case research, phenomenology, and ethnography. Note that case research can be used for theory building or theory testing, though not at the same time. Not all techniques are suited for all kinds of scientific research. Some techniques such as focus groups are best suited for exploratory research, others such as ethnography are best for descriptive research, and still others such as laboratory experiments are ideal for explanatory research. Following are brief descriptions of some of these designs. Additional details are provided in Chapters 9–12.

Experimental studies are those that are intended to test cause-effect relationships (hypotheses) in a tightly controlled setting by separating the cause from the effect in time, administering the cause to one group of subjects (the ‘treatment group’) but not to another group (‘control group’), and observing how the mean effects vary between subjects in these two groups. For instance, if we design a laboratory experiment to test the efficacy of a new drug in treating a certain ailment, we can get a random sample of people afflicted with that ailment, randomly assign them to one of two groups (treatment and control groups), administer the drug to subjects in the treatment group, but only give a placebo (e.g., a sugar pill with no medicinal value) to subjects in the control group. More complex designs may include multiple treatment groups, such as low versus high dosage of the drug or combining drug administration with dietary interventions. In a true experimental design , subjects must be randomly assigned to each group. If random assignment is not followed, then the design becomes quasi-experimental . Experiments can be conducted in an artificial or laboratory setting such as at a university (laboratory experiments) or in field settings such as in an organisation where the phenomenon of interest is actually occurring (field experiments). Laboratory experiments allow the researcher to isolate the variables of interest and control for extraneous variables, which may not be possible in field experiments. Hence, inferences drawn from laboratory experiments tend to be stronger in internal validity, but those from field experiments tend to be stronger in external validity. Experimental data is analysed using quantitative statistical techniques. The primary strength of the experimental design is its strong internal validity due to its ability to isolate, control, and intensively examine a small number of variables, while its primary weakness is limited external generalisability since real life is often more complex (i.e., involving more extraneous variables) than contrived lab settings. Furthermore, if the research does not identify ex ante relevant extraneous variables and control for such variables, such lack of controls may hurt internal validity and may lead to spurious correlations.

Field surveys are non-experimental designs that do not control for or manipulate independent variables or treatments, but measure these variables and test their effects using statistical methods. Field surveys capture snapshots of practices, beliefs, or situations from a random sample of subjects in field settings through a survey questionnaire or less frequently, through a structured interview. In cross-sectional field surveys , independent and dependent variables are measured at the same point in time (e.g., using a single questionnaire), while in longitudinal field surveys , dependent variables are measured at a later point in time than the independent variables. The strengths of field surveys are their external validity (since data is collected in field settings), their ability to capture and control for a large number of variables, and their ability to study a problem from multiple perspectives or using multiple theories. However, because of their non-temporal nature, internal validity (cause-effect relationships) are difficult to infer, and surveys may be subject to respondent biases (e.g., subjects may provide a ‘socially desirable’ response rather than their true response) which further hurts internal validity.

Secondary data analysis is an analysis of data that has previously been collected and tabulated by other sources. Such data may include data from government agencies such as employment statistics from the U.S. Bureau of Labor Services or development statistics by countries from the United Nations Development Program, data collected by other researchers (often used in meta-analytic studies), or publicly available third-party data, such as financial data from stock markets or real-time auction data from eBay. This is in contrast to most other research designs where collecting primary data for research is part of the researcher’s job. Secondary data analysis may be an effective means of research where primary data collection is too costly or infeasible, and secondary data is available at a level of analysis suitable for answering the researcher’s questions. The limitations of this design are that the data might not have been collected in a systematic or scientific manner and hence unsuitable for scientific research, since the data was collected for a presumably different purpose, they may not adequately address the research questions of interest to the researcher, and interval validity is problematic if the temporal precedence between cause and effect is unclear.

Case research is an in-depth investigation of a problem in one or more real-life settings (case sites) over an extended period of time. Data may be collected using a combination of interviews, personal observations, and internal or external documents. Case studies can be positivist in nature (for hypotheses testing) or interpretive (for theory building). The strength of this research method is its ability to discover a wide variety of social, cultural, and political factors potentially related to the phenomenon of interest that may not be known in advance. Analysis tends to be qualitative in nature, but heavily contextualised and nuanced. However, interpretation of findings may depend on the observational and integrative ability of the researcher, lack of control may make it difficult to establish causality, and findings from a single case site may not be readily generalised to other case sites. Generalisability can be improved by replicating and comparing the analysis in other case sites in a multiple case design .

Focus group research is a type of research that involves bringing in a small group of subjects (typically six to ten people) at one location, and having them discuss a phenomenon of interest for a period of one and a half to two hours. The discussion is moderated and led by a trained facilitator, who sets the agenda and poses an initial set of questions for participants, makes sure that the ideas and experiences of all participants are represented, and attempts to build a holistic understanding of the problem situation based on participants’ comments and experiences. Internal validity cannot be established due to lack of controls and the findings may not be generalised to other settings because of the small sample size. Hence, focus groups are not generally used for explanatory or descriptive research, but are more suited for exploratory research.

Action research assumes that complex social phenomena are best understood by introducing interventions or ‘actions’ into those phenomena and observing the effects of those actions. In this method, the researcher is embedded within a social context such as an organisation and initiates an action—such as new organisational procedures or new technologies—in response to a real problem such as declining profitability or operational bottlenecks. The researcher’s choice of actions must be based on theory, which should explain why and how such actions may cause the desired change. The researcher then observes the results of that action, modifying it as necessary, while simultaneously learning from the action and generating theoretical insights about the target problem and interventions. The initial theory is validated by the extent to which the chosen action successfully solves the target problem. Simultaneous problem solving and insight generation is the central feature that distinguishes action research from all other research methods, and hence, action research is an excellent method for bridging research and practice. This method is also suited for studying unique social problems that cannot be replicated outside that context, but it is also subject to researcher bias and subjectivity, and the generalisability of findings is often restricted to the context where the study was conducted.

Ethnography is an interpretive research design inspired by anthropology that emphasises that research phenomenon must be studied within the context of its culture. The researcher is deeply immersed in a certain culture over an extended period of time—eight months to two years—and during that period, engages, observes, and records the daily life of the studied culture, and theorises about the evolution and behaviours in that culture. Data is collected primarily via observational techniques, formal and informal interaction with participants in that culture, and personal field notes, while data analysis involves ‘sense-making’. The researcher must narrate her experience in great detail so that readers may experience that same culture without necessarily being there. The advantages of this approach are its sensitiveness to the context, the rich and nuanced understanding it generates, and minimal respondent bias. However, this is also an extremely time and resource-intensive approach, and findings are specific to a given culture and less generalisable to other cultures.

Selecting research designs

Given the above multitude of research designs, which design should researchers choose for their research? Generally speaking, researchers tend to select those research designs that they are most comfortable with and feel most competent to handle, but ideally, the choice should depend on the nature of the research phenomenon being studied. In the preliminary phases of research, when the research problem is unclear and the researcher wants to scope out the nature and extent of a certain research problem, a focus group (for an individual unit of analysis) or a case study (for an organisational unit of analysis) is an ideal strategy for exploratory research. As one delves further into the research domain, but finds that there are no good theories to explain the phenomenon of interest and wants to build a theory to fill in the unmet gap in that area, interpretive designs such as case research or ethnography may be useful designs. If competing theories exist and the researcher wishes to test these different theories or integrate them into a larger theory, positivist designs such as experimental design, survey research, or secondary data analysis are more appropriate.

Regardless of the specific research design chosen, the researcher should strive to collect quantitative and qualitative data using a combination of techniques such as questionnaires, interviews, observations, documents, or secondary data. For instance, even in a highly structured survey questionnaire, intended to collect quantitative data, the researcher may leave some room for a few open-ended questions to collect qualitative data that may generate unexpected insights not otherwise available from structured quantitative data alone. Likewise, while case research employ mostly face-to-face interviews to collect most qualitative data, the potential and value of collecting quantitative data should not be ignored. As an example, in a study of organisational decision-making processes, the case interviewer can record numeric quantities such as how many months it took to make certain organisational decisions, how many people were involved in that decision process, and how many decision alternatives were considered, which can provide valuable insights not otherwise available from interviewees’ narrative responses. Irrespective of the specific research design employed, the goal of the researcher should be to collect as much and as diverse data as possible that can help generate the best possible insights about the phenomenon of interest.

Social Science Research: Principles, Methods and Practices (Revised edition) Copyright © 2019 by Anol Bhattacherjee is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

make a research design

Home Market Research Research Tools and Apps

Research Design: What it is, Elements & Types

Research Design

Can you imagine doing research without a plan? Probably not. When we discuss a strategy to collect, study, and evaluate data, we talk about research design. This design addresses problems and creates a consistent and logical model for data analysis. Let’s learn more about it.

What is Research Design?

Research design is the framework of research methods and techniques chosen by a researcher to conduct a study. The design allows researchers to sharpen the research methods suitable for the subject matter and set up their studies for success.

Creating a research topic explains the type of research (experimental,  survey research ,  correlational , semi-experimental, review) and its sub-type (experimental design, research problem , descriptive case-study). 

There are three main types of designs for research:

  • Data collection
  • Measurement
  • Data Analysis

The research problem an organization faces will determine the design, not vice-versa. The design phase of a study determines which tools to use and how they are used.

The Process of Research Design

The research design process is a systematic and structured approach to conducting research. The process is essential to ensure that the study is valid, reliable, and produces meaningful results.

  • Consider your aims and approaches: Determine the research questions and objectives, and identify the theoretical framework and methodology for the study.
  • Choose a type of Research Design: Select the appropriate research design, such as experimental, correlational, survey, case study, or ethnographic, based on the research questions and objectives.
  • Identify your population and sampling method: Determine the target population and sample size, and choose the sampling method, such as random , stratified random sampling , or convenience sampling.
  • Choose your data collection methods: Decide on the data collection methods , such as surveys, interviews, observations, or experiments, and select the appropriate instruments or tools for collecting data.
  • Plan your data collection procedures: Develop a plan for data collection, including the timeframe, location, and personnel involved, and ensure ethical considerations.
  • Decide on your data analysis strategies: Select the appropriate data analysis techniques, such as statistical analysis , content analysis, or discourse analysis, and plan how to interpret the results.

The process of research design is a critical step in conducting research. By following the steps of research design, researchers can ensure that their study is well-planned, ethical, and rigorous.

Research Design Elements

Impactful research usually creates a minimum bias in data and increases trust in the accuracy of collected data. A design that produces the slightest margin of error in experimental research is generally considered the desired outcome. The essential elements are:

  • Accurate purpose statement
  • Techniques to be implemented for collecting and analyzing research
  • The method applied for analyzing collected details
  • Type of research methodology
  • Probable objections to research
  • Settings for the research study
  • Measurement of analysis

Characteristics of Research Design

A proper design sets your study up for success. Successful research studies provide insights that are accurate and unbiased. You’ll need to create a survey that meets all of the main characteristics of a design. There are four key characteristics:

Characteristics of Research Design

  • Neutrality: When you set up your study, you may have to make assumptions about the data you expect to collect. The results projected in the research should be free from research bias and neutral. Understand opinions about the final evaluated scores and conclusions from multiple individuals and consider those who agree with the results.
  • Reliability: With regularly conducted research, the researcher expects similar results every time. You’ll only be able to reach the desired results if your design is reliable. Your plan should indicate how to form research questions to ensure the standard of results.
  • Validity: There are multiple measuring tools available. However, the only correct measuring tools are those which help a researcher in gauging results according to the objective of the research. The  questionnaire  developed from this design will then be valid.
  • Generalization:  The outcome of your design should apply to a population and not just a restricted sample . A generalized method implies that your survey can be conducted on any part of a population with similar accuracy.

The above factors affect how respondents answer the research questions, so they should balance all the above characteristics in a good design. If you want, you can also learn about Selection Bias through our blog.

Research Design Types

A researcher must clearly understand the various types to select which model to implement for a study. Like the research itself, the design of your analysis can be broadly classified into quantitative and qualitative.

Qualitative research

Qualitative research determines relationships between collected data and observations based on mathematical calculations. Statistical methods can prove or disprove theories related to a naturally existing phenomenon. Researchers rely on qualitative observation research methods that conclude “why” a particular theory exists and “what” respondents have to say about it.

Quantitative research

Quantitative research is for cases where statistical conclusions to collect actionable insights are essential. Numbers provide a better perspective for making critical business decisions. Quantitative research methods are necessary for the growth of any organization. Insights drawn from complex numerical data and analysis prove to be highly effective when making decisions about the business’s future.

Qualitative Research vs Quantitative Research

Here is a chart that highlights the major differences between qualitative and quantitative research:

Qualitative ResearchQuantitative Research
Focus on explaining and understanding experiences and perspectives.Focus on quantifying and measuring phenomena.
Use of non-numerical data, such as words, images, and observations.Use of numerical data, such as statistics and surveys.
Usually uses small sample sizes.Usually uses larger sample sizes.
Typically emphasizes in-depth exploration and interpretation.Typically emphasizes precision and objectivity.
Data analysis involves interpretation and narrative analysis.Data analysis involves statistical analysis and hypothesis testing.
Results are presented descriptively.Results are presented numerically and statistically.

In summary or analysis , the step of qualitative research is more exploratory and focuses on understanding the subjective experiences of individuals, while quantitative research is more focused on objective data and statistical analysis.

You can further break down the types of research design into five categories:

types of research design

1. Descriptive: In a descriptive composition, a researcher is solely interested in describing the situation or case under their research study. It is a theory-based design method created by gathering, analyzing, and presenting collected data. This allows a researcher to provide insights into the why and how of research. Descriptive design helps others better understand the need for the research. If the problem statement is not clear, you can conduct exploratory research. 

2. Experimental: Experimental research establishes a relationship between the cause and effect of a situation. It is a causal research design where one observes the impact caused by the independent variable on the dependent variable. For example, one monitors the influence of an independent variable such as a price on a dependent variable such as customer satisfaction or brand loyalty. It is an efficient research method as it contributes to solving a problem.

The independent variables are manipulated to monitor the change it has on the dependent variable. Social sciences often use it to observe human behavior by analyzing two groups. Researchers can have participants change their actions and study how the people around them react to understand social psychology better.

3. Correlational research: Correlational research  is a non-experimental research technique. It helps researchers establish a relationship between two closely connected variables. There is no assumption while evaluating a relationship between two other variables, and statistical analysis techniques calculate the relationship between them. This type of research requires two different groups.

A correlation coefficient determines the correlation between two variables whose values range between -1 and +1. If the correlation coefficient is towards +1, it indicates a positive relationship between the variables, and -1 means a negative relationship between the two variables. 

4. Diagnostic research: In diagnostic design, the researcher is looking to evaluate the underlying cause of a specific topic or phenomenon. This method helps one learn more about the factors that create troublesome situations. 

This design has three parts of the research:

  • Inception of the issue
  • Diagnosis of the issue
  • Solution for the issue

5. Explanatory research : Explanatory design uses a researcher’s ideas and thoughts on a subject to further explore their theories. The study explains unexplored aspects of a subject and details the research questions’ what, how, and why.

Benefits of Research Design

There are several benefits of having a well-designed research plan. Including:

  • Clarity of research objectives: Research design provides a clear understanding of the research objectives and the desired outcomes.
  • Increased validity and reliability: To ensure the validity and reliability of results, research design help to minimize the risk of bias and helps to control extraneous variables.
  • Improved data collection: Research design helps to ensure that the proper data is collected and data is collected systematically and consistently.
  • Better data analysis: Research design helps ensure that the collected data can be analyzed effectively, providing meaningful insights and conclusions.
  • Improved communication: A well-designed research helps ensure the results are clean and influential within the research team and external stakeholders.
  • Efficient use of resources: reducing the risk of waste and maximizing the impact of the research, research design helps to ensure that resources are used efficiently.

A well-designed research plan is essential for successful research, providing clear and meaningful insights and ensuring that resources are practical.

QuestionPro offers a comprehensive solution for researchers looking to conduct research. With its user-friendly interface, robust data collection and analysis tools, and the ability to integrate results from multiple sources, QuestionPro provides a versatile platform for designing and executing research projects.

Our robust suite of research tools provides you with all you need to derive research results. Our online survey platform includes custom point-and-click logic and advanced question types. Uncover the insights that matter the most.

FREE TRIAL         LEARN MORE

MORE LIKE THIS

The Item I Failed to Leave Behind — Tuesday CX Thoughts

The Item I Failed to Leave Behind — Tuesday CX Thoughts

Jun 25, 2024

feedback loop

Feedback Loop: What It Is, Types & How It Works?

Jun 21, 2024

make a research design

QuestionPro Thrive: A Space to Visualize & Share the Future of Technology

Jun 18, 2024

make a research design

Relationship NPS Fails to Understand Customer Experiences — Tuesday CX

Other categories.

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Tuesday CX Thoughts (TCXT)
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

Educational resources and simple solutions for your research journey

What is research design? Types, elements, and examples

What is Research Design? Understand Types of Research Design, with Examples

Have you been wondering “ what is research design ?” or “what are some research design examples ?” Are you unsure about the research design elements or which of the different types of research design best suit your study? Don’t worry! In this article, we’ve got you covered!   

Table of Contents

What is research design?  

Have you been wondering “ what is research design ?” or “what are some research design examples ?” Don’t worry! In this article, we’ve got you covered!  

A research design is the plan or framework used to conduct a research study. It involves outlining the overall approach and methods that will be used to collect and analyze data in order to answer research questions or test hypotheses. A well-designed research study should have a clear and well-defined research question, a detailed plan for collecting data, and a method for analyzing and interpreting the results. A well-thought-out research design addresses all these features.  

Research design elements  

Research design elements include the following:  

  • Clear purpose: The research question or hypothesis must be clearly defined and focused.  
  • Sampling: This includes decisions about sample size, sampling method, and criteria for inclusion or exclusion. The approach varies for different research design types .  
  • Data collection: This research design element involves the process of gathering data or information from the study participants or sources. It includes decisions about what data to collect, how to collect it, and the tools or instruments that will be used.  
  • Data analysis: All research design types require analysis and interpretation of the data collected. This research design element includes decisions about the statistical tests or methods that will be used to analyze the data, as well as any potential confounding variables or biases that may need to be addressed.  
  • Type of research methodology: This includes decisions about the overall approach for the study.  
  • Time frame: An important research design element is the time frame, which includes decisions about the duration of the study, the timeline for data collection and analysis, and follow-up periods.  
  • Ethical considerations: The research design must include decisions about ethical considerations such as informed consent, confidentiality, and participant protection.  
  • Resources: A good research design takes into account decisions about the budget, staffing, and other resources needed to carry out the study.  

The elements of research design should be carefully planned and executed to ensure the validity and reliability of the study findings. Let’s go deeper into the concepts of research design .    

make a research design

Characteristics of research design  

Some basic characteristics of research design are common to different research design types . These characteristics of research design are as follows:  

  • Neutrality : Right from the study assumptions to setting up the study, a neutral stance must be maintained, free of pre-conceived notions. The researcher’s expectations or beliefs should not color the findings or interpretation of the findings. Accordingly, a good research design should address potential sources of bias and confounding factors to be able to yield unbiased and neutral results.   
  •   Reliability : Reliability is one of the characteristics of research design that refers to consistency in measurement over repeated measures and fewer random errors. A reliable research design must allow for results to be consistent, with few errors due to chance.   
  •   Validity : Validity refers to the minimization of nonrandom (systematic) errors. A good research design must employ measurement tools that ensure validity of the results.  
  •   Generalizability: The outcome of the research design should be applicable to a larger population and not just a small sample . A generalized method means the study can be conducted on any part of a population with similar accuracy.   
  •   Flexibility: A research design should allow for changes to be made to the research plan as needed, based on the data collected and the outcomes of the study  

A well-planned research design is critical for conducting a scientifically rigorous study that will generate neutral, reliable, valid, and generalizable results. At the same time, it should allow some level of flexibility.  

Different types of research design  

A research design is essential to systematically investigate, understand, and interpret phenomena of interest. Let’s look at different types of research design and research design examples .  

Broadly, research design types can be divided into qualitative and quantitative research.  

Qualitative research is subjective and exploratory. It determines relationships between collected data and observations. It is usually carried out through interviews with open-ended questions, observations that are described in words, etc.  

Quantitative research is objective and employs statistical approaches. It establishes the cause-and-effect relationship among variables using different statistical and computational methods. This type of research is usually done using surveys and experiments.  

Qualitative research vs. Quantitative research  

   
Deals with subjective aspects, e.g., experiences, beliefs, perspectives, and concepts.  Measures different types of variables and describes frequencies, averages, correlations, etc. 
Deals with non-numerical data, such as words, images, and observations.  Tests hypotheses about relationships between variables. Results are presented numerically and statistically. 
In qualitative research design, data are collected via direct observations, interviews, focus groups, and naturally occurring data. Methods for conducting qualitative research are grounded theory, thematic analysis, and discourse analysis. 

 

Quantitative research design is empirical. Data collection methods involved are experiments, surveys, and observations expressed in numbers. The research design categories under this are descriptive, experimental, correlational, diagnostic, and explanatory. 
Data analysis involves interpretation and narrative analysis.  Data analysis involves statistical analysis and hypothesis testing. 
The reasoning used to synthesize data is inductive. 

 

The reasoning used to synthesize data is deductive. 

 

Typically used in fields such as sociology, linguistics, and anthropology.  Typically used in fields such as economics, ecology, statistics, and medicine. 
Example: Focus group discussions with women farmers about climate change perception. 

 

Example: Testing the effectiveness of a new treatment for insomnia. 

Qualitative research design types and qualitative research design examples  

The following will familiarize you with the research design categories in qualitative research:  

  • Grounded theory: This design is used to investigate research questions that have not previously been studied in depth. Also referred to as exploratory design , it creates sequential guidelines, offers strategies for inquiry, and makes data collection and analysis more efficient in qualitative research.   

Example: A researcher wants to study how people adopt a certain app. The researcher collects data through interviews and then analyzes the data to look for patterns. These patterns are used to develop a theory about how people adopt that app.  

  •   Thematic analysis: This design is used to compare the data collected in past research to find similar themes in qualitative research.  

Example: A researcher examines an interview transcript to identify common themes, say, topics or patterns emerging repeatedly.  

