Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Hypothesis Testing | A Step-by-Step Guide with Easy Examples

Published on November 8, 2019 by Rebecca Bevans . Revised on June 22, 2023.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics . It is most often used by scientists to test specific predictions, called hypotheses, that arise from theories.

There are 5 main steps in hypothesis testing:

  • State your research hypothesis as a null hypothesis and alternate hypothesis (H o ) and (H a  or H 1 ).
  • Collect data in a way designed to test the hypothesis.
  • Perform an appropriate statistical test .
  • Decide whether to reject or fail to reject your null hypothesis.
  • Present the findings in your results and discussion section.

Though the specific details might vary, the procedure you will use when testing a hypothesis will always follow some version of these steps.

Table of contents

Step 1: state your null and alternate hypothesis, step 2: collect data, step 3: perform a statistical test, step 4: decide whether to reject or fail to reject your null hypothesis, step 5: present your findings, other interesting articles, frequently asked questions about hypothesis testing.

After developing your initial research hypothesis (the prediction that you want to investigate), it is important to restate it as a null (H o ) and alternate (H a ) hypothesis so that you can test it mathematically.

The alternate hypothesis is usually your initial hypothesis that predicts a relationship between variables. The null hypothesis is a prediction of no relationship between the variables you are interested in.

  • H 0 : Men are, on average, not taller than women. H a : Men are, on average, taller than women.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

For a statistical test to be valid , it is important to perform sampling and collect data in a way that is designed to test your hypothesis. If your data are not representative, then you cannot make statistical inferences about the population you are interested in.

There are a variety of statistical tests available, but they are all based on the comparison of within-group variance (how spread out the data is within a category) versus between-group variance (how different the categories are from one another).

If the between-group variance is large enough that there is little or no overlap between groups, then your statistical test will reflect that by showing a low p -value . This means it is unlikely that the differences between these groups came about by chance.

Alternatively, if there is high within-group variance and low between-group variance, then your statistical test will reflect that with a high p -value. This means it is likely that any difference you measure between groups is due to chance.

Your choice of statistical test will be based on the type of variables and the level of measurement of your collected data .

  • an estimate of the difference in average height between the two groups.
  • a p -value showing how likely you are to see this difference if the null hypothesis of no difference is true.

Based on the outcome of your statistical test, you will have to decide whether to reject or fail to reject your null hypothesis.

In most cases you will use the p -value generated by your statistical test to guide your decision. And in most cases, your predetermined level of significance for rejecting the null hypothesis will be 0.05 – that is, when there is a less than 5% chance that you would see these results if the null hypothesis were true.

In some cases, researchers choose a more conservative level of significance, such as 0.01 (1%). This minimizes the risk of incorrectly rejecting the null hypothesis ( Type I error ).

The results of hypothesis testing will be presented in the results and discussion sections of your research paper , dissertation or thesis .

In the results section you should give a brief summary of the data and a summary of the results of your statistical test (for example, the estimated difference between group means and associated p -value). In the discussion , you can discuss whether your initial hypothesis was supported by your results or not.

In the formal language of hypothesis testing, we talk about rejecting or failing to reject the null hypothesis. You will probably be asked to do this in your statistics assignments.

However, when presenting research results in academic papers we rarely talk this way. Instead, we go back to our alternate hypothesis (in this case, the hypothesis that men are on average taller than women) and state whether the result of our test did or did not support the alternate hypothesis.

If your null hypothesis was rejected, this result is interpreted as “supported the alternate hypothesis.”

These are superficial differences; you can see that they mean the same thing.

You might notice that we don’t say that we reject or fail to reject the alternate hypothesis . This is because hypothesis testing is not designed to prove or disprove anything. It is only designed to test whether a pattern we measure could have arisen spuriously, or by chance.

If we reject the null hypothesis based on our research (i.e., we find that it is unlikely that the pattern arose by chance), then we can say our test lends support to our hypothesis . But if the pattern does not pass our decision rule, meaning that it could have arisen by chance, then we say the test is inconsistent with our hypothesis .

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Descriptive statistics
  • Measures of central tendency
  • Correlation coefficient

Methodology

  • Cluster sampling
  • Stratified sampling
  • Types of interviews
  • Cohort study
  • Thematic analysis

Research bias

  • Implicit bias
  • Cognitive bias
  • Survivorship bias
  • Availability heuristic
  • Nonresponse bias
  • Regression to the mean

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bevans, R. (2023, June 22). Hypothesis Testing | A Step-by-Step Guide with Easy Examples. Scribbr. Retrieved September 3, 2024, from https://www.scribbr.com/statistics/hypothesis-testing/

Is this article helpful?

Rebecca Bevans

Rebecca Bevans

Other students also liked, choosing the right statistical test | types & examples, understanding p values | definition and examples, what is your plagiarism score.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Indian J Crit Care Med
  • v.23(Suppl 3); 2019 Sep

An Introduction to Statistics: Understanding Hypothesis Testing and Statistical Errors

Priya ranganathan.

1 Department of Anesthesiology, Critical Care and Pain, Tata Memorial Hospital, Mumbai, Maharashtra, India

2 Department of Surgical Oncology, Tata Memorial Centre, Mumbai, Maharashtra, India

The second article in this series on biostatistics covers the concepts of sample, population, research hypotheses and statistical errors.

How to cite this article

Ranganathan P, Pramesh CS. An Introduction to Statistics: Understanding Hypothesis Testing and Statistical Errors. Indian J Crit Care Med 2019;23(Suppl 3):S230–S231.

Two papers quoted in this issue of the Indian Journal of Critical Care Medicine report. The results of studies aim to prove that a new intervention is better than (superior to) an existing treatment. In the ABLE study, the investigators wanted to show that transfusion of fresh red blood cells would be superior to standard-issue red cells in reducing 90-day mortality in ICU patients. 1 The PROPPR study was designed to prove that transfusion of a lower ratio of plasma and platelets to red cells would be superior to a higher ratio in decreasing 24-hour and 30-day mortality in critically ill patients. 2 These studies are known as superiority studies (as opposed to noninferiority or equivalence studies which will be discussed in a subsequent article).

SAMPLE VERSUS POPULATION

A sample represents a group of participants selected from the entire population. Since studies cannot be carried out on entire populations, researchers choose samples, which are representative of the population. This is similar to walking into a grocery store and examining a few grains of rice or wheat before purchasing an entire bag; we assume that the few grains that we select (the sample) are representative of the entire sack of grains (the population).

The results of the study are then extrapolated to generate inferences about the population. We do this using a process known as hypothesis testing. This means that the results of the study may not always be identical to the results we would expect to find in the population; i.e., there is the possibility that the study results may be erroneous.

HYPOTHESIS TESTING

A clinical trial begins with an assumption or belief, and then proceeds to either prove or disprove this assumption. In statistical terms, this belief or assumption is known as a hypothesis. Counterintuitively, what the researcher believes in (or is trying to prove) is called the “alternate” hypothesis, and the opposite is called the “null” hypothesis; every study has a null hypothesis and an alternate hypothesis. For superiority studies, the alternate hypothesis states that one treatment (usually the new or experimental treatment) is superior to the other; the null hypothesis states that there is no difference between the treatments (the treatments are equal). For example, in the ABLE study, we start by stating the null hypothesis—there is no difference in mortality between groups receiving fresh RBCs and standard-issue RBCs. We then state the alternate hypothesis—There is a difference between groups receiving fresh RBCs and standard-issue RBCs. It is important to note that we have stated that the groups are different, without specifying which group will be better than the other. This is known as a two-tailed hypothesis and it allows us to test for superiority on either side (using a two-sided test). This is because, when we start a study, we are not 100% certain that the new treatment can only be better than the standard treatment—it could be worse, and if it is so, the study should pick it up as well. One tailed hypothesis and one-sided statistical testing is done for non-inferiority studies, which will be discussed in a subsequent paper in this series.

STATISTICAL ERRORS

There are two possibilities to consider when interpreting the results of a superiority study. The first possibility is that there is truly no difference between the treatments but the study finds that they are different. This is called a Type-1 error or false-positive error or alpha error. This means falsely rejecting the null hypothesis.

The second possibility is that there is a difference between the treatments and the study does not pick up this difference. This is called a Type 2 error or false-negative error or beta error. This means falsely accepting the null hypothesis.

The power of the study is the ability to detect a difference between groups and is the converse of the beta error; i.e., power = 1-beta error. Alpha and beta errors are finalized when the protocol is written and form the basis for sample size calculation for the study. In an ideal world, we would not like any error in the results of our study; however, we would need to do the study in the entire population (infinite sample size) to be able to get a 0% alpha and beta error. These two errors enable us to do studies with realistic sample sizes, with the compromise that there is a small possibility that the results may not always reflect the truth. The basis for this will be discussed in a subsequent paper in this series dealing with sample size calculation.

Conventionally, type 1 or alpha error is set at 5%. This means, that at the end of the study, if there is a difference between groups, we want to be 95% certain that this is a true difference and allow only a 5% probability that this difference has occurred by chance (false positive). Type 2 or beta error is usually set between 10% and 20%; therefore, the power of the study is 90% or 80%. This means that if there is a difference between groups, we want to be 80% (or 90%) certain that the study will detect that difference. For example, in the ABLE study, sample size was calculated with a type 1 error of 5% (two-sided) and power of 90% (type 2 error of 10%) (1).

Table 1 gives a summary of the two types of statistical errors with an example

Statistical errors

(a) Types of statistical errors
: Null hypothesis is
TrueFalse
Null hypothesis is actuallyTrueCorrect results!Falsely rejecting null hypothesis - Type I error
FalseFalsely accepting null hypothesis - Type II errorCorrect results!
(b) Possible statistical errors in the ABLE trial
There is difference in mortality between groups receiving fresh RBCs and standard-issue RBCsThere difference in mortality between groups receiving fresh RBCs and standard-issue RBCs
TruthThere is difference in mortality between groups receiving fresh RBCs and standard-issue RBCsCorrect results!Falsely rejecting null hypothesis - Type I error
There difference in mortality between groups receiving fresh RBCs and standard-issue RBCsFalsely accepting null hypothesis - Type II errorCorrect results!

In the next article in this series, we will look at the meaning and interpretation of ‘ p ’ value and confidence intervals for hypothesis testing.

Source of support: Nil

Conflict of interest: None

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

6 Week 5 Introduction to Hypothesis Testing Reading

An introduction to hypothesis testing.

What are you interested in learning about? Perhaps you’d like to know if there is a difference in average final grade between two different versions of a college class? Does the Fort Lewis women’s soccer team score more goals than the national Division II women’s average? Which outdoor sport do Fort Lewis students prefer the most?  Do the pine trees on campus differ in mean height from the aspen trees? For all of these questions, we can collect a sample, analyze the data, then make a statistical inference based on the analysis.  This means determining whether we have enough evidence to reject our null hypothesis (what was originally assumed to be true, until we prove otherwise). The process is called hypothesis testing .