  • Discourse analysis : This research design deals with language or social contexts used in data gathering in qualitative research.   

Example: Identifying ideological frameworks and viewpoints of writers of a series of policies.  

Quantitative research design types and quantitative research design examples  

Note the following research design categories in quantitative research:  

  • Descriptive research design : This quantitative research design is applied where the aim is to identify characteristics, frequencies, trends, and categories. It may not often begin with a hypothesis. The basis of this research type is a description of an identified variable. This research design type describes the “what,” “when,” “where,” or “how” of phenomena (but not the “why”).   

Example: A study on the different income levels of people who use nutritional supplements regularly.  

  • Correlational research design : Correlation reflects the strength and/or direction of the relationship among variables. The direction of a correlation can be positive or negative. Correlational research design helps researchers establish a relationship between two variables without the researcher controlling any of them.  

Example : An example of correlational research design could be studying the correlation between time spent watching crime shows and aggressive behavior in teenagers.  

  •   Diagnostic research design : In diagnostic design, the researcher aims to understand the underlying cause of a specific topic or phenomenon (usually an area of improvement) and find the most effective solution. In simpler terms, a researcher seeks an accurate “diagnosis” of a problem and identifies a solution.  

Example : A researcher analyzing customer feedback and reviews to identify areas where an app can be improved.    

  • Explanatory research design : In explanatory research design , a researcher uses their ideas and thoughts on a topic to explore their theories in more depth. This design is used to explore a phenomenon when limited information is available. It can help increase current understanding of unexplored aspects of a subject. It is thus a kind of “starting point” for future research.  

Example : Formulating hypotheses to guide future studies on delaying school start times for better mental health in teenagers.  

  •   Causal research design : This can be considered a type of explanatory research. Causal research design seeks to define a cause and effect in its data. The researcher does not use a randomly chosen control group but naturally or pre-existing groupings. Importantly, the researcher does not manipulate the independent variable.   

Example : Comparing school dropout levels and possible bullying events.  

  •   Experimental research design : This research design is used to study causal relationships . One or more independent variables are manipulated, and their effect on one or more dependent variables is measured.  

Example: Determining the efficacy of a new vaccine plan for influenza.  

Benefits of research design  

 T here are numerous benefits of research design . These are as follows:  

  • Clear direction: Among the benefits of research design , the main one is providing direction to the research and guiding the choice of clear objectives, which help the researcher to focus on the specific research questions or hypotheses they want to investigate.  
  • Control: Through a proper research design , researchers can control variables, identify potential confounding factors, and use randomization to minimize bias and increase the reliability of their findings.
  • Replication: Research designs provide the opportunity for replication. This helps to confirm the findings of a study and ensures that the results are not due to chance or other factors. Thus, a well-chosen research design also eliminates bias and errors.  
  • Validity: A research design ensures the validity of the research, i.e., whether the results truly reflect the phenomenon being investigated.  
  • Reliability: Benefits of research design also include reducing inaccuracies and ensuring the reliability of the research (i.e., consistency of the research results over time, across different samples, and under different conditions).  
  • Efficiency: A strong research design helps increase the efficiency of the research process. Researchers can use a variety of designs to investigate their research questions, choose the most appropriate research design for their study, and use statistical analysis to make the most of their data. By effectively describing the data necessary for an adequate test of the hypotheses and explaining how such data will be obtained, research design saves a researcher’s time.   

Overall, an appropriately chosen and executed research design helps researchers to conduct high-quality research, draw meaningful conclusions, and contribute to the advancement of knowledge in their field.

make a research design

Frequently Asked Questions (FAQ) on Research Design

Q: What are th e main types of research design?

Broadly speaking there are two basic types of research design –

qualitative and quantitative research. Qualitative research is subjective and exploratory; it determines relationships between collected data and observations. It is usually carried out through interviews with open-ended questions, observations that are described in words, etc. Quantitative research , on the other hand, is more objective and employs statistical approaches. It establishes the cause-and-effect relationship among variables using different statistical and computational methods. This type of research design is usually done using surveys and experiments.

Q: How do I choose the appropriate research design for my study?

Choosing the appropriate research design for your study requires careful consideration of various factors. Start by clarifying your research objectives and the type of data you need to collect. Determine whether your study is exploratory, descriptive, or experimental in nature. Consider the availability of resources, time constraints, and the feasibility of implementing the different research designs. Review existing literature to identify similar studies and their research designs, which can serve as a guide. Ultimately, the chosen research design should align with your research questions, provide the necessary data to answer them, and be feasible given your own specific requirements/constraints.

Q: Can research design be modified during the course of a study?

Yes, research design can be modified during the course of a study based on emerging insights, practical constraints, or unforeseen circumstances. Research is an iterative process and, as new data is collected and analyzed, it may become necessary to adjust or refine the research design. However, any modifications should be made judiciously and with careful consideration of their impact on the study’s integrity and validity. It is advisable to document any changes made to the research design, along with a clear rationale for the modifications, in order to maintain transparency and allow for proper interpretation of the results.

Q: How can I ensure the validity and reliability of my research design?

Validity refers to the accuracy and meaningfulness of your study’s findings, while reliability relates to the consistency and stability of the measurements or observations. To enhance validity, carefully define your research variables, use established measurement scales or protocols, and collect data through appropriate methods. Consider conducting a pilot study to identify and address any potential issues before full implementation. To enhance reliability, use standardized procedures, conduct inter-rater or test-retest reliability checks, and employ appropriate statistical techniques for data analysis. It is also essential to document and report your methodology clearly, allowing for replication and scrutiny by other researchers.

Researcher.Life is a subscription-based platform that unifies the best AI tools and services designed to speed up, simplify, and streamline every step of a researcher’s journey. The Researcher.Life All Access Pack is a one-of-a-kind subscription that unlocks full access to an AI writing assistant, literature recommender, journal finder, scientific illustration tool, and exclusive discounts on professional publication services from Editage.  

Based on 21+ years of experience in academia, Researcher.Life All Access empowers researchers to put their best research forward and move closer to success. Explore our top AI Tools pack, AI Tools + Publication Services pack, or Build Your Own Plan. Find everything a researcher needs to succeed, all in one place –  Get All Access now starting at just $17 a month !    

Related Posts

thesis defense

Thesis Defense: How to Ace this Crucial Step

independent publishing

What is Independent Publishing in Academia?

Ohio State nav bar

The Ohio State University

  • BuckeyeLink
  • Find People
  • Search Ohio State

Basic Research Design

What is research design.

  • Definition of Research Design : A procedure for generating answers to questions, crucial in determining the reliability and relevance of research outcomes.
  • Importance of Strong Designs : Strong designs lead to answers that are accurate and close to their targets, while weak designs may result in misleading or irrelevant outcomes.
  • Criteria for Assessing Design Strength : Evaluating a design’s strength involves understanding the research question and how the design will yield reliable empirical information.

The Four Elements of Research Design (Blair et al., 2023)

make a research design

  • The MIDA Framework : Research designs consist of four interconnected elements – Model (M), Inquiry (I), Data strategy (D), and Answer strategy (A), collectively referred to as MIDA.
  • Theoretical Side (M and I): This encompasses the researcher’s beliefs about the world (Model) and the target of inference or the primary question to be answered (Inquiry).
  • Empirical Side (D and A): This includes the strategies for collecting (Data strategy) and analyzing or summarizing information (Answer strategy).
  • Interplay between Theoretical and Empirical Sides : The theoretical side sets the research challenges, while the empirical side represents the researcher’s responses to these challenges.
  • Relation among MIDA Components: The diagram above shows how the four elements of a design are interconnected and how they relate to both real-world and simulated quantities.
  • Parallelism in Design Representation: The illustration highlights two key parallelisms in research design – between actual and simulated processes, and between the theoretical (M, I) and empirical (D, A) sides.
  • Importance of Simulated Processes: The parallelism between actual and simulated processes is crucial for understanding and evaluating research designs.
  • Balancing Theoretical and Empirical Aspects : Effective research design requires a balance between theoretical considerations (models and inquiries) and empirical methodologies (data and answer strategies).

Research Design Principles (Blair et al., 2023)

  • Integration of Components: Designs are effective not merely due to their individual components but how these components work together.
  • Focus on Entire Design: Assessing a design requires examining how each part, such as the question, estimator, and sampling method, fits into the overall design.
  • Importance of Diagnosis: The evaluation of a design’s strength lies in diagnosing the whole design, not just its parts.
  • Strong Design Characteristics: Designs with parallel theoretical and empirical aspects tend to be stronger.
  • The M:I:D:A Analogy: Effective designs often align data strategies with models and answer strategies with inquiries.
  • Flexibility in Models: Good designs should perform well even under varying world scenarios, not just under expected conditions.
  • Broadening Model Scope: Designers should consider a wide range of models, assessing the design’s effectiveness across these.
  • Robustness of Inquiries and Strategies: Inquiries should yield answers and strategies should be applicable regardless of variations in real-world events.
  • Diagnosis Across Models: It’s important to understand for which models a design excels and for which it falters.
  • Specificity of Purpose: A design is deemed good when it aligns with a specific purpose or goal.
  • Balancing Multiple Criteria: Designs should balance scientific precision, logistical constraints, policy goals, and ethical considerations.
  • Diverse Goals and Assessments: Different designs may be optimal for different goals; the purpose dictates the design evaluation.
  • Early Planning Benefits: Designing early allows for learning and improving design properties before data collection.
  • Avoiding Post-Hoc Regrets: Early design helps avoid regrets related to data collection or question formulation.
  • Iterative Improvement: The process of declaration, diagnosis, and redesign improves designs, ideally done before data collection.
  • Adaptability to Changes: Designs should be flexible to adapt to unforeseen circumstances or new information.
  • Expanding or Contracting Feasibility: The scope of feasible designs may change due to various practical factors.
  • Continual Redesign: The principle advocates for ongoing design modification, even post research completion, for robustness and response to criticism.
  • Improvement Through Sharing: Sharing designs via a formalized declaration makes it easier for others to understand and critique.
  • Enhancing Scientific Communication: Well-documented designs facilitate better communication and justification of research decisions.
  • Building a Design Library: The idea is to contribute designs to a shared library, allowing others to learn from and build upon existing work.

The Basics of Social Science Research Designs (Panke, 2018)

Deductive and inductive research.

make a research design

  • Starting Point: Begins with empirical observations or exploratory studies.
  • Development of Hypotheses: Hypotheses are formulated after initial empirical analysis.
  • Case Study Analysis: Involves conducting explorative case studies and analyzing dynamics at play.
  • Generalization of Findings: Insights are then generalized across multiple cases to verify their applicability.
  • Application: Suitable for novel phenomena or where existing theories are not easily applicable.
  • Example Cases: Exploring new events like Donald Trump’s 2016 nomination or Russia’s annexation of Crimea in 2014.
  • Theory-Based: Starts with existing theories to develop scientific answers to research questions.
  • Hypothesis Development: Hypotheses are specified and then empirically examined.
  • Empirical Examination: Involves a thorough empirical analysis of hypotheses using sound methods.
  • Theory Refinement: Results can refine existing theories or contribute to new theoretical insights.
  • Application: Preferred when existing theories relate to the research question.
  • Example Projects: Usually explanatory projects asking ‘why’ questions to uncover relationships.

Explanatory and Interpretative Research Designs

make a research design

  • Definition: Explanatory research aims to explain the relationships between variables, often addressing ‘why’ questions. It is primarily concerned with identifying cause-and-effect dynamics and is typically quantitative in nature. The goal is to test hypotheses derived from theories and to establish patterns that can predict future occurrences.
  • Definition: Interpretative research focuses on understanding the deeper meaning or underlying context of social phenomena. It often addresses ‘how is this possible’ questions, seeking to comprehend how certain outcomes or behaviors are produced within specific contexts. This type of research is usually qualitative and prioritizes individual experiences and perceptions.
  • Explanatory Research: Poses ‘why’ questions to explore causal relationships and understand what factors influence certain outcomes.
  • Interpretative Research: Asks ‘how is this possible’ questions to delve into the processes and meanings behind social phenomena.
  • Explanatory Research: Relies on established theories to form hypotheses about causal relationships between variables. These theories are then tested through empirical research.
  • Interpretative Research: Uses theories to provide a framework for understanding the social context and meanings. The focus is on constitutive relationships rather than causal ones.
  • Explanatory Research: Often involves studying multiple cases to allow for comparison and generalization. It seeks patterns across different scenarios.
  • Interpretative Research: Typically concentrates on single case studies, providing an in-depth understanding of that particular case without necessarily aiming for generalization.
  • Explanatory Research: Aims to produce findings that can be generalized to other similar cases or populations. It seeks universal or broad patterns.
  • Interpretative Research: Offers detailed insights specific to a single case or context. These findings are not necessarily intended to be generalized but to provide a deep understanding of the particular case.

Qualitative, Quantitative, and Mixed-method Projects

  • Definition: Qualitative research is exploratory and aims to understand human behavior, beliefs, feelings, and experiences. It involves collecting non-numerical data, often through interviews, focus groups, or textual analysis. This method is ideal for gaining in-depth insights into specific phenomena.
  • Example in Education: A qualitative study might involve conducting in-depth interviews with teachers to explore their experiences and challenges with remote teaching during the pandemic. This research would aim to understand the nuances of their experiences, challenges, and adaptations in a detailed and descriptive manner.
  • Definition: Quantitative research seeks to quantify data and generalize results from a sample to the population of interest. It involves measurable, numerical data and often uses statistical methods for analysis. This approach is suitable for testing hypotheses or examining relationships between variables.
  • Example in Education: A quantitative study could involve surveying a large number of students to determine the correlation between the amount of time spent on homework and their academic achievement. This would involve collecting numerical data (hours of homework, grades) and applying statistical analysis to examine relationships or differences.
  • Definition: Mixed-method research combines both qualitative and quantitative approaches, providing a more comprehensive understanding of the research problem. It allows for the exploration of complex research questions by integrating numerical data analysis with detailed narrative data.
  • Example in Education: A mixed-method study might investigate the impact of a new teaching method. The research could start with quantitative methods, like administering standardized tests to measure learning outcomes, followed by qualitative methods, such as conducting focus groups with students and teachers to understand their perceptions and experiences with the new teaching method. This combination provides both statistical results and in-depth understanding.
  • Research Questions: What kind of information is needed to answer the questions? Qualitative for “how” and “why”, quantitative for “how many” or “how much”, and mixed methods for a comprehensive understanding of both the breadth and depth of a phenomenon.
  • Nature of the Study: Is the study aiming to explore a new area (qualitative), confirm hypotheses (quantitative), or achieve both (mixed-method)?
  • Resources Available: Time, funding, and expertise available can influence the choice. Qualitative research can be more time-consuming, while quantitative research may require specific statistical skills.
  • Data Sources: Availability and type of data also guide the methodology. Existing numerical data might lean towards quantitative, while studies requiring personal experiences or opinions might be qualitative.

References:

Blair, G., Coppock, A., & Humphreys, M. (2023).  Research Design in the Social Sciences: Declaration, Diagnosis, and Redesign . Princeton University Press.

Panke, D. (2018). Research design & method selection: Making good choices in the social sciences.  Research Design & Method Selection , 1-368.

  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • Types of Research Designs
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

Introduction

Before beginning your paper, you need to decide how you plan to design the study .

The research design refers to the overall strategy and analytical approach that you have chosen in order to integrate, in a coherent and logical way, the different components of the study, thus ensuring that the research problem will be thoroughly investigated. It constitutes the blueprint for the collection, measurement, and interpretation of information and data. Note that the research problem determines the type of design you choose, not the other way around!

De Vaus, D. A. Research Design in Social Research . London: SAGE, 2001; Trochim, William M.K. Research Methods Knowledge Base. 2006.

General Structure and Writing Style

The function of a research design is to ensure that the evidence obtained enables you to effectively address the research problem logically and as unambiguously as possible . In social sciences research, obtaining information relevant to the research problem generally entails specifying the type of evidence needed to test the underlying assumptions of a theory, to evaluate a program, or to accurately describe and assess meaning related to an observable phenomenon.

With this in mind, a common mistake made by researchers is that they begin their investigations before they have thought critically about what information is required to address the research problem. Without attending to these design issues beforehand, the overall research problem will not be adequately addressed and any conclusions drawn will run the risk of being weak and unconvincing. As a consequence, the overall validity of the study will be undermined.

The length and complexity of describing the research design in your paper can vary considerably, but any well-developed description will achieve the following :

  • Identify the research problem clearly and justify its selection, particularly in relation to any valid alternative designs that could have been used,
  • Review and synthesize previously published literature associated with the research problem,
  • Clearly and explicitly specify hypotheses [i.e., research questions] central to the problem,
  • Effectively describe the information and/or data which will be necessary for an adequate testing of the hypotheses and explain how such information and/or data will be obtained, and
  • Describe the methods of analysis to be applied to the data in determining whether or not the hypotheses are true or false.

The research design is usually incorporated into the introduction of your paper . You can obtain an overall sense of what to do by reviewing studies that have utilized the same research design [e.g., using a case study approach]. This can help you develop an outline to follow for your own paper.

NOTE: Use the SAGE Research Methods Online and Cases and the SAGE Research Methods Videos databases to search for scholarly resources on how to apply specific research designs and methods . The Research Methods Online database contains links to more than 175,000 pages of SAGE publisher's book, journal, and reference content on quantitative, qualitative, and mixed research methodologies. Also included is a collection of case studies of social research projects that can be used to help you better understand abstract or complex methodological concepts. The Research Methods Videos database contains hours of tutorials, interviews, video case studies, and mini-documentaries covering the entire research process.

Creswell, John W. and J. David Creswell. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches . 5th edition. Thousand Oaks, CA: Sage, 2018; De Vaus, D. A. Research Design in Social Research . London: SAGE, 2001; Gorard, Stephen. Research Design: Creating Robust Approaches for the Social Sciences . Thousand Oaks, CA: Sage, 2013; Leedy, Paul D. and Jeanne Ellis Ormrod. Practical Research: Planning and Design . Tenth edition. Boston, MA: Pearson, 2013; Vogt, W. Paul, Dianna C. Gardner, and Lynne M. Haeffele. When to Use What Research Design . New York: Guilford, 2012.

Action Research Design

Definition and Purpose

The essentials of action research design follow a characteristic cycle whereby initially an exploratory stance is adopted, where an understanding of a problem is developed and plans are made for some form of interventionary strategy. Then the intervention is carried out [the "action" in action research] during which time, pertinent observations are collected in various forms. The new interventional strategies are carried out, and this cyclic process repeats, continuing until a sufficient understanding of [or a valid implementation solution for] the problem is achieved. The protocol is iterative or cyclical in nature and is intended to foster deeper understanding of a given situation, starting with conceptualizing and particularizing the problem and moving through several interventions and evaluations.

What do these studies tell you ?

  • This is a collaborative and adaptive research design that lends itself to use in work or community situations.
  • Design focuses on pragmatic and solution-driven research outcomes rather than testing theories.
  • When practitioners use action research, it has the potential to increase the amount they learn consciously from their experience; the action research cycle can be regarded as a learning cycle.
  • Action research studies often have direct and obvious relevance to improving practice and advocating for change.
  • There are no hidden controls or preemption of direction by the researcher.

What these studies don't tell you ?

  • It is harder to do than conducting conventional research because the researcher takes on responsibilities of advocating for change as well as for researching the topic.
  • Action research is much harder to write up because it is less likely that you can use a standard format to report your findings effectively [i.e., data is often in the form of stories or observation].
  • Personal over-involvement of the researcher may bias research results.
  • The cyclic nature of action research to achieve its twin outcomes of action [e.g. change] and research [e.g. understanding] is time-consuming and complex to conduct.
  • Advocating for change usually requires buy-in from study participants.

Coghlan, David and Mary Brydon-Miller. The Sage Encyclopedia of Action Research . Thousand Oaks, CA:  Sage, 2014; Efron, Sara Efrat and Ruth Ravid. Action Research in Education: A Practical Guide . New York: Guilford, 2013; Gall, Meredith. Educational Research: An Introduction . Chapter 18, Action Research. 8th ed. Boston, MA: Pearson/Allyn and Bacon, 2007; Gorard, Stephen. Research Design: Creating Robust Approaches for the Social Sciences . Thousand Oaks, CA: Sage, 2013; Kemmis, Stephen and Robin McTaggart. “Participatory Action Research.” In Handbook of Qualitative Research . Norman Denzin and Yvonna S. Lincoln, eds. 2nd ed. (Thousand Oaks, CA: SAGE, 2000), pp. 567-605; McNiff, Jean. Writing and Doing Action Research . London: Sage, 2014; Reason, Peter and Hilary Bradbury. Handbook of Action Research: Participative Inquiry and Practice . Thousand Oaks, CA: SAGE, 2001.

Case Study Design

A case study is an in-depth study of a particular research problem rather than a sweeping statistical survey or comprehensive comparative inquiry. It is often used to narrow down a very broad field of research into one or a few easily researchable examples. The case study research design is also useful for testing whether a specific theory and model actually applies to phenomena in the real world. It is a useful design when not much is known about an issue or phenomenon.

  • Approach excels at bringing us to an understanding of a complex issue through detailed contextual analysis of a limited number of events or conditions and their relationships.
  • A researcher using a case study design can apply a variety of methodologies and rely on a variety of sources to investigate a research problem.
  • Design can extend experience or add strength to what is already known through previous research.
  • Social scientists, in particular, make wide use of this research design to examine contemporary real-life situations and provide the basis for the application of concepts and theories and the extension of methodologies.
  • The design can provide detailed descriptions of specific and rare cases.
  • A single or small number of cases offers little basis for establishing reliability or to generalize the findings to a wider population of people, places, or things.
  • Intense exposure to the study of a case may bias a researcher's interpretation of the findings.
  • Design does not facilitate assessment of cause and effect relationships.
  • Vital information may be missing, making the case hard to interpret.
  • The case may not be representative or typical of the larger problem being investigated.
  • If the criteria for selecting a case is because it represents a very unusual or unique phenomenon or problem for study, then your interpretation of the findings can only apply to that particular case.