A really good Khan Academy video to introduce the hypothesis test process: Khan Academy Hypothesis Testing . As you watch, please don’t get caught up in the calculations, as we will use SPSS to do these calculations.  We will also use SPSS p-values, instead of the referenced Z-table, to make statistical decisions.

The Six-Step Process

Hypothesis testing requires very specific, detailed steps.  Think of it as a mathematical lab report where you have to write out your work in a particular way.  There are six steps that we will follow for ALL of the hypothesis tests that we learn this semester.

Six Step Hypothesis Testing Process

1. Research Question

All hypothesis tests start with a research question.  This is literally a question that includes what you are trying to prove, like the examples earlier:  Which outdoor sport do Fort Lewis students prefer the most? Is there sufficient evidence to show that the Fort Lewis women’s soccer team scores more goals than the national Division 2 women’s average?

In this step, besides literally being a question, you’ll want to include:

  • mention of your variable(s)
  • wording specific to the type of test that you’ll be conducting (mean, mean difference, relationship, pattern)
  • specific wording that indicates directionality (are you looking for a ‘difference’, are you looking for something to be ‘more than’ or ‘less than’ something else, or are you comparing one pattern to another?)

Consider this research question: Do the pine trees on campus differ in mean height from the aspen trees?

  • The wording of this research question clearly mentions the variables being studied. The independent variable is the type of tree (pine or aspen), and these trees are having their heights compared, so the dependent variable is height.
  • ‘Mean’ is mentioned, so this indicates a test with a quantitative dependent variable.
  • The question also asks if the tree heights ‘differ’. This specific word indicates that the test being performed is a two-tailed (i.e. non-directional) test. More about the meaning of one/two-tailed will come later.

2. Statistical Hypotheses

A statistical hypothesis test has a null hypothesis, the status quo, what we assume to be true.  Notation is H 0, read as “H naught”.  The alternative hypothesis is what you are trying to prove (mentioned in your research question), H 1 or H A .  All hypothesis tests must include a null and an alternative hypothesis.  We also note which hypothesis test is being done in this step.

The notation for your statistical hypotheses will vary depending on the type of test that you’re doing. Writing statistical hypotheses is NOT the same as most scientific hypotheses. You are not writing sentences explaining what you think will happen in the study. Here is an example of what statistical hypotheses look like using the research question: Do the pine trees on campus differ in mean height from the aspen trees?

LaTeX: H_0\:

3. Decision Rule

In this step, you state which alpha value you will use, and when appropriate, the directionality, or tail, of the test.  You also write a statement: “I will reject the null hypothesis if p < alpha” (insert actual alpha value here).  In this introductory class, alpha is the level of significance, how willing we are to make the wrong statistical decision, and it will be set to 0.05 or 0.01.

Example of a Decision Rule:

Let alpha=0.01, two-tailed. I will reject the null hypothesis if p<0.01.

4. Assumptions, Analysis and Calculations

Quite a bit goes on in this step.  Assumptions for the particular hypothesis test must be done.  SPSS will be used to create appropriate graphs, and test output tables. Where appropriate, calculations of the test’s effect size will also be done in this step.

All hypothesis tests have assumptions that we hope to meet. For example, tests with a quantitative dependent variable consider a histogram(s) to check if the distribution is normal, and whether there are any obvious outliers. Each hypothesis test has different assumptions, so it is important to pay attention to the specific test’s requirements.

Required SPSS output will also depend on the test.

5. Statistical Decision

It is in Step 5 that we determine if we have enough statistical evidence to reject our null hypothesis.  We will consult the SPSS p-value and compare to our chosen alpha (from Step 3: Decision Rule).

Put very simply, the p -value is the probability that, if the null hypothesis is true, the results from another randomly selected sample will be as extreme or more extreme as the results obtained from the given sample. The p -value can also be thought of as the probability that the results (from the sample) that we are seeing are solely due to chance. This concept will be discussed in much further detail in the class notes.

Based on this numerical comparison between the p-value and alpha, we’ll either reject or retain our null hypothesis.  Note: You may NEVER ‘accept’ the null hypothesis. This is because it is impossible to prove a null hypothesis to be true.

Retaining the null means that you just don’t have enough evidence to prove your alternative hypothesis to be true, so you fall back to your null. (You retain the null when p is greater than or equal to alpha.)

Rejecting the null means that you did find enough evidence to prove your alternative hypothesis as true. (You reject the null when p is less than alpha.)

Example of a Statistical Decision:

Retain the null hypothesis, because p=0.12 > alpha=0.01.

The p-value will come from SPSS output, and the alpha will have already been determined back in Step 3. You must be very careful when you compare the decimal values of the p-value and alpha. If, for example, you mistakenly think that p=0.12 < alpha=0.01, then you will make the incorrect statistical decision, which will likely lead to an incorrect interpretation of the study’s findings.

6. Interpretation

The interpretation is where you write up your findings. The specifics will vary depending on the type of hypothesis test you performed, but you will always include a plain English, contextual conclusion of what your study found (i.e. what it means to reject or retain the null hypothesis in that particular study).  You’ll have statistics that you quote to support your decision.  Some of the statistics will need to be written in APA style citation (the American Psychological Association style of citation).  For some hypothesis tests, you’ll also include an interpretation of the effect size.

Some hypothesis tests will also require an additional (non-Parametric) test after the completion of your original test, if the test’s assumptions have not been met. These tests are also call “Post-Hoc tests”.

As previously stated, hypothesis testing is a very detailed process. Do not be concerned if you have read through all of the steps above, and have many questions (and are possibly very confused). It will take time, and a lot of practice to learn and apply these steps!

This Reading is just meant as an overview of hypothesis testing. Much more information is forthcoming in the various sets of Notes about the specifics needed in each of these steps. The Hypothesis Test Checklist will be a critical resource for you to refer to during homeworks and tests.

Student Course Learning Objectives

4.  Choose, administer and interpret the correct tests based on the situation, including identification of appropriate sampling and potential errors

c. Choose the appropriate hypothesis test given a situation

d. Describe the meaning and uses of alpha and p-values

e. Write the appropriate null and alternative hypotheses, including whether the alternative should be one-sided or two-sided

f. Determine and calculate the appropriate test statistic (e.g. z-test, multiple t-tests, Chi-Square, ANOVA)

g. Determine and interpret effect sizes.

h. Interpret results of a hypothesis test

  • Use technology in the statistical analysis of data
  • Communicate in writing the results of statistical analyses of data

Attributions

Adapted from “Week 5 Introduction to Hypothesis Testing Reading” by Sherri Spriggs and Sandi Dang is licensed under CC BY-NC-SA 4.0 .

Math 132 Introduction to Statistics Readings Copyright © by Sherri Spriggs is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License , except where otherwise noted.

Share This Book

MLP Logo

Hypothesis Testing – A Deep Dive into Hypothesis Testing, The Backbone of Statistical Inference

  • September 21, 2023

Explore the intricacies of hypothesis testing, a cornerstone of statistical analysis. Dive into methods, interpretations, and applications for making data-driven decisions.

hypothesis testing keywords

In this Blog post we will learn:

  • What is Hypothesis Testing?
  • Steps in Hypothesis Testing 2.1. Set up Hypotheses: Null and Alternative 2.2. Choose a Significance Level (α) 2.3. Calculate a test statistic and P-Value 2.4. Make a Decision
  • Example : Testing a new drug.
  • Example in python

1. What is Hypothesis Testing?

In simple terms, hypothesis testing is a method used to make decisions or inferences about population parameters based on sample data. Imagine being handed a dice and asked if it’s biased. By rolling it a few times and analyzing the outcomes, you’d be engaging in the essence of hypothesis testing.

Think of hypothesis testing as the scientific method of the statistics world. Suppose you hear claims like “This new drug works wonders!” or “Our new website design boosts sales.” How do you know if these statements hold water? Enter hypothesis testing.

2. Steps in Hypothesis Testing

  • Set up Hypotheses : Begin with a null hypothesis (H0) and an alternative hypothesis (Ha).
  • Choose a Significance Level (α) : Typically 0.05, this is the probability of rejecting the null hypothesis when it’s actually true. Think of it as the chance of accusing an innocent person.
  • Calculate Test statistic and P-Value : Gather evidence (data) and calculate a test statistic.
  • p-value : This is the probability of observing the data, given that the null hypothesis is true. A small p-value (typically ≀ 0.05) suggests the data is inconsistent with the null hypothesis.
  • Decision Rule : If the p-value is less than or equal to α, you reject the null hypothesis in favor of the alternative.

2.1. Set up Hypotheses: Null and Alternative

Before diving into testing, we must formulate hypotheses. The null hypothesis (H0) represents the default assumption, while the alternative hypothesis (H1) challenges it.

For instance, in drug testing, H0 : “The new drug is no better than the existing one,” H1 : “The new drug is superior .”

2.2. Choose a Significance Level (α)

When You collect and analyze data to test H0 and H1 hypotheses. Based on your analysis, you decide whether to reject the null hypothesis in favor of the alternative, or fail to reject / Accept the null hypothesis.

The significance level, often denoted by $α$, represents the probability of rejecting the null hypothesis when it is actually true.

In other words, it’s the risk you’re willing to take of making a Type I error (false positive).

Type I Error (False Positive) :

  • Symbolized by the Greek letter alpha (α).
  • Occurs when you incorrectly reject a true null hypothesis . In other words, you conclude that there is an effect or difference when, in reality, there isn’t.
  • The probability of making a Type I error is denoted by the significance level of a test. Commonly, tests are conducted at the 0.05 significance level , which means there’s a 5% chance of making a Type I error .
  • Commonly used significance levels are 0.01, 0.05, and 0.10, but the choice depends on the context of the study and the level of risk one is willing to accept.

Example : If a drug is not effective (truth), but a clinical trial incorrectly concludes that it is effective (based on the sample data), then a Type I error has occurred.

Type II Error (False Negative) :

  • Symbolized by the Greek letter beta (ÎČ).
  • Occurs when you accept a false null hypothesis . This means you conclude there is no effect or difference when, in reality, there is.
  • The probability of making a Type II error is denoted by ÎČ. The power of a test (1 – ÎČ) represents the probability of correctly rejecting a false null hypothesis.

Example : If a drug is effective (truth), but a clinical trial incorrectly concludes that it is not effective (based on the sample data), then a Type II error has occurred.

Balancing the Errors :

hypothesis testing keywords

In practice, there’s a trade-off between Type I and Type II errors. Reducing the risk of one typically increases the risk of the other. For example, if you want to decrease the probability of a Type I error (by setting a lower significance level), you might increase the probability of a Type II error unless you compensate by collecting more data or making other adjustments.

It’s essential to understand the consequences of both types of errors in any given context. In some situations, a Type I error might be more severe, while in others, a Type II error might be of greater concern. This understanding guides researchers in designing their experiments and choosing appropriate significance levels.