Case Studies. Writing@CSU. Colorado State University; Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 4, Flexible Methods: Case Study Design. 2nd ed. New York: Columbia University Press, 1999; Gerring, John. “What Is a Case Study and What Is It Good for?” American Political Science Review 98 (May 2004): 341-354; Greenhalgh, Trisha, editor. Case Study Evaluation: Past, Present and Future Challenges . Bingley, UK: Emerald Group Publishing, 2015; Mills, Albert J. , Gabrielle Durepos, and Eiden Wiebe, editors. Encyclopedia of Case Study Research . Thousand Oaks, CA: SAGE Publications, 2010; Stake, Robert E. The Art of Case Study Research . Thousand Oaks, CA: SAGE, 1995; Yin, Robert K. Case Study Research: Design and Theory . Applied Social Research Methods Series, no. 5. 3rd ed. Thousand Oaks, CA: SAGE, 2003.

Causal Design

Causality studies may be thought of as understanding a phenomenon in terms of conditional statements in the form, “If X, then Y.” This type of research is used to measure what impact a specific change will have on existing norms and assumptions. Most social scientists seek causal explanations that reflect tests of hypotheses. Causal effect (nomothetic perspective) occurs when variation in one phenomenon, an independent variable, leads to or results, on average, in variation in another phenomenon, the dependent variable.

Conditions necessary for determining causality:

  • Empirical association -- a valid conclusion is based on finding an association between the independent variable and the dependent variable.
  • Appropriate time order -- to conclude that causation was involved, one must see that cases were exposed to variation in the independent variable before variation in the dependent variable.
  • Nonspuriousness -- a relationship between two variables that is not due to variation in a third variable.
  • Causality research designs assist researchers in understanding why the world works the way it does through the process of proving a causal link between variables and by the process of eliminating other possibilities.
  • Replication is possible.
  • There is greater confidence the study has internal validity due to the systematic subject selection and equity of groups being compared.
  • Not all relationships are causal! The possibility always exists that, by sheer coincidence, two unrelated events appear to be related [e.g., Punxatawney Phil could accurately predict the duration of Winter for five consecutive years but, the fact remains, he's just a big, furry rodent].
  • Conclusions about causal relationships are difficult to determine due to a variety of extraneous and confounding variables that exist in a social environment. This means causality can only be inferred, never proven.
  • If two variables are correlated, the cause must come before the effect. However, even though two variables might be causally related, it can sometimes be difficult to determine which variable comes first and, therefore, to establish which variable is the actual cause and which is the  actual effect.

Beach, Derek and Rasmus Brun Pedersen. Causal Case Study Methods: Foundations and Guidelines for Comparing, Matching, and Tracing . Ann Arbor, MI: University of Michigan Press, 2016; Bachman, Ronet. The Practice of Research in Criminology and Criminal Justice . Chapter 5, Causation and Research Designs. 3rd ed. Thousand Oaks, CA: Pine Forge Press, 2007; Brewer, Ernest W. and Jennifer Kubn. “Causal-Comparative Design.” In Encyclopedia of Research Design . Neil J. Salkind, editor. (Thousand Oaks, CA: Sage, 2010), pp. 125-132; Causal Research Design: Experimentation. Anonymous SlideShare Presentation; Gall, Meredith. Educational Research: An Introduction . Chapter 11, Nonexperimental Research: Correlational Designs. 8th ed. Boston, MA: Pearson/Allyn and Bacon, 2007; Trochim, William M.K. Research Methods Knowledge Base. 2006.

Cohort Design

Often used in the medical sciences, but also found in the applied social sciences, a cohort study generally refers to a study conducted over a period of time involving members of a population which the subject or representative member comes from, and who are united by some commonality or similarity. Using a quantitative framework, a cohort study makes note of statistical occurrence within a specialized subgroup, united by same or similar characteristics that are relevant to the research problem being investigated, rather than studying statistical occurrence within the general population. Using a qualitative framework, cohort studies generally gather data using methods of observation. Cohorts can be either "open" or "closed."

  • Open Cohort Studies [dynamic populations, such as the population of Los Angeles] involve a population that is defined just by the state of being a part of the study in question (and being monitored for the outcome). Date of entry and exit from the study is individually defined, therefore, the size of the study population is not constant. In open cohort studies, researchers can only calculate rate based data, such as, incidence rates and variants thereof.
  • Closed Cohort Studies [static populations, such as patients entered into a clinical trial] involve participants who enter into the study at one defining point in time and where it is presumed that no new participants can enter the cohort. Given this, the number of study participants remains constant (or can only decrease).
  • The use of cohorts is often mandatory because a randomized control study may be unethical. For example, you cannot deliberately expose people to asbestos, you can only study its effects on those who have already been exposed. Research that measures risk factors often relies upon cohort designs.
  • Because cohort studies measure potential causes before the outcome has occurred, they can demonstrate that these “causes” preceded the outcome, thereby avoiding the debate as to which is the cause and which is the effect.
  • Cohort analysis is highly flexible and can provide insight into effects over time and related to a variety of different types of changes [e.g., social, cultural, political, economic, etc.].
  • Either original data or secondary data can be used in this design.
  • In cases where a comparative analysis of two cohorts is made [e.g., studying the effects of one group exposed to asbestos and one that has not], a researcher cannot control for all other factors that might differ between the two groups. These factors are known as confounding variables.
  • Cohort studies can end up taking a long time to complete if the researcher must wait for the conditions of interest to develop within the group. This also increases the chance that key variables change during the course of the study, potentially impacting the validity of the findings.
  • Due to the lack of randominization in the cohort design, its external validity is lower than that of study designs where the researcher randomly assigns participants.

Healy P, Devane D. “Methodological Considerations in Cohort Study Designs.” Nurse Researcher 18 (2011): 32-36; Glenn, Norval D, editor. Cohort Analysis . 2nd edition. Thousand Oaks, CA: Sage, 2005; Levin, Kate Ann. Study Design IV: Cohort Studies. Evidence-Based Dentistry 7 (2003): 51–52; Payne, Geoff. “Cohort Study.” In The SAGE Dictionary of Social Research Methods . Victor Jupp, editor. (Thousand Oaks, CA: Sage, 2006), pp. 31-33; Study Design 101. Himmelfarb Health Sciences Library. George Washington University, November 2011; Cohort Study. Wikipedia.

Cross-Sectional Design

Cross-sectional research designs have three distinctive features: no time dimension; a reliance on existing differences rather than change following intervention; and, groups are selected based on existing differences rather than random allocation. The cross-sectional design can only measure differences between or from among a variety of people, subjects, or phenomena rather than a process of change. As such, researchers using this design can only employ a relatively passive approach to making causal inferences based on findings.

  • Cross-sectional studies provide a clear 'snapshot' of the outcome and the characteristics associated with it, at a specific point in time.
  • Unlike an experimental design, where there is an active intervention by the researcher to produce and measure change or to create differences, cross-sectional designs focus on studying and drawing inferences from existing differences between people, subjects, or phenomena.
  • Entails collecting data at and concerning one point in time. While longitudinal studies involve taking multiple measures over an extended period of time, cross-sectional research is focused on finding relationships between variables at one moment in time.
  • Groups identified for study are purposely selected based upon existing differences in the sample rather than seeking random sampling.
  • Cross-section studies are capable of using data from a large number of subjects and, unlike observational studies, is not geographically bound.
  • Can estimate prevalence of an outcome of interest because the sample is usually taken from the whole population.
  • Because cross-sectional designs generally use survey techniques to gather data, they are relatively inexpensive and take up little time to conduct.
  • Finding people, subjects, or phenomena to study that are very similar except in one specific variable can be difficult.
  • Results are static and time bound and, therefore, give no indication of a sequence of events or reveal historical or temporal contexts.
  • Studies cannot be utilized to establish cause and effect relationships.
  • This design only provides a snapshot of analysis so there is always the possibility that a study could have differing results if another time-frame had been chosen.
  • There is no follow up to the findings.

Bethlehem, Jelke. "7: Cross-sectional Research." In Research Methodology in the Social, Behavioural and Life Sciences . Herman J Adèr and Gideon J Mellenbergh, editors. (London, England: Sage, 1999), pp. 110-43; Bourque, Linda B. “Cross-Sectional Design.” In  The SAGE Encyclopedia of Social Science Research Methods . Michael S. Lewis-Beck, Alan Bryman, and Tim Futing Liao. (Thousand Oaks, CA: 2004), pp. 230-231; Hall, John. “Cross-Sectional Survey Design.” In Encyclopedia of Survey Research Methods . Paul J. Lavrakas, ed. (Thousand Oaks, CA: Sage, 2008), pp. 173-174; Helen Barratt, Maria Kirwan. Cross-Sectional Studies: Design Application, Strengths and Weaknesses of Cross-Sectional Studies. Healthknowledge, 2009. Cross-Sectional Study. Wikipedia.

Descriptive Design

Descriptive research designs help provide answers to the questions of who, what, when, where, and how associated with a particular research problem; a descriptive study cannot conclusively ascertain answers to why. Descriptive research is used to obtain information concerning the current status of the phenomena and to describe "what exists" with respect to variables or conditions in a situation.

  • The subject is being observed in a completely natural and unchanged natural environment. True experiments, whilst giving analyzable data, often adversely influence the normal behavior of the subject [a.k.a., the Heisenberg effect whereby measurements of certain systems cannot be made without affecting the systems].
  • Descriptive research is often used as a pre-cursor to more quantitative research designs with the general overview giving some valuable pointers as to what variables are worth testing quantitatively.
  • If the limitations are understood, they can be a useful tool in developing a more focused study.
  • Descriptive studies can yield rich data that lead to important recommendations in practice.
  • Appoach collects a large amount of data for detailed analysis.
  • The results from a descriptive research cannot be used to discover a definitive answer or to disprove a hypothesis.
  • Because descriptive designs often utilize observational methods [as opposed to quantitative methods], the results cannot be replicated.
  • The descriptive function of research is heavily dependent on instrumentation for measurement and observation.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 5, Flexible Methods: Descriptive Research. 2nd ed. New York: Columbia University Press, 1999; Given, Lisa M. "Descriptive Research." In Encyclopedia of Measurement and Statistics . Neil J. Salkind and Kristin Rasmussen, editors. (Thousand Oaks, CA: Sage, 2007), pp. 251-254; McNabb, Connie. Descriptive Research Methodologies. Powerpoint Presentation; Shuttleworth, Martyn. Descriptive Research Design, September 26, 2008; Erickson, G. Scott. "Descriptive Research Design." In New Methods of Market Research and Analysis . (Northampton, MA: Edward Elgar Publishing, 2017), pp. 51-77; Sahin, Sagufta, and Jayanta Mete. "A Brief Study on Descriptive Research: Its Nature and Application in Social Science." International Journal of Research and Analysis in Humanities 1 (2021): 11; K. Swatzell and P. Jennings. “Descriptive Research: The Nuts and Bolts.” Journal of the American Academy of Physician Assistants 20 (2007), pp. 55-56; Kane, E. Doing Your Own Research: Basic Descriptive Research in the Social Sciences and Humanities . London: Marion Boyars, 1985.

Experimental Design

A blueprint of the procedure that enables the researcher to maintain control over all factors that may affect the result of an experiment. In doing this, the researcher attempts to determine or predict what may occur. Experimental research is often used where there is time priority in a causal relationship (cause precedes effect), there is consistency in a causal relationship (a cause will always lead to the same effect), and the magnitude of the correlation is great. The classic experimental design specifies an experimental group and a control group. The independent variable is administered to the experimental group and not to the control group, and both groups are measured on the same dependent variable. Subsequent experimental designs have used more groups and more measurements over longer periods. True experiments must have control, randomization, and manipulation.

  • Experimental research allows the researcher to control the situation. In so doing, it allows researchers to answer the question, “What causes something to occur?”
  • Permits the researcher to identify cause and effect relationships between variables and to distinguish placebo effects from treatment effects.
  • Experimental research designs support the ability to limit alternative explanations and to infer direct causal relationships in the study.
  • Approach provides the highest level of evidence for single studies.
  • The design is artificial, and results may not generalize well to the real world.
  • The artificial settings of experiments may alter the behaviors or responses of participants.
  • Experimental designs can be costly if special equipment or facilities are needed.
  • Some research problems cannot be studied using an experiment because of ethical or technical reasons.
  • Difficult to apply ethnographic and other qualitative methods to experimentally designed studies.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 7, Flexible Methods: Experimental Research. 2nd ed. New York: Columbia University Press, 1999; Chapter 2: Research Design, Experimental Designs. School of Psychology, University of New England, 2000; Chow, Siu L. "Experimental Design." In Encyclopedia of Research Design . Neil J. Salkind, editor. (Thousand Oaks, CA: Sage, 2010), pp. 448-453; "Experimental Design." In Social Research Methods . Nicholas Walliman, editor. (London, England: Sage, 2006), pp, 101-110; Experimental Research. Research Methods by Dummies. Department of Psychology. California State University, Fresno, 2006; Kirk, Roger E. Experimental Design: Procedures for the Behavioral Sciences . 4th edition. Thousand Oaks, CA: Sage, 2013; Trochim, William M.K. Experimental Design. Research Methods Knowledge Base. 2006; Rasool, Shafqat. Experimental Research. Slideshare presentation.

Exploratory Design

An exploratory design is conducted about a research problem when there are few or no earlier studies to refer to or rely upon to predict an outcome . The focus is on gaining insights and familiarity for later investigation or undertaken when research problems are in a preliminary stage of investigation. Exploratory designs are often used to establish an understanding of how best to proceed in studying an issue or what methodology would effectively apply to gathering information about the issue.

The goals of exploratory research are intended to produce the following possible insights:

  • Familiarity with basic details, settings, and concerns.
  • Well grounded picture of the situation being developed.
  • Generation of new ideas and assumptions.
  • Development of tentative theories or hypotheses.
  • Determination about whether a study is feasible in the future.
  • Issues get refined for more systematic investigation and formulation of new research questions.
  • Direction for future research and techniques get developed.
  • Design is a useful approach for gaining background information on a particular topic.
  • Exploratory research is flexible and can address research questions of all types (what, why, how).
  • Provides an opportunity to define new terms and clarify existing concepts.
  • Exploratory research is often used to generate formal hypotheses and develop more precise research problems.
  • In the policy arena or applied to practice, exploratory studies help establish research priorities and where resources should be allocated.
  • Exploratory research generally utilizes small sample sizes and, thus, findings are typically not generalizable to the population at large.
  • The exploratory nature of the research inhibits an ability to make definitive conclusions about the findings. They provide insight but not definitive conclusions.
  • The research process underpinning exploratory studies is flexible but often unstructured, leading to only tentative results that have limited value to decision-makers.
  • Design lacks rigorous standards applied to methods of data gathering and analysis because one of the areas for exploration could be to determine what method or methodologies could best fit the research problem.

Cuthill, Michael. “Exploratory Research: Citizen Participation, Local Government, and Sustainable Development in Australia.” Sustainable Development 10 (2002): 79-89; Streb, Christoph K. "Exploratory Case Study." In Encyclopedia of Case Study Research . Albert J. Mills, Gabrielle Durepos and Eiden Wiebe, editors. (Thousand Oaks, CA: Sage, 2010), pp. 372-374; Taylor, P. J., G. Catalano, and D.R.F. Walker. “Exploratory Analysis of the World City Network.” Urban Studies 39 (December 2002): 2377-2394; Exploratory Research. Wikipedia.

Field Research Design

Sometimes referred to as ethnography or participant observation, designs around field research encompass a variety of interpretative procedures [e.g., observation and interviews] rooted in qualitative approaches to studying people individually or in groups while inhabiting their natural environment as opposed to using survey instruments or other forms of impersonal methods of data gathering. Information acquired from observational research takes the form of “ field notes ” that involves documenting what the researcher actually sees and hears while in the field. Findings do not consist of conclusive statements derived from numbers and statistics because field research involves analysis of words and observations of behavior. Conclusions, therefore, are developed from an interpretation of findings that reveal overriding themes, concepts, and ideas. More information can be found HERE .

  • Field research is often necessary to fill gaps in understanding the research problem applied to local conditions or to specific groups of people that cannot be ascertained from existing data.
  • The research helps contextualize already known information about a research problem, thereby facilitating ways to assess the origins, scope, and scale of a problem and to gage the causes, consequences, and means to resolve an issue based on deliberate interaction with people in their natural inhabited spaces.
  • Enables the researcher to corroborate or confirm data by gathering additional information that supports or refutes findings reported in prior studies of the topic.
  • Because the researcher in embedded in the field, they are better able to make observations or ask questions that reflect the specific cultural context of the setting being investigated.
  • Observing the local reality offers the opportunity to gain new perspectives or obtain unique data that challenges existing theoretical propositions or long-standing assumptions found in the literature.

What these studies don't tell you

  • A field research study requires extensive time and resources to carry out the multiple steps involved with preparing for the gathering of information, including for example, examining background information about the study site, obtaining permission to access the study site, and building trust and rapport with subjects.
  • Requires a commitment to staying engaged in the field to ensure that you can adequately document events and behaviors as they unfold.
  • The unpredictable nature of fieldwork means that researchers can never fully control the process of data gathering. They must maintain a flexible approach to studying the setting because events and circumstances can change quickly or unexpectedly.
  • Findings can be difficult to interpret and verify without access to documents and other source materials that help to enhance the credibility of information obtained from the field  [i.e., the act of triangulating the data].
  • Linking the research problem to the selection of study participants inhabiting their natural environment is critical. However, this specificity limits the ability to generalize findings to different situations or in other contexts or to infer courses of action applied to other settings or groups of people.
  • The reporting of findings must take into account how the researcher themselves may have inadvertently affected respondents and their behaviors.

Historical Design

The purpose of a historical research design is to collect, verify, and synthesize evidence from the past to establish facts that defend or refute a hypothesis. It uses secondary sources and a variety of primary documentary evidence, such as, diaries, official records, reports, archives, and non-textual information [maps, pictures, audio and visual recordings]. The limitation is that the sources must be both authentic and valid.

  • The historical research design is unobtrusive; the act of research does not affect the results of the study.
  • The historical approach is well suited for trend analysis.
  • Historical records can add important contextual background required to more fully understand and interpret a research problem.
  • There is often no possibility of researcher-subject interaction that could affect the findings.
  • Historical sources can be used over and over to study different research problems or to replicate a previous study.
  • The ability to fulfill the aims of your research are directly related to the amount and quality of documentation available to understand the research problem.
  • Since historical research relies on data from the past, there is no way to manipulate it to control for contemporary contexts.
  • Interpreting historical sources can be very time consuming.
  • The sources of historical materials must be archived consistently to ensure access. This may especially challenging for digital or online-only sources.
  • Original authors bring their own perspectives and biases to the interpretation of past events and these biases are more difficult to ascertain in historical resources.
  • Due to the lack of control over external variables, historical research is very weak with regard to the demands of internal validity.
  • It is rare that the entirety of historical documentation needed to fully address a research problem is available for interpretation, therefore, gaps need to be acknowledged.

Howell, Martha C. and Walter Prevenier. From Reliable Sources: An Introduction to Historical Methods . Ithaca, NY: Cornell University Press, 2001; Lundy, Karen Saucier. "Historical Research." In The Sage Encyclopedia of Qualitative Research Methods . Lisa M. Given, editor. (Thousand Oaks, CA: Sage, 2008), pp. 396-400; Marius, Richard. and Melvin E. Page. A Short Guide to Writing about History . 9th edition. Boston, MA: Pearson, 2015; Savitt, Ronald. “Historical Research in Marketing.” Journal of Marketing 44 (Autumn, 1980): 52-58;  Gall, Meredith. Educational Research: An Introduction . Chapter 16, Historical Research. 8th ed. Boston, MA: Pearson/Allyn and Bacon, 2007.

Longitudinal Design

A longitudinal study follows the same sample over time and makes repeated observations. For example, with longitudinal surveys, the same group of people is interviewed at regular intervals, enabling researchers to track changes over time and to relate them to variables that might explain why the changes occur. Longitudinal research designs describe patterns of change and help establish the direction and magnitude of causal relationships. Measurements are taken on each variable over two or more distinct time periods. This allows the researcher to measure change in variables over time. It is a type of observational study sometimes referred to as a panel study.

  • Longitudinal data facilitate the analysis of the duration of a particular phenomenon.
  • Enables survey researchers to get close to the kinds of causal explanations usually attainable only with experiments.
  • The design permits the measurement of differences or change in a variable from one period to another [i.e., the description of patterns of change over time].
  • Longitudinal studies facilitate the prediction of future outcomes based upon earlier factors.
  • The data collection method may change over time.
  • Maintaining the integrity of the original sample can be difficult over an extended period of time.
  • It can be difficult to show more than one variable at a time.
  • This design often needs qualitative research data to explain fluctuations in the results.
  • A longitudinal research design assumes present trends will continue unchanged.
  • It can take a long period of time to gather results.
  • There is a need to have a large sample size and accurate sampling to reach representativness.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 6, Flexible Methods: Relational and Longitudinal Research. 2nd ed. New York: Columbia University Press, 1999; Forgues, Bernard, and Isabelle Vandangeon-Derumez. "Longitudinal Analyses." In Doing Management Research . Raymond-Alain Thiétart and Samantha Wauchope, editors. (London, England: Sage, 2001), pp. 332-351; Kalaian, Sema A. and Rafa M. Kasim. "Longitudinal Studies." In Encyclopedia of Survey Research Methods . Paul J. Lavrakas, ed. (Thousand Oaks, CA: Sage, 2008), pp. 440-441; Menard, Scott, editor. Longitudinal Research . Thousand Oaks, CA: Sage, 2002; Ployhart, Robert E. and Robert J. Vandenberg. "Longitudinal Research: The Theory, Design, and Analysis of Change.” Journal of Management 36 (January 2010): 94-120; Longitudinal Study. Wikipedia.

Meta-Analysis Design

Meta-analysis is an analytical methodology designed to systematically evaluate and summarize the results from a number of individual studies, thereby, increasing the overall sample size and the ability of the researcher to study effects of interest. The purpose is to not simply summarize existing knowledge, but to develop a new understanding of a research problem using synoptic reasoning. The main objectives of meta-analysis include analyzing differences in the results among studies and increasing the precision by which effects are estimated. A well-designed meta-analysis depends upon strict adherence to the criteria used for selecting studies and the availability of information in each study to properly analyze their findings. Lack of information can severely limit the type of analyzes and conclusions that can be reached. In addition, the more dissimilarity there is in the results among individual studies [heterogeneity], the more difficult it is to justify interpretations that govern a valid synopsis of results. A meta-analysis needs to fulfill the following requirements to ensure the validity of your findings:

  • Clearly defined description of objectives, including precise definitions of the variables and outcomes that are being evaluated;
  • A well-reasoned and well-documented justification for identification and selection of the studies;
  • Assessment and explicit acknowledgment of any researcher bias in the identification and selection of those studies;
  • Description and evaluation of the degree of heterogeneity among the sample size of studies reviewed; and,
  • Justification of the techniques used to evaluate the studies.
  • Can be an effective strategy for determining gaps in the literature.
  • Provides a means of reviewing research published about a particular topic over an extended period of time and from a variety of sources.
  • Is useful in clarifying what policy or programmatic actions can be justified on the basis of analyzing research results from multiple studies.
  • Provides a method for overcoming small sample sizes in individual studies that previously may have had little relationship to each other.
  • Can be used to generate new hypotheses or highlight research problems for future studies.
  • Small violations in defining the criteria used for content analysis can lead to difficult to interpret and/or meaningless findings.
  • A large sample size can yield reliable, but not necessarily valid, results.
  • A lack of uniformity regarding, for example, the type of literature reviewed, how methods are applied, and how findings are measured within the sample of studies you are analyzing, can make the process of synthesis difficult to perform.
  • Depending on the sample size, the process of reviewing and synthesizing multiple studies can be very time consuming.

Beck, Lewis W. "The Synoptic Method." The Journal of Philosophy 36 (1939): 337-345; Cooper, Harris, Larry V. Hedges, and Jeffrey C. Valentine, eds. The Handbook of Research Synthesis and Meta-Analysis . 2nd edition. New York: Russell Sage Foundation, 2009; Guzzo, Richard A., Susan E. Jackson and Raymond A. Katzell. “Meta-Analysis Analysis.” In Research in Organizational Behavior , Volume 9. (Greenwich, CT: JAI Press, 1987), pp 407-442; Lipsey, Mark W. and David B. Wilson. Practical Meta-Analysis . Thousand Oaks, CA: Sage Publications, 2001; Study Design 101. Meta-Analysis. The Himmelfarb Health Sciences Library, George Washington University; Timulak, Ladislav. “Qualitative Meta-Analysis.” In The SAGE Handbook of Qualitative Data Analysis . Uwe Flick, editor. (Los Angeles, CA: Sage, 2013), pp. 481-495; Walker, Esteban, Adrian V. Hernandez, and Micheal W. Kattan. "Meta-Analysis: It's Strengths and Limitations." Cleveland Clinic Journal of Medicine 75 (June 2008): 431-439.

Mixed-Method Design

  • Narrative and non-textual information can add meaning to numeric data, while numeric data can add precision to narrative and non-textual information.
  • Can utilize existing data while at the same time generating and testing a grounded theory approach to describe and explain the phenomenon under study.
  • A broader, more complex research problem can be investigated because the researcher is not constrained by using only one method.
  • The strengths of one method can be used to overcome the inherent weaknesses of another method.
  • Can provide stronger, more robust evidence to support a conclusion or set of recommendations.
  • May generate new knowledge new insights or uncover hidden insights, patterns, or relationships that a single methodological approach might not reveal.
  • Produces more complete knowledge and understanding of the research problem that can be used to increase the generalizability of findings applied to theory or practice.
  • A researcher must be proficient in understanding how to apply multiple methods to investigating a research problem as well as be proficient in optimizing how to design a study that coherently melds them together.
  • Can increase the likelihood of conflicting results or ambiguous findings that inhibit drawing a valid conclusion or setting forth a recommended course of action [e.g., sample interview responses do not support existing statistical data].
  • Because the research design can be very complex, reporting the findings requires a well-organized narrative, clear writing style, and precise word choice.
  • Design invites collaboration among experts. However, merging different investigative approaches and writing styles requires more attention to the overall research process than studies conducted using only one methodological paradigm.
  • Concurrent merging of quantitative and qualitative research requires greater attention to having adequate sample sizes, using comparable samples, and applying a consistent unit of analysis. For sequential designs where one phase of qualitative research builds on the quantitative phase or vice versa, decisions about what results from the first phase to use in the next phase, the choice of samples and estimating reasonable sample sizes for both phases, and the interpretation of results from both phases can be difficult.
  • Due to multiple forms of data being collected and analyzed, this design requires extensive time and resources to carry out the multiple steps involved in data gathering and interpretation.

Burch, Patricia and Carolyn J. Heinrich. Mixed Methods for Policy Research and Program Evaluation . Thousand Oaks, CA: Sage, 2016; Creswell, John w. et al. Best Practices for Mixed Methods Research in the Health Sciences . Bethesda, MD: Office of Behavioral and Social Sciences Research, National Institutes of Health, 2010Creswell, John W. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches . 4th edition. Thousand Oaks, CA: Sage Publications, 2014; Domínguez, Silvia, editor. Mixed Methods Social Networks Research . Cambridge, UK: Cambridge University Press, 2014; Hesse-Biber, Sharlene Nagy. Mixed Methods Research: Merging Theory with Practice . New York: Guilford Press, 2010; Niglas, Katrin. “How the Novice Researcher Can Make Sense of Mixed Methods Designs.” International Journal of Multiple Research Approaches 3 (2009): 34-46; Onwuegbuzie, Anthony J. and Nancy L. Leech. “Linking Research Questions to Mixed Methods Data Analysis Procedures.” The Qualitative Report 11 (September 2006): 474-498; Tashakorri, Abbas and John W. Creswell. “The New Era of Mixed Methods.” Journal of Mixed Methods Research 1 (January 2007): 3-7; Zhanga, Wanqing. “Mixed Methods Application in Health Intervention Research: A Multiple Case Study.” International Journal of Multiple Research Approaches 8 (2014): 24-35 .

Observational Design

This type of research design draws a conclusion by comparing subjects against a control group, in cases where the researcher has no control over the experiment. There are two general types of observational designs. In direct observations, people know that you are watching them. Unobtrusive measures involve any method for studying behavior where individuals do not know they are being observed. An observational study allows a useful insight into a phenomenon and avoids the ethical and practical difficulties of setting up a large and cumbersome research project.

  • Observational studies are usually flexible and do not necessarily need to be structured around a hypothesis about what you expect to observe [data is emergent rather than pre-existing].
  • The researcher is able to collect in-depth information about a particular behavior.
  • Can reveal interrelationships among multifaceted dimensions of group interactions.
  • You can generalize your results to real life situations.
  • Observational research is useful for discovering what variables may be important before applying other methods like experiments.
  • Observation research designs account for the complexity of group behaviors.
  • Reliability of data is low because seeing behaviors occur over and over again may be a time consuming task and are difficult to replicate.
  • In observational research, findings may only reflect a unique sample population and, thus, cannot be generalized to other groups.
  • There can be problems with bias as the researcher may only "see what they want to see."
  • There is no possibility to determine "cause and effect" relationships since nothing is manipulated.
  • Sources or subjects may not all be equally credible.
  • Any group that is knowingly studied is altered to some degree by the presence of the researcher, therefore, potentially skewing any data collected.

Atkinson, Paul and Martyn Hammersley. “Ethnography and Participant Observation.” In Handbook of Qualitative Research . Norman K. Denzin and Yvonna S. Lincoln, eds. (Thousand Oaks, CA: Sage, 1994), pp. 248-261; Observational Research. Research Methods by Dummies. Department of Psychology. California State University, Fresno, 2006; Patton Michael Quinn. Qualitiative Research and Evaluation Methods . Chapter 6, Fieldwork Strategies and Observational Methods. 3rd ed. Thousand Oaks, CA: Sage, 2002; Payne, Geoff and Judy Payne. "Observation." In Key Concepts in Social Research . The SAGE Key Concepts series. (London, England: Sage, 2004), pp. 158-162; Rosenbaum, Paul R. Design of Observational Studies . New York: Springer, 2010;Williams, J. Patrick. "Nonparticipant Observation." In The Sage Encyclopedia of Qualitative Research Methods . Lisa M. Given, editor.(Thousand Oaks, CA: Sage, 2008), pp. 562-563.

Philosophical Design

Understood more as an broad approach to examining a research problem than a methodological design, philosophical analysis and argumentation is intended to challenge deeply embedded, often intractable, assumptions underpinning an area of study. This approach uses the tools of argumentation derived from philosophical traditions, concepts, models, and theories to critically explore and challenge, for example, the relevance of logic and evidence in academic debates, to analyze arguments about fundamental issues, or to discuss the root of existing discourse about a research problem. These overarching tools of analysis can be framed in three ways:

  • Ontology -- the study that describes the nature of reality; for example, what is real and what is not, what is fundamental and what is derivative?
  • Epistemology -- the study that explores the nature of knowledge; for example, by what means does knowledge and understanding depend upon and how can we be certain of what we know?
  • Axiology -- the study of values; for example, what values does an individual or group hold and why? How are values related to interest, desire, will, experience, and means-to-end? And, what is the difference between a matter of fact and a matter of value?
  • Can provide a basis for applying ethical decision-making to practice.
  • Functions as a means of gaining greater self-understanding and self-knowledge about the purposes of research.
  • Brings clarity to general guiding practices and principles of an individual or group.
  • Philosophy informs methodology.
  • Refine concepts and theories that are invoked in relatively unreflective modes of thought and discourse.
  • Beyond methodology, philosophy also informs critical thinking about epistemology and the structure of reality (metaphysics).
  • Offers clarity and definition to the practical and theoretical uses of terms, concepts, and ideas.
  • Limited application to specific research problems [answering the "So What?" question in social science research].
  • Analysis can be abstract, argumentative, and limited in its practical application to real-life issues.
  • While a philosophical analysis may render problematic that which was once simple or taken-for-granted, the writing can be dense and subject to unnecessary jargon, overstatement, and/or excessive quotation and documentation.
  • There are limitations in the use of metaphor as a vehicle of philosophical analysis.
  • There can be analytical difficulties in moving from philosophy to advocacy and between abstract thought and application to the phenomenal world.

Burton, Dawn. "Part I, Philosophy of the Social Sciences." In Research Training for Social Scientists . (London, England: Sage, 2000), pp. 1-5; Chapter 4, Research Methodology and Design. Unisa Institutional Repository (UnisaIR), University of South Africa; Jarvie, Ian C., and Jesús Zamora-Bonilla, editors. The SAGE Handbook of the Philosophy of Social Sciences . London: Sage, 2011; Labaree, Robert V. and Ross Scimeca. “The Philosophical Problem of Truth in Librarianship.” The Library Quarterly 78 (January 2008): 43-70; Maykut, Pamela S. Beginning Qualitative Research: A Philosophic and Practical Guide . Washington, DC: Falmer Press, 1994; McLaughlin, Hugh. "The Philosophy of Social Research." In Understanding Social Work Research . 2nd edition. (London: SAGE Publications Ltd., 2012), pp. 24-47; Stanford Encyclopedia of Philosophy . Metaphysics Research Lab, CSLI, Stanford University, 2013.

Sequential Design

  • The researcher has a limitless option when it comes to sample size and the sampling schedule.
  • Due to the repetitive nature of this research design, minor changes and adjustments can be done during the initial parts of the study to correct and hone the research method.
  • This is a useful design for exploratory studies.
  • There is very little effort on the part of the researcher when performing this technique. It is generally not expensive, time consuming, or workforce intensive.
  • Because the study is conducted serially, the results of one sample are known before the next sample is taken and analyzed. This provides opportunities for continuous improvement of sampling and methods of analysis.
  • The sampling method is not representative of the entire population. The only possibility of approaching representativeness is when the researcher chooses to use a very large sample size significant enough to represent a significant portion of the entire population. In this case, moving on to study a second or more specific sample can be difficult.
  • The design cannot be used to create conclusions and interpretations that pertain to an entire population because the sampling technique is not randomized. Generalizability from findings is, therefore, limited.
  • Difficult to account for and interpret variation from one sample to another over time, particularly when using qualitative methods of data collection.

Betensky, Rebecca. Harvard University, Course Lecture Note slides; Bovaird, James A. and Kevin A. Kupzyk. "Sequential Design." In Encyclopedia of Research Design . Neil J. Salkind, editor. (Thousand Oaks, CA: Sage, 2010), pp. 1347-1352; Cresswell, John W. Et al. “Advanced Mixed-Methods Research Designs.” In Handbook of Mixed Methods in Social and Behavioral Research . Abbas Tashakkori and Charles Teddle, eds. (Thousand Oaks, CA: Sage, 2003), pp. 209-240; Henry, Gary T. "Sequential Sampling." In The SAGE Encyclopedia of Social Science Research Methods . Michael S. Lewis-Beck, Alan Bryman and Tim Futing Liao, editors. (Thousand Oaks, CA: Sage, 2004), pp. 1027-1028; Nataliya V. Ivankova. “Using Mixed-Methods Sequential Explanatory Design: From Theory to Practice.” Field Methods 18 (February 2006): 3-20; Bovaird, James A. and Kevin A. Kupzyk. “Sequential Design.” In Encyclopedia of Research Design . Neil J. Salkind, ed. Thousand Oaks, CA: Sage, 2010; Sequential Analysis. Wikipedia.

Systematic Review

  • A systematic review synthesizes the findings of multiple studies related to each other by incorporating strategies of analysis and interpretation intended to reduce biases and random errors.
  • The application of critical exploration, evaluation, and synthesis methods separates insignificant, unsound, or redundant research from the most salient and relevant studies worthy of reflection.
  • They can be use to identify, justify, and refine hypotheses, recognize and avoid hidden problems in prior studies, and explain data inconsistencies and conflicts in data.
  • Systematic reviews can be used to help policy makers formulate evidence-based guidelines and regulations.
  • The use of strict, explicit, and pre-determined methods of synthesis, when applied appropriately, provide reliable estimates about the effects of interventions, evaluations, and effects related to the overarching research problem investigated by each study under review.
  • Systematic reviews illuminate where knowledge or thorough understanding of a research problem is lacking and, therefore, can then be used to guide future research.
  • The accepted inclusion of unpublished studies [i.e., grey literature] ensures the broadest possible way to analyze and interpret research on a topic.
  • Results of the synthesis can be generalized and the findings extrapolated into the general population with more validity than most other types of studies .
  • Systematic reviews do not create new knowledge per se; they are a method for synthesizing existing studies about a research problem in order to gain new insights and determine gaps in the literature.
  • The way researchers have carried out their investigations [e.g., the period of time covered, number of participants, sources of data analyzed, etc.] can make it difficult to effectively synthesize studies.
  • The inclusion of unpublished studies can introduce bias into the review because they may not have undergone a rigorous peer-review process prior to publication. Examples may include conference presentations or proceedings, publications from government agencies, white papers, working papers, and internal documents from organizations, and doctoral dissertations and Master's theses.

Denyer, David and David Tranfield. "Producing a Systematic Review." In The Sage Handbook of Organizational Research Methods .  David A. Buchanan and Alan Bryman, editors. ( Thousand Oaks, CA: Sage Publications, 2009), pp. 671-689; Foster, Margaret J. and Sarah T. Jewell, editors. Assembling the Pieces of a Systematic Review: A Guide for Librarians . Lanham, MD: Rowman and Littlefield, 2017; Gough, David, Sandy Oliver, James Thomas, editors. Introduction to Systematic Reviews . 2nd edition. Los Angeles, CA: Sage Publications, 2017; Gopalakrishnan, S. and P. Ganeshkumar. “Systematic Reviews and Meta-analysis: Understanding the Best Evidence in Primary Healthcare.” Journal of Family Medicine and Primary Care 2 (2013): 9-14; Gough, David, James Thomas, and Sandy Oliver. "Clarifying Differences between Review Designs and Methods." Systematic Reviews 1 (2012): 1-9; Khan, Khalid S., Regina Kunz, Jos Kleijnen, and Gerd Antes. “Five Steps to Conducting a Systematic Review.” Journal of the Royal Society of Medicine 96 (2003): 118-121; Mulrow, C. D. “Systematic Reviews: Rationale for Systematic Reviews.” BMJ 309:597 (September 1994); O'Dwyer, Linda C., and Q. Eileen Wafford. "Addressing Challenges with Systematic Review Teams through Effective Communication: A Case Report." Journal of the Medical Library Association 109 (October 2021): 643-647; Okoli, Chitu, and Kira Schabram. "A Guide to Conducting a Systematic Literature Review of Information Systems Research."  Sprouts: Working Papers on Information Systems 10 (2010); Siddaway, Andy P., Alex M. Wood, and Larry V. Hedges. "How to Do a Systematic Review: A Best Practice Guide for Conducting and Reporting Narrative Reviews, Meta-analyses, and Meta-syntheses." Annual Review of Psychology 70 (2019): 747-770; Torgerson, Carole J. “Publication Bias: The Achilles’ Heel of Systematic Reviews?” British Journal of Educational Studies 54 (March 2006): 89-102; Torgerson, Carole. Systematic Reviews . New York: Continuum, 2003.

  • << Previous: Purpose of Guide
  • Next: Design Flaws to Avoid >>
  • Last Updated: Jun 18, 2024 10:45 AM
  • URL: https://libguides.usc.edu/writingguide

Research design

Research requires extensive knowledge of how to improve and make use of certain opportunities that might arise.

These modules explain all about research design, including several tools and steps on how to advance your research evaluation strategies, identify research gaps, enhance your chances of serendipitous research discovery, and integrate sex, gender, and intersectional analysis into research.  

What you will learn

  • Identifying research gaps
  • Advancing research evaluation strategies
  • Enhancing serendipitous research discovery

Modules in Research design

Advanced Search

How to locate key publications

Basic Search

How to find relevant and authoritative research

Diversity

How to integrate sex, gender, and intersectional analysis into research

Data & methods

How to enhance your chances of serendipitous research discovery

Evidence-based research illustration

How to identify research gaps

Logo for Open Educational Resources

Chapter 2. Research Design

Getting started.

When I teach undergraduates qualitative research methods, the final product of the course is a “research proposal” that incorporates all they have learned and enlists the knowledge they have learned about qualitative research methods in an original design that addresses a particular research question. I highly recommend you think about designing your own research study as you progress through this textbook. Even if you don’t have a study in mind yet, it can be a helpful exercise as you progress through the course. But how to start? How can one design a research study before they even know what research looks like? This chapter will serve as a brief overview of the research design process to orient you to what will be coming in later chapters. Think of it as a “skeleton” of what you will read in more detail in later chapters. Ideally, you will read this chapter both now (in sequence) and later during your reading of the remainder of the text. Do not worry if you have questions the first time you read this chapter. Many things will become clearer as the text advances and as you gain a deeper understanding of all the components of good qualitative research. This is just a preliminary map to get you on the right road.

Null

Research Design Steps

Before you even get started, you will need to have a broad topic of interest in mind. [1] . In my experience, students can confuse this broad topic with the actual research question, so it is important to clearly distinguish the two. And the place to start is the broad topic. It might be, as was the case with me, working-class college students. But what about working-class college students? What’s it like to be one? Why are there so few compared to others? How do colleges assist (or fail to assist) them? What interested me was something I could barely articulate at first and went something like this: “Why was it so difficult and lonely to be me?” And by extension, “Did others share this experience?”

Once you have a general topic, reflect on why this is important to you. Sometimes we connect with a topic and we don’t really know why. Even if you are not willing to share the real underlying reason you are interested in a topic, it is important that you know the deeper reasons that motivate you. Otherwise, it is quite possible that at some point during the research, you will find yourself turned around facing the wrong direction. I have seen it happen many times. The reason is that the research question is not the same thing as the general topic of interest, and if you don’t know the reasons for your interest, you are likely to design a study answering a research question that is beside the point—to you, at least. And this means you will be much less motivated to carry your research to completion.

Researcher Note

Why do you employ qualitative research methods in your area of study? What are the advantages of qualitative research methods for studying mentorship?

Qualitative research methods are a huge opportunity to increase access, equity, inclusion, and social justice. Qualitative research allows us to engage and examine the uniquenesses/nuances within minoritized and dominant identities and our experiences with these identities. Qualitative research allows us to explore a specific topic, and through that exploration, we can link history to experiences and look for patterns or offer up a unique phenomenon. There’s such beauty in being able to tell a particular story, and qualitative research is a great mode for that! For our work, we examined the relationships we typically use the term mentorship for but didn’t feel that was quite the right word. Qualitative research allowed us to pick apart what we did and how we engaged in our relationships, which then allowed us to more accurately describe what was unique about our mentorship relationships, which we ultimately named liberationships ( McAloney and Long 2021) . Qualitative research gave us the means to explore, process, and name our experiences; what a powerful tool!

How do you come up with ideas for what to study (and how to study it)? Where did you get the idea for studying mentorship?

Coming up with ideas for research, for me, is kind of like Googling a question I have, not finding enough information, and then deciding to dig a little deeper to get the answer. The idea to study mentorship actually came up in conversation with my mentorship triad. We were talking in one of our meetings about our relationship—kind of meta, huh? We discussed how we felt that mentorship was not quite the right term for the relationships we had built. One of us asked what was different about our relationships and mentorship. This all happened when I was taking an ethnography course. During the next session of class, we were discussing auto- and duoethnography, and it hit me—let’s explore our version of mentorship, which we later went on to name liberationships ( McAloney and Long 2021 ). The idea and questions came out of being curious and wanting to find an answer. As I continue to research, I see opportunities in questions I have about my work or during conversations that, in our search for answers, end up exposing gaps in the literature. If I can’t find the answer already out there, I can study it.

—Kim McAloney, PhD, College Student Services Administration Ecampus coordinator and instructor

When you have a better idea of why you are interested in what it is that interests you, you may be surprised to learn that the obvious approaches to the topic are not the only ones. For example, let’s say you think you are interested in preserving coastal wildlife. And as a social scientist, you are interested in policies and practices that affect the long-term viability of coastal wildlife, especially around fishing communities. It would be natural then to consider designing a research study around fishing communities and how they manage their ecosystems. But when you really think about it, you realize that what interests you the most is how people whose livelihoods depend on a particular resource act in ways that deplete that resource. Or, even deeper, you contemplate the puzzle, “How do people justify actions that damage their surroundings?” Now, there are many ways to design a study that gets at that broader question, and not all of them are about fishing communities, although that is certainly one way to go. Maybe you could design an interview-based study that includes and compares loggers, fishers, and desert golfers (those who golf in arid lands that require a great deal of wasteful irrigation). Or design a case study around one particular example where resources were completely used up by a community. Without knowing what it is you are really interested in, what motivates your interest in a surface phenomenon, you are unlikely to come up with the appropriate research design.