2.3. Calculate a test statistic and P-Value

Test statistic : A test statistic is a single number that helps us understand how far our sample data is from what we’d expect under a null hypothesis (a basic assumption we’re trying to test against). Generally, the larger the test statistic, the more evidence we have against our null hypothesis. It helps us decide whether the differences we observe in our data are due to random chance or if there’s an actual effect.

P-value : The P-value tells us how likely we would get our observed results (or something more extreme) if the null hypothesis were true. It’s a value between 0 and 1. – A smaller P-value (typically below 0.05) means that the observation is rare under the null hypothesis, so we might reject the null hypothesis. – A larger P-value suggests that what we observed could easily happen by random chance, so we might not reject the null hypothesis.

2.4. Make a Decision

Relationship between $α$ and P-Value

When conducting a hypothesis test:

  • We first choose a significance level ($α$), which sets a threshold for making decisions.

We then calculate the p-value from our sample data and the test statistic.

Finally, we compare the p-value to our chosen $α$:

  • If $p−value≀α$: We reject the null hypothesis in favor of the alternative hypothesis. The result is said to be statistically significant.
  • If $p−value>α$: We fail to reject the null hypothesis. There isn’t enough statistical evidence to support the alternative hypothesis.

3. Example : Testing a new drug.

Imagine we are investigating whether a new drug is effective at treating headaches faster than drug B.

Setting Up the Experiment : You gather 100 people who suffer from headaches. Half of them (50 people) are given the new drug (let’s call this the ‘Drug Group’), and the other half are given a sugar pill, which doesn’t contain any medication.

  • Set up Hypotheses : Before starting, you make a prediction:
  • Null Hypothesis (H0): The new drug has no effect. Any difference in healing time between the two groups is just due to random chance.
  • Alternative Hypothesis (H1): The new drug does have an effect. The difference in healing time between the two groups is significant and not just by chance.
  • Choose a Significance Level (α) : Typically 0.05, this is the probability of rejecting the null hypothesis when it’s actually true

Calculate Test statistic and P-Value : After the experiment, you analyze the data. The “test statistic” is a number that helps you understand the difference between the two groups in terms of standard units.

For instance, let’s say:

  • The average healing time in the Drug Group is 2 hours.
  • The average healing time in the Placebo Group is 3 hours.

The test statistic helps you understand how significant this 1-hour difference is. If the groups are large and the spread of healing times in each group is small, then this difference might be significant. But if there’s a huge variation in healing times, the 1-hour difference might not be so special.

Imagine the P-value as answering this question: “If the new drug had NO real effect, what’s the probability that I’d see a difference as extreme (or more extreme) as the one I found, just by random chance?”

For instance:

  • P-value of 0.01 means there’s a 1% chance that the observed difference (or a more extreme difference) would occur if the drug had no effect. That’s pretty rare, so we might consider the drug effective.
  • P-value of 0.5 means there’s a 50% chance you’d see this difference just by chance. That’s pretty high, so we might not be convinced the drug is doing much.
  • If the P-value is less than ($α$) 0.05: the results are “statistically significant,” and they might reject the null hypothesis , believing the new drug has an effect.
  • If the P-value is greater than ($α$) 0.05: the results are not statistically significant, and they don’t reject the null hypothesis , remaining unsure if the drug has a genuine effect.

4. Example in python

For simplicity, let’s say we’re using a t-test (common for comparing means). Let’s dive into Python:

Making a Decision : “The results are statistically significant! p-value < 0.05 , The drug seems to have an effect!” If not, we’d say, “Looks like the drug isn’t as miraculous as we thought.”

5. Conclusion

Hypothesis testing is an indispensable tool in data science, allowing us to make data-driven decisions with confidence. By understanding its principles, conducting tests properly, and considering real-world applications, you can harness the power of hypothesis testing to unlock valuable insights from your data.

More Articles

F statistic formula – explained, correlation – connecting the dots, the role of correlation in data analysis, sampling and sampling distributions – a comprehensive guide on sampling and sampling distributions, law of large numbers – a deep dive into the world of statistics, central limit theorem – a deep dive into central limit theorem and its significance in statistics, similar articles, complete introduction to linear regression in r, how to implement common statistical significance tests and find the p value, logistic regression – a complete tutorial with examples in r.

Subscribe to Machine Learning Plus for high value data science content

© Machinelearningplus. All rights reserved.

hypothesis testing keywords

Machine Learning A-Zℱ: Hands-On Python & R In Data Science

Free sample videos:.

hypothesis testing keywords

logo image missing

  • > Machine Learning
  • > Statistics

What is Hypothesis Testing? Types and Methods

  • Soumyaa Rawat
  • Jul 23, 2021

What is Hypothesis Testing? Types and Methods title banner

Hypothesis Testing  

Hypothesis testing is the act of testing a hypothesis or a supposition in relation to a statistical parameter. Analysts implement hypothesis testing in order to test if a hypothesis is plausible or not. 

In data science and statistics , hypothesis testing is an important step as it involves the verification of an assumption that could help develop a statistical parameter. For instance, a researcher establishes a hypothesis assuming that the average of all odd numbers is an even number. 

In order to find the plausibility of this hypothesis, the researcher will have to test the hypothesis using hypothesis testing methods. Unlike a hypothesis that is ‘supposed’ to stand true on the basis of little or no evidence, hypothesis testing is required to have plausible evidence in order to establish that a statistical hypothesis is true. 

Perhaps this is where statistics play an important role. A number of components are involved in this process. But before understanding the process involved in hypothesis testing in research methodology, we shall first understand the types of hypotheses that are involved in the process. Let us get started! 

Types of Hypotheses

In data sampling, different types of hypothesis are involved in finding whether the tested samples test positive for a hypothesis or not. In this segment, we shall discover the different types of hypotheses and understand the role they play in hypothesis testing.

Alternative Hypothesis

Alternative Hypothesis (H1) or the research hypothesis states that there is a relationship between two variables (where one variable affects the other). The alternative hypothesis is the main driving force for hypothesis testing. 

It implies that the two variables are related to each other and the relationship that exists between them is not due to chance or coincidence. 

When the process of hypothesis testing is carried out, the alternative hypothesis is the main subject of the testing process. The analyst intends to test the alternative hypothesis and verifies its plausibility.

Null Hypothesis

The Null Hypothesis (H0) aims to nullify the alternative hypothesis by implying that there exists no relation between two variables in statistics. It states that the effect of one variable on the other is solely due to chance and no empirical cause lies behind it. 

The null hypothesis is established alongside the alternative hypothesis and is recognized as important as the latter. In hypothesis testing, the null hypothesis has a major role to play as it influences the testing against the alternative hypothesis. 

(Must read: What is ANOVA test? )

Non-Directional Hypothesis

The Non-directional hypothesis states that the relation between two variables has no direction. 

Simply put, it asserts that there exists a relation between two variables, but does not recognize the direction of effect, whether variable A affects variable B or vice versa. 

Directional Hypothesis

The Directional hypothesis, on the other hand, asserts the direction of effect of the relationship that exists between two variables. 

Herein, the hypothesis clearly states that variable A affects variable B, or vice versa. 

Statistical Hypothesis

A statistical hypothesis is a hypothesis that can be verified to be plausible on the basis of statistics. 

By using data sampling and statistical knowledge, one can determine the plausibility of a statistical hypothesis and find out if it stands true or not. 

(Related blog: z-test vs t-test )

Performing Hypothesis Testing  

Now that we have understood the types of hypotheses and the role they play in hypothesis testing, let us now move on to understand the process in a better manner. 

In hypothesis testing, a researcher is first required to establish two hypotheses - alternative hypothesis and null hypothesis in order to begin with the procedure. 

To establish these two hypotheses, one is required to study data samples, find a plausible pattern among the samples, and pen down a statistical hypothesis that they wish to test. 

A random population of samples can be drawn, to begin with hypothesis testing. Among the two hypotheses, alternative and null, only one can be verified to be true. Perhaps the presence of both hypotheses is required to make the process successful. 

At the end of the hypothesis testing procedure, either of the hypotheses will be rejected and the other one will be supported. Even though one of the two hypotheses turns out to be true, no hypothesis can ever be verified 100%. 

(Read also: Types of data sampling techniques )

Therefore, a hypothesis can only be supported based on the statistical samples and verified data. Here is a step-by-step guide for hypothesis testing.

Establish the hypotheses

First things first, one is required to establish two hypotheses - alternative and null, that will set the foundation for hypothesis testing. 

These hypotheses initiate the testing process that involves the researcher working on data samples in order to either support the alternative hypothesis or the null hypothesis. 

Generate a testing plan

Once the hypotheses have been formulated, it is now time to generate a testing plan. A testing plan or an analysis plan involves the accumulation of data samples, determining which statistic is to be considered and laying out the sample size. 

All these factors are very important while one is working on hypothesis testing.

Analyze data samples

As soon as a testing plan is ready, it is time to move on to the analysis part. Analysis of data samples involves configuring statistical values of samples, drawing them together, and deriving a pattern out of these samples. 

While analyzing the data samples, a researcher needs to determine a set of things -

Significance Level - The level of significance in hypothesis testing indicates if a statistical result could have significance if the null hypothesis stands to be true.

Testing Method - The testing method involves a type of sampling-distribution and a test statistic that leads to hypothesis testing. There are a number of testing methods that can assist in the analysis of data samples. 

Test statistic - Test statistic is a numerical summary of a data set that can be used to perform hypothesis testing.

P-value - The P-value interpretation is the probability of finding a sample statistic to be as extreme as the test statistic, indicating the plausibility of the null hypothesis. 

Infer the results

The analysis of data samples leads to the inference of results that establishes whether the alternative hypothesis stands true or not. When the P-value is less than the significance level, the null hypothesis is rejected and the alternative hypothesis turns out to be plausible. 

Methods of Hypothesis Testing

As we have already looked into different aspects of hypothesis testing, we shall now look into the different methods of hypothesis testing. All in all, there are 2 most common types of hypothesis testing methods. They are as follows -

Frequentist Hypothesis Testing

The frequentist hypothesis or the traditional approach to hypothesis testing is a hypothesis testing method that aims on making assumptions by considering current data. 

The supposed truths and assumptions are based on the current data and a set of 2 hypotheses are formulated. A very popular subtype of the frequentist approach is the Null Hypothesis Significance Testing (NHST). 

The NHST approach (involving the null and alternative hypothesis) has been one of the most sought-after methods of hypothesis testing in the field of statistics ever since its inception in the mid-1950s. 

Bayesian Hypothesis Testing

A much unconventional and modern method of hypothesis testing, the Bayesian Hypothesis Testing claims to test a particular hypothesis in accordance with the past data samples, known as prior probability, and current data that lead to the plausibility of a hypothesis. 