These first stages of research design are often the most difficult, but have patience . Taking the time to consider why you are going to go through a lot of trouble to get answers will prevent a lot of wasted energy in the future.

There are distinct reasons for pursuing particular research questions, and it is helpful to distinguish between them.  First, you may be personally motivated.  This is probably the most important and the most often overlooked.   What is it about the social world that sparks your curiosity? What bothers you? What answers do you need in order to keep living? For me, I knew I needed to get a handle on what higher education was for before I kept going at it. I needed to understand why I felt so different from my peers and whether this whole “higher education” thing was “for the likes of me” before I could complete my degree. That is the personal motivation question. Your personal motivation might also be political in nature, in that you want to change the world in a particular way. It’s all right to acknowledge this. In fact, it is better to acknowledge it than to hide it.

There are also academic and professional motivations for a particular study.  If you are an absolute beginner, these may be difficult to find. We’ll talk more about this when we discuss reviewing the literature. Simply put, you are probably not the only person in the world to have thought about this question or issue and those related to it. So how does your interest area fit into what others have studied? Perhaps there is a good study out there of fishing communities, but no one has quite asked the “justification” question. You are motivated to address this to “fill the gap” in our collective knowledge. And maybe you are really not at all sure of what interests you, but you do know that [insert your topic] interests a lot of people, so you would like to work in this area too. You want to be involved in the academic conversation. That is a professional motivation and a very important one to articulate.

Practical and strategic motivations are a third kind. Perhaps you want to encourage people to take better care of the natural resources around them. If this is also part of your motivation, you will want to design your research project in a way that might have an impact on how people behave in the future. There are many ways to do this, one of which is using qualitative research methods rather than quantitative research methods, as the findings of qualitative research are often easier to communicate to a broader audience than the results of quantitative research. You might even be able to engage the community you are studying in the collecting and analyzing of data, something taboo in quantitative research but actively embraced and encouraged by qualitative researchers. But there are other practical reasons, such as getting “done” with your research in a certain amount of time or having access (or no access) to certain information. There is nothing wrong with considering constraints and opportunities when designing your study. Or maybe one of the practical or strategic goals is about learning competence in this area so that you can demonstrate the ability to conduct interviews and focus groups with future employers. Keeping that in mind will help shape your study and prevent you from getting sidetracked using a technique that you are less invested in learning about.

STOP HERE for a moment

I recommend you write a paragraph (at least) explaining your aims and goals. Include a sentence about each of the following: personal/political goals, practical or professional/academic goals, and practical/strategic goals. Think through how all of the goals are related and can be achieved by this particular research study . If they can’t, have a rethink. Perhaps this is not the best way to go about it.

You will also want to be clear about the purpose of your study. “Wait, didn’t we just do this?” you might ask. No! Your goals are not the same as the purpose of the study, although they are related. You can think about purpose lying on a continuum from “ theory ” to “action” (figure 2.1). Sometimes you are doing research to discover new knowledge about the world, while other times you are doing a study because you want to measure an impact or make a difference in the world.

Purpose types: Basic Research, Applied Research, Summative Evaluation, Formative Evaluation, Action Research

Basic research involves research that is done for the sake of “pure” knowledge—that is, knowledge that, at least at this moment in time, may not have any apparent use or application. Often, and this is very important, knowledge of this kind is later found to be extremely helpful in solving problems. So one way of thinking about basic research is that it is knowledge for which no use is yet known but will probably one day prove to be extremely useful. If you are doing basic research, you do not need to argue its usefulness, as the whole point is that we just don’t know yet what this might be.

Researchers engaged in basic research want to understand how the world operates. They are interested in investigating a phenomenon to get at the nature of reality with regard to that phenomenon. The basic researcher’s purpose is to understand and explain ( Patton 2002:215 ).

Basic research is interested in generating and testing hypotheses about how the world works. Grounded Theory is one approach to qualitative research methods that exemplifies basic research (see chapter 4). Most academic journal articles publish basic research findings. If you are working in academia (e.g., writing your dissertation), the default expectation is that you are conducting basic research.

Applied research in the social sciences is research that addresses human and social problems. Unlike basic research, the researcher has expectations that the research will help contribute to resolving a problem, if only by identifying its contours, history, or context. From my experience, most students have this as their baseline assumption about research. Why do a study if not to make things better? But this is a common mistake. Students and their committee members are often working with default assumptions here—the former thinking about applied research as their purpose, the latter thinking about basic research: “The purpose of applied research is to contribute knowledge that will help people to understand the nature of a problem in order to intervene, thereby allowing human beings to more effectively control their environment. While in basic research the source of questions is the tradition within a scholarly discipline, in applied research the source of questions is in the problems and concerns experienced by people and by policymakers” ( Patton 2002:217 ).

Applied research is less geared toward theory in two ways. First, its questions do not derive from previous literature. For this reason, applied research studies have much more limited literature reviews than those found in basic research (although they make up for this by having much more “background” about the problem). Second, it does not generate theory in the same way as basic research does. The findings of an applied research project may not be generalizable beyond the boundaries of this particular problem or context. The findings are more limited. They are useful now but may be less useful later. This is why basic research remains the default “gold standard” of academic research.

Evaluation research is research that is designed to evaluate or test the effectiveness of specific solutions and programs addressing specific social problems. We already know the problems, and someone has already come up with solutions. There might be a program, say, for first-generation college students on your campus. Does this program work? Are first-generation students who participate in the program more likely to graduate than those who do not? These are the types of questions addressed by evaluation research. There are two types of research within this broader frame; however, one more action-oriented than the next. In summative evaluation , an overall judgment about the effectiveness of a program or policy is made. Should we continue our first-gen program? Is it a good model for other campuses? Because the purpose of such summative evaluation is to measure success and to determine whether this success is scalable (capable of being generalized beyond the specific case), quantitative data is more often used than qualitative data. In our example, we might have “outcomes” data for thousands of students, and we might run various tests to determine if the better outcomes of those in the program are statistically significant so that we can generalize the findings and recommend similar programs elsewhere. Qualitative data in the form of focus groups or interviews can then be used for illustrative purposes, providing more depth to the quantitative analyses. In contrast, formative evaluation attempts to improve a program or policy (to help “form” or shape its effectiveness). Formative evaluations rely more heavily on qualitative data—case studies, interviews, focus groups. The findings are meant not to generalize beyond the particular but to improve this program. If you are a student seeking to improve your qualitative research skills and you do not care about generating basic research, formative evaluation studies might be an attractive option for you to pursue, as there are always local programs that need evaluation and suggestions for improvement. Again, be very clear about your purpose when talking through your research proposal with your committee.

Action research takes a further step beyond evaluation, even formative evaluation, to being part of the solution itself. This is about as far from basic research as one could get and definitely falls beyond the scope of “science,” as conventionally defined. The distinction between action and research is blurry, the research methods are often in constant flux, and the only “findings” are specific to the problem or case at hand and often are findings about the process of intervention itself. Rather than evaluate a program as a whole, action research often seeks to change and improve some particular aspect that may not be working—maybe there is not enough diversity in an organization or maybe women’s voices are muted during meetings and the organization wonders why and would like to change this. In a further step, participatory action research , those women would become part of the research team, attempting to amplify their voices in the organization through participation in the action research. As action research employs methods that involve people in the process, focus groups are quite common.

If you are working on a thesis or dissertation, chances are your committee will expect you to be contributing to fundamental knowledge and theory ( basic research ). If your interests lie more toward the action end of the continuum, however, it is helpful to talk to your committee about this before you get started. Knowing your purpose in advance will help avoid misunderstandings during the later stages of the research process!

The Research Question

Once you have written your paragraph and clarified your purpose and truly know that this study is the best study for you to be doing right now , you are ready to write and refine your actual research question. Know that research questions are often moving targets in qualitative research, that they can be refined up to the very end of data collection and analysis. But you do have to have a working research question at all stages. This is your “anchor” when you get lost in the data. What are you addressing? What are you looking at and why? Your research question guides you through the thicket. It is common to have a whole host of questions about a phenomenon or case, both at the outset and throughout the study, but you should be able to pare it down to no more than two or three sentences when asked. These sentences should both clarify the intent of the research and explain why this is an important question to answer. More on refining your research question can be found in chapter 4.

Chances are, you will have already done some prior reading before coming up with your interest and your questions, but you may not have conducted a systematic literature review. This is the next crucial stage to be completed before venturing further. You don’t want to start collecting data and then realize that someone has already beaten you to the punch. A review of the literature that is already out there will let you know (1) if others have already done the study you are envisioning; (2) if others have done similar studies, which can help you out; and (3) what ideas or concepts are out there that can help you frame your study and make sense of your findings. More on literature reviews can be found in chapter 9.

In addition to reviewing the literature for similar studies to what you are proposing, it can be extremely helpful to find a study that inspires you. This may have absolutely nothing to do with the topic you are interested in but is written so beautifully or organized so interestingly or otherwise speaks to you in such a way that you want to post it somewhere to remind you of what you want to be doing. You might not understand this in the early stages—why would you find a study that has nothing to do with the one you are doing helpful? But trust me, when you are deep into analysis and writing, having an inspirational model in view can help you push through. If you are motivated to do something that might change the world, you probably have read something somewhere that inspired you. Go back to that original inspiration and read it carefully and see how they managed to convey the passion that you so appreciate.

At this stage, you are still just getting started. There are a lot of things to do before setting forth to collect data! You’ll want to consider and choose a research tradition and a set of data-collection techniques that both help you answer your research question and match all your aims and goals. For example, if you really want to help migrant workers speak for themselves, you might draw on feminist theory and participatory action research models. Chapters 3 and 4 will provide you with more information on epistemologies and approaches.

Next, you have to clarify your “units of analysis.” What is the level at which you are focusing your study? Often, the unit in qualitative research methods is individual people, or “human subjects.” But your units of analysis could just as well be organizations (colleges, hospitals) or programs or even whole nations. Think about what it is you want to be saying at the end of your study—are the insights you are hoping to make about people or about organizations or about something else entirely? A unit of analysis can even be a historical period! Every unit of analysis will call for a different kind of data collection and analysis and will produce different kinds of “findings” at the conclusion of your study. [2]

Regardless of what unit of analysis you select, you will probably have to consider the “human subjects” involved in your research. [3] Who are they? What interactions will you have with them—that is, what kind of data will you be collecting? Before answering these questions, define your population of interest and your research setting. Use your research question to help guide you.

Let’s use an example from a real study. In Geographies of Campus Inequality , Benson and Lee ( 2020 ) list three related research questions: “(1) What are the different ways that first-generation students organize their social, extracurricular, and academic activities at selective and highly selective colleges? (2) how do first-generation students sort themselves and get sorted into these different types of campus lives; and (3) how do these different patterns of campus engagement prepare first-generation students for their post-college lives?” (3).

Note that we are jumping into this a bit late, after Benson and Lee have described previous studies (the literature review) and what is known about first-generation college students and what is not known. They want to know about differences within this group, and they are interested in ones attending certain kinds of colleges because those colleges will be sites where academic and extracurricular pressures compete. That is the context for their three related research questions. What is the population of interest here? First-generation college students . What is the research setting? Selective and highly selective colleges . But a host of questions remain. Which students in the real world, which colleges? What about gender, race, and other identity markers? Will the students be asked questions? Are the students still in college, or will they be asked about what college was like for them? Will they be observed? Will they be shadowed? Will they be surveyed? Will they be asked to keep diaries of their time in college? How many students? How many colleges? For how long will they be observed?

Recommendation

Take a moment and write down suggestions for Benson and Lee before continuing on to what they actually did.

Have you written down your own suggestions? Good. Now let’s compare those with what they actually did. Benson and Lee drew on two sources of data: in-depth interviews with sixty-four first-generation students and survey data from a preexisting national survey of students at twenty-eight selective colleges. Let’s ignore the survey for our purposes here and focus on those interviews. The interviews were conducted between 2014 and 2016 at a single selective college, “Hilltop” (a pseudonym ). They employed a “purposive” sampling strategy to ensure an equal number of male-identifying and female-identifying students as well as equal numbers of White, Black, and Latinx students. Each student was interviewed once. Hilltop is a selective liberal arts college in the northeast that enrolls about three thousand students.

How did your suggestions match up to those actually used by the researchers in this study? It is possible your suggestions were too ambitious? Beginning qualitative researchers can often make that mistake. You want a research design that is both effective (it matches your question and goals) and doable. You will never be able to collect data from your entire population of interest (unless your research question is really so narrow to be relevant to very few people!), so you will need to come up with a good sample. Define the criteria for this sample, as Benson and Lee did when deciding to interview an equal number of students by gender and race categories. Define the criteria for your sample setting too. Hilltop is typical for selective colleges. That was a research choice made by Benson and Lee. For more on sampling and sampling choices, see chapter 5.

Benson and Lee chose to employ interviews. If you also would like to include interviews, you have to think about what will be asked in them. Most interview-based research involves an interview guide, a set of questions or question areas that will be asked of each participant. The research question helps you create a relevant interview guide. You want to ask questions whose answers will provide insight into your research question. Again, your research question is the anchor you will continually come back to as you plan for and conduct your study. It may be that once you begin interviewing, you find that people are telling you something totally unexpected, and this makes you rethink your research question. That is fine. Then you have a new anchor. But you always have an anchor. More on interviewing can be found in chapter 11.

Let’s imagine Benson and Lee also observed college students as they went about doing the things college students do, both in the classroom and in the clubs and social activities in which they participate. They would have needed a plan for this. Would they sit in on classes? Which ones and how many? Would they attend club meetings and sports events? Which ones and how many? Would they participate themselves? How would they record their observations? More on observation techniques can be found in both chapters 13 and 14.

At this point, the design is almost complete. You know why you are doing this study, you have a clear research question to guide you, you have identified your population of interest and research setting, and you have a reasonable sample of each. You also have put together a plan for data collection, which might include drafting an interview guide or making plans for observations. And so you know exactly what you will be doing for the next several months (or years!). To put the project into action, there are a few more things necessary before actually going into the field.

First, you will need to make sure you have any necessary supplies, including recording technology. These days, many researchers use their phones to record interviews. Second, you will need to draft a few documents for your participants. These include informed consent forms and recruiting materials, such as posters or email texts, that explain what this study is in clear language. Third, you will draft a research protocol to submit to your institutional review board (IRB) ; this research protocol will include the interview guide (if you are using one), the consent form template, and all examples of recruiting material. Depending on your institution and the details of your study design, it may take weeks or even, in some unfortunate cases, months before you secure IRB approval. Make sure you plan on this time in your project timeline. While you wait, you can continue to review the literature and possibly begin drafting a section on the literature review for your eventual presentation/publication. More on IRB procedures can be found in chapter 8 and more general ethical considerations in chapter 7.

Once you have approval, you can begin!

Research Design Checklist

Before data collection begins, do the following:

  • Write a paragraph explaining your aims and goals (personal/political, practical/strategic, professional/academic).
  • Define your research question; write two to three sentences that clarify the intent of the research and why this is an important question to answer.
  • Review the literature for similar studies that address your research question or similar research questions; think laterally about some literature that might be helpful or illuminating but is not exactly about the same topic.
  • Find a written study that inspires you—it may or may not be on the research question you have chosen.
  • Consider and choose a research tradition and set of data-collection techniques that (1) help answer your research question and (2) match your aims and goals.
  • Define your population of interest and your research setting.
  • Define the criteria for your sample (How many? Why these? How will you find them, gain access, and acquire consent?).
  • If you are conducting interviews, draft an interview guide.
  •  If you are making observations, create a plan for observations (sites, times, recording, access).
  • Acquire any necessary technology (recording devices/software).
  • Draft consent forms that clearly identify the research focus and selection process.
  • Create recruiting materials (posters, email, texts).
  • Apply for IRB approval (proposal plus consent form plus recruiting materials).
  • Block out time for collecting data.
  • At the end of the chapter, you will find a " Research Design Checklist " that summarizes the main recommendations made here ↵
  • For example, if your focus is society and culture , you might collect data through observation or a case study. If your focus is individual lived experience , you are probably going to be interviewing some people. And if your focus is language and communication , you will probably be analyzing text (written or visual). ( Marshall and Rossman 2016:16 ). ↵
  • You may not have any "live" human subjects. There are qualitative research methods that do not require interactions with live human beings - see chapter 16 , "Archival and Historical Sources." But for the most part, you are probably reading this textbook because you are interested in doing research with people. The rest of the chapter will assume this is the case. ↵

One of the primary methodological traditions of inquiry in qualitative research, ethnography is the study of a group or group culture, largely through observational fieldwork supplemented by interviews. It is a form of fieldwork that may include participant-observation data collection. See chapter 14 for a discussion of deep ethnography. 

A methodological tradition of inquiry and research design that focuses on an individual case (e.g., setting, institution, or sometimes an individual) in order to explore its complexity, history, and interactive parts.  As an approach, it is particularly useful for obtaining a deep appreciation of an issue, event, or phenomenon of interest in its particular context.

The controlling force in research; can be understood as lying on a continuum from basic research (knowledge production) to action research (effecting change).

In its most basic sense, a theory is a story we tell about how the world works that can be tested with empirical evidence.  In qualitative research, we use the term in a variety of ways, many of which are different from how they are used by quantitative researchers.  Although some qualitative research can be described as “testing theory,” it is more common to “build theory” from the data using inductive reasoning , as done in Grounded Theory .  There are so-called “grand theories” that seek to integrate a whole series of findings and stories into an overarching paradigm about how the world works, and much smaller theories or concepts about particular processes and relationships.  Theory can even be used to explain particular methodological perspectives or approaches, as in Institutional Ethnography , which is both a way of doing research and a theory about how the world works.

Research that is interested in generating and testing hypotheses about how the world works.

A methodological tradition of inquiry and approach to analyzing qualitative data in which theories emerge from a rigorous and systematic process of induction.  This approach was pioneered by the sociologists Glaser and Strauss (1967).  The elements of theory generated from comparative analysis of data are, first, conceptual categories and their properties and, second, hypotheses or generalized relations among the categories and their properties – “The constant comparing of many groups draws the [researcher’s] attention to their many similarities and differences.  Considering these leads [the researcher] to generate abstract categories and their properties, which, since they emerge from the data, will clearly be important to a theory explaining the kind of behavior under observation.” (36).

An approach to research that is “multimethod in focus, involving an interpretative, naturalistic approach to its subject matter.  This means that qualitative researchers study things in their natural settings, attempting to make sense of, or interpret, phenomena in terms of the meanings people bring to them.  Qualitative research involves the studied use and collection of a variety of empirical materials – case study, personal experience, introspective, life story, interview, observational, historical, interactional, and visual texts – that describe routine and problematic moments and meanings in individuals’ lives." ( Denzin and Lincoln 2005:2 ). Contrast with quantitative research .

Research that contributes knowledge that will help people to understand the nature of a problem in order to intervene, thereby allowing human beings to more effectively control their environment.

Research that is designed to evaluate or test the effectiveness of specific solutions and programs addressing specific social problems.  There are two kinds: summative and formative .

Research in which an overall judgment about the effectiveness of a program or policy is made, often for the purpose of generalizing to other cases or programs.  Generally uses qualitative research as a supplement to primary quantitative data analyses.  Contrast formative evaluation research .

Research designed to improve a program or policy (to help “form” or shape its effectiveness); relies heavily on qualitative research methods.  Contrast summative evaluation research

Research carried out at a particular organizational or community site with the intention of affecting change; often involves research subjects as participants of the study.  See also participatory action research .

Research in which both researchers and participants work together to understand a problematic situation and change it for the better.

The level of the focus of analysis (e.g., individual people, organizations, programs, neighborhoods).

The large group of interest to the researcher.  Although it will likely be impossible to design a study that incorporates or reaches all members of the population of interest, this should be clearly defined at the outset of a study so that a reasonable sample of the population can be taken.  For example, if one is studying working-class college students, the sample may include twenty such students attending a particular college, while the population is “working-class college students.”  In quantitative research, clearly defining the general population of interest is a necessary step in generalizing results from a sample.  In qualitative research, defining the population is conceptually important for clarity.

A fictional name assigned to give anonymity to a person, group, or place.  Pseudonyms are important ways of protecting the identity of research participants while still providing a “human element” in the presentation of qualitative data.  There are ethical considerations to be made in selecting pseudonyms; some researchers allow research participants to choose their own.

A requirement for research involving human participants; the documentation of informed consent.  In some cases, oral consent or assent may be sufficient, but the default standard is a single-page easy-to-understand form that both the researcher and the participant sign and date.   Under federal guidelines, all researchers "shall seek such consent only under circumstances that provide the prospective subject or the representative sufficient opportunity to consider whether or not to participate and that minimize the possibility of coercion or undue influence. The information that is given to the subject or the representative shall be in language understandable to the subject or the representative.  No informed consent, whether oral or written, may include any exculpatory language through which the subject or the representative is made to waive or appear to waive any of the subject's rights or releases or appears to release the investigator, the sponsor, the institution, or its agents from liability for negligence" (21 CFR 50.20).  Your IRB office will be able to provide a template for use in your study .

An administrative body established to protect the rights and welfare of human research subjects recruited to participate in research activities conducted under the auspices of the institution with which it is affiliated. The IRB is charged with the responsibility of reviewing all research involving human participants. The IRB is concerned with protecting the welfare, rights, and privacy of human subjects. The IRB has the authority to approve, disapprove, monitor, and require modifications in all research activities that fall within its jurisdiction as specified by both the federal regulations and institutional policy.

Introduction to Qualitative Research Methods Copyright © 2023 by Allison Hurst is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License , except where otherwise noted.

What is Research Design?

Crafting a well-defined research design is essential for guiding the entire project, ensuring coherence in methodology and analysis, and upholding the validity and reproducibility of outcomes in the complex landscape of research.

Updated on March 8, 2024

What is Research Design?

Diving into any new project necessitates a solid plan, a blueprint for navigating the very complex research process. It requires a framework that illustrates how all the principal components of the project are intended to work together to address your central research questions - the research design .

This research design is crucial not only for guiding your entire project, from methodology to analysis, but also for ensuring the validity and reproducibility of its outcomes. Let’s take a closer look at research design by focusing on some of its benefits and core elements.

Why do researchers need a research design?

By taking a deliberate approach to research design, you ensure your chosen methods realistically match the project’s objectives. For example:

  • If your project seeks to find out how a certain group of people was influenced by a natural disaster, you could use interviews as methods for gathering data. Then, inductive or deductive coding may be used for analysis.
  • On the other hand, if your project asks how drinking water was affected by that same natural disaster, you would conduct an experiment to measure certain variables. Inferential or descriptive statistical analysis might then be used to assess the data.

Attention to robust research design helps the project run smoothly and efficiently by reducing both errors and unnecessary busywork. Good research design possesses these specific characteristics :

  • Neutrality : Stick to only the facts throughout, creating a plan based on relevant research methods and analysis. Use it as an opportunity to identify possible sources of bias.
  • Reliability : Include reliable methods that support the consistent measurement of project variables. Not only does it improve the legitimacy of your conclusions but also improves the possibility of replication.
  • Validity : Apply measurement tools that minimize systematic errors. Show the straightforward connection between your project results and research hypothesis.
  • Generalizability : Verify that research outcomes are applicable to a larger population beyond the sample studied for your project. Employ sensible methods and processes that easily adapt to variations in the population.
  • Flexibility : Consider alternative measures for adjusting to unexpected data or outcomes. Veer away from rigid procedures and requirements and plan for adaptability.

When you make the effort to focus on these characteristics while developing a research design, the process itself weeds out many potential challenges. It illuminates the relationships between the project’s multiple elements and allows for modifications from the start. 

What makes up a research design?

As the overarching strategy for your entire project, the research design outlines the plans, considerations, and feasibility of every facet. To make this task less daunting, divide it into logical sections by asking yourself these questions:

  • What is your general approach for the study?
  • What type of design will you employ?
  • How will you choose the population and sampling methods?
  • Which data collection methods will you use?
  • How will the data be analyzed?

The answers to these questions depend on your research questions and hypothesis. Before starting your research design, make certain that these elements are well thought out, basically solidified, and truly represent your intentions for the project.

When considering the overall approach for your project, decide what kind of data is needed to answer the research questions. Start by asking yourself:

  • Do I want to establish a cause-and-effect relationship, test a hypothesis, or identify patterns in data? If yes, use quantitative methodologies.
  • Or, am I seeking non-numerical textual information, like human beliefs, cultural experiences, or individual behaviors? If so, use qualitative methods.

Quantitative research methods offer a systematic means of investigating complex phenomena by measuring, describing, and testing relationships between variables. On the other hand, the qualitative approach explores subjective experiences and concepts within their natural settings. Here are some key characteristics of both approaches:

Approach : Basis

Quantitative : The research begins with the formulation of specific research questions or hypotheses that can be tested empirically using numerical data.

Qualitative : The exploratory and flexible nature allows researchers to delve deeply into the subject matter and generate insights.

Approach : Data collection

Quantitative : Typically involves collecting numerical data through methods such as surveys, experiments, structured observations, or existing datasets.

Qualitative : To collect detailed, contextually rich information directly from participants, researchers use methods such as interviews, focus groups, participant observation, and document analysis.

Approach : Data analysis

Quantitative : Quantitative data are analyzed using statistical techniques.

Qualitative : Data analysis in qualitative research involves systematic techniques for organizing, coding, and interpreting textual or visual data. 

Approach : Interpretation of findings

Quantitative : Researchers interpret the results of the statistical analysis in relation to the research questions or hypotheses.

Qualitative : By paying close attention to context, qualitative researchers focus on interpreting the meanings, patterns, and themes that emerge from the data. 

Approach : Reporting results

Quantitative : Reported in a structured format, often including tables, charts, and graphs to present the data visually.

Qualitative : Contributes to theory building and exploration by generating new insights, challenging existing theories, and uncovering unexpected findings.

Approach : Types

Quantitative :

  • Experimental
  • Quasi-experimental
  • Correlational
  • Descriptive

Qualitative :

  • Ethnography
  • Grounded theory
  • Phenomenology

Population and sampling method

In research, the population, or target population, encompasses all individuals, objects, or events that share the specific attributes you’ve decided are relevant to the study’s objectives. As it is impractical to investigate every individual of this broad population, you will need to choose a subset, or sample.

Starting with a comprehensive understanding of the target population is crucial for selecting a sample that will assure the generalizability of your study’s results. However, drawing a truly random sample can be challenging, often resulting in some degree of sampling bias in most studies.

Sampling strategies vary across research fields, but are generally subdivided into these two categories:

  • Probability Sampling : accurately measurable probability for each member of the target population to have a chance of being included in the sample.
  • Non-probability sampling : selection is non-systematic and does not offer an equal chance for those in the target population to be selected for the sample.

There are several specific sampling methods that fall under these two broad headings:

Probability Sampling Examples

  • Simple random sampling: Each individual is chosen entirely by chance from a population, ensuring equal probability of selection. 
  • Convenience sampling: Participants are selected based on availability and willingness to participate.
  • Systematic sampling: Individuals are selected at regular intervals from the sampling frame based on a systematic rule.
  • Quota sampling: Interviewers are given quotas of specific subjects to recruit.

Non-probability Sampling Examples

  • Stratified sampling: The population is divided into homogenous subgroups based on shared characteristics, then used for a random sample.
  • Judgmental sampling: Researchers select participants based on their judgment or specific criteria.
  • Clustered sampling: Subgroups, or clusters, of the population are determined and then randomly selected for inclusion.
  • Snowball sampling: Existing subjects nominate further subjects known to them, allowing for sampling of hard-to-reach groups.

While they are often resource intensive, probability sampling methods have the advantage of providing representative samples with reduced biases. Non-probability sampling methods, on the other hand, are more cost-effective and convenient, yet lack representativeness and are prone to bias.

Data collection

Throughout the research process, you'll employ a variety of sources to gather, record, and organize information that is relevant to your study or project. Achieving results that hold validity and significance requires the skillful use of efficient data collection methods.

Primary and secondary data collection methods are two distinct approaches to consider when gathering information for your project. Let's take a look at these methods and their associated techniques:

Primary data collection : involves gathering original data directly from the source or through direct interaction with respondents. 

  • Surveys and Questionnaires: collecting data from individuals or groups through face-to-face interviews, telephone calls, mail, or online platforms.
  • Interviews: direct interaction between the researcher and the respondent, conducted in person, over the phone, or through video conferencing.
  • Observations: researchers observe and record behaviors, actions, or events in their natural setting.
  • Experiments: manipulating variables to observe their impact on outcomes. 
  • Focus Groups: small groups of individuals discuss specific topics in a moderated setting.

Secondary data collection: entails collecting and analyzing existing data already collected by someone else for a different purpose.

  • Published sources: books, academic journals, magazines, newspapers, government reports, and other published materials that contain relevant data.
  • Online sources: databases, websites, repositories, and other platforms available for consuming and downloading from the internet. 
  • Government and institutional sources: records, statistics, and other pertinent information to access and purchase.
  • Publicly available data: shared by individuals, organizations, or communities on public stages, websites, or social media.
  • Past research: studies and results available through libraries, educational institutions, and other communal archives. 

Though primary methods offer significant control over data collection, they can be time-consuming, costly, and susceptible to biases. Secondary methods, in contrast, provide cost-effective and time-saving alternatives but offer reduced control over the data collection process.

Data analysis

To extract maximum value from your collected data, it's essential to engage in purposeful evaluation and interpretation. This process of data analysis involves thorough examination, meticulous cleaning, and insightful modeling to reveal patterns pertinent to your research questions.

The choice of methods depends on the specific research objectives, data characteristics, and analytical requirements of your particular project. Here are a few examples of the diverse range of methods you can use for data analysis:

Descriptive statistics : Summarizes key features of the data, like central tendency, spread, and variability. 

Inferential statistics : Draws conclusions about populations based on sample data to test relationships and make predictions.

Qualitative analysis : Considers non-numerical transcripts to identify themes, patterns, and connections.

Causal analysis : Looks at the cause and effect of relationships between variables to test correlations.

Survey and questionnaire analysis : Transforms responses into usable data through processes like cross-tabulation and benchmarking.

Machine learning and data mining : Employs algorithms and computational techniques to discover patterns and insights from large datasets.

By integrating various data analysis tools, you can approach research questions from multiple perspectives to enhance the depth and breadth of your analysis.

Considerations for research design

A meticulous and thorough research design is essential to maintain the quality, reliability, and overall value of your study results. Consider these tips:

Do : Clearly define research questions

Don’t : Rush through the design process

Do : Choose appropriate methods

Don’t : Overlook ethical considerations

Do : Ensure data reliability and validity

Don’t : Neglect practical constraints

Do : Mitigate biases and confounding factors

Don’t : Use overly complex designs

Do : Pilot test the research design

Don’t : Ignore feedback from peers and experts

Do : Document the research design

Don’t : Assume the design is flawless

Final thoughts

A robust research design is undeniably crucial. It sets the framework for data collection, analysis, and interpretation throughout the entire research process. 

Because vagueness and assumptions can jeopardize the success of your project, you must prioritize clarity, make informed choices, and pay meticulous attention to detail. By embracing these strategies, your valuable research has the best chance of making its maximum impact on the world.

Charla Viera, MS

See our "Privacy Policy"

  • University Libraries
  • Research Guides
  • Topic Guides
  • Research Methods Guide
  • Research Design & Method

Research Methods Guide: Research Design & Method

  • Introduction
  • Survey Research
  • Interview Research
  • Data Analysis
  • Resources & Consultation

Tutorial Videos: Research Design & Method

Research Methods (sociology-focused)

Qualitative vs. Quantitative Methods (intro)

Qualitative vs. Quantitative Methods (advanced)

make a research design

FAQ: Research Design & Method

What is the difference between Research Design and Research Method?

Research design is a plan to answer your research question.  A research method is a strategy used to implement that plan.  Research design and methods are different but closely related, because good research design ensures that the data you obtain will help you answer your research question more effectively.

Which research method should I choose ?

It depends on your research goal.  It depends on what subjects (and who) you want to study.  Let's say you are interested in studying what makes people happy, or why some students are more conscious about recycling on campus.  To answer these questions, you need to make a decision about how to collect your data.  Most frequently used methods include:

  • Observation / Participant Observation
  • Focus Groups
  • Experiments
  • Secondary Data Analysis / Archival Study
  • Mixed Methods (combination of some of the above)

One particular method could be better suited to your research goal than others, because the data you collect from different methods will be different in quality and quantity.   For instance, surveys are usually designed to produce relatively short answers, rather than the extensive responses expected in qualitative interviews.

What other factors should I consider when choosing one method over another?

Time for data collection and analysis is something you want to consider.  An observation or interview method, so-called qualitative approach, helps you collect richer information, but it takes time.  Using a survey helps you collect more data quickly, yet it may lack details.  So, you will need to consider the time you have for research and the balance between strengths and weaknesses associated with each method (e.g., qualitative vs. quantitative).

  • << Previous: Introduction
  • Next: Survey Research >>
  • Last Updated: Aug 21, 2023 10:42 AM

Five Questions To Ask Yourself To Get The Most Out Of Your Customer Interviews

Senem Guler Biyikli , Analyst

AJ Joplin , Senior Analyst

Interviewing is a key method for customer research due to the rich qualitative data it provides. This data can then be used to inform your design process to ensure that you’re creating experiences that meet customers’ goals. To make sure customer interviews are successful and produce data that drives decision-making, you need to have a research plan and clear objectives, but companies sometimes skip that step and conduct interviews without adequate planning and clear focus. To ensure that you’re making the most of your customer interviews, ask yourself these five questions:

  • Do we have a clearly articulated hypothesis or problem statement? Use existing quantitative and qualitative data and strategic imperatives to help you shape this statement. Don’t be afraid to make declarative statements that summarize what you know to date. This will inform your line of questioning. These statements are also the beginning of a storyline. Not creating clear hypotheses or problem statements is the fastest way to knock your research off course in terms of time, money, and results.
  • What does our research plan look like? Customer research is an opportunity to not only gain valuable customer insight but to also deepen collaboration and influence across a broader team by connecting research to strategic priorities. Use this opportunity when planning for interviews, as well. Employ a planning tool such as Forrester’s Customer Research Canvas to organize your research efforts strategically and demonstrate how customer interviews will contribute to these efforts and decision-making.
  • Have we interviewed internal partners who would have working knowledge of this problem? Interviewing internal partners or stakeholders help us better define the questions we need to ask customers. Novice researchers often fall into the trap of choosing internal research participants based on their seniority and not on their understanding of, or proximity to, the problem. Avoid this mistake by determining the roles whose perspective would be the most important to solve the problem at hand. Understand their goals and perspective on the problem or hypothesis, and use that information to ensure that customer interview questions target the right problem.
  • Are we asking questions that can only be answered through an interview? Time with customers is precious. If you can obtain the same data through other means (e.g., system reports, surveys, call logs), don’t waste time asking for it during the interview. Consider the diversity of research methods that you can use or may have already been used by others in your organization to collect the data you desire.
  • Are we changing our questions too often? When conducting interviews, we often see patterns quickly emerge. If you swap out questions or decide not to ask some of your well-informed questions after just one or two interviews, the study will lack consistency and you will miss out on insights. Don’t be afraid to reword questions for simplicity, however. For example, if you ask a question and find yourself spending a lot of time clarifying what you’re asking, the question might be unclear. If you aren ’ t seeing patterns after five to eight interviews, one or more of these situations may be at play:
  • Your questions and your research hypothesis may be out of alignment.
  • Your pool of research participants might have too much variability given the scope of your hypothesis.
  • You may need to interview more participants because the problem area is more complex or nuanced than originally determined.

It can take time to become a skilled interviewer. These tips are by no means exhaustive or a substitute for skilled research expertise but rather a window into the challenges you might face and how you might overcome them. If you’re a Forrester client and would like to discuss this topic further, set up a conversation with us  here . You can also follow or connect with us —   Senem Biyikli and AJ Joplin — on LinkedIn.

Related Forrester Content

The Winning Way To Plan Customer Research

Design Better By Conducting The Right Kinds Of Research

Build Effective Research Partnerships To Ensure Impact — upcoming research

  • Accessible Design
  • Age of the Customer
  • customer-centric design
  • digital design
  • real-time CX
  • user experience (UX)
  • UX strategy

make a research design

Thanks for signing up.

Stay tuned for updates from the Forrester blogs.

How To Scale Digital Accessibility And Expand CX’s Influence

Discover how to turn a business must-have into a cx leadership opportunity., six technologies will make digital experiences more humanlike (and genai is just one among them), what you can learn from open-source design systems, get the insights at work newsletter, help us improve.

make a research design

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

How to Make a “Good” Presentation “Great”

  • Guy Kawasaki

make a research design

Remember: Less is more.

A strong presentation is so much more than information pasted onto a series of slides with fancy backgrounds. Whether you’re pitching an idea, reporting market research, or sharing something else, a great presentation can give you a competitive advantage, and be a powerful tool when aiming to persuade, educate, or inspire others. Here are some unique elements that make a presentation stand out.

  • Fonts: Sans Serif fonts such as Helvetica or Arial are preferred for their clean lines, which make them easy to digest at various sizes and distances. Limit the number of font styles to two: one for headings and another for body text, to avoid visual confusion or distractions.
  • Colors: Colors can evoke emotions and highlight critical points, but their overuse can lead to a cluttered and confusing presentation. A limited palette of two to three main colors, complemented by a simple background, can help you draw attention to key elements without overwhelming the audience.
  • Pictures: Pictures can communicate complex ideas quickly and memorably but choosing the right images is key. Images or pictures should be big (perhaps 20-25% of the page), bold, and have a clear purpose that complements the slide’s text.
  • Layout: Don’t overcrowd your slides with too much information. When in doubt, adhere to the principle of simplicity, and aim for a clean and uncluttered layout with plenty of white space around text and images. Think phrases and bullets, not sentences.

As an intern or early career professional, chances are that you’ll be tasked with making or giving a presentation in the near future. Whether you’re pitching an idea, reporting market research, or sharing something else, a great presentation can give you a competitive advantage, and be a powerful tool when aiming to persuade, educate, or inspire others.

make a research design

  • Guy Kawasaki is the chief evangelist at Canva and was the former chief evangelist at Apple. Guy is the author of 16 books including Think Remarkable : 9 Paths to Transform Your Life and Make a Difference.

Partner Center

make a research design

  • [email protected]
  • Sign up for MAD News!

The Design Research Conference 2024 Will Be Hosted at MIT on June 27

DRS 2024: The five-day conference, taking place in North America for the first time, will open at Northeastern University on June 24. On June 27, the entire programming will be hosted at MIT, including fringe events organized by MAD and open to the public.

Jun 21, 2024

June 27, DRS 2024 Agenda

Events open to the public

  • WRITING ON DESIGN, A CONVERSATION ON DATA, DESIGN, AND PUBLISHING Catherine D’Ignazio and Dietmar Offenhuber ’s recent explorations of the interrelations between data and design help reveal the ways in which diverse social collectives, from scientists to activists, can engage with the design and representation of data. Register.
  • DESIGNING WITH, NOT FOR Designing With, not For addresses design as a collaborative endeavor, one in which users, communities and stakeholders actively participate. Human centered design has traditionally focused on providing expert responses to user needs. Register.

Events open to registered conference attendees only

  • KEYNOTE: ALTERNATIVE REIMAGININGS OF AI
  • PAPER SESSIONS
  • DEMYSTIFYING PUBLISHING: CHAT WITH AN MIT PRESS COMMISSIONING EDITOR Meet one-on-one with an MIT Press Commissioning Editor via Zoom and learn about publishing.
  • COCKTAIL AT THE MIT MUSEUM

The MIT MAD fringe events are organized in partnership with The MIT Press, MIT Architecture, and MIT D-Lab.

Related News

Related events.

make a research design

DRS2024 BOSTON

make a research design

Writing on Design

make a research design

Designing With, Not For

New Faculty Resources and Services

Hilton M. Briggs Library welcomes new faculty to South Dakota State University! Librarians and staff are here to help you with your teaching and research needs.

Click the For Faculty link to learn about what the library has to offer you. The link will provide information on instruction services, the SDSU institutional repository Open PRAIRIE , copyright and much more. Don't forget to check out the ever-expanding Archives and Special Collections physical and digital materials, or the extensive government documents collection. Below, we've highlighted some library resources and services that will be helpful as you get started in your role as a faculty member. Please contact us if you have any questions.

Accessing Library Resources Off-Campus

Access to library resources from off campus is easy! Link to the database or resource you need by starting from the library’s home page . Then, when prompted, enter your SDSU network credentials (the same login that you use for your university email or InsideState).

Additional services are available to all SDSU faculty, staff and students who cannot make regular (at least weekly) trips to the Brookings area. These include article and book delivery, off-campus instruction and remote research assistance.

Faculty who are delivering distance courses may be interested in our guide to resources for teaching online.

For help or more information, contact a librarian or the Library Services Desk at [email protected] or 605-688-5107 or 800-786-2038.

Instruction

Subject Librarians can help your students become familiar with library resources by offering online or in-person classroom instruction or providing your students individual consultations. Explore your opportunities for library instruction services .

Subject Librarians at Briggs

Subject Librarians support your scholarship and teaching by:

  • Collaborating on design of effective research assignments.
  • Providing research instruction to students in your courses.
  • Supporting students, in-person and online, with research assignments.
  • Consulting on in-depth research questions.
  • Participating in graduate and undergraduate student orientation activities.
  • Facilitating access to library resources.
  • Updating faculty about new services and resources.

Subject Librarians work with faculty on developing the library’s collections. We value your input on journal subscriptions and book purchases. Each department has a designated representative to coordinate purchases of library materials. You can forward book requests to your department’s library representative who then decides what will be purchased with the funds available; or use the online recommendation form for journals , available on the For Faculty page. Book requests are sent to your department’s library representative for approval and journal recommendations are sent to your Subject Librarian for consideration.

Meet our Subject Librarians and areas of responsibility:

  • Michele Christian for American Indian Studies; Archives and Special Collections.
  • Kristin Echtenkamp for School of Design (architecture; interior design; landscape architecture; visual arts); English 101; Speech 101; School of Journalism and Communication.
  • Elizabeth Fox for School of Health and Consumer Sciences; history, political science, philosophy and religion; School of Performing Arts (music, theatre and dance); Jerome J. Lohr College of Engineering; women, gender and sexuality studies; military science.
  • Linda Kott for School of English and Interdisciplinary Studies; School of Psychology, Sociology and Rural Studies; School of American and Global Studies (modern languages and global studies); School of Education, Counseling and Human Development)
  • Nancy Marshall for agricultural and biosystems engineering; agronomy, horticulture and plant science; animal science; dairy and food science; natural resource management; veterinary and biomedical sciences
  • Aine O'Connor for biology and microbiology; chemistry, biochemistry and physics; geography and geospatial studies; and Ness School of Management and Economics; nursing; pharmacy and allied health professions

Briggs Library's e-textbook program has saved SDSU students over $519,623 since May 2020. When possible, the library will purchase unlimited use e-textbooks from participating publishers. Contact your subject librarian for more information and to check if an e-textbook is available for your course.

Open Educational Resources

Open Educational Resources (OER) are teaching, learning and research resources that reside in the public domain or have been released under an intellectual property license that permits their free use and re-purposing by others. Some benefits of OER include an increase in retention; cost savings to students by replacing textbooks with free materials; and providing opportunities for creativity, collaboration and innovative teaching. Contact our Systems and Discovery Librarian, Shari Theroux, with questions.

Open PRAIRIE

Open PRAIRIE is the SDSU institutional repository. It supports the collection, preservation and dissemination of SDSU’s scholarly and creative output from faculty, staff and students. Open PRAIRIE also allows for permanent storage of, and public access to, institutional materials. Thousands of SDSU documents have been downloaded from Open PRAIRIE more than a million times worldwide. For more information, contact Electronic Resources and Scholarly Communications Librarian Michael Biondo .