The result obtained indicates the posterior probability of the hypothesis. In this method, the researcher relies on ‘prior probability and posterior probability’ to conduct hypothesis testing on hand. 

On the basis of this prior probability, the Bayesian approach tests a hypothesis to be true or false. The Bayes factor, a major component of this method, indicates the likelihood ratio among the null hypothesis and the alternative hypothesis. 

The Bayes factor is the indicator of the plausibility of either of the two hypotheses that are established for hypothesis testing.  

(Also read - Introduction to Bayesian Statistics ) 

To conclude, hypothesis testing, a way to verify the plausibility of a supposed assumption can be done through different methods - the Bayesian approach or the Frequentist approach. 

Although the Bayesian approach relies on the prior probability of data samples, the frequentist approach assumes without a probability. A number of elements involved in hypothesis testing are - significance level, p-level, test statistic, and method of hypothesis testing. 

(Also read: Introduction to probability distributions )

A significant way to determine whether a hypothesis stands true or not is to verify the data samples and identify the plausible hypothesis among the null hypothesis and alternative hypothesis. 

Share Blog :

hypothesis testing keywords

Be a part of our Instagram community

Trending blogs

5 Factors Influencing Consumer Behavior

Elasticity of Demand and its Types

An Overview of Descriptive Analysis

What is PESTLE Analysis? Everything you need to know about it

What is Managerial Economics? Definition, Types, Nature, Principles, and Scope

5 Factors Affecting the Price Elasticity of Demand (PED)

6 Major Branches of Artificial Intelligence (AI)

Scope of Managerial Economics

Dijkstra’s Algorithm: The Shortest Path Algorithm

Different Types of Research Methods

Latest Comments

hypothesis testing keywords

Tutorial Playlist

Statistics tutorial, everything you need to know about the probability density function in statistics, the best guide to understand central limit theorem, an in-depth guide to measures of central tendency : mean, median and mode, the ultimate guide to understand conditional probability.

A Comprehensive Look at Percentile in Statistics

The Best Guide to Understand Bayes Theorem

Everything you need to know about the normal distribution, an in-depth explanation of cumulative distribution function, chi-square test, what is hypothesis testing in statistics types and examples, understanding the fundamentals of arithmetic and geometric progression, the definitive guide to understand spearman’s rank correlation, mean squared error: overview, examples, concepts and more, all you need to know about the empirical rule in statistics, the complete guide to skewness and kurtosis, a holistic look at bernoulli distribution.

All You Need to Know About Bias in Statistics

A Complete Guide to Get a Grasp of Time Series Analysis

The Key Differences Between Z-Test Vs. T-Test

The Complete Guide to Understand Pearson's Correlation

A complete guide on the types of statistical studies, everything you need to know about poisson distribution, your best guide to understand correlation vs. regression, the most comprehensive guide for beginners on what is correlation, hypothesis testing in statistics - types | examples.

Lesson 10 of 24 By Avijeet Biswal

What Is Hypothesis Testing in Statistics? Types and Examples

Table of Contents

In today’s data-driven world, decisions are based on data all the time. Hypothesis plays a crucial role in that process, whether it may be making business decisions, in the health sector, academia, or in quality improvement. Without hypothesis & hypothesis tests, you risk drawing the wrong conclusions and making bad decisions. In this tutorial, you will look at Hypothesis Testing in Statistics.

The Ultimate Ticket to Top Data Science Job Roles

The Ultimate Ticket to Top Data Science Job Roles

What Is Hypothesis Testing in Statistics?

Hypothesis Testing is a type of statistical analysis in which you put your assumptions about a population parameter to the test. It is used to estimate the relationship between 2 statistical variables.

Let's discuss few examples of statistical hypothesis from real-life - 

  • A teacher assumes that 60% of his college's students come from lower-middle-class families.
  • A doctor believes that 3D (Diet, Dose, and Discipline) is 90% effective for diabetic patients.

Now that you know about hypothesis testing, look at the two types of hypothesis testing in statistics.

Hypothesis Testing Formula

Z = ( x̅ – ÎŒ0 ) / (σ /√n)

  • Here, x̅ is the sample mean,
  • ÎŒ0 is the population mean,
  • σ is the standard deviation,
  • n is the sample size.

How Hypothesis Testing Works?

An analyst performs hypothesis testing on a statistical sample to present evidence of the plausibility of the null hypothesis. Measurements and analyses are conducted on a random sample of the population to test a theory. Analysts use a random population sample to test two hypotheses: the null and alternative hypotheses.

The null hypothesis is typically an equality hypothesis between population parameters; for example, a null hypothesis may claim that the population means return equals zero. The alternate hypothesis is essentially the inverse of the null hypothesis (e.g., the population means the return is not equal to zero). As a result, they are mutually exclusive, and only one can be correct. One of the two possibilities, however, will always be correct.

Your Dream Career is Just Around The Corner!

Your Dream Career is Just Around The Corner!

Null Hypothesis and Alternative Hypothesis

The Null Hypothesis is the assumption that the event will not occur. A null hypothesis has no bearing on the study's outcome unless it is rejected.

H0 is the symbol for it, and it is pronounced H-naught.

The Alternate Hypothesis is the logical opposite of the null hypothesis. The acceptance of the alternative hypothesis follows the rejection of the null hypothesis. H1 is the symbol for it.

Let's understand this with an example.

A sanitizer manufacturer claims that its product kills 95 percent of germs on average. 

To put this company's claim to the test, create a null and alternate hypothesis.

H0 (Null Hypothesis): Average = 95%.

Alternative Hypothesis (H1): The average is less than 95%.

Another straightforward example to understand this concept is determining whether or not a coin is fair and balanced. The null hypothesis states that the probability of a show of heads is equal to the likelihood of a show of tails. In contrast, the alternate theory states that the probability of a show of heads and tails would be very different.

Become a Data Scientist with Hands-on Training!

Become a Data Scientist with Hands-on Training!

Hypothesis Testing Calculation With Examples

Let's consider a hypothesis test for the average height of women in the United States. Suppose our null hypothesis is that the average height is 5'4". We gather a sample of 100 women and determine that their average height is 5'5". The standard deviation of population is 2.

To calculate the z-score, we would use the following formula:

z = ( x̅ – ÎŒ0 ) / (σ /√n)

z = (5'5" - 5'4") / (2" / √100)

z = 0.5 / (0.045)

We will reject the null hypothesis as the z-score of 11.11 is very large and conclude that there is evidence to suggest that the average height of women in the US is greater than 5'4".

Steps in Hypothesis Testing

Hypothesis testing is a statistical method to determine if there is enough evidence in a sample of data to infer that a certain condition is true for the entire population. Here’s a breakdown of the typical steps involved in hypothesis testing:

Formulate Hypotheses

  • Null Hypothesis (H0): This hypothesis states that there is no effect or difference, and it is the hypothesis you attempt to reject with your test.
  • Alternative Hypothesis (H1 or Ha): This hypothesis is what you might believe to be true or hope to prove true. It is usually considered the opposite of the null hypothesis.

Choose the Significance Level (α)

The significance level, often denoted by alpha (α), is the probability of rejecting the null hypothesis when it is true. Common choices for α are 0.05 (5%), 0.01 (1%), and 0.10 (10%).

Select the Appropriate Test

Choose a statistical test based on the type of data and the hypothesis. Common tests include t-tests, chi-square tests, ANOVA, and regression analysis. The selection depends on data type, distribution, sample size, and whether the hypothesis is one-tailed or two-tailed.

Collect Data

Gather the data that will be analyzed in the test. This data should be representative of the population to infer conclusions accurately.

Calculate the Test Statistic

Based on the collected data and the chosen test, calculate a test statistic that reflects how much the observed data deviates from the null hypothesis.

Determine the p-value

The p-value is the probability of observing test results at least as extreme as the results observed, assuming the null hypothesis is correct. It helps determine the strength of the evidence against the null hypothesis.

Make a Decision

Compare the p-value to the chosen significance level:

  • If the p-value ≀ α: Reject the null hypothesis, suggesting sufficient evidence in the data supports the alternative hypothesis.
  • If the p-value > α: Do not reject the null hypothesis, suggesting insufficient evidence to support the alternative hypothesis.

Report the Results

Present the findings from the hypothesis test, including the test statistic, p-value, and the conclusion about the hypotheses.

Perform Post-hoc Analysis (if necessary)

Depending on the results and the study design, further analysis may be needed to explore the data more deeply or to address multiple comparisons if several hypotheses were tested simultaneously.

Types of Hypothesis Testing

To determine whether a discovery or relationship is statistically significant, hypothesis testing uses a z-test. It usually checks to see if two means are the same (the null hypothesis). Only when the population standard deviation is known and the sample size is 30 data points or more, can a z-test be applied.

A statistical test called a t-test is employed to compare the means of two groups. To determine whether two groups differ or if a procedure or treatment affects the population of interest, it is frequently used in hypothesis testing.

Chi-Square 

You utilize a Chi-square test for hypothesis testing concerning whether your data is as predicted. To determine if the expected and observed results are well-fitted, the Chi-square test analyzes the differences between categorical variables from a random sample. The test's fundamental premise is that the observed values in your data should be compared to the predicted values that would be present if the null hypothesis were true.

Hypothesis Testing and Confidence Intervals

Both confidence intervals and hypothesis tests are inferential techniques that depend on approximating the sample distribution. Data from a sample is used to estimate a population parameter using confidence intervals. Data from a sample is used in hypothesis testing to examine a given hypothesis. We must have a postulated parameter to conduct hypothesis testing.

Bootstrap distributions and randomization distributions are created using comparable simulation techniques. The observed sample statistic is the focal point of a bootstrap distribution, whereas the null hypothesis value is the focal point of a randomization distribution.

A variety of feasible population parameter estimates are included in confidence ranges. In this lesson, we created just two-tailed confidence intervals. There is a direct connection between these two-tail confidence intervals and these two-tail hypothesis tests. The results of a two-tailed hypothesis test and two-tailed confidence intervals typically provide the same results. In other words, a hypothesis test at the 0.05 level will virtually always fail to reject the null hypothesis if the 95% confidence interval contains the predicted value. A hypothesis test at the 0.05 level will nearly certainly reject the null hypothesis if the 95% confidence interval does not include the hypothesized parameter.

Become a Data Scientist through hands-on learning with hackathons, masterclasses, webinars, and Ask-Me-Anything! Start learning now!

Simple and Composite Hypothesis Testing

Depending on the population distribution, you can classify the statistical hypothesis into two types.

Simple Hypothesis: A simple hypothesis specifies an exact value for the parameter.

Composite Hypothesis: A composite hypothesis specifies a range of values.

A company is claiming that their average sales for this quarter are 1000 units. This is an example of a simple hypothesis.

Suppose the company claims that the sales are in the range of 900 to 1000 units. Then this is a case of a composite hypothesis.

One-Tailed and Two-Tailed Hypothesis Testing

The One-Tailed test, also called a directional test, considers a critical region of data that would result in the null hypothesis being rejected if the test sample falls into it, inevitably meaning the acceptance of the alternate hypothesis.

In a one-tailed test, the critical distribution area is one-sided, meaning the test sample is either greater or lesser than a specific value.

In two tails, the test sample is checked to be greater or less than a range of values in a Two-Tailed test, implying that the critical distribution area is two-sided.

If the sample falls within this range, the alternate hypothesis will be accepted, and the null hypothesis will be rejected.

Become a Data Scientist With Real-World Experience

Become a Data Scientist With Real-World Experience

Right Tailed Hypothesis Testing

If the larger than (>) sign appears in your hypothesis statement, you are using a right-tailed test, also known as an upper test. Or, to put it another way, the disparity is to the right. For instance, you can contrast the battery life before and after a change in production. Your hypothesis statements can be the following if you want to know if the battery life is longer than the original (let's say 90 hours):

  • The null hypothesis is (H0 <= 90) or less change.
  • A possibility is that battery life has risen (H1) > 90.

The crucial point in this situation is that the alternate hypothesis (H1), not the null hypothesis, decides whether you get a right-tailed test.

Left Tailed Hypothesis Testing

Alternative hypotheses that assert the true value of a parameter is lower than the null hypothesis are tested with a left-tailed test; they are indicated by the asterisk "<".

Suppose H0: mean = 50 and H1: mean not equal to 50

According to the H1, the mean can be greater than or less than 50. This is an example of a Two-tailed test.

In a similar manner, if H0: mean >=50, then H1: mean <50

Here the mean is less than 50. It is called a One-tailed test.

Type 1 and Type 2 Error

A hypothesis test can result in two types of errors.

Type 1 Error: A Type-I error occurs when sample results reject the null hypothesis despite being true.

Type 2 Error: A Type-II error occurs when the null hypothesis is not rejected when it is false, unlike a Type-I error.

Suppose a teacher evaluates the examination paper to decide whether a student passes or fails.

H0: Student has passed

H1: Student has failed

Type I error will be the teacher failing the student [rejects H0] although the student scored the passing marks [H0 was true]. 

Type II error will be the case where the teacher passes the student [do not reject H0] although the student did not score the passing marks [H1 is true].

Our Data Scientist Master's Program covers core topics such as R, Python, Machine Learning, Tableau, Hadoop, and Spark. Get started on your journey today!

Limitations of Hypothesis Testing

Hypothesis testing has some limitations that researchers should be aware of:

  • It cannot prove or establish the truth: Hypothesis testing provides evidence to support or reject a hypothesis, but it cannot confirm the absolute truth of the research question.
  • Results are sample-specific: Hypothesis testing is based on analyzing a sample from a population, and the conclusions drawn are specific to that particular sample.
  • Possible errors: During hypothesis testing, there is a chance of committing type I error (rejecting a true null hypothesis) or type II error (failing to reject a false null hypothesis).
  • Assumptions and requirements: Different tests have specific assumptions and requirements that must be met to accurately interpret results.

Learn All The Tricks Of The BI Trade

Learn All The Tricks Of The BI Trade

After reading this tutorial, you would have a much better understanding of hypothesis testing, one of the most important concepts in the field of Data Science . The majority of hypotheses are based on speculation about observed behavior, natural phenomena, or established theories.

If you are interested in statistics of data science and skills needed for such a career, you ought to explore the Post Graduate Program in Data Science.

If you have any questions regarding this ‘Hypothesis Testing In Statistics’ tutorial, do share them in the comment section. Our subject matter expert will respond to your queries. Happy learning!

1. What is hypothesis testing in statistics with example?

Hypothesis testing is a statistical method used to determine if there is enough evidence in a sample data to draw conclusions about a population. It involves formulating two competing hypotheses, the null hypothesis (H0) and the alternative hypothesis (Ha), and then collecting data to assess the evidence. An example: testing if a new drug improves patient recovery (Ha) compared to the standard treatment (H0) based on collected patient data.

2. What is H0 and H1 in statistics?

In statistics, H0​ and H1​ represent the null and alternative hypotheses. The null hypothesis, H0​, is the default assumption that no effect or difference exists between groups or conditions. The alternative hypothesis, H1​, is the competing claim suggesting an effect or a difference. Statistical tests determine whether to reject the null hypothesis in favor of the alternative hypothesis based on the data.

3. What is a simple hypothesis with an example?

A simple hypothesis is a specific statement predicting a single relationship between two variables. It posits a direct and uncomplicated outcome. For example, a simple hypothesis might state, "Increased sunlight exposure increases the growth rate of sunflowers." Here, the hypothesis suggests a direct relationship between the amount of sunlight (independent variable) and the growth rate of sunflowers (dependent variable), with no additional variables considered.

4. What are the 3 major types of hypothesis?

The three major types of hypotheses are:

  • Null Hypothesis (H0): Represents the default assumption, stating that there is no significant effect or relationship in the data.
  • Alternative Hypothesis (Ha): Contradicts the null hypothesis and proposes a specific effect or relationship that researchers want to investigate.
  • Nondirectional Hypothesis: An alternative hypothesis that doesn't specify the direction of the effect, leaving it open for both positive and negative possibilities.

Find our PL-300 Microsoft Power BI Certification Training Online Classroom training classes in top cities:

NameDatePlace
21 Sep -6 Oct 2024,
Weekend batch
Your City
12 Oct -27 Oct 2024,
Weekend batch
Your City
26 Oct -10 Nov 2024,
Weekend batch
Your City

About the Author

Avijeet Biswal

Avijeet is a Senior Research Analyst at Simplilearn. Passionate about Data Analytics, Machine Learning, and Deep Learning, Avijeet is also interested in politics, cricket, and football.

Recommended Resources

The Key Differences Between Z-Test Vs. T-Test

Free eBook: Top Programming Languages For A Data Scientist

Normality Test in Minitab: Minitab with Statistics

Normality Test in Minitab: Minitab with Statistics

A Comprehensive Look at Percentile in Statistics

Machine Learning Career Guide: A Playbook to Becoming a Machine Learning Engineer

  • PMP, PMI, PMBOK, CAPM, PgMP, PfMP, ACP, PBA, RMP, SP, and OPM3 are registered marks of the Project Management Institute, Inc.

Article Categories

Book categories, collections.

  • Technology Articles
  • Information Technology Articles
  • Data Science Articles
  • Big Data Articles

10 Key Concepts in Hypothesis Testing

Statistics for big data for dummies.

Book image

Sign up for the Dummies Beta Program to try Dummies' newest way to learn.

Hypothesis testing is a statistical technique that is used in a variety of situations. Though the technical details differ from situation to situation, all hypothesis tests use the same core set of terms and concepts. The following descriptions of common terms and concepts refer to a hypothesis test in which the means of two populations are being compared.

Null hypothesis

The null hypothesis is a clear statement about the relationship between two (or more) statistical objects. These objects may be measurements, distributions, or categories. Typically, the null hypothesis, as the name implies, states that there is no relationship.

In the case of two population means, the null hypothesis might state that the means of the two populations are equal.

Alternative hypothesis

Once the null hypothesis has been stated, it is easy to construct the alternative hypothesis. It is essentially the statement that the null hypothesis is false. In our example, the alternative hypothesis would be that the means of the two populations are not equal.

Significance

The significance level is a measure of the statistical strength of the hypothesis test. It is often characterized as the probability of incorrectly concluding that the null hypothesis is false.

The significance level is something that you should specify up front. In applications, the significance level is typically one of three values: 10%, 5%, or 1%. A 1% significance level represents the strongest test of the three. For this reason, 1% is a higher significance level than 10%.

Related to significance, the power of a test measures the probability of correctly concluding that the null hypothesis is true. Power is not something that you can choose. It is determined by several factors, including the significance level you select and the size of the difference between the things you are trying to compare.

Unfortunately, significance and power are inversely related. Increasing significance decreases power. This makes it difficult to design experiments that have both very high significance and power.

Test statistic

The test statistic is a single measure that captures the statistical nature of the relationship between observations you are dealing with. The test statistic depends fundamentally on the number of observations that are being evaluated. It differs from situation to situation.

Distribution of the test statistic

The whole notion of hypothesis rests on the ability to specify (exactly or approximately) the distribution that the test statistic follows. In the case of this example, the difference between the means will be approximately normally distributed (assuming there are a relatively large number of observations).

One-tailed vs. two-tailed tests

Depending on the situation, you may want (or need) to employ a one- or two-tailed test. These tails refer to the right and left tails of the distribution of the test statistic. A two-tailed test allows for the possibility that the test statistic is either very large or very small (negative is small). A one-tailed test allows for only one of these possibilities.

In an example where the null hypothesis states that the two population means are equal, you need to allow for the possibility that either one could be larger than the other. The test statistic could be either positive or negative. So, you employ a two-tailed test.

The null hypothesis might have been slightly different, namely that the mean of population 1 is larger than the mean of population 2. In that case, you don't need to account statistically for the situation where the first mean is smaller than the second. So, you would employ a one-tailed test.

Critical value

The critical value in a hypothesis test is based on two things: the distribution of the test statistic and the significance level. The critical value(s) refer to the point in the test statistic distribution that give the tails of the distribution an area (meaning probability) exactly equal to the significance level that was chosen.

Your decision to reject or accept the null hypothesis is based on comparing the test statistic to the critical value. If the test statistic exceeds the critical value, you should reject the null hypothesis. In this case, you would say that the difference between the two population means is significant. Otherwise, you accept the null hypothesis.

The p-value of a hypothesis test gives you another way to evaluate the null hypothesis. The p-value represents the highest significance level at which your particular test statistic would justify rejecting the null hypothesis. For example, if you have chosen a significance level of 5%, and the p-value turns out to be .03 (or 3%), you would be justified in rejecting the null hypothesis.

About This Article

This article is from the book:.

  • Statistics for Big Data For Dummies ,

About the book authors:

Alan Anderson, PhD, is a professor of economics and finance at Fordham University and New York University. He's a veteran economist, risk manager, and fixed income analyst.

David Semmelroth is an experienced data analyst, trainer, and statistics instructor who consults on customer databases and database marketing.

This article can be found in the category:

  • Statistics for Big Data For Dummies Cheat Sheet
  • Discrete and Continuous Probability Distributions
  • Overview of Graphical Techniques
  • Overview of Hypothesis Testing
  • Measures of Association
  • View All Articles From Book

Hypothesis Testing ( Edexcel A Level Maths: Statistics )

Revision note.

Amber

Language of Hypothesis Testing

What is a hypothesis test.

  • A hypothesis test uses a sample of data in an experiment to test a statement made about the value of a population parameter
  • A hypothesis test is used when the value of the assumed population parameter is questioned
  • The hypothesis test will look at the which outcomes are unlikely to occur if assumed population parameter is true
  • The probability found will be compared against a given significance level to determine whether there is evidence to believe that the assumed population parameter is not true

What are the key terms used in statistical hypothesis testing?