Interlibrary Loan and Document Delivery

If the library does not have access to what you need, books, scanned articles and other materials can be obtained through Interlibrary Loan (ILL) from other libraries in South Dakota or beyond. Our document delivery service provides scans of articles/chapters available in print in the library. Submit requests from library databases or via the ILL link on our homepage. Contact ILL at 605-688-5573 or [email protected].

Circulation

Check out materials, equipment, study rooms and more using your SDSU employee I.D. card. Faculty and staff may borrow circulating collection materials for one year, with a due date of Oct. 1. Bound periodicals are checked out for one week. See our Reserves guide for information about short-term check-out for items your students will need for course assignments.

Copyright is a set of rights given to the creator of an original work fixed in a tangible medium. Explore our Copyright LibGuides to learn about copyright compliance.

Scholarly Impact

As you begin to create your Faculty Annual Review (FAR), you can use the library's guide on evaluating scholarly publications for tenure and promotion to find resources on altmetrics, journal impact factor and other measures of value for publications.

The Division of Research and Economic Development has resources related to finding and applying for grants . Librarians are happy to help with preliminary research as you prepare to apply for grants.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Guide to Experimental Design | Overview, Steps, & Examples

Guide to Experimental Design | Overview, 5 steps & Examples

Published on December 3, 2019 by Rebecca Bevans . Revised on June 21, 2023.

Experiments are used to study causal relationships . You manipulate one or more independent variables and measure their effect on one or more dependent variables.

Experimental design create a set of procedures to systematically test a hypothesis . A good experimental design requires a strong understanding of the system you are studying.

There are five key steps in designing an experiment:

  • Consider your variables and how they are related
  • Write a specific, testable hypothesis
  • Design experimental treatments to manipulate your independent variable
  • Assign subjects to groups, either between-subjects or within-subjects
  • Plan how you will measure your dependent variable

For valid conclusions, you also need to select a representative sample and control any  extraneous variables that might influence your results. If random assignment of participants to control and treatment groups is impossible, unethical, or highly difficult, consider an observational study instead. This minimizes several types of research bias, particularly sampling bias , survivorship bias , and attrition bias as time passes.

Table of contents

Step 1: define your variables, step 2: write your hypothesis, step 3: design your experimental treatments, step 4: assign your subjects to treatment groups, step 5: measure your dependent variable, other interesting articles, frequently asked questions about experiments.

You should begin with a specific research question . We will work with two research question examples, one from health sciences and one from ecology:

To translate your research question into an experimental hypothesis, you need to define the main variables and make predictions about how they are related.

Start by simply listing the independent and dependent variables .

Research question Independent variable Dependent variable
Phone use and sleep Minutes of phone use before sleep Hours of sleep per night
Temperature and soil respiration Air temperature just above the soil surface CO2 respired from soil

Then you need to think about possible extraneous and confounding variables and consider how you might control  them in your experiment.

Extraneous variable How to control
Phone use and sleep in sleep patterns among individuals. measure the average difference between sleep with phone use and sleep without phone use rather than the average amount of sleep per treatment group.
Temperature and soil respiration also affects respiration, and moisture can decrease with increasing temperature. monitor soil moisture and add water to make sure that soil moisture is consistent across all treatment plots.

Finally, you can put these variables together into a diagram. Use arrows to show the possible relationships between variables and include signs to show the expected direction of the relationships.

Diagram of the relationship between variables in a sleep experiment

Here we predict that increasing temperature will increase soil respiration and decrease soil moisture, while decreasing soil moisture will lead to decreased soil respiration.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

Now that you have a strong conceptual understanding of the system you are studying, you should be able to write a specific, testable hypothesis that addresses your research question.

Null hypothesis (H ) Alternate hypothesis (H )
Phone use and sleep Phone use before sleep does not correlate with the amount of sleep a person gets. Increasing phone use before sleep leads to a decrease in sleep.
Temperature and soil respiration Air temperature does not correlate with soil respiration. Increased air temperature leads to increased soil respiration.

The next steps will describe how to design a controlled experiment . In a controlled experiment, you must be able to:

  • Systematically and precisely manipulate the independent variable(s).
  • Precisely measure the dependent variable(s).
  • Control any potential confounding variables.

If your study system doesn’t match these criteria, there are other types of research you can use to answer your research question.

How you manipulate the independent variable can affect the experiment’s external validity – that is, the extent to which the results can be generalized and applied to the broader world.

First, you may need to decide how widely to vary your independent variable.

  • just slightly above the natural range for your study region.
  • over a wider range of temperatures to mimic future warming.
  • over an extreme range that is beyond any possible natural variation.

Second, you may need to choose how finely to vary your independent variable. Sometimes this choice is made for you by your experimental system, but often you will need to decide, and this will affect how much you can infer from your results.

  • a categorical variable : either as binary (yes/no) or as levels of a factor (no phone use, low phone use, high phone use).
  • a continuous variable (minutes of phone use measured every night).

How you apply your experimental treatments to your test subjects is crucial for obtaining valid and reliable results.

First, you need to consider the study size : how many individuals will be included in the experiment? In general, the more subjects you include, the greater your experiment’s statistical power , which determines how much confidence you can have in your results.

Then you need to randomly assign your subjects to treatment groups . Each group receives a different level of the treatment (e.g. no phone use, low phone use, high phone use).

You should also include a control group , which receives no treatment. The control group tells us what would have happened to your test subjects without any experimental intervention.

When assigning your subjects to groups, there are two main choices you need to make:

  • A completely randomized design vs a randomized block design .
  • A between-subjects design vs a within-subjects design .

Randomization

An experiment can be completely randomized or randomized within blocks (aka strata):

  • In a completely randomized design , every subject is assigned to a treatment group at random.
  • In a randomized block design (aka stratified random design), subjects are first grouped according to a characteristic they share, and then randomly assigned to treatments within those groups.
Completely randomized design Randomized block design
Phone use and sleep Subjects are all randomly assigned a level of phone use using a random number generator. Subjects are first grouped by age, and then phone use treatments are randomly assigned within these groups.
Temperature and soil respiration Warming treatments are assigned to soil plots at random by using a number generator to generate map coordinates within the study area. Soils are first grouped by average rainfall, and then treatment plots are randomly assigned within these groups.

Sometimes randomization isn’t practical or ethical , so researchers create partially-random or even non-random designs. An experimental design where treatments aren’t randomly assigned is called a quasi-experimental design .

Between-subjects vs. within-subjects

In a between-subjects design (also known as an independent measures design or classic ANOVA design), individuals receive only one of the possible levels of an experimental treatment.

In medical or social research, you might also use matched pairs within your between-subjects design to make sure that each treatment group contains the same variety of test subjects in the same proportions.

In a within-subjects design (also known as a repeated measures design), every individual receives each of the experimental treatments consecutively, and their responses to each treatment are measured.

Within-subjects or repeated measures can also refer to an experimental design where an effect emerges over time, and individual responses are measured over time in order to measure this effect as it emerges.

Counterbalancing (randomizing or reversing the order of treatments among subjects) is often used in within-subjects designs to ensure that the order of treatment application doesn’t influence the results of the experiment.

Between-subjects (independent measures) design Within-subjects (repeated measures) design
Phone use and sleep Subjects are randomly assigned a level of phone use (none, low, or high) and follow that level of phone use throughout the experiment. Subjects are assigned consecutively to zero, low, and high levels of phone use throughout the experiment, and the order in which they follow these treatments is randomized.
Temperature and soil respiration Warming treatments are assigned to soil plots at random and the soils are kept at this temperature throughout the experiment. Every plot receives each warming treatment (1, 3, 5, 8, and 10C above ambient temperatures) consecutively over the course of the experiment, and the order in which they receive these treatments is randomized.

Prevent plagiarism. Run a free check.

Finally, you need to decide how you’ll collect data on your dependent variable outcomes. You should aim for reliable and valid measurements that minimize research bias or error.

Some variables, like temperature, can be objectively measured with scientific instruments. Others may need to be operationalized to turn them into measurable observations.

  • Ask participants to record what time they go to sleep and get up each day.
  • Ask participants to wear a sleep tracker.

How precisely you measure your dependent variable also affects the kinds of statistical analysis you can use on your data.

Experiments are always context-dependent, and a good experimental design will take into account all of the unique considerations of your study system to produce information that is both valid and relevant to your research question.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Student’s  t -distribution
  • Normal distribution
  • Null and Alternative Hypotheses
  • Chi square tests
  • Confidence interval
  • Cluster sampling
  • Stratified sampling
  • Data cleansing
  • Reproducibility vs Replicability
  • Peer review
  • Likert scale

Research bias

  • Implicit bias
  • Framing effect
  • Cognitive bias
  • Placebo effect
  • Hawthorne effect
  • Hindsight bias
  • Affect heuristic

Experimental design means planning a set of procedures to investigate a relationship between variables . To design a controlled experiment, you need:

  • A testable hypothesis
  • At least one independent variable that can be precisely manipulated
  • At least one dependent variable that can be precisely measured

When designing the experiment, you decide:

  • How you will manipulate the variable(s)
  • How you will control for any potential confounding variables
  • How many subjects or samples will be included in the study
  • How subjects will be assigned to treatment levels

Experimental design is essential to the internal and external validity of your experiment.

The key difference between observational studies and experimental designs is that a well-done observational study does not influence the responses of participants, while experiments do have some sort of treatment condition applied to at least some participants by random assignment .

A confounding variable , also called a confounder or confounding factor, is a third variable in a study examining a potential cause-and-effect relationship.

A confounding variable is related to both the supposed cause and the supposed effect of the study. It can be difficult to separate the true effect of the independent variable from the effect of the confounding variable.

In your research design , it’s important to identify potential confounding variables and plan how you will reduce their impact.

In a between-subjects design , every participant experiences only one condition, and researchers assess group differences between participants in various conditions.

In a within-subjects design , each participant experiences all conditions, and researchers test the same participants repeatedly for differences between conditions.

The word “between” means that you’re comparing different conditions between groups, while the word “within” means you’re comparing different conditions within the same group.

An experimental group, also known as a treatment group, receives the treatment whose effect researchers wish to study, whereas a control group does not. They should be identical in all other ways.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bevans, R. (2023, June 21). Guide to Experimental Design | Overview, 5 steps & Examples. Scribbr. Retrieved June 24, 2024, from https://www.scribbr.com/methodology/experimental-design/

Is this article helpful?

Rebecca Bevans

Rebecca Bevans

Other students also liked, random assignment in experiments | introduction & examples, quasi-experimental design | definition, types & examples, how to write a lab report, get unlimited documents corrected.

✔ Free APA citation check included ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

North Carolina A&T University Main Logo

« RETURN TO NEWS

SAS AI Platform to Help A&T, N.C. State Take Research to the People

By Lydian Bernhardt / 06/24/2024 College of Agriculture and Environmental Sciences , Agribusiness, Applied Economics and Agriscience Education

  • 4-H and Youth Development News
  • Academic Affairs News
  • Accounting and Finance News
  • Administration and Instructional Services News
  • Admissions News
  • Agribusiness, Applied Economics and Agriscience Education News
  • Agricultural and Natural Resources News
  • Alumni News
  • Animal Sciences News
  • Applied Engineering Technology News
  • Athletics News
  • Biology News
  • Built Environment News
  • Business and Finance News
  • Business Education News
  • Chancellor's Speaker Series
  • Chancellors Town Hall Series
  • Chemical, Biological, and Bio Engineering News
  • Chemistry News
  • Civil, Architectural and Environmental Engineering News
  • College News
  • Community and Rural Development News
  • Computational Science and Engineering News
  • Computer Science News
  • Computer Systems Technology News
  • Cooperative Extension News
  • Counseling News
  • Criminal Justice News
  • Deese College News
  • Economics News
  • Educator Preparation News
  • Electrical and Computer Engineering News
  • Employees News
  • Energy and Environmental Systems News
  • English Department News
  • Family and Consumer Sciences News
  • Graphic Design Technology News
  • Hairston College News
  • Headlines News
  • History & Political Science News
  • Honors College News
  • Human Resources News
  • Industrial and Systems Engineering News
  • Information Technology Services News
  • Innovation Station News
  • Journalism & Mass Communication
  • Kinesiology News
  • Leadership Studies and Adult Education News
  • Liberal Studies News
  • Library News
  • Magazine News
  • Management News
  • Marketing News
  • Mathematics News
  • Mechanical Engineering News
  • Media Spotlight News
  • Natural Resources and Environmental Design News
  • News Categories
  • Nursing News
  • Psychology News
  • Research and Economic Development News
  • Social Work News
  • Student Affairs News
  • Students News
  • The Graduate College News
  • Transportation & Supply Chain
  • University Advancement News
  • Visual & Performing Arts News

Harman Sharma, Ph.D., director of the North Carolina Agricultural and Technical State University College of Agriculture and Environmental Sciences’ plant sensor lab, uses a drone in a field

EAST GREENSBORO, N.C. (June 24, 2024) – North Carolina Agricultural and Technical State University will partner with North Carolina State University and data and AI (artificial intelligence) provider SAS to create a unique, cloud-based platform to advance agricultural research at the two land-grant universities and tailor the platform to make those results easier to deliver across the state.

Using a $1 million allocation from the N.C. General Assembly, SAS will use the SAS® Viya® data and AI platform to allow researchers at both universities to integrate data from many different sources;  manage it more effectively; and present it more easily to farmers, ranchers, growers and producers across the state through the universities’ Cooperative Extension divisions.

“SAS Viya will allow us to expand our ‘precision,’ or data-driven, agricultural research by giving us robust, predictive analytical power,” said Gregory Goins, Ph.D., associate dean for research in the College of Agriculture and Environmental Sciences (CAES). “Agriculture is already data-driven. These tools give farmers and researchers alike more insight to make cost-saving decisions and problem solve, whether in the lab or in the field.”

SAS Viya is also expected to help the college grow its $46 million research portfolio by making grants easier to obtain, said Shirley Hymon-Parker, Ph.D., CAES interim dean.

"As the nation’s largest land-grant HBCU, we are excited to use this platform. We expect it to not only boost our research capacity, but to help us attract top student and faculty talent and to develop data-driven, ‘farm of the future’ capabilities,” she said. “We look forward to bringing research out of the lab faster and more effectively, and into the communities that are eager to use it."

One of the A&T researchers using the platform is Harmandeep Sharma, Ph.D., a research assistant professor in crop science in the CAES.

Sharma , the director of the college’s plant sensor lab, will use the SAS Viya platform to analyze data from both drones and in-ground sensors monitoring specialty crops, such as hot peppers, industrial hemp and fresh market tomatoes. Her goal is to develop predictive models for studying the impacts of precise amounts of such inputs as irrigation water and fertilizers, on crop production and quality.

“This platform will help us transfer knowledge on sustainable crop production much more efficiently, ultimately benefiting small-scale farmers with limited resources who are interested in adopting high-value crops,” she said.

Sharma is one of four recipients of the SAS HBCU+ Fellow Award, given this year in April. Through this program, she will receive tailored support for teaching and learning data analytics, along with access to technical experts and curriculum consultants to help her use the SAS Viya platform with her classes.

The partnership builds on previous work between SAS and N.C. State’s Plant Science Initiative. One of NCSU’s projects used data and in-field sensors to detect diseases and improve the profitability of sweet potatoes.

“This partnership between SAS and the two N.C. land grant universities will energize and accelerate discoveries and delivery of solutions and opportunities to our agriculture sector,” said Steven Lommel, director of the North Carolina Agricultural Research Service and associate dean for research at N.C. State’s College of Agriculture and Life Sciences. “Analytics-based solutions accelerated by this partnership will increase yields, efficiency, resiliency, and sustainability while reducing inputs and costs.”

According to legislators, the General Assembly’s investment in the platform for the two land-grants represents an investment in the state’s $111 billion agriculture sector.

“We see this public-private partnership as an opportunity to serve agriculture in an innovative way – unlocking information, insights and new approaches to benefit our state’s growers, producers and researchers,” Sen. Brent Jackson, chairman of the Agriculture and Appropriations committees in the chamber, told SAS. “These collaborative efforts from two great universities are vital to the ongoing effort around continued advancement in agriculture.”

Media Contact Information: [email protected]

Latest News

Nursing students study and take notes at a table with a computer and notebooks

A&T, CIHDER Host All of Us HBCU Road Tour on June 29 to Address Health Disparities

06/25/2024 in College of Health and Human Sciences

Harman Sharma, Ph.D., director of the North Carolina Agricultural and Technical State University College of Agriculture and Environmental Sciences’ plant sensor lab, uses a drone in a field

06/24/2024 in College of Agriculture and Environmental Sciences , Agribusiness, Applied Economics and Agriscience Education

Chancellor-elect Dr. James R. Martin II

UNC BOG Elects Dr. James R. Martin II as North Carolina A&T's New Chancellor

06/21/2024 in Employees

An official website of the United States Government

  • Kreyòl ayisyen
  • Search Toggle search Search Include Historical Content - Any - No Include Historical Content - Any - No Search
  • Menu Toggle menu
  • INFORMATION FOR…
  • Individuals
  • Business & Self Employed
  • Charities and Nonprofits
  • International Taxpayers
  • Federal State and Local Governments
  • Indian Tribal Governments
  • Tax Exempt Bonds
  • FILING FOR INDIVIDUALS
  • How to File
  • When to File
  • Where to File
  • Update Your Information
  • Get Your Tax Record
  • Apply for an Employer ID Number (EIN)
  • Check Your Amended Return Status
  • Get an Identity Protection PIN (IP PIN)
  • File Your Taxes for Free
  • Bank Account (Direct Pay)
  • Payment Plan (Installment Agreement)
  • Electronic Federal Tax Payment System (EFTPS)
  • Your Online Account
  • Tax Withholding Estimator
  • Estimated Taxes
  • Where's My Refund
  • What to Expect
  • Direct Deposit
  • Reduced Refunds
  • Amend Return

Credits & Deductions

  • INFORMATION FOR...
  • Businesses & Self-Employed
  • Earned Income Credit (EITC)
  • Child Tax Credit
  • Clean Energy and Vehicle Credits
  • Standard Deduction
  • Retirement Plans

Forms & Instructions

  • POPULAR FORMS & INSTRUCTIONS
  • Form 1040 Instructions
  • Form 4506-T
  • POPULAR FOR TAX PROS
  • Form 1040-X
  • Circular 230

IRS releases revised draft Form 6765, Credit for Increasing Research Activities, following public comment

More in news.

  • Topics in the news
  • News releases for frequently asked questions
  • Multimedia center
  • Tax relief in disaster situations
  • Inflation Reduction Act
  • Taxpayer First Act
  • Tax scams and consumer alerts
  • The tax gap
  • Fact sheets
  • IRS Tax Tips
  • e-News subscriptions
  • IRS guidance
  • Media contacts
  • IRS statements and announcements

IR-2024-171, June 21, 2024

WASHINGTON — The Internal Revenue Service today announced the release of draft Form 6765, Credit for Increasing Research Activities PDF , also known as the Research Credit.

The IRS received helpful comments from various external stakeholders that have informed several revisions the IRS is making to reduce taxpayer burden. The feedback and changes will alleviate taxpayer burden, provide taxpayers with a consistent and predefined format and improve the information received for tax administration.

The changes include:

Optional reporting of Section G

Section G, which was labeled “Section F” in the version of the form that IRS shared last fall, requests the Business Component Detail. The instructions will provide that Section G will be optional for:

  • Qualified Small Business (QSB) taxpayers, defined under section 41(h)(1) & (2) who check the box to claim a reduced payroll tax credit; or
  • Taxpayers with total qualified research expenditures (QREs) equal to or less than $1.5 million, determined at the control group level, and equal to or less than $50 million of gross receipts, as determined under section 448(c)(3) (without regard to subparagraph (A) thereof), claiming a research credit on an original filed return.

Reduced scope of Business Component Detail and other revisions

In response to feedback from stakeholders, the IRS reduced the number of business components that must be reported on Section G. Taxpayers should report 80% of total QREs in descending order by the amount of total QREs per business component, but no more than 50 business components (with special instructions for taxpayers using the ASC 730 directive who can report ASC 730 QREs as a single line item on Section G).

The amount of information that must be provided with respect to the reduced number of business components on Section G has also been reduced. For example, the IRS eliminated whether a business component is new/improved, a sale/license/lease and the narrative requirement (for original returns) that describes the information sought to be discovered. The selections for the type of business component are reduced, and the definitions for officers, controlled group reporting and business component descriptive names will be clarified in the instructions.

The revised Section G will be optional for all filers for tax year 2024 (processing year 2025). This will allow taxpayers time to transition to the Section G format. Section G will be effective for tax year 2025 (processing year 2026), subject to the guidelines noted above.

On Sept. 15, 2023, the IRS released a preview of proposed changes to Form 6765 and solicited comments from interested parties. The preview included a new Business Component Detail section for reporting quantitative and qualitative information for each business component, new questions seeking various information and reordering some of the existing questions on the form. The solicitation requested feedback on whether the new Business Component Detail section should be optional for certain taxpayers.

Please see Form 6765 PDF . Instructions will be released at a later date.

  •  Facebook
  •  Twitter
  •  Linkedin

Skip navigation

Nielsen Norman Group logo

World Leaders in Research-Based User Experience

Promptframes: evolving the wireframe for the age of ai.

make a research design

May 17, 2024 2024-05-17

  • Email article
  • Share on LinkedIn
  • Share on Twitter

In This Article:

The need for quality placeholder content, introducing promptframes, benefits of using promptframes, how to use promptframes in the design process, the potential of promptframes, a few precautions to consider, a good tactic for the 1-person ux team.

Using placeholder text or images early in your design workflow can help you explore possibilities and cope with evolving requirements.

However, placeholder content (especially the notorious lorem ipsum) can be a barrier to gathering insightful feedback from users and stakeholders. I have personally experienced derailed usability testing sessions because my placeholders provoked unintentional confusion and doubt in my participants. (And folks like Anna Kaley have previously highlighted the benefits of taking a content-focused approach in early design work.) In UX, remember that the content inspires feedback , not the container .

To enable a more efficient feedback loop, I propose a new design deliverable: the promptframe . Use promptframes to create realistic placeholder content faster using AI.

Promptframes unite the classic UX wireframe with prompt writing for generative AI.

A promptframe is a design deliverable that documents content goals and requirements for generative-AI prompts based on a wireframe’s layout and functionality.