  • Every hypothesis test must begin with a clear null hypothesis (what we believe to already be true) and alternative hypothesis (how we believe the data pattern or probability distribution might have changed)
  • One example of a population parameter is the probability, p   of an event occurring
  • Another example is the mean of a population
  • The null hypothesis is denoted H 0 and sets out the assumed population parameter given that no change has happened
  • The alternative hypothesis is denoted H 1   and sets out how we think the population parameter could have changed
  • When a hypothesis test is carried out, the null hypothesis is assumed to be true and this assumption will either be accepted or rejected
  • A hypothesis test could be a one-tailed test or a two-tailed test
  • The null hypothesis will always be H 0 : Ξ = ...
  • The alternative hypothesis, H 1  will be H 1 : Ξ > ...  or   H 1 : Ξ < ...
  • The alternative hypothesis,  H 1  will be H 1 : Ξ ≠ ...    
  • It is important to read the wording of the question carefully to decide whether your hypothesis test should be one-tailed or two-tailed
  • A sample of data is a subset of data taken from the population
  • The test statistic is a numerical value calculated from the of data
  • Any probability smaller than the significance level would suggest that the event is unlikely to have happened by chance
  • The significance level must be set before the hypothesis test is carried out
  • The significance level will usually be 1%, 5% or 10%, however it may vary

Worked example

A hypothesis test is carried out at the 5% level of significance to test if a normal coin is fair or not. 

5-1-1-language-of-hypothesis-testing-we-solution

  • Make sure you read the question carefully to determine whether the test you are carrying out is for a one-tailed or a two-tailed test and use the level of significance accordingly. 

Critical Regions & p-values

How do we decide whether to reject or accept the null hypothesis.

  • If the test is looking for a decrease then extreme values are smaller than the test statistic, so find the probability of less than or equal to the test statistic
  • If the test is looking for an increase then extreme values are bigger than the test statistic, so find the probability of greater than or equal to the test statistic
  • Though for a two-tailed test it is common to half the significance level and compare this with the probability (rather than doubling the probability)
  • If the test statistic falls within the critical region, the null hypothesis would be rejected
  • It is the least extreme value that would lead to the rejection of the null hypothesis
  • The critical value is determined by the significance level
  • In a two-tailed test the significance level is halved and both the upper and the lower tails are tested
  • This probability will be known as the actual significance level
  • The actual significance level is the probability of incorrectly rejecting the null hypothesis
  • Finding the critical region will be different for a two-tailed test than it is for a one-tailed test

For the following situations, state at the 1% and 5% significance levels whether the null hypothesis should be rejected or not.

5-1-1-critical-regions-and-p-values-we-solution

Conclusions of Hypothesis Testing

How is a hypothesis test carried out.

  • There are a number of ways that a hypothesis test can be carried out for different models, however the following steps should form the base for your test:
  • Step 1. Define the test statistic and population parameter
  • Step 2. Write the null and alternative hypotheses clearly
  • Step 3. Calculate the critical value(s) or the p - value for the test
  • Step 4. Compare the observed value of the test statistic with the critical value(s) or the p - value with the significance level
  • Step 5. Decide whether there is enough evidence to reject H 0 or whether it has to be accepted
  •   Step 6. Write a conclusion in context

How should a conclusion be written for a hypothesis test?

  • Your conclusion must be written in the context of the question
  • If rejecting the null hypothesis your conclusion should state that there is sufficient evidence to suggest the alternative hypothesis is true at this level of significance
  • If accepting the null hypothesis your conclusion should state that there is not enough evidence to suggest the alternative hypothesis is true at this level of significance
  • There is a chance that the test has led to an incorrect conclusion
  • The outcome is dependent on the sample, a different sample might lead to a different outcome
  • You should not state whether this change is an increase or decrease

A teacher carried out a hypothesis test at the 10% significance level to test if her students perform better in exams after using a new revision technique. The p – value for her test statistic is 0.09142. Write a conclusion for her hypothesis test.

5-1-1-conclusions-of-hypothesis-testing-we-solution

  • It is best to use the exact wording from the question when writing your conclusion for the hypothesis test, do not be afraid to sound repetitive.

You've read 0 of your 10 free revision notes

Unlock more, it's free, join the 100,000 + students that ❀ save my exams.

the (exam) results speak for themselves:

Did this page help you?

  • Hypothesis Testing
  • Hypothesis Testing (Binomial Distribution)
  • Hypothesis Testing (Normal Distribution) (A Level only)
  • Sampling & Data Collection
  • Statistical Measures
  • Data Presentation
  • Working with Data
  • Correlation & Regression
  • Further Correlation & Regression (A Level only)
  • Basic Probability

Author: Amber

Amber gained a first class degree in Mathematics & Meteorology from the University of Reading before training to become a teacher. She is passionate about teaching, having spent 8 years teaching GCSE and A Level Mathematics both in the UK and internationally. Amber loves creating bright and informative resources to help students reach their potential.

Hypothesis Testing Cheat Sheet

Easy to understand info about the main types of hypothesis tests.

This FREE PDF cheat sheet will show you the differences between all of the main types of hypothesis testing.  Including examples on when to use the, the equations used, and how to easily implement them in Excel!

You're Almost there! Please complete this form and click the button below to gain instant access.

We hate SPAM and promise to keep your email address safe. We will send occasional updates from FairlyNerdy.com. If you do not wish to receive these updates you may close this box, or unsubscribe at anytime

hypothesis testing keywords

What You'll Get from This Free, Downloadable PDF:

  • What is a "Z" test and the main types of "T" tests.
  • What are examples of each of the tests in use
  • What are the equations behind each of the hypothesis tests
  • How you can quickly & easily implement each of them in Excel

Download Your FREE Hypothesis Testing Cheat Sheet Today!

Copyright © 2015 Your Site Here.   Legal Information

User Preferences

Content preview.

Arcu felis bibendum ut tristique et egestas quis:

  • Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
  • Duis aute irure dolor in reprehenderit in voluptate
  • Excepteur sint occaecat cupidatat non proident

Keyboard Shortcuts

1.2 - the 7 step process of statistical hypothesis testing.

We will cover the seven steps one by one.

Step 1: State the Null Hypothesis

The null hypothesis can be thought of as the opposite of the "guess" the researchers made. In the example presented in the previous section, the biologist "guesses" plant height will be different for the various fertilizers. So the null hypothesis would be that there will be no difference among the groups of plants. Specifically, in more statistical language the null for an ANOVA is that the means are the same. We state the null hypothesis as:

\(H_0 \colon \mu_1 = \mu_2 = ⋯ = \mu_T\)

for  T levels of an experimental treatment.

Step 2: State the Alternative Hypothesis

\(H_A \colon \text{ treatment level means not all equal}\)

The alternative hypothesis is stated in this way so that if the null is rejected, there are many alternative possibilities.

For example, \(\mu_1\ne \mu_2 = ⋯ = \mu_T\) is one possibility, as is \(\mu_1=\mu_2\ne\mu_3= ⋯ =\mu_T\). Many people make the mistake of stating the alternative hypothesis as \(\mu_1\ne\mu_2\ne⋯\ne\mu_T\) which says that every mean differs from every other mean. This is a possibility, but only one of many possibilities. A simple way of thinking about this is that at least one mean is different from all others. To cover all alternative outcomes, we resort to a verbal statement of "not all equal" and then follow up with mean comparisons to find out where differences among means exist. In our example, a possible outcome would be that fertilizer 1 results in plants that are exceptionally tall, but fertilizers 2, 3, and the control group may not differ from one another.

Step 3: Set \(\alpha\)

If we look at what can happen in a hypothesis test, we can construct the following contingency table:

Decision In Reality
\(H_0\) is TRUE \(H_0\) is FALSE
Accept \(H_0\) correct Type II Error
\(\beta\) = probability of Type II Error
Reject \(H_0\)

Type I Error
\(\alpha\) = probability of Type I Error

correct

You should be familiar with Type I and Type II errors from your introductory courses. It is important to note that we want to set \(\alpha\) before the experiment ( a-priori ) because the Type I error is the more grievous error to make. The typical value of \(\alpha\) is 0.05, establishing a 95% confidence level. For this course, we will assume \(\alpha\) =0.05, unless stated otherwise.

Step 4: Collect Data

Remember the importance of recognizing whether data is collected through an experimental design or observational study.

Step 5: Calculate a test statistic

For categorical treatment level means, we use an F- statistic, named after R.A. Fisher. We will explore the mechanics of computing the F- statistic beginning in Lesson 2. The F- value we get from the data is labeled \(F_{\text{calculated}}\).

Step 6: Construct Acceptance / Rejection regions

As with all other test statistics, a threshold (critical) value of F is established. This F- value can be obtained from statistical tables or software and is referred to as \(F_{\text{critical}}\) or \(F_\alpha\). As a reminder, this critical value is the minimum value of the test statistic (in this case \(F_{\text{calculated}}\)) for us to reject the null.

The F- distribution, \(F_\alpha\), and the location of acceptance/rejection regions are shown in the graph below:

Step 7: Based on Steps 5 and 6, draw a conclusion about \(H_0\)

If \(F_{\text{calculated}}\) is larger than \(F_\alpha\), then you are in the rejection region and you can reject the null hypothesis with \(\left(1-\alpha \right)\) level of confidence.

Note that modern statistical software condenses Steps 6 and 7 by providing a p -value. The p -value here is the probability of getting an \(F_{\text{calculated}}\) even greater than what you observe assuming the null hypothesis is true. If by chance, the \(F_{\text{calculated}} = F_\alpha\), then the p -value would be exactly equal to \(\alpha\). With larger \(F_{\text{calculated}}\) values, we move further into the rejection region and the p- value becomes less than \(\alpha\). So, the decision rule is as follows:

If the p- value obtained from the ANOVA is less than \(\alpha\), then reject \(H_0\) in favor of \(H_A\).

Hypothesis Testing Key Words

Profile Picture

Students also studied

Profile Picture

A statement that we assume to be correct Choose matching term 1 2 Null Hypothesis 3 Hypothesis 4 Alternative Hypothesis Don't know?

hypothesis testing keywords

  • Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

hypothesis testing keywords

Understanding Science

How science REALLY works...

  • Understanding Science 101
  • Misconceptions
  • Testing ideas with evidence is at the heart of the process of science.
  • Scientific testing involves figuring out what we would  expect  to observe if an idea were correct and comparing that expectation to what we  actually  observe.

Misconception:  Science proves ideas.

Misconception:  Science can only disprove ideas.

Correction:  Science neither proves nor disproves. It accepts or rejects ideas based on supporting and refuting evidence, but may revise those conclusions if warranted by new evidence or perspectives.  Read more about it.

Testing scientific ideas

Testing ideas about childbed fever.

As a simple example of how scientific testing works, consider the case of Ignaz Semmelweis, who worked as a doctor on a maternity ward in the 1800s. In his ward, an unusually high percentage of new mothers died of what was then called childbed fever. Semmelweis considered many possible explanations for this high death rate. Two of the many ideas that he considered were (1) that the fever was caused by mothers giving birth lying on their backs (as opposed to on their sides) and (2) that the fever was caused by doctors’ unclean hands (the doctors often performed autopsies immediately before examining women in labor). He tested these ideas by considering what expectations each idea generated. If it were true that childbed fever were caused by giving birth on one’s back, then changing procedures so that women labored on their sides should lead to lower rates of childbed fever. Semmelweis tried changing the position of labor, but the incidence of fever did not decrease; the actual observations did not match the expected results. If, however, childbed fever were caused by doctors’ unclean hands, having doctors wash their hands thoroughly with a strong disinfecting agent before attending to women in labor should lead to lower rates of childbed fever. When Semmelweis tried this, rates of fever plummeted; the actual observations matched the expected results, supporting the second explanation.

Testing in the tropics

Let’s take a look at another, very different, example of scientific testing: investigating the origins of coral atolls in the tropics. Consider the atoll Eniwetok (Anewetak) in the Marshall Islands — an oceanic ring of exposed coral surrounding a central lagoon. From the 1800s up until today, scientists have been trying to learn what supports atoll structures beneath the water’s surface and exactly how atolls form. Coral only grows near the surface of the ocean where light penetrates, so Eniwetok could have formed in several ways:

Hypothesis 2: The coral that makes up Eniwetok might have grown in a ring atop an underwater mountain already near the surface. The key to this hypothesis is the idea that underwater mountains don’t sink; instead the remains of dead sea animals (shells, etc.) accumulate on underwater mountains, potentially assisted by tectonic uplifting. Eventually, the top of the mountain/debris pile would reach the depth at which coral grow, and the atoll would form.

Which is a better explanation for Eniwetok? Did the atoll grow atop a sinking volcano, forming an underwater coral tower, or was the mountain instead built up until it neared the surface where coral were eventually able to grow? Which of these explanations is best supported by the evidence? We can’t perform an experiment to find out. Instead, we must figure out what expectations each hypothesis generates, and then collect data from the world to see whether our observations are a better match with one of the two ideas.

If Eniwetok grew atop an underwater mountain, then we would expect the atoll to be made up of a relatively thin layer of coral on top of limestone or basalt. But if it grew upwards around a subsiding island, then we would expect the atoll to be made up of many hundreds of feet of coral on top of volcanic rock. When geologists drilled into Eniwetok in 1951 as part of a survey preparing for nuclear weapons tests, the drill bored through more than 4000 feet (1219 meters) of coral before hitting volcanic basalt! The actual observation contradicted the underwater mountain explanation and matched the subsiding island explanation, supporting that idea. Of course, many other lines of evidence also shed light on the origins of coral atolls, but the surprising depth of coral on Eniwetok was particularly convincing to many geologists.

  • Take a sidetrip

Visit the NOAA website to see an animation of coral atoll formation according to Hypothesis 1.

  • Teaching resources

Scientists test hypotheses and theories. They are both scientific explanations for what we observe in the natural world, but theories deal with a much wider range of phenomena than do hypotheses. To learn more about the differences between hypotheses and theories, jump ahead to  Science at multiple levels .

  • Use our  web interactive  to help students document and reflect on the process of science.
  • Learn strategies for building lessons and activities around the Science Flowchart: Grades 3-5 Grades 6-8 Grades 9-12 Grades 13-16
  • Find lesson plans for introducing the Science Flowchart to your students in: Grades 3-5 Grades 6-8 Grades 9-16
  • Get  graphics and pdfs of the Science Flowchart  to use in your classroom. Translations are available in Spanish, French, Japanese, and Swahili.

Observation beyond our eyes

The logic of scientific arguments

Subscribe to our newsletter

  • The science flowchart
  • Science stories
  • Grade-level teaching guides
  • Teaching resource database
  • Journaling tool

hypothesis testing keywords

A Sampling-Based Framework for Hypothesis Testing on Large Attributed Graphs

New citation alert added.

This alert has been successfully added and will be sent to:

You will be notified whenever a record that you have chosen has been cited.

To manage your alert preferences, click on the button below.

New Citation Alert!

Please log in to your account

Information & Contributors

Bibliometrics & citations, index terms.

Computing methodologies

Machine learning

Machine learning approaches

Learning in probabilistic graphical models

Information systems

Data management systems

Database design and models

Graph-based database models

Information retrieval

Retrieval models and ranking

Top-k retrieval in databases

Information systems applications

Data mining

Mathematics of computing

Probability and statistics

Probabilistic inference problems

Statistical paradigms

Recommendations

Sampling from large graphs.

Given a huge real graph, how can we derive a representative sample? There are many known algorithms to compute interesting measures (shortest paths, centrality, betweenness, etc.), but several of them become impractical for large graphs. Thus graph ...

Sampling from Large Graphs with a Reservoir

Sampling is a process of choosing a suitable representative subset from a population and uniformity is a basic requirement of representative ness. A sampling process produces a uniform random sample when all possible samples of the same size have the ...

Large Induced Forests in Graphs

In this article, we prove three theorems. The first is that every connected graph of order n and size m has an induced forest of order at least 8n-2m-2/9 with equality if and only if such a graph is obtained from a tree by expanding every vertex to a ...

Information

Published in.

cover image Proceedings of the VLDB Endowment

Beijing Institute of Technology

University of Southern California

VLDB Endowment

Publication History

Check for updates.

hypothesis testing keywords

  • Research-article

Contributors

Other metrics, bibliometrics, article metrics.

  • 0 Total Citations
  • 0 Total Downloads
  • Downloads (Last 12 months) 0
  • Downloads (Last 6 weeks) 0

View Options

Login options.

Check if you have access through your login credentials or your institution to get full access on this article.

Full Access

View options.

View or Download as a PDF file.

View online with eReader .

Share this Publication link

Copying failed.

Share on social media

Affiliations, export citations.

  • Please download or close your previous search result export first before starting a new bulk export. Preview is not available. By clicking download, a status dialog will open to start the export process. The process may take a few minutes but once it finishes a file will be downloadable from your browser. You may continue to browse the DL while the export process is in progress. Download
  • Download citation
  • Copy citation

We are preparing your search results for download ...

We will inform you here when the file is ready.

Your file of search results citations is now ready.

Your search export query has expired. Please try again.

Exclusive Hypothesis Testing for Cox’s Proportional Hazards Model

  • Published: 30 August 2024
  • Volume 37 , pages 2157–2172, ( 2024 )

Cite this article

hypothesis testing keywords

  • Qiang Wu 1 ,
  • Xingwei Tong 1 &
  • Xiaogang Duan 1  

Exclusive hypothesis testing is a new and special class of hypothesis testing. This kind of testing can be applied in survival analysis to understand the association between genomics information and clinical information about the survival time. Besides, it is well known that Cox’s proportional hazards model is the most commonly used model for regression analysis of failure time. In this paper, the authors consider doing the exclusive hypothesis testing for Cox’s proportional hazards model with right-censored data. The authors propose the comprehensive test statistics to make decision, and show that the corresponding decision rule can control the asymptotic Type I errors and have good powers in theory. The numerical studies indicate that the proposed approach works well for practical situations and it is applied to a set of real data arising from Rotterdam Breast Cancer Data study that motivated this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

Similar content being viewed by others

Semiparametric model for semi-competing risks data with application to breast cancer study.

hypothesis testing keywords

Meta-analysis of individual patient data with semi-competing risks under the Weibull joint frailty–copula model

hypothesis testing keywords

Targeted maximum likelihood estimation for causal inference in survival and competing risks analysis

Solovieff N, Cotsapas C, Lee P H, et al., Pleiotropy in complex traits: Challenges and strategies, Nature Reviews Genetics , 2013, 14 (7): 483–495.

Article   Google Scholar  

Shriner D, Moving toward system genetics through multiple trait analysis in genome-wide association studies, Frontiers in Genetics , 2012, 16 (7): 1–7.

Google Scholar  

Yang Q and Wang Y, Methods for analyzing multivariate phenotypes in genetic association studies, Journal of Probability and Statistics , 2012, 2012 (358): 652569.

Zhang Y, Xu Z, Shen X, et al., Testing for association with multiple traits in generalized estimation equations, with application to neuroimaging data, NeuroImage , 2014, 96 (1): 309–325.

Deng Y and Pan W, Conditional analysis of multiple quantitative traits based on marginal GWAS summary statistics, Genetic Epidemiology , 2017, 41 (5): 427–436.

Schaid D, Tong X W, Larrabee B, et al., Statistical methods for testing genetic pleiotropy, Genetics , 2016, 204 (2): 483–497.

Schaid D, Tong X W, Batzler A, et al., Multivariate generalized linear model for genetic pleiotropy, Biostatistics , 2019, 20 (1): 111–128.

MathSciNet   Google Scholar  

Jiang Q, Zhang X, Wu M, et al., Testing economic “genetic pleiotropy” for Box-Cox linear model, Communications in Statistics — Theory and Methods , 2020, 49 (19): 1–15.

Article   MathSciNet   Google Scholar  

Wang Y, Wu P, Tong X W, et al., A weighted method for the exclusive hypothesis test with application to typhoon data, Canad. J. Statist. , 2021, 49 (4): 1258–1272.

Wu Q, Zhong S J, and Tong X W, Genetic pleiotropy test by quasi p-value with application to typhoon data in China, Journal of Systems Science & Complexity , 2022, 35 (4): 1557–1572.

Wang J, Long M, and Li Q, A maximum kernel-based association test to detect the pleiotropic genetic effects on multiple phenotypes, Bioinformatics , 2023, 39 (5): btad291.

Cox D R, Regression models and life-tables, J. Roy. Statist. Soc. Ser. B , 1972, 34 (2): 187–220.

Cox D R, Partial likelihood, Biometrika , 1975, 62 (2): 269–276.

Andersen P K and Gill R D, Cox’s regression model for counting processes: A large sample study, Ann. Statist. , 1982, 10 (4): 1100–1120.

Cox D R and Oakes D, Analysis of Survival Data , Monographs on statistics and applied probability, Chapman and Hall, London, 1984.

Lin D Y and Ying Z L, Semiparametric analysis of the additive risk model, Biometrika , 1994, 81 (1): 61–71.

Mckeague I W and Sasieni P D, A partly parametric additive risk model, Biometrika , 1994, 81 (3): 501–514.

Buckley J and James I, Linear regression with censored data, Biometrika , 1979, 66 (3): 429–436.

Tsiatis A A, Estimating regression parameters using linear rank tests for censored data, Ann. Statist. , 1990, 18 (1): 354–372.