Promptframes organize and document prompts locationally within an existing wireframe. UX designers can create promptframes early in the design process as they begin crafting interfaces to address requirements. Promptframes describe the goals, purpose, requirements, and other details of the content that goes within various design elements, so that AI can readily assist with content ideation and generation.

Diagram illustrating the stages of UX design from sketch to prototype. The stages include Sketch, Wireframe, Promptframe, and Prototype, arranged along a project timeline. The Promptframe stage is annotated with AI prompt documentation notes.

Wireframes can sometimes create problems for UX designers:

  • Reduced ideation . When designers rush ahead to make prototypes with high visual and interactive fidelity, they may spend less time exploring content. Most ideas are poor, and it's usually through evaluating many ideas (or combining several mediocre) that good designs emerge.
  • Obscured requirements . Allowing placeholders to linger within designs can hurt the UX designer in the long run. Unknown requirements or technical constraints that the UX designer discovers too late may result in infeasible or misaligned designs that cannot be easily corrected in due time.
  • Diminished feedback. Designs with poor content fidelity are too abstract for users to understand. For example, a data-intensive app with nonsensical charts and tables will be incomprehensible to a data-analyst accustomed to evaluating realistic data. Users may ignore these areas or ask questions about them in testing, consuming precious session time on what you (mistakenly) felt were unimportant details.

Promptframes address these issues in several ways:

  • Efficient ideation . One of the superpowers of generative AI is providing multiple variations of an idea with minimal effort. Promptframes integrate this idea engine into the UX design workflow.
  • Improved content fidelity . Specific, focused AI prompts can result in helpful content that, while not necessarily ideal for release, may be good enough for user testing and gathering feedback.
  • Faster iteration . Writing prompts may initially require some upfront effort, but that effort is repaid with the ease of incorporating insights from testing and feedback. Content can be pivoted and improved rapidly by sharing those details in subsequent prompts.
  • Better collaboration . Visuals are a great help when collaborating, as they build common ground with your team. Yet squiggly lines and lorem ipsum are often too abstract for nondesigners. AI-generated content, as well as the prompts generating it, can stimulate dialog and feedback from colleagues and may surface obscure requirements earlier in the design process.
  • Greater focus on objectives . Promptframes ask UX designers to go beyond interface components and describe business and user goals. If the UX designer struggles to explain these goals to a generative AI tool, it calls into question the content's purpose.

Conduct your early-stage UX design process normally using sketches and simple wireframes . This work will serve as the foundation for your promptframes once it is digitized in your design tool.

To illustrate promptframes in the design process, we will use hypothetical examples based on a page from Blue Apron's website describing a special promotional offer for people in community-service roles.

Diagram outlining the initial steps in a project. Step 1 (Establish Context & Describe Users) includes elements like user profiles and context notes. Step 2 (Write & Document AI Prompts) shows objectives, desired outcomes, and examples. The steps are connected with an arrow indicating the progression.

1. Establish Context and Describe Users

Documenting and sharing context with the generative AI will improve its ability to assist with content creation. ChatGPT is particularly well suited for promptframes due to its support for various output types.

Consider including these important high-level details in your prompts.

The role(s) that the generative AI will play (e.g., content strategist, graphic designer, video producer, data analyst), and the type of content it must create

The organization's mission and how it serves its customers and clients

The crossfunctional goals of the experience and what success looks like for the project (e.g., persuading visitors to sign up for a service, successfully scheduling a sales consultation, completing a workflow quickly and confidently)

The that should be used in all generated copy to align with the brand (reuse any tone of voice documentation from marketing or design-system resources if they exist.)

A glossary of unique terms your organization uses, including its products and services or competitors' names

Documented stylistic guidance for any visual assets (e.g., a design system like to describe desirable illustrations' color, shape, lines, and other aspects)

The number of divergent variations for all AI output (you will usually want 3–5 variations) (Variations are a crucial advantage of using generative AI, regardless of the generated content, but some AI tools may generate only few, if any, variations to manage their operating costs.)

Generative AI also needs user insights to be effective. Share written content from high-quality personas or archetypes  that mention user needs, behaviors, goals, pain points, as well as motivations for the product, service, or feature being designed.

All this specificity will give you better results than just using off-the-shelf AI agents that proclaim to fulfill similar content-generation roles. Although this looks like a lot of effort to write or compile, you need to do this only once and can reuse them throughout this project or others.

A text-based image discussing the meal preparation habits of community service workers, highlighting the need for quick and varied meals. Two highlighted quotes from participants emphasize the challenges of finding time to eat during long shifts and the importance of meal variety.

Remember to leverage AI-tool features that maintain this context. For example, ChatGPT offers a custom - GPT feature that conveniently persists these details. Other AI tools like Gemini or Claude currently don’t support easy reuse of context; for those tools, you will need to capture these details (perhaps in a text document) and feed them into your prompt before discussing project specifics.

make a research design

2. Write and Document Prompts

With the context and users established with our AI tool, the next step is to document prompts that will direct the AI in content creation. Start by writing down the purpose of the various areas and elements in your design that will contain content.

Always include these details in your prompts:

  • Objectives : Why is this piece of content present in the design? How does it benefit the business and the users? User stories and other requirements from a product-manager colleague can be an excellent reference here.
  • Desired outcomes : What do you hope users will do or think because of this content?
  • Examples : If available, include examples that could serve as inspiration when generating the content.

Here are additional aspects to consider for specific types of content:

  • Message : What core message are you trying to convey in this copy? What facts and details must be included?
  • Container : Where will the copy be seen (landing page, call-to-action button, error message, etc.)?
  • Constraints : Are there word-count limits or other limitations required by the container?
  • Tone of voice (conditional) : Should the default tone of voice be adjusted for this copy? For example, softening a typically humorous tone of voice for an error message likely to disappoint the user.
  • Subject : Who or what elements should be depicted in the image?
  • Actions : Are any actions happening with the subjects in the image?
  • Background : Is the background relevant, or should it be plain for easy removal?
  • Dimensions : What size should the image be to fit the interface? For example, if real images will be coming from another system, then this would be an excellent opportunity to start asking colleagues about expected dimensions of those real images and documenting that constraint in the prompt.
  • Style : How should the image be presented? What illustrative techniques are being used, or should it be a photo?

Some generative AI systems are capable of photorealistic content, but some vendors prohibit its creation as a precaution against abuse and misinformation. Don't waste time trying to work around these prohibitions if your current AI tool won't comply. You may need to use a different AI tool or settle for less than true-to-life images.

make a research design

Data Visualizations

  • Type : Describe the specific visualization desired, such as a bar chart, line chart, or table.
  • Data and outliers : Provide a spreadsheet of data or request AI to create synthetic data to illustrate a desirable visualization. For example, instead of handcrafting data, just describe that a specific product line should trend downward over time on a line chart if a downward trend would support a task in future usability testing.
  • Columns and totals : Where applicable, describe table-column labels, desired totals, and reasonable upper and lower values. Again, consider what might be helpful to represent in future usability-testing tasks.
  • Sorting : For tables, describe any default sorting of the data.
  • Axes : Describe the components of chart axes, such as minimum and maximum values, data type, and label formatting.
  • Style : Provide a color palette for charting elements, if relevant.
  • Background : Describe the background fill and any usage of reference lines.
  • Legend : Describe the content and placement of a legend, if relevant and desired.
  • Labels : Consider data labels for specific data points or the label of the overall chart.
  • Dimensions : For charts, describe what size and image format should be used.

Diagram showing the iterative process from prompt to prototype. It includes three steps: Step 3 (Run Prompts in AI Tools & Populate Prototypes), Step 4 (Refine Through Collaboration & Testing), and Step 5 (Revise Promptframes from Insights), with arrows indicating iteration between steps.

3. Run Prompts in AI Tool and Populate Your Designs with Content

Copy and paste the prompts into your AI tool. Then integrate the generated content in the wireframe to start evolving it into a prototype. To keep your work organized, document links to separate AI-tool chats in the promptframe, as you will likely revisit them in future revisions.

When performing this step:

  • Guard against perfectionism . Don’t be tempted to create production-ready content. You can inadvertently waste a lot of time trying to refine the AI tool’s output to be “just right” for only marginal improvements.
  • Chunk your prompts . AI tools have token limits for prompts and the AI tool’s input and resulting output. For ChatGPT, that limit currently translates to about 2,000-2,500 words. You still need detailed prompts to be successful, though, so break very long prompts into chunks and run them separately so the AI tool can still provide a detailed response.

make a research design

4. Refine Through Collaboration and Testing

As you conduct design critiques with your collaborators, review the AI-generated content or the prompts that were used. Parts may be added, revised, or dropped — which is normal — but you should always be progressing towards greater content fidelity in all aspects of the design.

Think of the AI-generated content as a provocation for your colleagues — is this content aligned with our project and user's goals? Why or why not? Capture that feedback by revising the prompts. If there's considerable disagreement, consider splitting the design into 2 prototypes for testing.

make a research design

Remember, promptframing aims to quickly construct a testable design with meaningful content . Consider the tasks you want participants to perform with the proposed design and use them to influence your prompt writing and content-creation strategy.

5. Iterate Quickly

Following this process should buy you more time, and skilled UX professionals know to reinvest those time-dividends into iteration. Revise your prompts with your research insights and regenerate new content for future testing. Weaker parts should be scrapped or have their prompt revised before rerunning it in the generative AI tool.

Illustration of a person working on a laptop with a speech bubble displaying the message

6. Craft Quality Content

Once you have finished iteration, give your successful prototype the "human white-glove treatment" and elevate it with more content, visual, or interactive fidelity. Human effort will still be required to create the final design! However, you should have received a higher volume of richer feedback covering more design ideas, resulting in an overall more effective design. You can even share your prompts with other human collaborators to give them additional context on the prototype.

make a research design

UX-design tools are currently exploring generative AI. Some vendors make bold claims, but their practical utility to UX professionals is not so bold (see our review of the current state of AI tools for UX design .) These tools may someday output robust experiences with basic prompting, but what's likely to happen currently is a mishmash of incoherent material derived from commonplace design patterns needing an excessive amount of rework to be useful.  Whether machine or human — garbage in is garbage out.

Promptframes acknowledge that current generative-AI technology can be practical and helpful in the UX-design workflow. But they nudge us to chunk content challenges into well-documented pieces and don't excuse us from thinking and deciding what is needed and why from a user perspective. Instead, they accelerate our ability to check our assumptions with content that users can meaningfully evaluate and give us feedback on.

Perhaps future UX-design tools will offer better support for documenting prompt inputs and their associated generated outputs to help designers create and refine promptframes efficiently within their project's context. Passing a designer’s prompt via an API call to a generative AI platform is simply not enough.

No single UX deliverable can do it all. There are a few precautions to consider specifically with promptframes.

Not for Executive Consumption

Promptframes, like their wireframe cousins, are not suitable for reviews with executives. People cognitively distant from a project typically need high visual and content fidelity to understand design deliverables. At a minimum, promptframes can convey some forward progress (you've been hard at work making something for this project) but don't expect early-stage promptframes to be particularly helpful in a design review with stakeholders deciding the project's direction or future investment.

Content Will Require Revision

Depending on the details provided in the prompts and the generative AI's robustness, the resulting AI-generated content will vary wildly in quality. Images may be inconsistently styled, and copy will undoubtedly need editing. Remember, the goal is not pixel-perfect, launch-ready content but to have sensible content faster so colleagues or testing participants might reasonably understand and share insightful feedback.

Respect Organizational AI Policies

Some organizations regulate the use of generative AI tools to protect their data. Be aware of and adhere to these before using promptframes.

Many UX professionals are a 1-person UX team or work in environments with low UX maturity , with few resources or specialized collaborators. These folks benefit from augmenting their workflow to accommodate an AI content assistant, particularly if writing or graphic design are not strong skills.

However, what if you can collaborate with a content strategist or UX writer? That’s wonderful! Think of promptframes as a collaborative deliverable with these roles, which are (unfortunately) often included very late in the design process. Use the same general workflow described above to get their feedback and suggestions into the design early so their contributions can be tested along with yours.

Promptframes combine our thinking of content containers with a greater emphasis on the content itself in a way that enables generative AI to accelerate our workflow for user testing and feedback. Lorem ipsum as a placeholder practice is as dead as Latin is as a spoken language. Leave Cicero to the philosophers and use promptframes to rapidly create content your users can understand.

Related Courses

Practical ai for ux professionals.

Leverage artificial intelligence tools to enhance your UX work and save valuable time

Interaction

UX Deliverables

Effectively communicate UX design ideas and research findings to managers, collaborators, and other stakeholders.

Related Topics

  • Artificial Intelligence Artificial Intelligence
  • Prototyping

Learn More:

make a research design

You're Not Too Late to Use AI

Caleb Sponheim · 3 min

make a research design

AI Isn't Ready for UX Design

make a research design

AI on Intranets: 5 Valuable Features

Anna Kaley · 3 min

Related Articles:

CARE: Structure for Crafting AI Prompts

Kate Moran · 9 min

Design Taste vs. Technical Skills in the Era of AI

Sarah Gibbons and Kate Moran · 4 min

AI UX-Design Tools Are Not Ready for Primetime: Status Update

Caleb Sponheim and Megan Brown · 6 min

Planning Research with Generative AI

Maria Rosala · 7 min

New Users Need Support with Generative-AI Tools

Feifei Liu · 8 min

Generative UI and Outcome-Oriented Design

Kate Moran and Sarah Gibbons · 6 min

IMAGES

  1. How to Create a Strong Research Design: 2-Minute Summary

    make a research design

  2. PPT

    make a research design

  3. How to Write a Research Design

    make a research design

  4. Research Design in Qualitative Research

    make a research design

  5. How to Write a Strong Research Design

    make a research design

  6. 25 Types of Research Designs (2024)

    make a research design

VIDEO

  1. Research Design

  2. What is Research Design

  3. Research Design என்றால் என்ன? ‌I தமிழில் I NTA NET Research Aptitude

  4. Brand Research

  5. Format to write research Proposal ( How to write research Proposal) Amharic Tutorial

  6. BEST AI TOOLS FOR RESEARCH PAPER WRITING, Assignment, Article review and literature 2023 in Amharic

COMMENTS

  1. What Is a Research Design

    A research design is a strategy for answering your research question using empirical data. Creating a research design means making decisions about: Your overall research objectives and approach. Whether you'll rely on primary research or secondary research. Your sampling methods or criteria for selecting subjects. Your data collection methods.

  2. Research Design

    Step 2: Choose a type of research design. Step 3: Identify your population and sampling method. Step 4: Choose your data collection methods. Step 5: Plan your data collection procedures. Step 6: Decide on your data analysis strategies. Frequently asked questions. Introduction. Step 1. Step 2.

  3. How to Write a Research Design

    A research design is a structure that combines different components of research. It involves the use of different data collection and data analysis techniques logically to answer the research questions. It would be best to make some decisions about addressing the research questions adequately before starting the research process, which is achieved with the help of the research design.

  4. What Is Research Design? 8 Types + Examples

    Research design refers to the overall plan, structure or strategy that guides a research project, from its conception to the final analysis of data. Research designs for quantitative studies include descriptive, correlational, experimental and quasi-experimenta l designs. Research designs for qualitative studies include phenomenological ...

  5. Research Design

    When to Write Research Design. Research design should be written before conducting any research study. It is an important planning phase that outlines the research methodology, data collection methods, and data analysis techniques that will be used to investigate a research question or problem. The research design helps to ensure that the ...

  6. What Is a Research Design?

    Introduction. A research design in qualitative research is a critical framework that guides the methodological approach to studying complex social phenomena. Qualitative research designs determine how data is collected, analyzed, and interpreted, ensuring that the research captures participants' nuanced and subjective perspectives.

  7. What is a Research Design? Definition, Types, Methods and Examples

    A research design is defined as the overall plan or structure that guides the process of conducting research. It is a critical component of the research process and serves as a blueprint for how a study will be carried out, including the methods and techniques that will be used to collect and analyze data.

  8. Types of Research Designs Compared

    Types of Research Designs Compared | Guide & Examples. Published on June 20, 2019 by Shona McCombes.Revised on June 22, 2023. When you start planning a research project, developing research questions and creating a research design, you will have to make various decisions about the type of research you want to do.. There are many ways to categorize different types of research.

  9. How to Create a Strong Research Design: 2-minute Summary

    A strong research design is crucial to a successful research proposal, scientific paper, or dissertation. In this video, you'll get an idea of the series of ...

  10. A Beginner's Guide to Starting the Research Process

    Step 4: Create a research design. The research design is a practical framework for answering your research questions. It involves making decisions about the type of data you need, the methods you'll use to collect and analyze it, and the location and timescale of your research.

  11. Research design

    Research design is a comprehensive plan for data collection in an empirical research project. It is a 'blueprint' for empirical research aimed at answering specific research questions or testing specific hypotheses, and must specify at least three processes: the data collection process, the instrument development process, and the sampling process.

  12. Research Design: What it is, Elements & Types

    Research design is the framework of research methods and techniques chosen by a researcher to conduct a study. The design allows researchers to sharpen the research methods suitable for the subject matter and set up their studies for success. Creating a research topic explains the type of research (experimental,survey research,correlational ...

  13. Research Design: What is Research Design, Types, Methods, and Examples

    Research design is the blueprint of any scientific investigation, dictating the path researchers take to answer their burning questions. For young researchers stepping into this realm, understanding the intricacies of research design is paramount. In this article, we'll explore what research design entails, the different types available, and ...

  14. What is Research Design? Types, Elements and Examples

    The research design categories under this are descriptive, experimental, correlational, diagnostic, and explanatory. Data analysis involves interpretation and narrative analysis. Data analysis involves statistical analysis and hypothesis testing. The reasoning used to synthesize data is inductive.

  15. Basic Research Design

    What is Research Design? Definition of Research Design: A procedure for generating answers to questions, crucial in determining the reliability and relevance of research outcomes.; Importance of Strong Designs: Strong designs lead to answers that are accurate and close to their targets, while weak designs may result in misleading or irrelevant outcomes.

  16. Research design

    A research design is a framework that has been created to find answers to research questions. Design types and sub-types. There are many ways to classify research designs. Nonetheless, the list below offers a number of useful distinctions between possible research designs. A research design is an arrangement of conditions or collection.

  17. Organizing Your Social Sciences Research Paper

    Before beginning your paper, you need to decide how you plan to design the study.. The research design refers to the overall strategy and analytical approach that you have chosen in order to integrate, in a coherent and logical way, the different components of the study, thus ensuring that the research problem will be thoroughly investigated. It constitutes the blueprint for the collection ...

  18. Research design

    Research requires extensive knowledge of how to improve and make use of certain opportunities that might arise.These modules explain all about research design, including several tools and steps on how to advance your research evaluation strategies, identify research gaps, enhance your chances of serendipitous research discovery, and integrate sex, gender, and intersectional analysis into research.

  19. Research Design Steps

    Chapter 2. Research Design Getting Started. When I teach undergraduates qualitative research methods, the final product of the course is a "research proposal" that incorporates all they have learned and enlists the knowledge they have learned about qualitative research methods in an original design that addresses a particular research question.

  20. What is Research Design?

    What is Research Design? Crafting a well-defined research design is essential for guiding the entire project, ensuring coherence in methodology and analysis, and upholding the validity and reproducibility of outcomes in the complex landscape of research. Diving into any new project necessitates a solid plan, a blueprint for navigating the very ...

  21. Research Methods Guide: Research Design & Method

    Research design is a plan to answer your research question. A research method is a strategy used to implement that plan. Research design and methods are different but closely related, because good research design ensures that the data you obtain will help you answer your research question more effectively. Which research method should I choose?

  22. Master Interview Skills: Discussing Research Design Experience

    Here's how you can ace discussing your research design experience in a job interview. Powered by AI and the LinkedIn community. 1. Know Your Design. Be the first to add your personal experience. 2 ...

  23. Five Questions To Ask Yourself To Get The Most Out Of Your Customer

    Interviewing is a key method for customer research due to the rich qualitative data it provides. This data can then be used to inform your design process to ensure that you're creating experiences that meet customers' goals. To make sure customer interviews are successful and produce data that drives decision-making, you need to have a research plan and clear objectives, but companies ...

  24. How to Make a "Good" Presentation "Great"

    Let's begin with the opening of your presentation. A good opening or first slide should be able to grab the audience's attention and state the purpose and objectives in the first thirty ...

  25. The Design Research Conference 2024 Will Be Hosted at MIT on June 27

    The MIT Morningside Academy for Design is an interdisciplinary hub for design education, research, and entrepreneurship. The Academy aims to educate future generations in design, foster design innovation, and encourage entrepreneurship to empower individual and collective problem-solving capacity around the globe.

  26. New Faculty Resources and Services

    These include article and book delivery, off-campus instruction and remote research assistance. Faculty who are delivering distance courses may be interested in our guide to resources for teaching online. For help or more information, contact a librarian or the Library Services Desk at [email protected] or 605-688-5107 or 800-786-2038.

  27. Guide to Experimental Design

    Table of contents. Step 1: Define your variables. Step 2: Write your hypothesis. Step 3: Design your experimental treatments. Step 4: Assign your subjects to treatment groups. Step 5: Measure your dependent variable. Other interesting articles. Frequently asked questions about experiments.

  28. SAS AI Platform to Help A&T, N.C. State Take Research to the People

    EAST GREENSBORO, N.C. (June 24, 2024) - North Carolina Agricultural and Technical State University will partner with North Carolina State University and data and AI (artificial intelligence) provider SAS to create a unique, cloud-based platform to advance agricultural research at the two land-grant universities and tailor the platform to make those results easier to deliver across the state.

  29. IRS releases revised draft Form 6765, Credit for Increasing Research

    IR-2024-171, June 21, 2024. WASHINGTON — The Internal Revenue Service today announced the release of draft Form 6765, Credit for Increasing Research Activities PDF, also known as the Research Credit.. The IRS received helpful comments from various external stakeholders that have informed several revisions the IRS is making to reduce taxpayer burden.

  30. Promptframes: Evolving the Wireframe for the Age of AI

    Promptframes unite the classic UX wireframe with prompt writing for generative AI. A promptframe is a design deliverable that documents content goals and requirements for generative-AI prompts based on a wireframe's layout and functionality. Promptframes organize and document prompts locationally within an existing wireframe.