Wei L J, Ying Z, and Lin D Y, Linear regression analysis of censored survival data based on rank tests, Biometrika , 1990, 77 (4): 845–851.

Fleming T R and Harrington D P, Counting Processes and Survival Analysis , John Wiley & Sons, Inc, New York, 1991.

Kalbfleisch J and Prentice R, The Statistical Analysis of Failure Time Data , 2nd Edition, Wiley Series in Probability and Statistics, John Wiley & Sons, Inc, New York, 2002.

Book   Google Scholar  

Foekens J A, Peters H A, Look M P, et al., The urokinase system of plasminogen activation and prognosis in 2780 breast cancer patients, Cancer Research , 2000, 60 (3): 636–643.

McMahan C S, Wang L, and Tebbs J M, Regression analysis for current status data using the EM algorithm, Stat. Med. , 2013, 32 (25): 4452–4466.

Sun J and Sun L, Semiparametric linear transformation models for current status data, Canad. J. Statist. , 2005, 33 (1): 85–96.

Ma S, Cure model with current status data, Statistica Sinica , 2009, 19 (1): 233–249.

Download references

Author information

Authors and affiliations.

School of Statistics, Beijing Normal University, Beijing, 100875, China

Qiang Wu, Xingwei Tong & Xiaogang Duan

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Xiaogang Duan .

Ethics declarations

The authors declare no conflict of interest.

Additional information

This research was supported by the National Natural Science Foundation of China under Grant Nos. 11971064, 12371262, and 12171374.

This paper was recommended for publication by Editor SUN Liuquan.

Rights and permissions

Reprints and permissions

About this article

Wu, Q., Tong, X. & Duan, X. Exclusive Hypothesis Testing for Cox’s Proportional Hazards Model. J Syst Sci Complex 37 , 2157–2172 (2024). https://doi.org/10.1007/s11424-024-3283-0

Download citation

Received : 24 July 2023

Revised : 25 September 2023

Published : 30 August 2024

Issue Date : October 2024

DOI : https://doi.org/10.1007/s11424-024-3283-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Comprehensive test statistics
  • Cox’s proportional hazards model
  • exclusive hypothesis testing
  • right-censored data
  • Type I error
  • Find a journal
  • Publish with us
  • Track your research

IMAGES

  1. 5 Steps of Hypothesis Testing with Examples

    hypothesis testing keywords

  2. Setting up Hypothesis Tests

    hypothesis testing keywords

  3. Hypothesis Testing

    hypothesis testing keywords

  4. Your Guide to Master Hypothesis Testing in Statistics

    hypothesis testing keywords

  5. Hypothesis Testing Steps & Examples

    hypothesis testing keywords

  6. How to do Hypothesis Testing : A Beginner Guide For Data Scientist

    hypothesis testing keywords

VIDEO

  1. Introduction to Hypothesis Testing

  2. HYPOTHESIS TESTING PART II AND CORREL

  3. Hypothesis Testing Steps

  4. Concept of Hypothesis

  5. What Is A Hypothesis?

  6. Hypothesis Testing for One Sample test I UGC NET COMMERCE I UGC NET MANAGEMENT I M.COM I MBA I HPSC

COMMENTS

  1. Hypothesis Testing

    Table of contents. Step 1: State your null and alternate hypothesis. Step 2: Collect data. Step 3: Perform a statistical test. Step 4: Decide whether to reject or fail to reject your null hypothesis. Step 5: Present your findings. Other interesting articles. Frequently asked questions about hypothesis testing.

  2. PDF Harold's Statistics Hypothesis Testing Cheat Sheet

    hypothesis, H 0. p-value Probability of obtaining a sample "more extreme" than the ones observed in your data, assuming H 0 is true. Hypothesis A premise or claim that we want to test. Null Hypothesis: H 0 Currently accepted value for a parameter (middle of the distribution). Is assumed true for the purpose of carrying out the hypothesis test.

  3. Introduction to Hypothesis Testing with Examples

    Likelihood ratio. In the likelihood ratio test, we reject the null hypothesis if the ratio is above a certain value i.e, reject the null hypothesis if L(X) > 𝜉, else accept it. 𝜉 is called the critical ratio.. So this is how we can draw a decision boundary: we separate the observations for which the likelihood ratio is greater than the critical ratio from the observations for which it ...

  4. An Introduction to Statistics: Understanding Hypothesis Testing and

    Ranganathan P, Pramesh CS. An Introduction to Statistics: Understanding Hypothesis Testing and Statistical Errors. Indian J Crit Care Med 2019;23 (Suppl 3):S230-S231. Keywords: Biostatistics, Research design, Statistical bias. Two papers quoted in this issue of the Indian Journal of Critical Care Medicine report.

  5. A Complete Guide to Hypothesis Testing

    Photo from StepUp Analytics. Hypothesis testing is a method of statistical inference that considers the null hypothesis H₀ vs. the alternative hypothesis Ha, where we are typically looking to assess evidence against H₀. Such a test is used to compare data sets against one another, or compare a data set against some external standard. The former being a two sample test (independent or ...

  6. Understanding Hypothesis Testing. A simple yet detailed dive into all

    Hypothesis testing is a statistical method to determine whether a hypothesis that you have holds true or not. The hypothesis can be with respect to two variables within a dataset, an association between two groups or a situation. The method evaluates two mutually exclusive statements (two events that cannot occur simultaneously) to determine ...

  7. 6 Week 5 Introduction to Hypothesis Testing Reading

    A statistical hypothesis test has a null hypothesis, the status quo, what we assume to be true. Notation is H 0, read as "H naught". The alternative hypothesis is what you are trying to prove (mentioned in your research question), H 1 or H A. All hypothesis tests must include a null and an alternative hypothesis.

  8. 1.2: The 7-Step Process of Statistical Hypothesis Testing

    Step 7: Based on steps 5 and 6, draw a conclusion about H0. If the F\calculated from the data is larger than the Fα, then you are in the rejection region and you can reject the null hypothesis with (1 − α) level of confidence. Note that modern statistical software condenses steps 6 and 7 by providing a p -value.

  9. Introduction to Hypothesis Testing

    A hypothesis test consists of five steps: 1. State the hypotheses. State the null and alternative hypotheses. These two hypotheses need to be mutually exclusive, so if one is true then the other must be false. 2. Determine a significance level to use for the hypothesis. Decide on a significance level.

  10. Hypothesis Testing

    Hypothesis testing is an indispensable tool in data science, allowing us to make data-driven decisions with confidence. By understanding its principles, conducting tests properly, and considering real-world applications, you can harness the power of hypothesis testing to unlock valuable insights from your data.

  11. 6a.2

    Below these are summarized into six such steps to conducting a test of a hypothesis. Set up the hypotheses and check conditions: Each hypothesis test includes two hypotheses about the population. One is the null hypothesis, notated as H 0, which is a statement of a particular parameter value. This hypothesis is assumed to be true until there is ...

  12. What is Hypothesis Testing? Types and Methods

    Frequentist Hypothesis Testing . The frequentist hypothesis or the traditional approach to hypothesis testing is a hypothesis testing method that aims on making assumptions by considering current data. The supposed truths and assumptions are based on the current data and a set of 2 hypotheses are formulated. A very popular subtype of the ...

  13. Hypothesis Testing in Statistics

    In other words, a hypothesis test at the 0.05 level will virtually always fail to reject the null hypothesis if the 95% confidence interval contains the predicted value. A hypothesis test at the 0.05 level will nearly certainly reject the null hypothesis if the 95% confidence interval does not include the hypothesized parameter.

  14. 10 Key Concepts in Hypothesis Testing

    The significance level is a measure of the statistical strength of the hypothesis test. It is often characterized as the probability of incorrectly concluding that the null hypothesis is false. The significance level is something that you should specify up front. In applications, the significance level is typically one of three values: 10%, 5% ...

  15. Hypothesis Testing

    A hypothesis test is carried out at the 5% level of significance to test if a normal coin is fair or not. (i) Describe what the population parameter could be for the hypothesis test. (ii) State whether the hypothesis test should be a one-tailed test or a two-tailed test, give a reason for your answer. (iii)

  16. Hypothesis Testing Cheat Sheet

    Easy To Understand Info About The Main Types Of Hypothesis Tests. This FREE PDF cheat sheet will show you the differences between all of the main types of hypothesis testing. Including examples on when to use the, the equations used, and how to easily implement them in Excel!

  17. 1.2

    Step 7: Based on Steps 5 and 6, draw a conclusion about H 0. If F calculated is larger than F α, then you are in the rejection region and you can reject the null hypothesis with ( 1 − α) level of confidence. Note that modern statistical software condenses Steps 6 and 7 by providing a p -value. The p -value here is the probability of getting ...

  18. Hypothesis Testing Key Words Flashcards

    Terms in this set (8) Hypothesis Test. A test that uses a sample or an experiment to determine whether or not to reject the hypothesis. Null Hypothesis. A statement that we assume to be correct. Alternative Hypothesis. A hypothesis that describes the parameter if our assumption is proven wrong. Test Statistic.

  19. Khan Academy

    Khanmigo is now free for all US educators! Plan lessons, develop exit tickets, and so much more with our AI teaching assistant.

  20. Hypothesis Testing with Python: Step by step hands-on tutorial with

    It tests the null hypothesis that the population variances are equal (called homogeneity of variance or homoscedasticity). Suppose the resulting p-value of Levene's test is less than the significance level (typically 0.05).In that case, the obtained differences in sample variances are unlikely to have occurred based on random sampling from a population with equal variances.

  21. PDF Key Concepts How to Conduct a Hypothesis Test

    Steps to Follow. Define the null and alternative hypothesis. Conduct the test. Using data from the test: Calculate the test statistic (i.e. F) and the critical value (i.e. F crit). Calculate a p value and compare it to a significance level (α) or confidence level (1-α). For example, if the significance level = 5%, then the confidence level = 95%.

  22. Testing scientific ideas

    Testing ideas with evidence is at the heart of the process of science. ... Hypothesis 2: The coral that makes up Eniwetok might have grown in a ring atop an underwater mountain already near the surface. The key to this hypothesis is the idea that underwater mountains don't sink; instead the remains of dead sea animals (shells, etc ...

  23. A Sampling-Based Framework for Hypothesis Testing on Large Attributed

    Hypothesis testing is a statistical method used to draw conclusions about populations from sample data, typically represented in tables. With the prevalence of graph representations in real-life applications, hypothesis testing on graphs is gaining importance. In this work, we formalize node, edge, and path hypotheses on attributed graphs.

  24. Exclusive Hypothesis Testing for Cox's Proportional ...

    Exclusive hypothesis testing is a new and special class of hypothesis testing. This kind of testing can be applied in survival analysis to understand the association between genomics information and clinical information about the survival time. Besides, it is well known that Cox's proportional hazards model is the most commonly used model for regression analysis of failure time. In this ...